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Summary

With the liberalization of global power markets, modelling of exchange traded elec-

tricity contracts has attracted significant attention of both, academy and industry.

While to date, most modelling and forecasting techniques have been built on purely

stochastic models carried over from classical financial markets, forecast models ac-

counting for fundamental factors are still rarely applied. However, transparency ef-

forts by governments and authorities make the use of fundamental variables increas-

ingly attractive. In the thesis at hand, several fundamental models are applied taking

into account a rich variety of demand and supply side related fundamental variables

in order to forecast hourly prices of day-ahead electricity contracts for the German

power market. In doing so, we want to cope with distinct characteristics of electricity

price patterns such as seasonality, high and clustered volatility, or extreme price ob-

servations. Given the increasing promotion of electricity from renewable sources and

according amendments in the German renewable energy law, special attention is paid

to the impact of expected wind electricity infeed and its explanatory power in fore-

casting electricity spot prices. To start, a GARCH regression model which combines

a linear multiple regression relationship with a conditional variance specification will

be estimated. Afterwards, a threshold regression model which allows for asymmetric

dependency patterns will be introduced. In order to allow for seasonal price sensitivi-

ties of electricity spot prices towards fundamental variables, a time-varying parameter

regression model will be applied and estimated via a Kalman filter algorithm. The

latter model will prove to be particularly powerful in considering the adaptive nature

of German electricity spot prices and in providing short-term price forecasts. In order

to gain a deeper insight into the impact of intermittent supply from renewable sources

(i.e. wind energy) and the latest amendments in the German renewable energy law

on the risk behavior of market participants, the thesis will be completed by a forward

market analysis. Risk premia on contracts with a short time-to-maturity will constitute

the focal point of the analysis.





Zusammenfassung

Im Zuge der Liberalisierung der globalen Strommärkte hat die Modellierung von

börsengehandelten Elektrizitätskontrakten sowohl in der Lehre als auch in der Praxis

an Beachtung gewonnen. Bis heute werden hierzu vorwiegend rein stochastische

Methoden angewendet, welche von klassischen Finanzmärkten übernommen wur-

den. Modelle, welche fundamentale Faktoren berücksichtigen, sind nach wie vor

wenig verbreitet. Anstrengungen zur Verbesserung der Transparenz von Seiten der

Regierungen machen fundamentale Informationen des Strommarktes allerdings zu-

nehmend zugänglich und die Anwendung fundamentaler Prognosemodelle attraktiver.

In der vorliegenden Arbeit werden verschiedene fundamentale Prognosemodelle für

die Preise von stündlichen Day-Ahead Elektrizitätskontrakten auf den deutschenMarkt

geschätzt und getestet. Dabei wird ein breites Spektrum an fundamentalen Vari-

ablen berücksichtigt, um den spezifischen Charakteristiken von Strompreisen gerecht

zu werden. Aufgrund der zunehmenden Bedeutung von alternativen Energien im

deutschen Markt wird der Elektrizität aus Windkraftwerken besondere Beachtung

geschenkt. Insbesondere interessiert dabei der Einfluss der prognostizierten Windein-

speisung auf die Spot Preise sowie ihr Beitrag zur Verbesserung der Prognosegüte.

Zu Beginn wird ein GARCH-Regressionsmodell geschätzt, welches eine multiple

lineare Abhängigkeit mit einer bedingten Varianz kombiniert. Anschliessend wird

ein Threshold-Regressionsmodell eingeführt, welches asymmetrische Effekte in den

Abhängigkeiten erlaubt. Schliesslich wird ein Regressionsmodell mit zeitvariierenden

Parametern angewendet, um saisonale Abhängigkeiten von Strompreisen gegenüber

verschiedenen fundamentalen Variablen zu modellieren. Es wird sich zeigen, dass sich

insbesondere die letzte Modellklasse dazu eignet, den adaptiven Charakter der Spot

Preise zu berücksichtigen und akkurate Preisprognosen zu erstellen. Den Abschluss

dieser Arbeit bildet eine Analyse des Terminmarktes für Strom. Diese soll Aufschluss

über den Einfluss der erwarteten Windeinspeisung sowie der jüngsten Änderungen im

Erneuerbaren-Energien-Gesetz auf das Risikoverhalten der Marktteilnehmer geben.





Chapter 1

Introduction

1.1 Motivation & Research Questions

Global markets for electricity have undergone a radical transformation process over

the last decade. In the mid-nineties electricity markets in most countries were char-

acterized by monopolisitic price setting power. They have evolved into deregulated

markets in most regions of the western world to date. Parallel to liberalization efforts,

industrialized societies have increasingly shifted their focus away from fossil fuels

towards energy from renewable sources, initiated by arising discussions on global

warming and the greenhouse effect. For this reason, laws have been enacted with the

aim of setting effective incentives and guidelines. Germany, where renewable energy

sources have historically enjoyed a lot of attention, is a prominent example for these

developments. With its first renewable energy law dating back to 1991, the country

was an early mover in steering its domestic electricity market in a more environmen-

tally friendly direction and has stimulated the production of green electricity mainly

from wind, but also other sources, through various incentive systems.

As one of the latest directives, the EqualizationMechanismOrdinance (ger.: Verord-

nung zur Weiterentwicklung des bundesweiten Ausgleichsmechanismus, abbr.: Aus-

glMechV) was enacted and became effective as of January 1, 2010. In its core, the

directive redefines the way of how electricity from renewable sources is to be mar-

keted. As a result, renewable energies, and among them wind in particular, have taken

an even more important role in the electricity spot price formation process. Neverthe-

less, so far, not much research has been conducted on how the increased importance of

wind energy affects price dynamics and translates into the ability to forecast electricity

spot prices.

Along the liberalization process and the resulting formation of dedicated public
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trading venues such as the European Energy Exchange (EEX) in Leipzig (Germany),

researchers from several disciplines have begun to build methodologies to model and

forecast electricity spot prices and their distinctive dynamics. Until today, stochastic

models carried over from classical financial markets such as equities or interest rates

have remained the most widespread techniques to model electricity prices. Despite

known weaknesses of these models, which mainly originate from the unique charac-

teristics of electricity prices, other approaches have not established themselves so far.

However, as international and national laws enforce more transparency, fundamental

data such as renewable energy generation forecasts or plant availability are increas-

ingly becoming available. As a result, in markets such as the United Kingdom, where

the level of transparency is comparatively high, researchers have started to model elec-

tricity spot prices by means of fundamental market variables over recent years. To all

our knowledge, there have been no efforts to create extensive fundamental models for

the German market so far. In particular, we see a research gap with respect to the

role and explanatory power of information on electricity production from renewable

sources when it comes to the modelling and forecasting of electricity day-ahead spot

prices.

The fact that electricity is a non-storable commodity makes the application of com-

mon forward pricing approaches based on the well-established theory of storage im-

possible. Therefore, from a methodical perspective, differences between spot and

forward electricity prices are often considered as pure risk premia. By defining day-

ahead electricity contracts traded in Vienna as the last possibility for traders to hedge

their positions before the German auction takes place, risk premia on these contracts

seem an appealing research field to investigate the influence of wind energy on very

short-term forward prices. As far as we know, this aspect has not yet been touched in

the existing literature. Furthermore, the latest renewable energy ordinance has consid-

erably changed the way of how green electricity is marketed in the spot and forward

market. Therefore, it remains to be analyzed how risk premia on short-term futures

contracts have reacted to the regulatory changes.

Given the current stage of research and latest regulatory developments, this the-

sis aims to contribute to the existing literature by investigating the following main

questions:

- How are hourly electricity day-ahead spot prices in Germany affected by various

fundamental factors on the demand and the supply side of the market?

- What is the particular role of wind energy in the price formation process and

can the forecast accuracy for hourly spot prices be increased by considering

expected wind electricity generation?
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- How does wind energy affect exchange-traded electricity prices jointly with

other exogenous factors such as fuel prices, expected demand, or the expected

availability of production capacities?

- Which class of models is suitable to forecast day-ahead electricity spot prices

by means of fundamental variables in general and expected wind (electricity)

infeed particularly?

- How have risk premia on short-term forward contracts been affected by the

introduction of the latest renewable energy ordinance and what is the role of

expected wind infeed?

By answering these questions, the thesis intends to expand existing research on elec-

tricity spot price modelling and especially give a better understanding about the impact

of expected wind energy production. To us, the latter seems particularly attractive as

findings may be translated to electricity from other renewable sources that are cur-

rently gaining importance, such as photovoltaics. We also see our contribution in

providing evidence on how extensive fundamental models, covering aspects from the

demand as well as the supply side of the market, perform in forecasting electricity

spot prices in the German market. The extension of our analysis to short-term for-

ward markets shall additionally help to better understand the impact of wind energy

in combination with the latest regulatory changes.

From a methodical perspective, we shall use a set of econometric methods which

constitute more sophisticated extensions of the standard regression model to forecast

electricity spot prices. We will introduce these models in detail before applying them

in the respective chapters of this thesis.

The following section provides an overview on how the thesis will be structured in

order to answer the aforementioned research questions as well as on applied method-

ologies.

1.2 Structure & Methodology

To start, chapter 2will provide an overview on the liberalization process in the German

electricity market and the current market setting. We will explain the functioning of

exchange-based electricity trading and the auction mechanism for German electricity

contracts. Furthermore, we will discuss most relevant stages in the history of laws and

policies on renewable energy in Germany.

In chapter 3 we will discuss distinct characteristics of electricity spot prices using

prices for German day-ahead electricity contracts which will be investigated in this
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thesis. We will define the dataset our spot price models will be applied to. Moreover,

we will motivate the use of normal prices in our models rather than their returns and/or

logarithms which is still the most favoured approach in the existing literature. The

chapter will be completed by an overview on existing research on spot price modelling

in global electricity markets.

In chapter 4 we will provide an exhaustive introduction to fundamental drivers of

the supply and the demand side of the market for electricity. We will derive variables

representing or approximating these drivers which shall be incorporated as exogenous

factors into our spot price models in chapters 5, 6, and 7. Among others, we will

introduce and estimate our own demand forecast model as there exists no dedicated

number for expected total electricity demand in Germany.

In chapter 5 we will introduce GARCH regression models which combine a stan-

dard multi regression model with a conditional volatility process as pioneered by

Bollerslev (1986). After a theoretical introduction we will test the model parame-

ters for statistical significance on an in-sample dataset which is composed of a time

series starting on January 1, 2010 and ending on December 31, 2011. We will then

apply 24 calibrated models (one dedicated model for each hour of the day) to an out-

of-sample dataset including data from January 1, 2012 until April 30, 2012 in order

to test their ability to forecast hourly electricity spot prices. To find out about the

explanatory power of expected wind infeed in GARCH regression models we will es-

timate all models on the in-sample dataset including and excluding the wind variable

and investigate differences in the results. Additionally, an in-depth analysis on regres-

sion parameters will allow us to gain more insight into the dynamics and seasonality

patterns of fundamental price formation across the day. Besides the conditional mean

we will also look at the conditional variance process of the models and show whether

the remaining variance can be reduced by incorporating a fundamental variable for

expected electricity supply from wind power plants.

Following GARCH regression models we will estimate threshold regression mod-

els in chapter 6 according to the approach introduced by Hansen (2000). These models

provide more flexibility as they allow the linear relation between exogenous variables

and the dependent variable to alternate between two regimes which are defined by the

estimated value of the threshold variable which we decide to be expected wind infeed.

Again, we will apply models for single hours to in-sample as well as to out-of-sample

data.

As a third class of spot price models we will introduce time-varying parameter

(TVP) regression models in chapter 7. These models assume regression parameters

to be unobserved states following a random walk process. Regression parameters are

estimated by means of a filter provided by Kalman (1960). We will estimate TVP
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regression models for all 24 hours and in addition to the forecasting accuracy we will

elaborate on the seasonality of regression parameters which becomes apparent as a

result of the estimation routine of the filter. Finally, we will compare conditional

volatility (which is also a side-product of the filter process) of TVP regression models

with conditional volatility we obtained when estimating GARCH regression models

in chapter 5 and discuss differences.

While the preceding part of the thesis concentrates on spot prices, chapter 8 pro-

vides an analysis on short-term forward prices in order to shed more light on the role

of expected wind infeed as well as possible impacts caused by the introduction of the

ordinance on the trading of electricity from renewable sources. Motivated by the non-

storability feature of electricity we will base our analysis on (ex post) risk premia. The

main part of our forward market analysis is dedicated to the investigation of premia on

day-ahead electricity contracts traded in Austria which will be defined as the nearest

forward contracts for EEX day-ahead contracts. Besides risk premia we will estimate

and analyze the market price of risk as introduced by Kolos & Ronn (2008). Finally,

we will also look at front-month futures contracts traded at the European Energy Ex-

change (EEX).

Chapter 9will conclude by providing a summary of our findings and by identifying

possible future research opportunities.





Chapter 2

Economic & Regulatory Background

2.1 The German Electricity Market

2.1.1 Liberalization Process & Market Setting

Liberalization processes in electricity markets can typically be split into three stages

as explained by Stender (2008). In a first step, any hurdles that impede the entrance

of potential participants into the market are abolished. This opens the different parts

of the industry’s value chain such as production, trade, and distribution to new com-

panies. As there may be room for competition discrimination, in a second step, in-

tegrated power companies are forced by law to unbundle their value chain to a level

that allows fair competition. In a third step, the enhanced transparency resulting from

the previous two actions enables an increase in cost reduction potential in areas of the

electricity business which are natural monopolies.

The liberalization of electricity markets in the European Union was initiated by the

enacting of an EU directive (Directive 96/92/EC) in December 1996 which aimed at

lower electricity and gas prices for end consumers by regulating existing monopolies

and promoting market competition.1 To transform the European directive into na-

tional law, a new German energy law (ger.: Energiewirtschaftsgesetz, abbr.: EnWG)

was established in 1998 ushering in the liberalization of the German electricity mar-

ket. Ever since, the supply side of the German electricity market has undergone a

structural transformation process characterized by mergers, cooperations, and strate-

gic partnerships. The most intense concentration took place at the very beginning of

1See A. T. Kearney (2007).
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the liberalization process when eight former power supply firms were merged into

four large companies, namely RWE, E.ON, Vattenfall Europe, and EnBW Energie

Baden-Wuerttemberg. In sum, these four new firms were in possession of more than

80 percent of the domestic production capacities.2 As the European Union consid-

ered liberalization progressions to be too slow, an accelerating directive was enacted

in 2003 (Directive 2003/54/EC) which was transformed into national law in Germany

in 2005. Among others, the new act required that vertically integrated companies

with more than 100,000 clients had to operationally and legally demerge their areas of

production, main operations, and distribution.3 To further advance the liberalization

process, an incentive based regulation framework was introduced by the government

in early 2009.4

Today, more than 15 years after first liberalization efforts in Germany, discussions

about their impact and the level of competition are omnipresent. The two mostly dis-

cussed points are, first, the fact that electricity generation capacities are still owned by

a very low number of companies5 and, second, prices for end consumers which, over

the last decade, have rather increased than decreased. Research on market power in

the German electricity market can be found in Ellersdorfer (2005), Muesgens (2006),

Schwartz & Lang (2006), or von Hirschhausen et al. (2007). Overall, the studies con-

clude that electricity spot prices are not completely determined by fundamental factors

but partly influenced by the exertion of market power by producing companies.

Technically, the German electricity market consists of a multilayer grid system.

The high voltage grid, to which most power plants are directly connected, divides

into four control areas that are operated by the respective transmission system oper-

ators (TSOs) TenneT TSO GmbH, Amprion GmbH, 50Hertz Transmission GmbH,

and TransnetBW GmbH which are former affiliates of the four aforementioned large

energy companies. The main duties of the TSOs are the maintenance of the transmis-

sion grid and ensuring a balanced grid (i.e. equilibrium between power supply and

consumption) which is required by the non-storability of electricity. This task is ac-

complished by the TSOs via three levels of reserve control as explained by Konstantin

(2007). Primary control is provided by a so-called spinning reserve which is un-

used capacity held by power plants for exactly this purpose to an extent of 3-5% of

2See Krisp (2008).
3See Konstantin (2007).
4See Stender (2008).
5As Weigt & von Hirschhausen (2008) report, the big four had a combined market share of 85% in

2006.
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their total generation capacity. Primary control must be available within 15 to 30 sec-

onds. It is then scheduled that within 30 seconds, primary control is automatically

replaced by secondary control which is provided by power plants that operate in part

load mode. Secondary control must be held up for at least 1 hour after the imbalance

occurs. Finally, tertiary reserve is scheduled to replace secondary reserve after 15

minutes at the latest and is manually activated through pump storage and gas turbines

power plants mainly. In case that negative balancing energy is required (i.e. short-

term supply exceeds short-term demand), power plants which are scheduled to deliver

reserve energy have to reduce their production. Erdmann & Zweifel (2008) note that

in liberalized electricity markets, TSOs are obliged to facilitate reserve control in a

transparent, non-discriminating, and market-oriented way.

One level below the TSOs, distribution system operators (DSOs) are responsible

for the operation of the medium and low voltage grid. As such, they are in charge of

the distribution of power to electricity supply companies (ESCs) which transmit it to

the end customers.

Together, Germany and Austria form a single market area. This means that con-

tracts traded for this area can be settled at any point of the German as well as the

Austrian transmission grid. Today, there are hardly electricity flow restrictions or

bottlenecks between the two countries. While the German part consists of the four

mentioned transmission grid zones, Austria is divided into three different grid zones.

2.1.2 Auction Mechanism & The European Energy Exchange

As an integrative part of the German electricity market and its liberalization process,

the European Energy Exchange AG (EEX) in Leipzig has facilitated power trading

since it was formed through the merger of the Leipzig-based Power Exchange (LPX)

and the Frankfurt-based EEX in 2002. In 2009, the EEX agreed to collaborate more

closely with Powernext SA in Paris which is the exchange place for the French area.

The two companies set up a joint venture named European Power Exchange Spot SE

(EPEX) based in Paris (with an operating branch in Leipzig for the German market)

into which they transferred their spot trading activities. This corporate action, how-

ever, did not have an economic impact on the trading of electricity contracts which is

still handled separately for different market areas.6 Czakainski et al. (2010) note that,

together with the Scandinavian market place, the EEX has been the main driver of the

fast development of exchange-based power trading in Europe.

6See Kroneberg & Boehnke (2010).
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For the German/Austrian market area, the EPEX offers two main types of spot

trading which are (i) the day-ahead auction and (ii) the intraday auction. Although

intraday trading would be the ’real’ spot market, its liquidity is rather low and thus

the day-ahead auction is usually considered the spot market for electricity contracts.

The day-ahead auction for hourly delivery in the German and Austrian TSO zones

takes place every day at 12:00 noon (including weekends and holidays). Until then,

market participants can anonymously submit their bids with a minimum volume of 0.1

megawatt (MW) for individual hours and blocks and a minimum price change of EUR

0.1 per megawatt hour (MWh). Moreover, prices for hourly contracts must remain

within the range between EUR -3,000 and EUR 3,000 per MWh. After all bids have

been collected, the market clearing price, which applies to all transactions, is deter-

mined and published after 12:40 pm. The delivery takes place during the respective

hour of the following day (which reasons the term ’day-ahead’). Besides contracts

with hourly deliveries, block contracts with delivery during peak hours (from 08:00

am to 08:00 pm) as well as block contracts with delivery during base hours (including

all 24 hours of the day) are traded in the day-ahead market. Their price is calculated as

the arithmetic mean price of the underlying hourly contracts. Hourly and block con-

tracts are summarized under the term Physical Electricity Index (abbr.: Phelix) and

serve as price signals for contracts that are negotiated outside the energy exchange

(OTC).7

Trading for derivatives is facilitated by the EEX Power Derivatives GmbH of which

the EEX is the majority shareholder. For the German/Austrian market area, futures

(all financially settled exclusively) with delivery during the current and the following

four weeks, the current and the next nine months, the next eleven quarters, and the

next six years are continuously traded on every working day between 08:00 am and

06:00 pm. Unlike spot market contracts, futures are only available for peak, off-peak,

and base blocks. The daily delivery period for peak contracts is between 08:00 am and

08:00 pm, the delivery period for off-peak contracts is between midnight and 08:00 am

(off-peak I) as well as between 08:00 pm and midnight (off-peak II), and the delivery

period for base contracts is across all 24 hours of the day.

When discussing and modelling electricity spot prices in chapters 5, 6, and 7 in

this thesis, we are considering hourly day-ahead contracts. For the forward market

analysis in chapter 8, we will also look at peak and base month futures contracts.

To avoid confusion, note that in the remainder of this thesis, for the sake of sim-

plicity, the term ’EEX prices’ will refer to prices for contracts on the German/Austrian

7See European Energy Exchange AG (2012).
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market area traded in Leipzig, regardless of whether trading is (legally) facilitated by

the EEX (futures contracts) or by the EPEX (spot contracts).

2.2 Renewable Energy Legislation

Along with the worldwide increasing debate on global warming and accompanying

political efforts towards the end of the last century, energy from renewable sources

has gradually gained attention. In 1991, the first feed-in act (ger.: Stromeinspeisege-

setz fuer Erneuerbare Energien, abbr.: StrEG) was introduced which supported the

construction and operation of wind power plants by smaller suppliers.8 The feed-in

act, which was revised in 1998 (Law of the Energy Industry, abbr.: EnWG), can be

considered the predecessor of the later enacted new energy laws. In 2000 the first

Renewable Energy Law (ger.: Erneuerbare-Energien-Gesetz, abbr.: EEG) became ef-

fective, followed by an amended version in 2004. These laws obliged local grid oper-

ators to accept all electricity from renewable sources, pay a minimum price for it, and

to pass it to the transmission system operators who were then responsible to balance

the obtained electricity. Finally, renewable electricity was delivered to electricity sup-

ply companies (ESCs) which had to accept it up to a certain amount relative to their

overall turnover9 and which distributed it to the end customer.

In 2009 another era in German electricity politics was ushered in by the reformation

of the Renewable Energy Law. The main objective was to reduce dependence on fossil

fuels and to increase the share of renewable energy in total energy consumption to

30 percent by 2020.10 A central point of the new EEG was the ruling regarding the

processing of electricity from renewable sources by the transmission system operators.

Until December 31, 2009, operationally, the delivery of renewable electricity from

transmission system operators to energy supply companies was facilitated through so-

called monthly bands. Concretely, the amount of renewable electricity delivered was

specified based on forecasts by transmission system operators in the preceding month.

These monthly bands can economically be understood as forward contracts with a

delivery period of one month. As most renewable electricity (e.g. wind, photovoltaics)

is not fully predictable, transmission system operators had to balance resulting gaps

which was mainly done through the day-ahead spot market.11

8See Stroebele et al. (2010).
9See Konstantin (2007).
10See EEG, Federal Republic of Germany (2008).
11See for example Fraunhofer Institute for Systems and Innovation Research et al. (2007).
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This mechanism was flawed in various respects and was replaced as a side-product

of the new EEG by a federal ordinance (ger: Verordnung zur Weiterentwicklung des

bundesweiten Ausgleichsmechanismus, abbr.: AusglMechV) which became effective

as of January 1, 2010. With the new equalization mechanism ordinance, transmission

system operators have to market renewable electricity in the day-ahead or the intra-

day spot market in a transparent and non-discriminating way.12 Given the low market

activity on the intraday market one can assume that EEG electricity is mainly mar-

keted in the day-ahead market. Transmission system operators are no longer forced to

transmit renewable energy electricity physically to electricity supply companies and

the latter are given the freedom of covering their power requirement independently

of EEG electricity production and thus with a higher planning reliability at the ex-

change.13

12See §1 and §2 AusglMechV, German Bundestag (2009).
13See German Bundestag - Research Services (2010).



Chapter 3

Electricity Spot Prices

This chapter focuses on the particularities of electricity spot prices and established

methodologies to model and forecast them. First, we will discuss distinct price pat-

terns that make electricity a unique commodity. Afterwards, we will describe the

dataset of electricity prices used in this thesis and motivate why we shall exclusively

work with normal prices rather than their logarithms. To conclude, an overview on

existing literature of spot price modelling will be presented.

3.1 Stylized Facts of Electricity Spot Prices

Electricity spot prices display distinct characteristics which are different from proper-

ties of other financial assets in general as well as other commodities. To a large extent,

these unique price patterns are due to the seasonality of underlying demand, the non-

storability feature, and (closely related to the latter) the fact that the power grid has to

be balanced at every point in time. The most obvious characteristics are:

- Mean reversion

- Seasonality

- Extreme prices

- High and clustered volatility

Over time, electricity spot prices tend to revert towards the mean which is a char-

acteristic they share with many other commodities. Whereas long-term sustainable

changes in price levels can be caused by structural market changes or governmental

interventions, mean-reversion patterns usually hold for the short to medium term.
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Figure 3.1: Intraday seasonality illustrated by average hourly day-ahead spot

prices for different months calculated using data between January 1, 2010 and

December 31, 2011. For example, hourly prices for January are computed as

the arithmetic mean of hourly prices in January 2010 and January 2011. All

weekdays are included.
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Figure 3.2: Intraweek seasonality illustrated by daily average day-ahead spot

prices for different hours of the day calculated using data between January 1,

2010 and December 31, 2011.

Electricity spot prices display pronounced seasonal patterns with respect to yearly

seasons, weekdays, and time of day. Overall, seasonal structures are mainly driven by

demand which will be discussed in detail in section 4.1. Figure 3.1 depicts hourly av-

erage spot prices for four different months representing different seasons. We can ob-

serve distinct price peaks at noon as well as in the evening around 06:00 pm. Whereas

in summer the noon peak is more pronounced than the evening peak, a reverse pat-

tern is apparent for wintertime. During early morning and late evening hours when

demand is reduced, prices are lower across all seasons. Looking at figure 3.2 we ob-
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serve that prices do also vary over different week days. The most apparent pattern is

a sharp decrease in prices over the weekend when demand from industry disappears.

The least price difference between working and weekend days can be observed for

early morning hours. Across working days we observe modest fluctuations for some

hours, but in general prices prove to be rather uniform. It can be concluded that most

price variation is with regard to different hours. Electricity prices of different hours

are therefore, from an economic perspective, often handled as different commodities.1

Another distinct characteristic of electricity spot prices are extreme price forma-

tions. Unlike stocks which regularly display jumps in their price evolutions, electricity

prices are goverened by price spikes which are usually short-lived and much more ex-

treme in magnitude. The line plots in figure 3.3 show that spike characteristics of spot

prices vary significantly across the day. During the night (hour 3) spikes are negative

and jumps to the upside are rarely observed. Negative prices at these times are mainly

driven by the intermittent infeed of renewable electricity (wind) which creates tempo-

rary excess supply on the market which can sometimes even lead to negative prices as

all available electricity has to be balanced. The occurrence of negative spikes is also

reflected in the distributional characteristics of spot prices. The probability distribu-

tion of spot prices for hour 3 displays negative skewness. For hours when demand is

at high or very high levels, positive spikes become more probable. This is reflected

in the line chart for hour 12 in figure 3.3 as well as in the related price distribution

skewness which is closer to zero. Looking at hour 18, we see, similar to hour 12,

negative as well as positive price spikes. To sum up, not only average price levels but

also price spikes are subject to seasonal patterns.

Volatility of electricity spot prices is not constant but highly variable and clustered.

As an example we can look at prices for hour 18 in figure 3.3 where a temporary

increase during winter 2010/2011 or towards the end of 2011 is apparent.

1See Nan et al. (2010).
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Figure 3.3: Electricity spot prices for hours 3, 12, and 18 and corresponding

frequency distributions. The underlying dataset starts on January 1, 2010 and

ends on December 31, 2011. All weekdays are included.
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3.2 Dataset

We will work with two main datasets when estimating and testing different spot price

models. The in-sample dataset includes prices starting on January 1, 2010 and end-

ing on December 31, 2011 whereas the out-of-sample dataset includes prices from

January 1, 2012 until April 30, 2012. There are several reasons why we do not use

data before 2010. The main reason is that at the beginning of 2010, the latest signifi-

cant regulatory change (AusglMechV) became effective. Another reason is that some

data we will use to reflect the fundamentals driving spot prices are not available or

incomplete for previous time periods.

There are different approaches how outliers in electricity spot prices are handled.

On the one hand, there is reason to keep them in the dataset in order to estimate under

as much realistic conditions as possible. On the other hand, researchers are tempted

so smooth spiky data in order to obtain more robust results. To us, the main moti-

vation to eliminate most extreme prices is that they are often the result of technical

system failure rather than a normal price formation process2 and thus usually none-

repetitive3. We choose to exclude observations with a spot price outside a 3-sigma

band around its mean which results in the elimination of 1 to 9 data points, depending

on the hour, which is less than 2% of all observations for the in-sample dataset. Sim-

ilar approaches have been chosen before. For example Clewlow & Strickland (1999)

eliminate as well data beyond the 3-sigma band (eliminating 1.48-2.11% of all data)

while Thomas & Mitchell (2007) choose a 4-sigma band to be appropriate (eliminat-

ing 0.65-1.05% of all data in the in-sample dataset and 1.20-3.60% in the out-of-

sample dataset).

Table 3.1 summarizes descriptive statistics for the in-sample electricity spot price

dataset (after outliers correction) we will use in this thesis and table 3.2 provides the

same figures for the out-of-sample dataset.

2See O’Mahoney & Denny (2011).
3See Guirguis & Felder (2004).
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Hour 1 2 3 4 5 6 7 8

Observations 486 487 486 491 489 484 489 492

Outliers 7 6 7 2 4 9 4 1

Min 17.55 11.49 6.52 1.88 5.05 16.07 28.88 31.52

Max 57.32 52.74 50.06 50.15 51.49 53.46 68.49 84.99

Mean 40.92 37.91 35.19 32.43 33.59 39.37 48.42 58.37

Standard Dev. 7.12 8.08 8.92 10.06 9.49 6.78 6.49 8.87

Skewness -0.90 -0.99 -0.88 -0.74 -0.74 -0.63 0.27 0.12

Kurtosis 3.74 3.73 3.29 2.94 3.04 3.26 2.91 2.63

Hour 9 10 11 12 13 14 15 16

Observations 491 491 490 490 492 492 492 491

Outliers 2 2 3 3 1 1 1 2

Min 39.20 39.93 39.97 41.63 39.28 38.52 35.05 33.83

Max 84.19 84.85 83.95 86.00 82.92 80.92 78.49 77.94

Mean 60.86 60.74 60.59 61.41 59.29 57.51 55.44 53.52

Standard Dev. 8.74 8.20 7.79 8.06 7.80 7.84 8.02 8.01

Skewness 0.07 0.00 -0.05 -0.01 -0.05 -0.02 0.15 0.30

Kurtosis 2.57 2.69 2.75 2.92 2.93 2.83 2.97 3.11

Hour 17 18 19 20 21 22 23 24

Observations 487 486 484 489 492 491 488 490

Outliers 6 7 9 4 1 2 5 3

Min 33.82 34.98 38.66 39.93 39.34 35.27 34.97 23.58

Max 79.93 97.02 100.46 91.67 79.93 71.95 66.05 60.35

Mean 53.02 57.07 60.63 59.89 56.15 50.98 49.87 44.80

Standard Dev. 8.33 11.18 11.57 10.47 8.87 7.07 5.88 5.83

Skewness 0.46 0.84 0.66 0.25 0.25 0.53 0.19 -0.38

Kurtosis 3.28 4.15 3.54 2.14 2.08 3.12 2.95 3.39

Table 3.1: Descriptive statistics of the in-sample dataset starting on January 1,

2010 and ending on December 31, 2011. The dataset is corrected for weekends,

holidays, and bridge days as well as for outliers, i.e. price observations outside

a 3-sigma band around the mean.
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Hour 1 2 3 4 5 6 7 8

Observations 81 80 81 82 82 81 82 82

Outliers 2 3 2 1 1 2 1 1

Min 11.17 11.71 0.04 -5.03 -1.48 10.99 20.44 37.39

Max 55.07 51.80 46.96 45.13 46.20 49.57 70.94 120.03

Mean 37.11 35.03 33.10 31.40 32.04 36.22 46.49 58.70

Standard Dev. 8.40 7.99 8.58 9.33 8.73 7.00 8.48 15.87

Skewness -1.04 -0.94 -1.32 -1.47 -1.27 -1.26 0.31 2.08

Kurtosis 4.75 4.05 5.01 5.84 4.97 5.21 4.15 7.79

Hour 9 10 11 12 13 14 15 16

Observations 81 80 82 81 80 81 81 81

Outliers 2 3 1 2 3 2 2 2

Min 37.19 39.96 37.03 35.26 25.77 25.12 24.55 24.47

Max 120.00 115.00 107.52 95.93 85.82 84.27 73.97 73.78

Mean 62.05 57.91 55.64 53.07 49.45 48.26 46.17 46.33

Standard Dev. 16.34 13.60 15.49 12.69 10.84 10.28 8.37 7.84

Skewness 1.86 1.87 1.79 1.38 0.99 1.20 1.06 1.04

Kurtosis 6.73 7.78 6.00 4.99 4.36 5.25 5.40 6.08

Hour 17 18 19 20 21 22 23 24

Observations 81 82 80 82 81 82 82 81

Outliers 2 1 3 1 2 1 1 2

Min 25.13 35.96 41.56 42.05 35.17 28.62 28.44 16.31

Max 84.98 110.41 142.91 127.13 89.76 71.59 65.27 57.94

Mean 46.59 55.08 63.73 64.80 54.51 48.99 47.05 41.60

Standard Dev. 8.63 15.16 19.48 18.66 9.42 8.03 7.15 7.25

Skewness 1.69 2.12 2.42 1.73 1.41 0.44 0.24 -0.42

Kurtosis 8.29 7.48 9.22 5.85 6.52 3.61 3.72 4.57

Table 3.2: Descriptive statistics of the out-of-sample dataset starting on Jan-

uary 1, 2012 and ending on April 30, 2012. The dataset is corrected for week-

ends, holidays, and bridge days as well as for outliers, i.e. price observations

outside a 3-sigma band around the mean.
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3.3 Normal Prices versus Log Prices

In financial markets, researchers normally work with logarithmized prices and cor-

responding returns. However, for (physical) commodities in general, and electricity

spot prices specifically, the situation looks somewhat different and researchers do not

uniformly work in the logarithmized world. In this thesis we will consistently work

with normal prices instead of following the more often applied approach of using log

prices or log returns. The motivation for this approach shall be set forth subsequently.

There is a number of reasons why, especially in classical finance, researchers usu-

ally do not work with absolute prices but instead use their logarithms or logarithmized

returns. First of all, econometric models often require underlying time series to be sta-

tionary meaning that they possess constant distributional properties over time.4 One of

the most prominent approaches to transform a non-stationary series into a stationary

process is the application of the natural logarithm function and taking first differences.

While it is obvious that equity price series have a unit root, series of electricity prices

are often found to be stationary.5

Another frequently mentioned argument is that working with log prices ensures

positivity of predicted prices as the log function is not defined for the negative space

R
−. However, negative prices in electricity markets can be economically reasoned by

the non-storability characteristic of the underlying commodity6 and thus do not have

to be avoided necessarily. Insofar as negative prices are feasible given the regulations

of the relevant trading venue, allowing for negative prices can even be a requirement

when striving for reasonable price forecasts. In the German electricity market, neg-

ative prices have increasingly been observed along with the promotion of renewable

energies and after the EEX removed restrictions on negative prices in 2009.7 It is

therefore our opinion that restricting ourselves to positive prices would be misleading.

As electricity prices feature pronounced spike characteristics as well as high volatil-

ities, researchers often apply a log transformation in order to obtain series with more

stable variances which is a desired feature when using certain quantitative models.8

As opposed to this, Karakatsani & Bunn (2010) mention that when investigating the

variability of electricity prices, efforts to stabilize the variance of the original series

4For an introduction to stationarity and details on different types of stationarity, see for example
Verbeek (2008) or Kirchgaessner & Wolters (2008).

5See for example Lucia & Schwartz (2002).
6See Meyer-Brandis & Tankov (2008).
7See for example Brandstaett et al. (2011).
8See for example Weron (2006) or Nan et al. (2010).
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are not in the researcher’s interest as they conceal detailed statistical properties and

also lead to multiplicative error effects. In the thesis at hand we intend to explain price

variability by the introduction of fundamental variables. Smoothing the underlying

time series would therefore not be an appropriate measure.

A practical point which can be raised is that when investigating physical commod-

ity markets, traders are mainly concerned about actual prices rather than their (log)

returns.9

Researchers in electricity markets who worked with normal prices instead of their

logarithms are for instance Escribano et al. (2002), Meyer-Brandis & Tankov (2008),

or Karakatsani & Bunn (2010).

3.4 Spot Price Modelling: Literature Overview

Along with the liberalization process of global electricity markets, research on fore-

casting spot prices has increasingly been conducted. There is a tremendous amount of

research especially for markets which initialized liberalization earlier, such as the US,

the Nordic, or the British market. On the contrary, there are fewer analyses available

for younger markets such as Germany or Austria.

The majority of existing research is based on stochastic modelling methodolo-

gies that have been carried over from classical financial markets. First attempts to

model and forecast electricity spot prices were mainly based on the mean-reverting

characteristic and derived from the general commodity price model introduced by

Schwartz (1997) with an underlying Ornstein-Uhlenbeck process.10 Mean-reverting

models allowing for one or two factors seem to be attractive mainly because of their

ability to catch autocorrelation characteristics of electricity prices.11 A prominent

method is the 2-factor model introduced by Pilipovic (1997) which consists of a short-

term spot price factor and a long-term equilibrium price factor. Applications of clas-

sical mean-reverting models were done by Lucia & Schwartz (2002) who investigated

the Nordic market with one and two factor models or by Barlow et al. (2004) who

analyzed the Australian Market estimating the Pilipovic model with a Kalman filter

based algorithm.

A drawback of pure mean-reverting and classical commodity models is that their

9See Pilipovic (2007).
10See Uhlenbeck & Ornstein (1930).
11See Pilipovic (2007).
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ability to mimic regularly observed extreme prices is very limited.12 Price spikes are

often caused by the non-storability of electricity and are therefore a unique character-

istic which is not observed for most other assets. One branch of research has therefore

tried to better model fat tails and volatility clusters by specifying a conditional vari-

ance via General Autoregressive Conditional Heteroskedasticity (GARCH) processes

as introduced by Bollerslev (1986). Examples are Garcia & Contreras (2005) who ap-

plied GARCH models to predict day-ahead prices in the Californian and the Spanish

market, Mugele et al. (2005) estimating ARMA-GARCH models on different Euro-

pean markets, including Germany, or Bowden & Payne (2008) modelling prices in

US markets with ARIMA-EGARCH models allowing for asymmetric volatility.

However, as noted by Duffie et al. (1998) or Escribano et al. (2002), jumps and

spikes may cause severe problems and lead to erroneous results when estimating

GARCH-type models. An alternative approach is the expansion of classical mean-

reverting models by jump diffusion processes which are common means to model the

discontinuous behavior of other financial assets such as stocks or interest rates. Analy-

ses incorporating jump diffusion processes have been provided by Cartea & Figueroa

(2005) who apply a mean-reverting jump diffusion model to the market in Great

Britain, Geman & Roncoroni (2006) introducing various discontinuous processes with

a jump component for the Nordic market, Hambly et al. (2009) expanding an Ornstein-

Uhlenbeck process with a mean-reverting jump process, or Weron & Misiorek (2006)

who calibrate an autoregressive price model with mean-reversion and jump diffusion

extension to data from the Californian and the Nordic market.

There are some deficiencies which are often associated with jump processes that

are carried over from classical financial markets. Looking at electricity spot prices

it can be easily observed that extreme price moves normally appear in the form of

spikes rather than jump processes. While stock prices often continue to evolve from

the new price level, electricity prices are usually pushed back to their starting level

after only a few extreme price observations. In addition, Huisman & Mahieu (2003)

note that stochastic jump processes can distort the specification of the true mean-

reversion characteristic of the spot price process. Regime-switching models are an

established approach to tackle the shortcomings of pure jump processes. Introduced

by Hamilton (1988 & 1989) they are a wide-spread alternative to model processes

with heteroskedasticity, structural breaks, or distinct patterns in different market sit-

uations.13 Regime-switching models for electricity prices have been implemented

12See Hambly et al. (2009).
13See Kim & Nelson (1999).
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by Huisman & Mahieu (2003) for the Dutch, the German, and the UK market, by

de Jong (2005) to various markets including Germany, by Weron & Misiorek (2006)

and Haldrup & Nielsen (2006) for the Nordic market, and by Bierbrauer et al. (2007)

and Bloechlinger (2008) for the German market. Overall, the mentioned studies con-

clude that among purely stochastic models, regime-switching methods provide the

best fit when forecasting electricity spot prices.

More recently, models including exogenous variables have increasingly been in-

troduced to electricity spot prices, motivated by the assumption that characteristic

price patterns are the result of the joint behaviour of fundamentals. However, the

range of variables used is still rather limited. Besides dummies to cover seasonal

effects, weather data and the level of demand are often used as explanatory vari-

ables. Knittel & Roberts (2005) estimate an ARMAX model with temperature data

as an external regressor on the Californian market, Torro (2008) defines an ARIMAX

model with temperature, precipitation, reservoir levels, and the difference between

current futures and spot prices (basis) as external variables for the Nordic market,

and Cartea & Villaplana (2008) explain spot prices in the US, England/Wales, and the

Nordic area by fundamental variables representing demand and capacity. Richer spec-

ifications are used by Karakatsani & Bunn (2010) who investigate spot prices with

different time series models such as GARCH or time-varying parameter regression

models. They examine a broad set of exogenous variables such as characteristics of

the demand curve, generation capacity, or market agents’ behavior and find especially

time-varying regression models to be a superior choice when analyzing the British

electricity market. A similar approach is chosen by Nan et al. (2010) to estimate sev-

eral spot price models for the same market.





Chapter 4

Fundamental Drivers of Spot Prices &

Variable Selection

In this chapter we will elaborate on the fundamental factors which influence the evo-

lution of electricity spot prices in the short and in the long term. Besides giving a

deeper understanding of the price building dynamics, this chapter shall motivate the

selection of specific variables we will apply in the various models. We have chosen

to categorize the variables into demand and supply side influencing factors. Variables

that can neither be allocated to the supply nor to the demand side are pooled in a third

category.

4.1 Demand

The demand for electricity which is relevant for the daily spot price formation is not

available in the form of a dedicated number. Some of the transmission system opera-

tors provide approximated time series which are derived from the sum of all infeeds

by power plants into the transmission grid. However, this data is often incomplete and

not comprehensively provided. For our analysis we will represent hourly electricity

demand by means of the vertical system load which is defined as the appropriately

signed sum of all power which is transferred from the high voltage transmission grid

to the next lower level, which is the distribution grid. This approach of representing

demand is the usually followed method in power prices research. The total vertical

system load for the German market area is provided by the four transmission grid op-

erators. However, not all of them do also provide a corresponding day-ahead forecast
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figure which is why we will generate our own forecast time series for all single hours

of the day. Subsequently, we will first summarize the most important characteristics

and drivers of electricity demand and established modelling approaches. We will then

introduce a forecast model and present empirical in-sample as well as out-of-sample

results.

4.1.1 Drivers of Electricity Demand

Demand for electricity mainly comes from manufacturing industry, households, and

the service industry.1 In the short run, industrial production is primarily driven by

the hour of the day whereas when looking at longer time horizons, business activity

becomes more relevant. During holidays, weekends, and the night, when industrial

production is switched off, the need for electricity is substantially lower. Over the

span of several months and quarters, a possible economic boom or recession impacts

demand significantly. Over the year, school holidays in summer or usual plant holi-

days around Christmas lead to lower demand.

As for electricity demand stemming from private consumers, the daytime is a rele-

vant driver as well. Around noon or in the evening between 05:00 pm and 07:00 pm

when people prepare lunch and dinner, demand is increasing. On the contrary, during

the night when most people sleep, the need for electricity is relatively low. Along with

the hour of the day, private demand is heavily driven by environmental factors which

for example determine heating and cooling activities or the use of electrical light. Dis-

tinct patterns can also be observed over the course of the year. During summer time,

the peak in demand for noon and afternoon hours is more pronounced as air condition

runs. By the same token, the evening peak is more explicit during winter months as

people increase heating at the time they return from work.

4.1.2 Modelling Approaches & Literature Overview

Modelling electricity load has a long history. The ambitions to obtain precise load

forecasts originate from different reasons. Research has shown that extreme loads

have a significant impact on the probability of observing price spikes.2 Moreover,

an exact load forecast reduces the risk of market participants such as distributors and

1See Burger et al. (2007).
2See Christensen et al. (2012).
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generators when entering contracts.3 Nowicka-Zagrajek & Weron (2002) state that

although mean absolute percentage errors4 of 10 percent and less are attained rather

easily, financial costs triggered by erroneous forecasts can be so immense that re-

search strives to improve estimation accuracy even by only a few percentage points.

Moreover, the non-storability characteristic makes demand forecasting essential since

electricity has to be consumed as it is produced. For the buy side, forecasts are im-

perative due to the fact that electricity, unlike many other goods, cannot be substituted

easily.

Load forecasts can be categorized according to their time horizon which is either

short-term (one hour to one week), medium-term (one month to one year or sometimes

even up to three years), or long-term (over three years).5 Among the three categories,

short-term forecasts have experienced most attention from researchers.

The largest part of load forecasting work (especially for short-term horizon) is rep-

resented by seasonal regression models (mainly of linear nature), led by Autoregres-

sive Integrated Moving Average (ARIMA) and state space models which have their

origins in the 1980s.6 Besides dummy-type and sinusoidal variables to model season-

ality, these models usually include exogenous regressor variables to take environmen-

tal changes into account.7 Early results in this category were provided by Ackermann

(1985), Gupta (1985), Schneider et al. (1985), or Engle et al. (1992). At a later stage,

Ramanthan et al. (1997) tested rich linear regression models in a Northamerican area

for single hours by accounting for deterministic (i.e. seasonal), meteorological, cur-

rent load, and past errors information. They report mean absolute percentage errors

(MAPE) between 3.84% and 5.66%. Linear regression models were also used by

Feinberg et al. (2003) including characteristical data on temperature, humidity, wind

speed, sky cover, and sunshine. Analyzing several areas in the north-eastern part of

the US they report an R2 of 0.87 to 0.97. Nowicka-Zagrajek & Weron (2002) applied

ARMA models to deseasonalized data of the Californian market ending up at a low

MAPE of slightly below 1.7%. Quite recently, Hinman & Hickey (2009) tested AR-

MAX and ARMA models with exogenous weather variables on an area in the US

Midwest reporting a MAPE of 3.27-4.54%.

3See Soares & Souza (2006).
4The mean absolute percentage error (MAPE) is defined as 1
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5See Willis (1996).
6See Taylor et al. (2006).
7Models including exogenous regressors are labelled by adding ’X’ to the abbreviation of the model

type (e.g. ARX, ARMAX, ARIMAX).
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While most load forecasting efforts have been done on US markets, there is much

less published work on the German electricity market so far. Viehmann (2011) applied

an ARMA model to predict load reporting a MAPE of 2.3-5.3% for the time period

between October 2005 and September 2008.8

Besides regression models, neural networks have often been used to predict load.9

The purpose of this method, which was increasingly introduced in the 1990s, is to

better incorporate nonlinear dependencies in load data.10 In terms of comparative

analyses, Taylor et al. (2006) have tested neural networks and five other univariate

methods, including ARMA and other regression models, for load in Rio de Janeiro

(observation period in 1996) and Wales/England (observation period in 2000). They

conclude that overall, ARMA models perform better than neural networks although

the latter are capable to account for highly sophisticated non-linear relationships. This

finding is confirmed by Darbellay & Slama (2000) who state that often, linear repre-

sentations are sufficient to describe load dynamics. They perform their analyses on

the Czech electricity market.

Although accuracy of forecasts in existing research is often at rather impressing

levels, it has to be considered that in many cases, very short time frames are used

and only in-sample estimates are reported. Nevertheless, concluding from existing

research, an appropriately calibrated ARMAX-type model should deliver a forecast

accuracy within a MAPE range of 4 to 8 percent for out-of-sample data.

4.1.3 Preliminary Data Analysis

The total vertical system load in Germany does not include wind energy since electric-

ity from wind power plants is directly fed into the medium voltage grid. To have an as

precise as possible approximation for electricity demand, we add total wind infeed to

the vertical system load reported by the four transmission system operators.11 Thus,

we can formulate the demand variable as follows:

Demand (t) = Total Vertical System Load (t) + Total Wind Infeed (t) (4.1)

8Note that the main purpose of the paper was not to develop or test a load forecast model.
9See for example Darbellay & Slama (2000), Hippert et al. (2001), or Carpinteiro et al. (2004).
10See Darbellay & Slama (2000).
11Electricity from solar power plants is fed into the medium voltage grid as well. However, in this case

there is no consistent dataset available for the entire investigated period. Given the increasing importance
of photovoltaics, a consideration in future work would be advisable.
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Figure 4.1 illustrates the total vertical system load and electricity demand as defined

in (4.1) for hour 12 during 2010.12
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Figure 4.1: Total vertical system load (of all four TSO grid zones) and elec-

tricity demand between January 1, 2010 and December 31, 2010 for hour 12.

Weekends, holidays, and bridge days are excluded.

To gain more insight into the structural properties of electricity demand data we look

at the autocorrelation function (ACF)

ρk =
cov{Dt,Dt−k}

var{Dt}
=
γk

γ0
(4.2)

for lags k = 1, ..., 20. In addition to this, we investigate the partial autocorrelation

function (PACF) which examines the correlation between Dt and Dt−k after adjusting

for correlation effects caused by intermediate values Di, 0 < i < k.13 The ACF and

PACF of demand Dt and squared demand D2
t up to lag 20 for hour 12 are plotted

in figure 4.2. The plots indicate clear persistence in both, first and second moment,

12Descriptive statistics for all hours can be found in table A.1 in the appendix.
13For a detailed introduction see for example Verbeek (2008).
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speaking in favor of an ARMA/GARCH structure to model conditional mean and

variance.
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Figure 4.2: Sample autocorrelation function (ACF) and sample partial auto-

correlation function (PACF) of demand and squared demand for hour 12 com-

puted in a preliminary step before the calibration of the demand model. The

observation period is the in-sample dataset starting on January 1, 2010 and

ending on December 31, 2011. The horizontal lines indicate 95% confidence

bounds.

In addition to graphical analyses we perform a Ljung-Box Q-Test with test statistic

Q = n
(

n + 2
)

h
∑

k=1

r2
k

(

n − k) (4.3)

where n is the sample size, h denotes the number of autocorrelation lags considered,
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and r2
k
is the squared sample autocorrelation of demand at lag k.14 In case test-statistic

Q is above the applicable critical value (derived from a χ2-distribution), the null hy-

pothesis of no autocorrelation is rejected. We test lags 1, 5, 10, 15, and 20 for all hours.

Test results15 confirm the presence of autocorrelation in the data sample at all chosen

lags uniformly for all hours. In all cases, the null hypothesis of zero autocorrelation

can be rejected at the 99% significance level.

As a formal test for heteroskedasticity we perform Engle’s ARCH test where squa-

red demand is regressed on its h lags:

D2
t = c +

h
∑

k=1

αkD
2
t−k (4.4)

To examine the null hypothesis of no heteroskedasticity, all αk, k = 1, ..., h are tested

to be jointly zero using a Lagrange multiplier (LM) test statistic which is derived from

a maximum likelihood optimization problem and asymptotically χ2-distributed with h

degrees of freedom.16

For all lags (1, 5, 10, 15, 20) and all hours of the day we can reject the null hypoth-

esis of i.i.d. disturbances at the 99% significance level.17 In addition to the graphical

analysis, this supports a GARCH representation for volatility.

To conclude the preliminary data analysis we test whether hourly demand is sta-

tionary or whether it possesses a unit root. Therefore, we perform an augmented

Dickey-Fuller test (ADF test) with one lag (motivated by the below applied AR(1)

structure).18 Results are presented in table A.6 in the appendix. For all hours, we can

reject the null hypothesis of a unit root at a 95% significance level meaning that the

data is stationary. Also when testing with five lags (motivated by the weekly cycle,

results are not reported) we can reject the null hypothesis of non-stationarity for the

majority of all hours.

4.1.4 Model & Variable Selection

Based on the results of the existing literature as well as on preliminary data analysis we

decide to apply an Autoregressive Moving Average model with exogenous regressors

14See Box & Pierce (1970) and Ljung & Box (1978).
15See table A.2 in the appendix.
16See Engle (1982) and Hamilton (1994b).
17See table A.3 in the appendix.
18For details on the ADF testing procedure see Fuller (1976) and Dickey & Fuller (1979).
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(ARMAX) to forecast hourly load in the German market. Given our findings from the

preceding section, we additionally allow for a conditional variance by introducing a

GARCH(1, 1) structure.

Our comprehensive model to estimate electricity demand reads as follows:

Dt = α + ̺Dt−1 + x′tβ + ϕǫt−1 + ǫt (4.5)

with ǫt =
√

σ2
t ut , ut ∼ N and a conditional variance process19

σ2
t = ω + φǫ

2
t−1 + ψσ

2
t−1 (4.6)

In (4.5) vector xt contains exogenous variables which will be introduced below. By

estimating 24 individual load forecast models we account for intraday seasonality.

To catch seasonal patterns over different weekdays and months we introduce dummy

variables with values 1 or 0 for four out of five weekdays and for eleven out of twelve

months. Environmental variables are used to cover influences caused by varying cli-

matic conditions. We source all climatic data from the German Weather Service20

which provides a rather comprehensive range of environmental figures at no charge.

Climatic data in Germany is gathered by authorities at about 80 observation stations

across the country. To obtain reasonable information on German electricity demand,

we source and average data from four observation stations in Hamburg, Berlin Tem-

pelhof, Duesseldorf, and at Munich Airport. We consider this choice a good combi-

nation to represent the biggest congested areas and, at the same time, geographically

diverse regions in Germany. Specifically, we utilize the following environmental vari-

ables:

Sunshine Duration This variable denotes the average duration of sunshine in hours,

measured 24 times across the day.

Mean Degree of Cloud Cover The mean degree of cloud cover is defined as the

number of eighths to which the sky is covered by clouds, computed as the aver-

age of 24 measurements across the day.21

19For a more detailed introduction to GARCH models, their formulation, and relevant conditions we
refer to chapter 5.

20See Federal Ministry of Transport, Building and Urban Development (2012).
21For the mean degree of cloud cover, data from Berlin Tempelhof was replaced by data from the nearby

observation station Berlin Tegel since the former stopped reporting respective information as of November
1, 2008.
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Maximum Air Temperature This variable represents the average temperature in

centigrade two meters above ground based on 24 measurements across the day.

Mean Relative Humidity Relative humidity is expressed as a percentage and com-

puted as the average of 24 measurements across the day.

Cooling Degree Days The concepts of cooling-degree-days (CDD) and its counter-

party heating-degree-days (HDD) are widely used measures which indicate the

need of cooling and heating using outdoor temperatures. They are, among oth-

ers, relevant quantities for temperature futures trading. Mathematically, CDD

for a certain day t are defined as

CDDt = max
(

Tt − c, 0
)

(4.7)

with Tt denoting the mean temperature on the relevant day computed as the

average of the observed maximum and minimum temperature over a 24 hours

cycle.22 The comfort level c denotes the threshold above and below which cool-

ing and heating activities are assumed to start. For the central European area a

reasonable value for c is 18.3 centigrade.23 HDD are accordingly defined as

HDDt = max
(

c − Tt, 0
)

. (4.8)

Often, cooling-degree-days and heating-degree-days are summed up resulting

in a combined, more general temperature measure called energy-degree-days

(EDD).

The following two variables have been excluded after preliminary data analyses:

Heating Degree Days Correlation analyses on the regressor variables have revealed

a high correlation (close to 1 and -1, respectively) of heating-degree-days and

maximum and minimum air temperature. This gives rise to multicollinearity

which, as we are primarily interested in forecasting results and not in the inter-

pretation of coefficients, is not a serious issue though. However, nearly perfect

negative or positive correlations also imply that most (or nearly all) of the infor-

mation incorporated in the variable is already provided by other factors. In the

case at hand this seems obvious which is why we omit the variable.

22See Benth et al. (2008).
23See for example Bloechlinger (2008).
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Minimum Air Temperature Similar to heating degree days, minimum air temper-

ature is excluded due to very high correlations with the mentioned variables.

Among the two variables maximum and minimum air temperature, the first

proves to have the higher explanatory power over different hours of the day

which is the reason why it is kept in the model.

For each hour of the day we calibrate a dedicated model. In a preliminary step we

have eliminated exogenous variables (dummies and climatic variables) which were

not significant on a 90% level. Accordingly, we have a different set of explanatory

variables for every model.

4.1.5 Empirical Results

Tables 4.1 and 4.2 depict mean absolute percentage errors of the estimated models.

The in-sample period spans over entire 2010 and 2011. The out-of-sample period

reaches from January 1, 2012 to April 30, 2012. We eliminate all weekends, holidays,

and bridge days. As can be seen from the tables, the in-sample MAPE is between

3.0% and 5.0% with a mean of 3.8%. Highest deviations from actual demand figures

we note for noon peak hours. Looking at out-of-sample results it is apparent that

errors are consistently higher. We note a MAPE range of 2.1% to 8.6% with a mean

of 4.8% which corresponds to what has been reported by other researchers applying

similar approaches. The errors are highest for hours when demand is higher and more

volatile, which is especially over noon. For hours when load is at lower levels and

more stable, the model fit proves to be clearly better. Without hours 12 to 15, the

mean out-of-sample MAPE amounts to only 4.1%. Figure 4.3 illustrates the out-of-

sample model fit for hour 12 where the performance is relatively weak and for hour

18 where the overall performance is rather good.

Our out-of-sample results are not completely out-of-sample in a strict sense. We

use environmental data which is only available after the demand of the specific hour

is known. However, as with technologies available today, temperature data can be

predicted rather accurately 24 hours in advance, we deem this approach justifiable.

Exemplarily, ACF and PACF of the standardized innovations (corresponding to ut

in the error specification of equation 4.5) and their squares for hour 12 are plotted in

figure 4.2. The plot gives evidence that serial correlations are no longer present. As

for pre- and post-estimation autocorrelation and partial autocorrelation analysis, we

receive similar results for all hours of the day.

To receive additional confirmation that our model is appropriate, we repeat sta-

tistical tests for autocorrelation (Ljung-Box Q-test) and heteroskedasticity (Engle’s
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ARCH test).24 As for autocorrelation we can no longer reject the null hypothesis for

most hours at the first lag whereas at higher lags, there is still evidence for some mod-

erate remaining persistence, especially for noon peak hours. As for Engle’s ARCH

test results, we can no longer reject the null hypothesis of homoskedasticity for most

hours at most lags. The latter results are even clearer than results from autocorrelation

tests.

Overall, based on error analysis, graphical analysis, and formal statistical tests we

consider the suggested forecast models for demand to be appropriate for our pur-

pose.25

MAPE MAPE

Hour 1 0.036 Hour 13 0.045

Hour 2 0.039 Hour 14 0.047

Hour 3 0.040 Hour 15 0.050

Hour 4 0.039 Hour 16 0.046

Hour 5 0.039 Hour 17 0.036

Hour 6 0.038 Hour 18 0.031

Hour 7 0.041 Hour 19 0.033

Hour 8 0.042 Hour 20 0.033

Hour 9 0.036 Hour 21 0.033

Hour 10 0.037 Hour 22 0.031

Hour 11 0.038 Hour 23 0.030

Hour 12 0.040 Hour 24 0.032

Table 4.1: In-sample results (mean absolute percentage errors) for estimated

demand ARMA-GARCH regression models.

24Detailed test results can be found in tables A.4 and A.5 in the appendix.
25The estimation of the demand forecast model is not the focus of the thesis. We will therefore not

report and discuss estimation results of single hours in details.
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MAPE MAPE

Hour 1 0.039 Hour 13 0.083

Hour 2 0.039 Hour 14 0.086

Hour 3 0.037 Hour 15 0.082

Hour 4 0.037 Hour 16 0.072

Hour 5 0.032 Hour 17 0.057

Hour 6 0.026 Hour 18 0.046

Hour 7 0.021 Hour 19 0.037

Hour 8 0.027 Hour 20 0.031

Hour 9 0.040 Hour 21 0.034

Hour 10 0.056 Hour 22 0.027

Hour 11 0.074 Hour 23 0.038

Hour 12 0.080 Hour 24 0.044

Table 4.2: Out-of-sample results (mean absolute percentage errors) for esti-

mated demand ARMA-GARCH regression models.
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Figure 4.3: Out-of-sample fit of demand ARMA-GARCH regression model for

hours 12 and 18.
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lation function of standardized innovations and their squares of the demand

ARMA-GARCH regression model for hour 12. The observation period is the in-

sample dataset starting on January 1, 2010 and ending on December 31, 2011.

Horizontal lines indicate 95% confidence bounds.
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4.2 Supply

4.2.1 The Merit Order Curve

When discussing electricity markets it is imperative to have an understanding of the

merit order concept which plays a central role in the formation process of electricity

spot prices. The merit order curve can be defined as the sorted marginal cost curve

of electricity production which defines the price of electricity given a certain quan-

tity.26 A schematical merit order curve is shown in figure 4.5. Different production

technologies are ordered according to their marginal costs starting with the least ex-

pensive technologies at the very left. The figure depicts a demand curve for a low

demand and for a peak demand scenario. The type of production technology in whose

area the intersection of the demand and supply (merit order) curve is located con-

stitutes the price setting technology. Its marginal costs determine the price that all

suppliers receive (including power plants with much lower production costs). During

hours of lower demand, lignite or hard coal usually serve as the price setting tech-

nologies whereas during hours when demand is very high, the price is rather set by

expensive gas or oil fired plants. Power plants which are located on the left of the

merit order curve (except renewable energy plants) are so-called must-run capacities

as they never go off-line due to very high ramp-up costs. In addition to the intermittent

supply from renewable energy sources, these must-run capacities are the main reason

for occasionally occurring negative prices.27

If a power plant located at the lower end of the merit order has to stop production

because of technical failure, it needs to be replaced by the next available free capacity

at a much higher point of the curve which is one of the reasons for temporary spikes in

electricity prices. Sensfuss et al. (2008) mention that the installed capacity of renew-

able generation, the development of fuel prices, and prices for emission allowances

are the factors which have the greatest impact on the current shape of the merit order

curve. They discuss different scenarios by simulating changes in these factors.

In practice, the supply curve deviates from the theoretical merit order curve. The

main reason for this is that besides production capacity owners, also traders with spec-

ulative motivations participate in the market who use to buy production capacities

bilaterally or via forward markets in order to sell them at a profit in the day-ahead

26See for example von Roon & Huck (2010).
27See Stroebele et al. (2010).
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Figure 4.5: Simplified illustration of the merit order curve and electricity spot

price formation. The two points at the intersections of the dashed demand

curves and the merit order (supply) curve represent electricity spot prices (mar-

ket clearing prices) for two given levels of demand (peak and off-peak). IGCC:

integrated gasification combined cycle.

auction.28

The different production technologies and their role in the price formation process

are discussed in more detail in the subsequent sections.

4.2.2 Fuels

The slope of the merit order curve in the German electricity market, and therefore

also spot prices, are heavily determined by fuels. Burger et al. (2007) mention that the

costs of fuels, which are the main driver of short-run variable power generation costs,

can be derived from market fuel prices and transport costs from the extraction place

to the power plant. In this section we will briefly discuss the fuels which determine

28See von Roon & Huck (2010).
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German electricity prices and elaborate on how we will account for them in the models

to be estimated.

4.2.2.1 Coal

Coal used for electricity production can be classified into two groups, namely lignite

(a.k.a. brown coal) and hard coal (a.k.a. stone coal). Lignite is the most prominent

primary energy carrier in Germany with a share of 25 percent in 2009 and is exclu-

sively domestically mined.29 It is a low quality coal with comparatively high specific

CO2 emissions and investment costs but rather low fuel costs (compared to other ther-

mal power plants).30 As transport costs are high, lignite is usually transformed into

electricity at the place where it is mined. It is not traded on markets and its inflation-

adjusted costs can be assumed constant.31 As lignite power plants cannot be operated

flexibly and have rather long ramp-up times, they are used to cover basic load.32 Hard

coal is another important fuel representing 18 percent of all primary energy carriers in

Germany33 and, unlike lignite, is mainly imported34. Burger et al. (2007) report that

due to higher CO2 costs and fuel costs, the relative importance of coal in general has

been declining over the last decades. Nevertheless, in times of lower electricity de-

mand, hard coal remains the price setting technology.35 Although ramp-up times are

shorter than for lignite power plants, they are still clearly longer than for gas power

plants.36

Variable Selection

As a variable representing the coal price we choose Amsterdam-Rotterdam-Antwerp

(ARA) futures contracts. They are daily traded at the EEX with financial settle-

ment and times-to-maturity of up to six months.37 For every relevant delivery date

we choose the current settlement price of the front-month futures contract which we

29See Federal Ministry of Economics and Technology (2011).
30See Burger et al. (2007).
31See Konstantin (2007).
32See Stroebele et al. (2010).
33See Federal Ministry of Economics and Technology (2011).
34See Konstantin (2007).
35See Sensfuss et al. (2008).
36See Stroebele et al. (2010).
37See European Energy Exchange AG (2010).
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consider a reasonable representation of the prevailing price level for hard coal in Ger-

many.

4.2.2.2 Gas

In 2009 gas represented 16 percent of all primary energy carriers in Germany.38 Due to

their high operational flexibility and short ramp-up times, gas power plants are price

setting during peak hours when demand for electricity is high.39 Konstantin (2007)

notes that it takes only a few minutes from cool start to maximum power output. Be-

cause investment costs are comparatively low, due to the expansion of the continental

gas pipeline system, because its relative environmental sustainability, and because the

development of more efficient technologies, the importance of gas in electricity pro-

duction has increased over the last decades.40

Variable Selection

As a variable representing the gas price we use the NCG Day Ahead Natural Gas Spot

Price41 which is the price at the NCG (NetConnect Germany) hub in Southern Ger-

many, serving as the reference gas price for the German market. We use daily last

prices sourced from financial data provider Bloomberg. Sensfuss et al. (2008) report

that the ratio of coal prices to gas prices is of high relevance as well since it has a

significant impact on the slope of the market supply curve. In addition to coal and gas

prices, we will therefore introduce the quotient of the two variables.

4.2.2.3 Oil

Compared to the aforementioned fuels, oil has a rather low impact on the merit-order

effect.42 According to Burger et al. (2007), the negligible role of oil in German and

European power generation is mainly due to environmental legislation. They mention

that in Europe, Italy is the only country where oil fired plants play a major role. The

reason why we want to consider this fuel is its impact on transportation costs which is

particularly relevant in the case of imported hard coal.

38See Federal Ministry of Economics and Technology (2011).
39See Sensfuss et al. (2008).
40See Burger et al. (2007).
41Bloomberg Ticker: EGTHDAHD Index
42See Sensfuss et al. (2008).
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Variable Selection

As a variable we use the active ICE Brent Crude futures contract43 which is the oil

price reference in Europe. We use daily closing prices sourced from Bloomberg.

4.2.3 Emission Allowances

As a result of the Kyoto Protocol, which aims to combat greenhouse gas emissions

in involved countries, carbon dioxide (CO2) producing companies are obliged to buy

emission allowances (a.k.a. ’CO2 certificates’). Starting in 2005, EU emission al-

lowances have been traded at the EEX for more than seven years.44 Especially coal

fired power plants (but also many gas fired plants to some lower extent) belong to

the group of companies that require emission allowances for energy production. As

they represent a considerable part of the German power plant portfolio, prices of CO2

certificates have a significant impact on electricity spot prices in general. In times of

high prices for emission allowances, a phenomenon described as fuel switch can be

observed. It is basically a change in the merit order with electricity from more effi-

cient gas power plants becoming cheaper relative to electricity from CO2 intense coal

fired plants.45

Variable Selection

To represent current costs of emission allowances we select the EEX Carbon Index

(Carbix) which is traded at the EEX. The index price is daily auctioned at 10:30 am

and serves as the reference price for emission allowances.46

4.2.4 Wind

Among all renewables, wind energy is the one which has experienced highest atten-

tion in Germany over the past years and still proves to be the green energy carrier

with highest growth rates.47 Today Germany possesses one of the largest markets for

43Bloomberg Ticker: COA Comdty
44See European Energy Exchange AG (2011a).
45See for example Sensfuss et al. (2008) or Liebau & Stroebele (2011).
46See European Energy Exchange AG (2011b).
47See Stroebele et al. (2010).
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wind power globally48 and electricity generated by wind represented about 40% of all

energy from renewable sources in 200949. As a comparison, electricity from water

represented 20% and electricity from photovoltaic technology represented nearly 7%.

Already in 2007, almost 10% of all electricity production in Germany was represented

by wind power.
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Figure 4.6: Actual wind electricity infeed and corresponding frequency dis-

tribution for hour 12 between January 1, 2010 and December 31, 2011. All

weekdays are included.

Wind energy has a set of distinct characteristics. Its supply for example is, like

energy from photovoltaics, significantly determined by meteorological conditions.50

Moreover, its share of fixed costs compared to variable costs is different from elec-

tricity from thermal power plants. About 80% of total wind energy costs are fixed

and principally composed of expenses for turbines, foundations, and grid connec-

tion.51 In contrast to this, variable and thus also marginal costs are comparatively low.

Leuthold et al. (2008) compare costs of wind power with other energy sources and re-

port that with marginal generation costs of about EUR 4.00 per MWh, once installed,

wind power plants produce at much lower costs than for instance nuclear power plants

(˜EUR 10 per MWh), lignite (˜EUR 15 per MWh), or gas fired plants (˜EUR 40 per

48See Grothe & Schnieders (2011).
49See Wernsmann & Wernsmann (2009).
50See Grothe & Schnieders (2011).
51See Blanco (2009).
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Figure 4.7: Average actual wind electricity infeed across the day for all four

grid zones. Hourly averages are computed using data between January 1, 2010

and December 31, 2011, including all weekdays.

MWh). From an ecological perspective, another benefit of wind energy is that it is

produced nearly carbon free.52

German wind power plants can be split into two categories, namely onshore and

offshore plants. Whereas generation conditions are better offshore, these plants re-

quire significantly higher investments and thus produce at higher costs than onshore

plants.53 Geographically, wind is mainly produced on the coastline and in Eastern

Germany.

Wind electricity which is fed into the German grid features certain seasonal patterns

due to its dependency on meteorology. Figure 4.7 depicts the average wind electricity

52See Traber & Kemfert (2011).
53See Blanco (2009).
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infeed into the medium voltage grid by the four transmission system operators in their

respective areas for 2010 and 2011. In all four cases, infeed tends to be higher in early

morning hours and during afternoon hours. For TenneT, which has a high number of

wind power plants located at the North Sea coast, the afternoon spike is more pro-

nounced. The levels of TenneT and 50Hertz (which operates the grid in the former

German Democratic Republic) show that, as mentioned above, the biggest share of

wind electricity is generated on the coastline and in Eastern Germany.

Figure 4.6 depicts some statistical properties of electricity from wind power plants.

The left chart presents wind electricity infeed between January 1, 2010 and December

31, 2011. It is obvious that wind infeed has a high volatility. Furthermore, annual sea-

sonality patterns are apparent with wind infeed which tends to be higher during winter

months than during summertime. The right chart depicts the frequency distribution

for wind infeed for hour 12 over the same time period. Wind infeed proves to be

Weibull distributed with a scale parameter λ and a shape parameter k.54 The empirical

distribution has mass at low levels of wind infeed close to zero and is clearly skewed

to the right with occasionally very high wind infeed. In general, these patterns look

similar for all hours of the day.

Variable Selection

As a variable representing electricity from wind we incorporate the expected wind

(electricity) infeed55 which is published on the day before the delivery by the four

TSOs takes place. We define our wind forecast variable, denoting the total expected

wind electricity fed into the German grid, as the sum of the four forecasts. All TSOs

publish their forecasts daily in the late afternoon which is after the day-ahead electric-

ity price auction has taken place. Hence, from a practical perspective, the inclusion

of this variable could be criticized. However, it is known that market participants use

wind electricity forecasts which are offered by a variety of private institutions earlier

in the day. In our opinion it is therefore reasonable to use the later in the day pub-

lished (official) number as a realistic approximation for non-public forecasts which

are available before the auction. Our results shall confirm the appropriateness of this

approach. Forecasts of wind electricity infeed prove to be rather precise. Figure 4.8

plots forecasts against actual infeed for a selection of six hours across the day.

54For a theoretical introduction into the Weibull distribution see Weibull (1951).
55Note that we will use the terms ’expected wind (electricity) infeed’ and ’wind forecast’ likewise.
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Figure 4.8: Predicted and actual wind electricity infeed (sum of all four grid

zones) for different hours of the day. The observation window starts on January

1, 2010 and ends on December 31, 2011, including all weekdays.
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4.2.5 Power Plant Availability

Another factor which impacts the supply side is power plant availability. If power

plants with representative production volumes have to go off-line due to reparation

or maintenance, this can have considerable implications on the price building process

depending on which technologies are affected and the current level of demand.

Variable Selection

The EEX Transparency Platform, which is a joint venture of the EEX and the transmis-

sion system operators, publishes, among others, various data on installed and available

capacities. Although these publications are voluntary, participating companies have

tripled in 2010 and by the end of the year represented 89 percent of all relevant com-

panies.56 Thus, the numbers provided can be considered a reasonable approximation

for the entire market. We use ex ante expected power plant availability as an explana-

tory variable for our models. This figure is daily published at 10:00 am for a rolling

window including the next 365 days.57

4.2.6 Omitted Variables

4.2.6.1 Nuclear Energy

We do not consider a variable representing electricity supplied by nuclear power

plants. Nuclear power plants are located at the very left of the merit order curve given

the fact that they produce at rather low marginal costs. Moreover, even during hours

of lowest demand levels, load is never below the total installed capacity of nuclear

power plants.58

4.2.6.2 Other Renewable Energies

The general support of renewables by German politics has not only affected wind

energy production but also other sources of green energies. Among them, the most

prominent exponents are biomass and photovoltaics. The reason why we do not con-

sider these technologies is mainly because respective data is not available for the entire

time period we are interested in and/or because published data is still incomplete.

56See European Energy Exchange AG (2011a).
57See EEX Transparency Platform (2012).
58See r2b research to business energy consulting (2011).
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4.3 Others

4.3.1 Lag Spot Price

The introduction of the spot price for the same hour on the previous relevant delivery

day is motivated by two main reasons. First, information on the current market situ-

ation may not entirely be reflected by the chosen fundamental variables. Especially

strategic and speculation-based behavior of traders is difficult to catch by fundamental

variables. We believe that at least part of such information may be reflected in the

latest spot price level. Second, a motivation of using lagged spot prices is to deal with

potential autocorrelation problems.

4.3.2 Risk Considerations

To reflect risk behavior of market participants we introduce historical spot price volatil-

ity as an explanatory variable. We define it as the standard deviation of the prices of

the last five relevant delivery days. Doing so, we suppose that traders react and adapt

their bidding behavior according to the level of price variability over the past full

working week cycle.

4.3.3 Seasonality Function

Researchers often work with deseasonalized time series when modelling electricity

spot prices meaning that they estimate the (deterministic) seasonal component which

is then deducted from the actual spot price in a preliminary step.59 As an alternative

to this, one can allow for seasonality in the models directly. We follow the latter

approach and, in doing so, integrate seasonality in two ways. First, seasonality is

implicitly incorporated in various fundamental variables (mainly in expected demand

and fuel prices). Second, we additionally include a sinusoidal seasonality function

into the models which we will find to be highly significant for almost all hours:60

cos

(

2πt

T
− ϑ

)

(4.9)

59See for example Bierbrauer et al. (2007).
60We do not include dummy variables, which is regularly done by other researchers, because this would

significantly increase the number of regressors and since in preliminary analyses we have found that intro-
ducing monthly dummies does only marginally improve results.
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We calibrate ϑ in a preliminary step using climatic data. Thus, we implicitly assume

that the annual seasonal cycle is located according to the outside temperature. In the

preliminary estimation we follow an approach developed by Stolwijk et al. (1999).

They show that in a cosine function of the form

f (t) = α × cos
[(

2πt

T

)

− ϑ
]

, (4.10)

the location parameter of the sinusoidal curve ϑ can be obtained via a standard regres-

sion model. We first need to estimate the following model:

f (t) = β1 × sin

(

2πt

T

)

+ β2 × cos
(

2πt

T

)

(4.11)

The authors show that the two extreme values of the cosine function in 4.10 are ob-

tained at the solutions of

tan

(

2πt

T

)

=
β1

β2
. (4.12)

In order to find t, the following equation has to be solved:

t = arctan

(

β1

β2

)

× T

2π
(4.13)

For the case that β1/β2 is positive, t represents the first extreme and the second extreme

is located at t + T/2. If, however, β1/β2 is zero or negative, the extremes are located

at t + T/2 and t + T . For both cases, if β1 is positive, the first extreme constitutes a

maximum, tmax, and the second constitutes a minimum, tmin. If β1 is zero or negative,

the opposite applies. Finally, the shifting factor ϑ can be obtained through

ϑ =
2πtmax

T
. (4.14)

If amplitude α in 4.10 is required, it can be calculated as follows:

α =

√

β2
1
+ β2

2
(4.15)

To obtain the deterministic seasonal trend which we will enter as an exogenous vari-

able into our models, we calibrate ϑ on energy degree days (EDD) data as introduced

in section 4.1.4. By this, we implicitly assume, as addressed above, that the annual

seasonality cycle in electricity prices is driven by temperature (estimation results will

confirm that this assumption is reasonable). As temperature data is available with daily

granularity, we only need to calibrate one shift factor ϑ which shows to be 0.2553.

Figure 4.9 depicts EDD data and the calibrated cosine function over the span of the

in-sample dataset from January 1, 2010 to December 31, 2011.
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Figure 4.9: Fit of the sinusoidal seasonality function to energy degree

days (EDD) for the observation window between January 1, 2010 and

December 31, 2011. Weekends, holidays, and bridge days are excluded.

4.4 Overview

Table 4.3 summarizes all fundamental variables and corresponding data sources we

will use to model electricity spot prices. Moreover, abbreviations and synonyms which

we will regularly use are presented for convenience.

Table 4.4 defines whether the respective variables are available with daily or with

hourly granularity. In case of daily granularity, the same data is used in all 24 hourly

models.
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Variable

Abbreviations

Description Data Source

Lag Spot Price

Spot(-1)

Market clearing price for the same
hour of the last relevant delivery day

European Energy Exchange:
http://www.eex.com

Average Lag

Spot Price

Av. Spot(-1)

Average market clearing price across
all 24 hours of the last relevant deliv-
ery day

European Energy Exchange:
http://www.eex.com

Spot Price Volatility

Spot Vol.

Standard deviation of market clearing
prices for the same hour on the last five
relevant delivery days

European Energy Exchange:
http://www.eex.com

Coal Price

Coal

Latest available price (daily auctioned)
of the front-month Amsterdam-
Rotterdam-Antwerp (ARA) futures
contract before the electricity price
auction takes place

European Energy Exchange:
http://www.eex.com

Gas Price

Gas

Last price of the NCG Day Ahead Nat-
ural Gas Spot Price on the day before
the electricity price auction takes place

Bloomberg,
Ticker: GTHDAHD Index

Oil Price

Oil

Last price of the active ICE Brent
Crude futures contract on the day be-
fore the electricity price auction takes
place

Bloomberg,
Ticker: COA Comdty

Price for EU

Emission Allowances

CO2 Price

Latest available price of the EEX Car-
bon Index (Carbix), daily auctioned at
10:30 am

European Energy Exchange:
http://www.eex.com

Expected Wind

(Electricity) Infeed

Wind Forecast, Wind

Sum of expected infeed of wind elec-
tricity into the grid, published by Ger-
man transmission system operators in
the late afternoon following the elec-
tricity price auction

Transmission system operators:
http://www.50Hertz.com,
http://www.amprion.de,
http://www.transnetbw.de,
http://www.tennettso.de

Expected Power

Plant Availability

Exp. PPA,
Power Plant Av.

Ex ante expected power plant avail-
ability for electricity production (vol-
untary publication) on the delivery day
(daily granularity), daily published at
10:00 am

European Energy Exchange
& transmission system operators:
ftp://infoproducts.eex.com

Expected Demand

Demand, Dem
Demand forecast for the relevant hour
on the delivery day as modelled in sec-
tion 4.1

Own data,
German Weather Service:
http://www.dwd.de

Lag Demand

Demand(-1), Dem(-1)
Sum of total vertical system load and
actual wind infeed for the same hour
on the last relevant delivery day

Transmission system operators:
http://www.50Hertz.com,
http://www.amprion.de,
http://www.transnetbw.de,
http://www.tennettso.de

Seasonality Function

Seasonality

Deterministic sinusoidal curve located
using temperature data as outlined in
section 4.3.3

Own data,
German Weather Service:
http://www.dwd.de

Table 4.3: Summary of all fundamental variables we will use as exogenous

variables in the various spot price models.
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Variable Daily Hourly

Lag Spot Price ×
Average Lag Spot Price ×
Spot Price Volatility ×
Coal Price ×
Gas Price ×
Oil Price ×
Price for EU Emission Allowances ×
Expected Wind Infeed ×
Expected Power Plant Availability ×
Expected Demand ×
Lag Demand ×
Seasonality Function ×

Table 4.4: Data granularity of fundamental variables.



Chapter 5

GARCH Regression Models

5.1 Methodology & Implementation

In this section we will discuss the theoretical background of conditional variance mod-

els and their combination with a fundamental regression model in order to estimate

electricity spot prices. Furthermore, we will reason the specific model choice and

outline the applied estimation procedure.

5.1.1 GARCH (Regression) Models

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models were

first introduced by Bollerslev (1986) as a generalization of ARCH models pioneered

by Engle (1982). Today they constitute a well-established approach to examine time

series exhibiting patterns of non-constant and clustered volatility as for example ob-

served in electricity spot prices.1 Usually, GARCH models are applied as AR(1)-

GARCH(p, q) processes with an autoregressive component for modelling the condi-

tional mean which takes the form

yt = ̺1yt−1 + ǫt. (5.1)

1See Bystrom (2005), Mugele et al. (2005), or Knittel & Roberts (2005).
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In 5.1 the disturbance term is defined as the product of the square root of the variance

(volatility) and a standard normally distributed (white noise) variable:

ǫt =

√

σ2
t ut, ut ∼ N (5.2)

Variance σ2
t is conditional on the information set at t and modelled by the following

generalized process:

σ2
t = ω +

q
∑

i=1

φiǫ
2
t−i +

p
∑

j=1

ψ jσ
2
t− j (5.3)

where φ is the coefficient for past realized squared error terms (included up to lag q)

and ψ is the coefficient for lagged variances (included up to lag p). Thus, φ can be

interpreted as the sensitivity of the conditional variance towards market shocks while

ψ can be viewed as a persistence measure for the prevailing variability. ω is a constant

and in combination with φ and ψ constitutes the long-term average volatility σ2
=

ω/(1− (φ+ψ)). In order to ensure a stationary volatility process, ∑q

i=1 φi+
∑p

j=1 ψ j < 1

has to apply. Furthermore, ω > 0 and φi, ψi ≥ 0 have to hold.2
As discussed in chapter 3, the estimation of conventional AR(1)-GARCH(p, q) pro-

cesses can lead to erroneous results due to present spike patterns in electricity spot

prices.3 Franses & Ghijsels (1999) discuss this issue for time series in general. As a

remedy for experienced problems with spiky series, Karakatsani & Bunn (2010) pro-

pose to replace (or enrich) the AR process for the conditional mean by a matrix of

explanatory variables X which results in a mean specification similar to a standard

regression model:

yt = c + x′tβ + ǫt (5.4)

where xt denotes a time-dependent vector, which is part of matrix X, including all

relevant exogenous variables at t. Equation 5.4 combined with a conditional variance

specification constitutes the GARCH regression model.

5.1.2 Extended Models

So far, we have assumed the stochastic component ut in equation 5.2 to be indepen-

dently and identically normally distributed. Variance models built on that assumption

2See Bollerslev (1986).
3See Duffie et al. (1998) or Escribano et al. (2002).
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are therefore labelled normal GARCH models. Bollerslev (1987) introduced an alter-

native formulation which assumes ut to follow a Student-t distribution. The resulting

Student-t GARCH model implies conditionally t-distributed market shocks which is a

reasonable assumption for many financial time series. In a preliminary step we have

estimated our GARCH regression models with both, a normal GARCH process and

a Student-t GARCH process finding that the latter provides superior results for most

hours.4 In case of a Student-t GARCH variance, an additional parameter (degree of

freedom) has to be estimated.

In equation 5.3 we assume symmetry in the volatility process which means that the

variance reacts likewise to positive and negative shocks. In addition to the conven-

tional GARCH representation, models which allow for asymmetric volatility effects

have been developed. Examples are the threshold GARCH (GJR-GARCH)5 or the

exponential GARCH (E-GARCH)6 model. Asymmetric GARCH models are often

applied to equity and commodity prices, motivated by the fact that, in general, volatil-

ity increases more rapidly following negative price changes than following positive

price changes in the case of equities and vice versa in the case of commodities.7 In

addition to the Student-t GARCH(1, 1) representation we have estimated our model

with an E-GARCH(1, 1) methodology for the variance. However, the results proved

to be inferior to what we obtained from symmetric GARCH models.8 Also, we have

not found the leverage factor9 to be statistically significant for most hours. Hence,

asymmetric volatility processes do not seem to be an appropriate modelling technique

for our dataset which is why we will not continue considering them.

4Respective measures of comparison are reported in table B.1 in the appendix.
5See Glosten et al. (1993).
6See Nelson (1991).
7See Alexander (2008).
8We have estimated E-GARCH regression models with both, normally and t-distributed disturbances.

Our comparison was based on the information criteria AIC and BIC as well as on the value of the respective
likelihood function. Detailed results are available upon request.

9The leverage factor is an integral component of the E-GARCH model. It defines the magnitude and
direction of asymmetry effects in volatility. For a symmetric volatility model, this factor is zero.
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5.1.3 Selected Model & Estimation Procedure

Given the aforementioned findings from preliminary analyses we formulate the fol-

lowing conditional mean model for day-ahead electricity spot prices:

Pt = c + x′tβ + ǫt, ǫt =

√

σ2
t ut, ut ∼ t (5.5)

where xt contains fundamental variables as outlined in the preceding chapter. In terms

of the dependent variable (the day-ahead electricity spot price) t indicates the delivery

day (i.e. the day after the auction). In terms of exogenous (fundamental) variables, t

refers to the point in time when the information of the respective factor was updated

for the last time before the auction takes place.10 We model the conditional variance

process via a GARCH(1, 1) representation:11

σ2
t = ω + φǫ

2
t−1 + ψσ

2
t−1 (5.6)

To all our knowledge, Karakatsani & Bunn (2010) are the only ones having imple-

mented a GARCH regression model for electricity prices before. They applied both, a

symmetric and an asymmetric variance representation to prices from the British elec-

tricity market (in-sample only).

We estimate the GARCH regression models using a maximum likelihood approach.

In general, maximum likelihood estimation (MLE) is used to estimate θ, denoting a

set of k parameters, in such a way that the probability of the estimates corresponding

to the real parameters is maximized. For this purpose, the likelihood function (LLF)

L
(

θ
)

=

T
∏

t=1

f
(

yt |θ
)

(5.7)

is to be maximized. Assuming independence, the LLF denotes the joint density func-

tion of yt built by multiplying the conditional density functions for all observations

yt, t ∈ {1, ..., T }. In order to facilitate maximization, the LLF is transformed by the

natural logarithm which yields

lnL
(

θ
)

=

T
∑

t=1

ln f
(

yt |θ
)

. (5.8)

10Expected wind infeed is an exception as explained in the preceding chapter.
11We have found that adding additional lags to the variance representation does neither improve good-

ness of fit measures for the model itself nor price forecasts. Furthermore, statistical tests applied to residuals
indicate that the chosen specification is appropriate.
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The combination of parameters in θ̂i, i ∈ {1, ..., k} which maximizes the value of the
LLF constitutes the optimal maximum likelihood estimators.

The log likelihood function for the Student-t GARCH(1,1) regression model is

based on the Student-t density function

fν(t) =
[

(

ν − 2)π
]−0.5
Γ

(

ν

2

)−1

Γ

(

ν + 1

2

)(

1 +
t2

ν − 2

)− ν+1
2

(5.9)

and can be formulated as follows:12

lnL(θ) = −
T

∑

t=1

{

ln
(

σ2
t

)

+

(

ν + 1

2

)

ln

[

1 +
(

ν − 2)−1
( ǫt

σt

)2
]}

+T × ln














[

(

ν − 2)π
]−0.5
Γ

(

ν

2

)−1

Γ

(

ν + 1

2

)















(5.10)

In 5.9 and 5.10 ν denotes degrees of freedom and Γ denotes the gamma function. In

order to simultaneously estimate all required parameters from the conditional mean

and the conditional variance equation θ =
(

c, β, ω, φ, ψ, ν
)

, 5.10 needs to be minimized

(as we deal with a negative LLF).

5.1.4 Correlations of Regressors

An essential precondition of linear regression analysis is that regressors are not highly

correlated. A high (positive or negative) correlation between two or more explana-

tory variables in a regression model impedes a precise estimation of coefficients and

can therefore result in misleading statistical inference. This problem, known as mul-

ticollinearity, is often observed in fundamental factor models. In the extreme case,

if some regressors are exact linear combinations of each other, the covariance matrix
∑N

i=1 xix
′
i
is no longer invertible which would be necessary to obtain the least square es-

timator.13 In the presence of multicollinearity it can often be observed that t-statistics

of individual coefficients are very weak (driven by increased standard errors) while

the overall explanatory power of the model (e.g. represented by the coefficient of

determination) is rather strong.

In general, multicollinearity is less of a problem if the researcher’s only intention is

to forecast a variable. However, if he is interested in explaining a dependent variable

by changes in regressors incorporated in the model, it becomes an issue.

12See Alexander (2008).
13See Verbeek (2008).
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In the models to be estimated we will use a broad range of fundamental variables

which are closely linked to each other from an economic point of view. It is conceiv-

able that this could potentially give rise to multicollinearity issues. In order to check

for this we examine correlations among the selected fundamental variables. Table 5.1

depicts the correlation matrix of regressors for hour 12 for illustrative purposes.

The average correlation coefficient across all hours is closely to zero. Most of

the chosen variables prove to have very low correlations. As expected, there is high

correlation among the fuel prices, i.e. coal, gas, and oil as well as between the lag spot

price and the lag average spot price. The highest correlation can be observed between

coal and gas and amounts to 0.80-0.90 for most hours. Overall, we are not concerned

about serious multicollinearity problems. Moreover, in section 5.2.1 we will decide to

eliminate the oil price as a variable which will lessen multicollinearity issues due to

correlated fuel prices.



5.1 Methodology & Implementation 59

S
(-
1
)

A
v.
(-
1
)

V
o
l.

C
o
al

G
as

C
/G

O
il

C
O
2

W
in
d

P
PA

E
x
p
.D
.

D
(-
1
)

S
ea
s.

S
p
o
t(
-1
)

1
.0
0

0
.8
4

0
.1
5

0
.4
4

0
.5
4

-0
.3
7

0
.2
7

0
.2
0

-0
.2
0

-0
.2
8

-0
.0
9

-0
.0
5

-0
.0
7

A
v.
S
p
o
t(
-1
)

0
.8
4

1
.0
0

0
.0
7

0
.6
3

0
.6
8

-0
.3
0

0
.4
5

0
.0
9

-0
.1
5

-0
.2
2

-0
.0
6

-0
.0
8

0
.1
2

S
p
o
t
V
o
la
ti
li
ty

0
.1
5

0
.0
7

1
.0
0

-0
.1
2

-0
.0
6

-0
.0
9

-0
.2
0

-0
.0
2

0
.0
4

0
.0
3

0
.1
4

0
.1
8

0
.1
6

C
o
al
P
ri
ce

0
.4
4

0
.6
3

-0
.1
2

1
.0
0

0
.9
0

-0
.0
7

0
.8
3

-0
.0
5

0
.0
8

-0
.3
7

-0
.1
2

-0
.2
6

-0
.0
8

G
as
P
ri
ce

0
.5
4

0
.6
8

-0
.0
6

0
.9
0

1
.0
0

-0
.4
9

0
.7
6

-0
.1
1

0
.0
6

-0
.3
1

-0
.0
7

-0
.1
7

-0
.0
6

C
o
al
/G
as
R
at
io

-0
.3
7

-0
.3
0

-0
.0
9

-0
.0
7

-0
.4
9

1
.0
0

-0
.0
5

0
.0
7

0
.0
4

0
.0
0

-0
.0
6

-0
.1
2

0
.0
4

O
il
P
ri
ce

0
.2
7

0
.4
5

-0
.2
0

0
.8
3

0
.7
6

-0
.0
5

1
.0
0

-0
.2
5

0
.1
1

-0
.4
0

-0
.2
4

-0
.3
4

-0
.0
9

C
O
2
P
ri
ce

0
.2
0

0
.0
9

-0
.0
2

-0
.0
5

-0
.1
1

0
.0
7

-0
.2
5

1
.0
0

-0
.2
3

-0
.0
2

-0
.2
4

-0
.0
9

-0
.2
5

W
in
d
F
o
re
ca
st

-0
.2
0

-0
.1
5

0
.0
4

0
.0
8

0
.0
6

0
.0
4

0
.1
1

-0
.2
3

1
.0
0

0
.0
6

0
.2
7

0
.1
1

0
.2
2

P
ow

er
P
la
n
t
A
v.

-0
.2
8

-0
.2
2

0
.0
3

-0
.3
7

-0
.3
1

0
.0
0

-0
.4
0

-0
.0
2

0
.0
6

1
.0
0

0
.5
7

0
.5
6

0
.7
1

E
x
p
.
D
em

an
d

-0
.0
9

-0
.0
6

0
.1
4

-0
.1
2

-0
.0
7

-0
.0
6

-0
.2
4

-0
.2
4

0
.2
7

0
.5
7

1
.0
0

0
.5
9

0
.5
9

D
em

an
d
(-
1
)

-0
.0
5

-0
.0
8

0
.1
8

-0
.2
6

-0
.1
7

-0
.1
2

-0
.3
4

-0
.0
9

0
.1
1

0
.5
6

0
.5
9

1
.0
0

0
.5
5

S
ea
so
n
al
it
y

-0
.0
7

0
.1
2

0
.1
6

-0
.0
8

-0
.0
6

0
.0
4

-0
.0
9

-0
.2
5

0
.2
2

0
.7
1

0
.5
9

0
.5
5

1
.0
0

T
a
b
le
5
.1
:
C
o
rr
el
a
ti
o
n
m
a
tr
ix
o
f
re
g
re
ss
o
rs
fo
r
h
o
u
r
1
2
.
C
o
rr
el
a
ti
o
n
s
h
a
ve

b
ee
n

co
m
p
u
te
d
o
n
th
e
in
-s
a
m
p
le
d
a
ta
se
t,
i.
e.
a
ft
er

co
rr
ec
ti
n
g
fo
r
w
ee
ke
n
d
s,
h
o
li
d
a
ys
,

b
ri
d
g
e
d
a
ys
,
a
n
d
o
u
tl
ie
rs
.



60 Chapter 5: GARCH Regression Models

5.2 Empirical Results

In estimating the GARCH regression models and presenting the results we will pro-

ceed as follows. First, we will report which variables we exclude based on prelimi-

nary data analyses. Then, we will estimate the models in-sample for each single hour

twice, with and without including the wind forecast variable. This shall allow us to

draw conclusions regarding the explanatory power of expected wind infeed. After

elaborating on the seasonal patterns, which we obtain from the results, we will rerun

the estimation on an out-of-sample dataset. Whereas so far, all efforts serve to explain

the conditional mean of day-ahead spot prices, we will conclude the empirical part by

discussing obtained conditional volatility estimates.

We will estimate 24 GARCH regression models, i.e. one model for every single

hour. This approach is motivated by various reasons. First, separating the modelling

of different hours seems to us an efficient way to dispose of intraday seasonality which

otherwise would have to be done by further extending the model with deterministic

functions and/or dummy variables. Second, to derive hourly price forecasts for the

entire next day, our approach requires estimating 24 one-step-ahead forecasts. This

might produce less noise than deriving forecasts up to 24 steps ahead from one model.

Third, it can be argued that due to very diverse constitutions of the demand and supply

side at different hours, hourly electricity products qualify as separate commodities.14

5.2.1 Elimination of Variables

In order to check the appropriateness of our variable selection we run the GARCH

regression models including all variables in a preliminary step (detailed results will

not be shown). Looking at the t-statistics of the coefficients

tβ̂ =
β̂ − β0
s.e.

(

β̂
)

(5.11)

across all 24 hours of the day, we decide to remove the following two variables.

The oil price coefficient is not significantly different from zero except for hours

4 to 6 and hours 22 to 24.15 Moreover, the high correlation with other fuel prices

14See for example Nan et al. (2010).
15A possible reason for statistical significance at the mentioned times may be that these are the hours

when hard coal is the price setting technology. Normally, hard coal is imported and needs significant
transportation efforts until the good is at the respective power plant. Related transportation costs are driven
by the oil price to a significant extent.
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as discussed in section 5.1.4 serves as a motivation to exclude this variable also for

multicollinearity reasons.

The second variable we decide to exclude from our dataset is lagged demand. The

fact that the corresponding coefficients are not significant at the 90% level for 20 hours

suggests that all relevant information of past demand is already included appropriately

in the spot price of the preceding day and/or in the demand forecast variable which we

estimate using an autoregressive component (see chapter 4).

In order to obtain more insight into the role of the two omitted variables we perform

F-tests on the entire models in addition to t-tests on individual coefficients. In doing

so, we investigate whether a significant increase in R2 can be achieved by including

one of the two variables although their t-statistics are not significant for most hours.

In the case of multicollinearity, correlated variables often improve the overall model

fit while the coefficients themselves are not significant. The appropriate F-test statistic

is

F =

(

R21 − R20
)

/ j
(

1 − R21
)

/
(

n − k)
(5.12)

where R20 denotes the coefficient of determination of the model excluding the variable

at interest, R21 denotes the coefficient of determination of the model including the

variable, j is 1 corresponding to the difference in the number of variables in the models

to compare, n is the number of observations, and k is the number of parameters to be

estimated.16 We perform individual F-tests for all hours for models including the

oil price as well as for models including the lagged demand variable. Test results

are reported in tables B.2 and B.3 in the appendix. Overall, the results reveal that

despite modest increases in R2 when adding one of the omitted variables, the model

fit cannot be improved significantly for most hours. For some hours, a significant

improvement can be achieved which, as mentioned above, is typical in the presence

of multicollinearity. One of the main objectives of this thesis is to obtain a better

understanding of the sensitivity of spot prices towards different fundamental variables.

This makes significant and thus interpretable parameter coefficients essential which is

the concluding rational for omitting the two variables.

We keep all other variables which are not significant for only some hours, mainly

based on economic reasoning.

16For a more detailed introduction to F-tests see for example Verbeek (2008).
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5.2.2 Conditional Mean Modelling

5.2.2.1 In-Sample Results

The observation period for the in-sample estimation starts on January 1, 2010 and ends

on December 31, 2011.

Table 5.2 presents a summary of the estimation results of all 24 GARCH regression

models without including wind forecast as an explanatory variable. The R2 spans over

a range between 0.45 and 0.74 with an average of 0.60. This means that the fundamen-

tal models without wind forecast are able to explain 60 percent of the electricity spot

price variability on average. The mean absolute percentage error (MAPE) is between

5.2% and 32.0% with an average of 9.5%. The results indicate a rather good fit for

hours 18, 19, 20, and 21, for which R2 is at or above 0.70 and the MAPE amounts to

6.4-7.2%. There is a consistently worse fit for early morning hours.

To examine potential serial correlation in residuals we report Durbin-Watson test

statistics:17

dw =

∑T
t=2

(

ǫt − ǫt−1
)2

∑T
t=1 ǫ

2
t

(5.13)

Under the null hypothesis of the Durbin-Watson test, error terms ǫt are independently

distributed. A value of dw close to 2 indicates zero first-order autocorrelation among

the residuals, which would be desired. Looking at in-sample results, the Durbin-

Watson test statistic shows values of close to 2 for almost all hours meaning that there

is no need to be concerned about autocorrelated residuals that could distort standard

errors of coefficient estimates. As for coefficient significance, we find t-statistics to be

above the critical level required for a 95% significance for the majority of all coeffi-

cients across the day.18

In a next step we re-estimate the 24 models including the wind forecast variable.

Table 5.3 provides a summary of the estimation results. The overview shows that for

all hours, the coefficients of determination have clearly improved. For convenience,

figure 5.1 compares the most important goodness of fit measures. In terms of R2,

improvements of 0.05 to 0.17 can be observed with an average increase of 0.09. In

other words, the inclusion of expected wind infeed as a variable seems to be able

to explain an additional 10 percent of price variability on average. A more intuitive

17See Durbin & Watson (1950).
18We do not display detailed estimation results for all 24 hourly models.
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interpretation can be derived when looking at mean absolute errors19. Here we have

reductions of between 0.65 and 0.17 with an average reduction of 0.45. In monetary

terms this means that in the estimated models, adding wind forecast as a variable is

worth 45 cents per MWh. From the comparative illustrations in figure 5.1 we see that

the improvements are strongest for early morning hours and noon peak hours. When

including wind forecast we end up at an average R2 of 0.69 with a minimum value of

0.58 (hour 7) and a maximum value of 0.80 (hour 18).

Durbin-Watson statistics for the models with wind are somewhat less powerful than

for the models without wind, though still within an acceptable range overall.

In figures 5.2 we plot model forecasts and according realized spot prices for hours

3, 12, and 18. In addition, detailed estimation results for hours 12 and 18 are provided

in tables 5.4 and 5.5 as examples.

19The mean absolute error (MAE) is defined as 1
N

∑N
n=1 |yn − ŷn |.
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Hour 1 2 3 4 5 6 7 8

Obs. 486 487 486 491 489 484 489 492

R2 0.55 0.48 0.45 0.47 0.46 0.59 0.52 0.60

R
2

0.54 0.47 0.44 0.46 0.45 0.58 0.51 0.59

MAE 3.08 3.71 4.45 5.12 4.81 3.02 3.21 4.10

MAPE 0.095 0.140 0.198 0.320 0.237 0.092 0.066 0.072

σǫ 4.67 5.63 6.45 7.18 6.80 4.30 4.47 5.60

D/W 1.83 1.75 1.86 1.85 1.87 1.92 2.07 1.81

LLF -1341 -1432 -1517 -1611 -1573 -1337 -1384 -1496

Hour 9 10 11 12 13 14 15 16

Obs. 491 491 490 490 492 492 492 491

R2 0.61 0.60 0.58 0.55 0.56 0.57 0.58 0.59

R
2

0.60 0.59 0.57 0.54 0.55 0.56 0.57 0.58

MAE 4.00 3.91 3.81 4.14 4.04 4.00 4.09 4.01

MAPE 0.066 0.065 0.064 0.068 0.070 0.071 0.075 0.075

σǫ 5.43 5.20 5.02 5.39 5.16 5.13 5.22 5.12

D/W 1.92 2.05 2.06 2.12 2.11 2.10 2.05 2.02

LLF -1492 -1482 -1474 -1510 -1492 -1488 -1497 -1480

Hour 17 18 19 20 21 22 23 24

Obs. 487 486 484 489 492 491 488 490

R2 0.67 0.74 0.73 0.71 0.70 0.69 0.66 0.60

R
2

0.66 0.74 0.73 0.71 0.69 0.68 0.66 0.59

MAE 3.70 4.14 4.31 4.11 3.60 2.93 2.59 2.65

MAPE 0.069 0.072 0.070 0.068 0.064 0.057 0.052 0.063

σǫ 4.81 5.64 5.98 5.61 4.88 3.92 3.41 3.67

D/W 2.02 1.99 2.04 2.07 2.14 2.14 2.17 2.14

LLF -1430 -1474 -1483 -1496 -1443 -1339 -1279 -1295

Table 5.2: Summary of in-sample results for GARCH regression models ex-

cluding expected wind infeed. The underlying dataset starts on January 1, 2010

and ends on December 31, 2011. LLF denotes the value of the log likelihood

function used to estimate the models.
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Hour 1 2 3 4 5 6 7 8

Obs. 486 487 486 491 489 484 489 492

R2 0.66 0.60 0.61 0.64 0.61 0.64 0.58 0.66

R
2

0.65 0.59 0.60 0.63 0.60 0.63 0.57 0.65

MAE 2.72 3.29 3.85 4.47 4.26 2.80 3.04 3.79

MAPE 0.083 0.124 0.166 0.251 0.202 0.085 0.063 0.067

σǫ 4.09 4.95 5.46 5.99 5.85 4.04 4.19 5.18

D/W 1.76 1.70 1.67 1.59 1.76 1.82 2.04 1.67

LLF -1286 -1379 -1456 -1548 -1514 -1299 -1352 -1456

Hour 9 10 11 12 13 14 15 16

Obs. 491 491 490 490 492 492 492 491

R2 0.67 0.68 0.68 0.66 0.69 0.70 0.69 0.69

R
2

0.67 0.67 0.67 0.65 0.68 0.69 0.68 0.68

MAE 3.68 3.53 3.42 3.68 3.41 3.38 3.47 3.46

MAPE 0.062 0.059 0.057 0.060 0.059 0.060 0.063 0.064

σǫ 4.99 4.62 4.42 4.73 4.34 4.33 4.47 4.46

D/W 1.70 1.78 1.76 1.77 1.68 1.71 1.70 1.68

LLF -1443 -1428 -1412 -1443 -1403 -1402 -1420 -1407

Hour 17 18 19 20 21 22 23 24

Obs. 487 486 484 489 492 491 488 490

R2 0.75 0.80 0.78 0.77 0.77 0.75 0.74 0.74

R
2

0.74 0.79 0.78 0.77 0.77 0.75 0.73 0.73

MAE 3.20 3.62 3.86 3.65 3.15 2.62 2.27 2.20

MAPE 0.060 0.063 0.062 0.060 0.056 0.050 0.045 0.052

σǫ 4.15 5.00 5.39 4.98 4.19 3.49 3.01 3.00

D/W 1.68 1.52 1.75 1.70 1.91 1.96 1.99 1.82

LLF -1352 -1395 -1423 -1435 -1381 -1286 -1216 -1208

Table 5.3: Summary of in-sample results for GARCH regression models includ-

ing expected wind infeed. The underlying dataset starts on January 1, 2010

and ends on December 31, 2011. LLF denotes the value of the log likelihood

function used to estimate the models.
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Figure 5.1: Improvement in goodness of fit for GARCH regression models if ex-

pected wind infeed is included as exogenous variable. Black bars denote good-

ness of fit measures for in-sample estimated models excluding wind, measures

denoted by white bars include wind.
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Figure 5.2: In-sample fit of GARCH regression models for hours 3, 12, and 18.

The observation period starts on January 1, 2010 and ends on December 31,

2011.
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Observations 490 R2 0.66

AIC 2916 R
2

0.65

BIC 2979 MAE 3.68

DoF 9.38 MAPE 0.060

D/W 1.77 σǫ 4.73

Coefficient t-Statistic

Constant 13.802 2.05

Spot(-1) 0.175 3.03

Spot Av.(-1) 0.169 2.19

Spot Price Volatility 0.087 0.85

Coal Price -0.269 -9.48

Gas Price 0.020 14.10

Coal/Gas Price Ratio 278.971 685.03

CO2 Price 0.820 7.80

Expected Wind Infeed -0.0007 -11.86

Exp. Power Plant Availability -0.0006 -7.68

Exp. Demand 0.0006 6.00

Seasonality 1.885 3.40

ω 1.957 1.44

φ 0.104 1.99

ψ 0.810 9.02

Table 5.4: In-sample results of the GARCH regression model for hour 12. The

underlying dataset starts on January 1, 2010 and ends on December 31, 2011.
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Observations 486 R2 0.80

AIC 2820 R
2

0.79

BIC 2883 MAE 3.62

DoF 12.40 MAPE 0.063

D/W 1.52 σǫ 5.00

Coefficient t-Statistic

Constant -12.937 -1.81

Spot(-1) 0.253 5.07

Spot Av.(-1) 0.032 0.59

Spot Price Volatility 0.437 3.85

Coal Price -0.014 -0.62

Gas Price 0.011 8.23

Coal/Gas Price Ratio 108.240 253.56

CO2 Price 0.329 3.31

Expected Wind Infeed -0.0006 -15.46

Exp. Power Plant Availability -0.0004 -5.55

Exp. Demand 0.0010 8.33

Seasonality 1.525 2.45

ω 1.210 2.34

φ 0.279 3.60

ψ 0.694 10.50

Table 5.5: In-sample results of the GARCH regression model for hour 18. The

underlying dataset starts on January 1, 2010 and ends on December 31, 2011.
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5.2.2.2 Seasonal Patterns

In this section we discuss intraday seasonal patterns of price sensitivities towards dif-

ferent fundamental factors. Figures 5.3 and 5.4 plot all (significant and non-significant)

coefficients of the different variables we incorporated into the models for every single

hour of the day. The constant and the seasonality variable have been omitted.

The lag-1 spot price and the lag-1 average spot price display coefficients in the

range between 0 and 0.4 with converse patterns over the day. In combination they

explain approximately one quarter of the day-ahead forecast. This is not a lot but

might be reasoned by the consideration of a rich set of fundamental variables which

already includes most of the information represented in hourly spot prices.

Until mid-afternoon the coefficient of spot price volatility is not significantly dif-

ferent from zero. Then, this changes and its value increases gradually and reaches a

top during evening peak hours. At this time we can observe coefficients which are

significantly greater than zero indicating that the price uncertainty over the past week

impacts market participants’ bidding behaviour and thus day-ahead prices. After hav-

ing peaked at hour 19, the coefficient drops back to close to zero.

For coal and gas prices we can report highly significant factor loads for most hours

with distinct seasonal patterns throughout the day. The significance of gas price coef-

ficients is particularly high during hours of high demand. This corresponds with the

fact that gas is the price setting technology during high demand hours due to short

ramp-up times. Coal prices prove to have a positive impact on prices for hours of low

demand only, namely the hours after the peak-on/peak-off switch in the evening and

for some early morning hours. However, the significance is not persistent across low

demand hours, possibly arising from the fact that lignite is the price setting technology

in periods of extremely low demand. There is no transparent market price for lignite

available and, in addition, our chosen coal price variable may not be an adequate ap-

proximation (it was mainly chosen as a variable for the hard coal price). A fact to be

highlighted are the peaks of coefficient values at hours 8 and 19. At these times, the

peak-on/peak-off switch, which impacts the composition of available power genera-

tion technologies, takes place. Concretely, in the morning around 08:00 am gas fired

plants are switched on to serve higher demand during peak hours and replace hard

coal as the price setting technology. By the same token, gas is replaced by coal in the

evening around 07:00 pm when gas fired plants are switched off. At the time when

gas fired plants start or end their production, prices are highly sensitive. This behavior

is confirmed by the coefficients of the coal/gas price ratio.

The coefficient pattern of the CO2 price index peaks at hour 12 on the upside

slightly above 0.8 and at hour 19 on the downside reaching a value close to zero
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meaning that changes in CO2 prices have little impact on spot prices then.

Spot prices display negative sensitivities towards the expected wind infeed for the

entire day which is expected as higher wind infeed increases supply. This pattern

is particularly pronounced during the first hours of the day when demand is at its

low. Then, an increase in wind speed can quickly lead to excessive supply and thus

even result in negative prices. These findings have been reported by other researchers

before.20 The absolute sensitivity generally lessens for peak hours, whereas for hours

with highest demand, i.e. during the noon and the evening peak, it increases again. At

these hours, the market situation is tense and any relevant change on the supply side

of the market can easily lead to price spikes.

Factor loads of expected power plant availability are negative over the entire day

which is expected as an increase in available production resources removes tension

from the market and vice versa. We can observe that absolute factor loads tend to

be higher for peak hours which is sensible since changes in available production re-

sources are much more influential because most power plants run and since there is

little unused capacity.

Logically, expected demand proves to have a positive impact on electricity spot

price levels. We can observe intraday peaks in the morning as the ramp-up period of

peak demand serving power plants starts, shortly after the evening peak when more

expensive production sites are in the ramp-down phase, and - locally and less pro-

nounced - at the noon peak.

20See for example Nicolosi (2010) or Fanone et al. (2012).
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Figure 5.3: Coefficients of GARCH regression models for all hours across the

day based on the in-sample model estimation. Error bars indicate the range of

one standard error around estimated coefficient values.
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Figure 5.4: Coefficients of GARCH regression models for all hours across the

day based on the in-sample model estimation. Error bars indicate the range of

one standard error around estimated coefficient values.
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5.2.2.3 Out-of-Sample Results

Following the estimation of the 24 models in section 5.2.2.1 we are interested in how

the models perform in predicting day-ahead electricity spot prices out-of-sample. For

this purpose we apply all estimated models (with inclusion of wind forecast) to a

period of 4 months following the in-sample estimation period. The out-of-sample

observation period thus reaches from January 1, 2012 to April 30, 2012.

Tables 5.6 summarizes goodness of fit measures for the out-of-sample forecasting.

The model works best for hours 8, 9, 18, 19, 22, and 23 where R2 measures between

0.58 and 0.66 can be reported.21 For afternoon hours 13 to 16 we obtain negative

coefficients of determination meaning that averaging the observed actual spot price

would provide a more reliable prediction than the forecasts delivered by our model.

Excluding hours 13 to 16 we can report an average R2 of 0.48, an average MAE of

5.86, and an average MAPE of 13.2%.

When excluding expected wind infeed from the dataset we obtain an average R2

of 0.23 for all 24 hours and an average R2 of 0.31 when disregarding hours 13 to 16

which indicates a rather poor fit. For the latter case, the average MAE is 6.28 and the

average MAPE is 14.7%. We will not show detailed results.

Figure 5.5 exemplarily illustrates the out-of-sample fit for hours 3, 12, and 18 (in-

cluding wind infeed).

21We do not report R
2
as the relatively low number of observations would distort results.
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Hour 1 2 3 4 5 6 7 8

Obs. 76 75 76 77 77 76 77 77

R2 0.41 0.47 0.43 0.47 0.55 0.42 0.44 0.61

MAE 4.29 4.13 4.26 4.31 3.78 3.34 4.43 7.65

MAPE 0.158 0.168 0.158 0.162 0.152 0.114 0.096 0.135

σǫ 5.28 5.20 5.46 4.78 4.68 4.77 5.82 9.16

Hour 9 10 11 12 13 14 15 16

Obs. 76 75 77 76 75 76 76 76

R2 0.58 0.48 0.49 0.23 -0.26 -0.21 -0.43 -0.14

MAE 7.39 7.48 9.21 9.51 10.46 9.94 8.74 7.02

MAPE 0.115 0.132 0.178 0.200 0.241 0.227 0.203 0.162

σǫ 10.44 9.32 9.83 8.13 7.19 6.71 5.86 5.52

Hour 17 18 19 20 21 22 23 24

Obs. 76 77 75 77 76 77 77 76

R2 0.27 0.66 0.62 0.49 0.30 0.59 0.58 0.55

MAE 5.99 7.22 9.23 8.81 5.88 3.46 3.11 3.67

MAPE 0.137 0.135 0.146 0.127 0.107 0.067 0.066 0.094

σǫ 5.38 8.10 11.56 13.32 6.83 4.61 4.03 4.39

Table 5.6: Summary of out-of-sample results for GARCH regression models

including expected wind infeed as exogenous variable. The dataset starts on

January 1, 2012 and ends on April 30, 2012.
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Figure 5.5: Out-of-sample fit of GARCH regression models for hours 3, 12, and

18. The dataset starts on January 1, 2012 and ends on April 30, 2012.
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5.2.3 Conditional Volatility Modelling

Table 5.7 depicts the coefficients of the Student-t GARCH (1, 1) model for all hours.

Looking at the lag error coefficients φ we note that their values are higher (i.e. above

0.20) for early morning hours 1 to 5 as well as for hours 8, 9, 17, and 18. As the lag

error parameter represents market shocks, high values indicate that for these hours,

price volatility is more sensitive to market events. The lag variance coefficient ψ

shows a relatively stable pattern over the day with a generally rather low value which

only for five hours is higher than 0.80. A low coefficient for the last realized variance

indicates that increased volatility in general fades away rather fast. Our empirical

findings correspond to the nature of electricity spot prices which, after having spiked,

often move back to previous levels very fast.

Figure 5.6 exemplarily depicts conditional volatilities for hours 3, 12, and 18 for

both model specifications, with and without wind forecast. The mapped conditional

volatility corresponds to the square root of σ2
t as defined in equation 5.6. To give a

better graphical overview we have selected 250 observation days only between March

2010 and March 2011. The persistence in conditional volatility, which can be repet-

itively observed in the plotted series, catches volatility clusters which constitute a

distinctive characteristic of electricity spot prices. All three plots confirm that the re-

maining variance can overall be reduced by incorporating expected wind infeed as an

explanatory variable into the conditional mean specification. The effect is most ap-

parent for hour 3 (which is representative for morning hours in general) when wind

infeed into the system often creates significant (negative) price spikes.
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Hour 1 2 3 4 5 6 7 8

ω 6.27 6.16 5.78 5.42 3.74 1.59 1.32 3.13

t-Stat (1.59) (1.68) (2.25) (2.13) (2.17) (1.72) (1.67) (2.32)

φ 0.29 0.41 0.35 0.22 0.27 0.17 0.10 0.25

t-Stat (1.56) (1.69) (2.37) (2.63) (2.52) (2.07) (2.14) (3.14)

ψ 0.56 0.59 0.59 0.66 0.69 0.79 0.82 0.66

t-Stat (3.36) (5.62) (5.52) (5.72) (8.38) (10.72) (11.48) (7.90)

Hour 9 10 11 12 13 14 15 16

ω 4.88 2.21 2.28 1.96 3.24 2.32 2.38 2.87

t-Stat (2.27) (1.68) (1.54) (1.44) (2.04) (1.92) (1.70) (2.30)

φ 0.26 0.12 0.11 0.10 0.17 0.14 0.11 0.19

t-Stat (2.85) (2.19) (1.92) (1.99) (2.71) (2.62) (2.22) (2.84)

ψ 0.56 0.78 0.78 0.81 0.66 0.74 0.77 0.66

t-Stat (4.28) (8.27) (7.29) (9.02) (5.41) (7.80) (7.71) (6.46)

Hour 17 18 19 20 21 22 23 24

ω 2.38 1.21 1.15 1.49 0.34 0.33 0.98 2.35

t-Stat (2.59) (2.34) (2.04) (1.93) (1.29) (1.36) (1.08) (324.03)

φ 0.23 0.28 0.18 0.18 0.09 0.10 0.06 0.00

t-Stat (3.35) (3.60) (3.34) (3.09) (2.73) (2.71) (1.65) (0.00)

ψ 0.63 0.69 0.78 0.77 0.90 0.88 0.84 0.73

t-Stat (6.82) (10.50) (15.22) (11.92) (24.65) (21.63) (6.99) (17.66)

Table 5.7: Conditional variance parameters of the Student-t GARCH(1,1) pro-

cess embedded in GARCH regression models including expected wind infeed.

ω denotes the constant, φ denotes the coefficient for past realized squared error

terms, and ψ denotes the coefficient for lagged variances. The underlying in-

sample observation window starts on January 1, 2010 and ends on December

31, 2011.
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Figure 5.6: Conditional volatility obtained from Student-t GARCH(1,1) specifi-

cations in GARCH regression models with and without wind forecast for hours

3, 12, and 18. The observation window includes 250 observations between

March 25, 2010 and March 30, 2011.
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5.3 Intermediate Summary

We have shown that market participants trading electricity respond to changes in fun-

damental variables. Including wind forecast into fundamental models with a linear

conditional mean process can significantly improve in-sample results. In general, fun-

damental variables prove to be well suited to describe price dynamics in day-ahead

electricity spot prices. However, when applying the calibrated models to out-of-

sample data, we obtain rather imprecise forecasts for most hours.

We believe that the poor results from out-of-sample testing of fundamental GARCH

regression models may be caused by the following reasons:

1. Short out-of-sample period: With less than 80 observations the underlying

out-of-sample dataset is rather short. While our in-sample set spans over two en-

tire annual cycles, the out-of-sample set only covers two winter and two spring

months.

2. Extreme price variability: During February 2012 electricity spot prices showed

unusually extreme moves. When looking for example at hour 12, prices in 2010

and 2011 have evolved within a band of 40-85 EUR/MWh. In contrast, prices

in February 2012 spiked to nearly 100 EUR/MWh. The main drivers of extreme

prices in February 2012 were very low temperatures and, to some extent conse-

quently, a jump in gas prices. Between January 1, 2012 and April 30, 2012 the

gas price evolved relatively stable within a band between EUR 2,000 and EUR

2,500 with the exception of the first half of February when prices used to be at

much higher levels between EUR 3,000 and EUR 3,500.

3. Imprecise Demand Forecast: The expected electricity demand which we es-

timate applying our own model reveals an out-of-sample MAPE of 4.8% on

average.22 Using a flawed demand forecast as an exogenous variable creates

multiplicative errors in predicting electricity-spot prices. It can be assumed that

this effect would be mitigated if a more precise demand forecast model was

available.

4. Assumption of one linear relationship: Our representation of the conditional

mean assumes that there exists one single linear relationship between the spot

price and the explanatory variables. Possibly, this is not enough to cope with

22See section 4.1.
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the complex dependencies of electricity prices on fundamental variables and

allowing for more than one regime could improve results.

5. Seasonality in sensitivities: Based on the aforementioned paragraph, electric-

ity spot prices may have sensitivities towards fundamental factors that vary sig-

nificantly with certain seasonal patterns and/or adapt to changing market envi-

ronments and regulatory amendments. Hence, the application of a model which

assumes constant coefficients may not be appropriate.

In order to remedy deficiencies related to the assumption of one single constant linear

relationship and in order to gain further insight into the explanatory power of expected

wind infeed in fundamental forecast models we will introduce two additional model

types in the following chapters. First, we will estimate so-called threshold regression

models which allow for two regimes with different linear relationships. Second, we

will estimate time-varying parameter (TVP) regression models which allow a more

subtle modelling of seasonal patterns in price sensitivities.





Chapter 6

Threshold Regression Models

In this chapter we will estimate threshold regression models following a methodology

introduced by Hansen (2000). The estimation of threshold regression models has the

following two main purposes. First, it shall help to gain a deeper understanding of

the spot price sensitivities towards expected wind infeed as well as the interactions of

wind forecast with other fundamental variables. Second, we want to work out whether

allowing for two regimes can help to significantly improve the out-of-sample forecast

of electricity spot prices compared to beforehand estimated GARCH regression mod-

els.

6.1 Methodology

Subsequently, we will briefly discuss the estimation of threshold regression models

as introduced by Hansen (2000). The underlying idea of the concept is a splitting of

the sample into two subsamples where for each subsample different linear relations

between the dependent and the explanatory variables apply. The original sample is

split into two regimes according to the threshold variable which has to be preliminarily

defined and which can be any of the explanatory variables in the model.

6.1.1 Threshold Estimation

Formally, the standard regression model

yt = β
′xt + ǫt (6.1)
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is transferred into a threshold regression model of the form

yt = θ′1xt + ǫt, qt ≤ γ (6.2)

yt = θ′2xt + ǫt, qt > γ (6.3)

where θ1 and θ2 denote the respective coefficient sets for the two linear relations. qt,

which can be an element of xt, denotes the value of the threshold variable at t and

γ denotes the threshold level. Hence, for all observations for which qt ≤ γ holds,

coefficients of θ1 apply whereas for observations where qt > γ holds, coefficients of

θ2 apply. Hansen shows that the threshold γ can be estimated via least square. In a

preliminary step 6.2 and 6.3 are combined into one single equation which reads as

yt = θ
′
2xt + δ

′
nxtIqt≤γ + ǫt (6.4)

where δn = θ1 − θ2 is called threshold effect and Iqt≤γ denotes the indicator variable

which can take the values 1 (for qt ≤ γ) or 0 (for qt > γ). In a next step, n × 1 vectors
Y and e as well as n × m matrices X and Xγ are formed by stacking all vectors yt, ǫt,

xt, and xtIqt≤γ to obtain 6.4 in matrix notation:

Y = Xθ2 + Xγδn + e (6.5)

In order to receive estimators for θ2, δn, and γ, Hansen builds the sum of squared errors

function

S n

(

θ2, δn, γ
)

=
(

Y − Xθ2 − Xγδn
)′(
Y − Xθ2 − Xγδn

)

(6.6)

which as a concentrated sum reads as

S n

(

γ
)

= S n

(

θ̂2(γ), δ̂n(γ), γ
)

= Y ′Y − Y ′X∗γ
(

X∗γ
′X∗γ

)−1
X∗γ
′Y

(6.7)

where X∗γ = XXγ. θ̂2(γ) and δ̂n(γ) are conditional OLS estimators. The estimator of

the threshold level γ̂ minimizes 6.7 and is defined as

γ̂ = argmin
γ∈Γn

S n

(

γ
)

. (6.8)

Γ =
[

γ, γ
]

defines the set to which γ is bounded and is approximated by a grid in case

of a very high number of observations. For iid N ∼ (

0, σ2) distributed error terms ǫt,

the LS estimator γ̂ qualifies as the maximum likelihood estimator (MLE).
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6.1.2 Confidence Interval & Threshold Significance

Assuming that ǫt in 6.4 is independent and identically normally distributed with mean

0 and constant variance σ2, the likelihood ratio statistic provided by Hansen is

LRn

(

γ
)

= n
S n(γ) − S n(γ̂)

S n(γ̂)
. (6.9)

Critical values, which are used to define the confidence interval of the threshold for

different significance levels, are derived via inversion of the distribution function of

this likelihood ratio. If the assumption of iid N ∼ (

0, σ2) distributed error terms does

not hold, the asymptotic distribution function of the likelihood ratio is perturbed by a

nuisance parameter and a normalized likelihood ratio statistic has to be applied:

LR∗n
(

γ
)

=
LRn

(

γ
)

η̂2
=

S n(γ) − S n(γ̂)

σ̂2η̂2
(6.10)

where η̂2 denotes the nuisance parameter (reducing to unity in case of homoskedastic-

ity) which can be consistently estimated via polynomial or kernel regression.

To test whether the estimated threshold is significant, the standard approach in case

of homoskedasticity is to formulate the null hypothesis H0 : γ = γ0 and to reject it for

large enough values of the likelihood ratio statistic. The corresponding p-value reads

as

pn = 1 −
(

1 − e−0.5×LRn

(

γ0

)2)2

. (6.11)

In case of heteroskedasticity in ǫt, the distribution function of the nuisance parameter

is no longer available in closed form which would be a requirement to test the sig-

nificance of the threshold. For heteroskedastic error terms, Hansen (1996) therefore

introduces a Lagrange multiplier (LM) test with p-values that are estimated using a

bootstrap method simulating the asymptotic null distribution. We will follow this test-

ing approach given the heteroskedastic patterns observed in electricity spot prices and

apply 1,000 bootstrap replications.

6.2 Empirical Results

In this section we will present results for threshold models with expected wind infeed

as the threshold variable. In-sample results will be followed by out-of-sample results.

The elimination procedure for outliers (i.e. excluding all observations three standard

deviations below and above the mean observed spot price) is the same as in the pre-

ceding chapter and so are the observation windows for in-sample and out-of-sample
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data. The estimation procedure is implemented as discussed in the preceding section

with yt being the vector of observed day-ahead electricity spot prices and xt being the

time-varying vector of exogenous variables in equations 6.2 and 6.3.

6.2.1 In-Sample Results

6.2.1.1 Threshold Estimates & Goodness of Fit

Table 6.1 summarizes the most important estimation results for all hours of the day.

The results show that a highly significant threshold is found for most hours. Using

the Lagrange Multiplier statistic and p-values obtained from the bootstrap algorithm

by Hansen (1996), the null hypothesis of no threshold effect can be rejected at a 99%

significance level for most hours. Hours 15, 17, and 24 are exceptions as we cannot

reject the null hypothesis on a 95% significance level in these cases. For on/off-peak

switching hours 7 and 19, a high number of observations fall into the 95% confidence

interval of the threshold and thus cannot be classified into one of the two regimes.

In addition, we can see that only a very low percentage of observations is located

above the threshold for these hours (i.e. less than 30 observations) which increases the

uncertainty about the level of the threshold. Given the poor results, we will exclude

hours 7, 15, 17, 19, and 24 from the following discussion. For most other hours the

confidence region is rather narrow meaning that the threshold can be located with a

much higher certainty.

Looking at the threshold levels across the day we can report that threshold levels for

peak hours are in general lower than for early morning hours when demand is at lower

levels. It is our belief that this can be derived from intermittent infeed of electricity

from wind replacing supply from sources which have much higher marginal costs

in times of higher demand. In such situations, a relatively small additional amount

of supply from wind power plants can have a disproportional impact on the price

formation. Contrary, during low demand night hours, wind energy replaces electricity

from comparatively inexpensive coal plants; hence the impact might be much weaker.

Figure 6.1 presents the normalized likelihood ratio LR∗n as well as the 95% confi-

dence interval for six selected hours. We have estimated the nuisance parameter η2,

which is required to obtain LR∗n, using an Epanechnikov Kernel
1 with a plug-in band-

width as proposed by Hansen.2 The plots illustrate that results generally prove to be

1See Epanechnikov (1969).
2See Hansen (2000) and Durlauf & Johnson (1995) for details.
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more clear-cut for hours in the first half of the day. When looking for example at hour

3, we can observe a very clear indication for a threshold at slightly above 5,000 MWh.

In contrast to this, we have less distinct results for hours later in the day (e.g. hours 12

or 18).

For comparison, we additionally report R2 measures for a regression model without

a threshold in table 6.1. A closer look at goodness of fit measures reveals that R2 can

be improved between 0.01 and 0.05 when allowing for two regimes depending on the

level of expected wind infeed. The increase is highest for hours in the first half of the

day and lower for hours after 12:00 pm. This is in line with the aforementioned obser-

vation that a threshold can be evaluated more clearly for early morning and morning

hours.

Compared to in-sample results of GARCH regression models we can report that

R2 measures for threshold regression models are between 0.02 and 0.11 higher. This

seems sensible as we allow for a second linear relationship.

Reported Durbin/Watson statistics are at reasonable levels and do not give rise to

autocorrelation concerns.
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Hour 1 2 3 4 5 6 7 8

Obs. 486 487 486 491 489 484 489 492
Threshold 4421 5075 5052 4604 6500 6454 11592 2564
Lower Confid. Int. 3922 4829 4778 4335 5654 5226 1683 2449
Upper Confid. Int. 5619 5336 5061 5793 10596 6610 11904 3817
Obs. below TH (pct.) 62.3 68.8 68.1 62.9 77.7 78.1 95.5 41.3
Obs. above TH (pct.) 37.7 31.2 31.9 37.1 22.3 21.9 4.5 58.7
LM-Statistic 42.05 46.04 41.11 33.68 39.17 37.19 24.80 32.35
p-Value 0.000 0.000 0.000 0.000 0.002 0.000 0.022 0.002
R2
without Threshold

0.69 0.66 0.64 0.65 0.64 0.66 0.59 0.67
R2
with Threshold

0.72 0.71 0.69 0.69 0.68 0.69 0.62 0.71
R2
below TH

0.70 0.69 0.68 0.69 0.66 0.69 0.60 0.77
R2
above TH

0.69 0.65 0.61 0.60 0.60 0.63 0.81 0.64
MAE 2.63 3.15 3.67 4.23 4.04 2.76 2.97 3.56
MAPE 0.075 0.106 0.142 0.214 0.170 0.080 0.062 0.062
σe 3.74 4.36 4.95 5.64 5.39 3.75 4.02 4.77
D/W 1.71 1.76 1.71 1.66 1.68 1.91 2.08 1.88

Hour 9 10 11 12 13 14 15 16

Obs. 491 491 490 490 492 492 492 491
Threshold 2766 3082 2234 2110 1800 1913 2020 7340
Lower Confid. Int. 2489 1901 1645 1781 1381 1585 1802 734
Upper Confid. Int. 3326 3435 3963 4542 2254 3784 7283 9031
Obs. below TH (pct.) 45.2 49.1 36.9 33.1 28.0 29.5 29.5 75.8
Obs. above TH (pct.) 54.8 50.9 63.1 66.9 72.0 70.5 70.5 24.2
LM-Statistic 40.08 51.46 46.16 42.27 34.94 29.88 21.12 24.77
p-Value 0.000 0.000 0.000 0.000 0.002 0.001 0.074 0.018
R2
without Threshold

0.68 0.68 0.68 0.66 0.69 0.70 0.69 0.70
R2
with Threshold

0.73 0.73 0.72 0.69 0.72 0.72 0.71 0.71
R2
below TH

0.72 0.73 0.72 0.65 0.73 0.69 0.67 0.69
R2
above TH

0.71 0.70 0.69 0.68 0.70 0.71 0.69 0.60
MAE 3.51 3.28 3.22 3.44 3.23 3.26 3.33 3.35
MAPE 0.058 0.054 0.054 0.056 0.055 0.058 0.061 0.062
σe 4.58 4.23 4.15 4.49 4.12 4.15 4.32 4.29
D/W 1.80 1.76 1.75 1.78 1.72 1.73 1.74 1.81

Hour 17 18 19 20 21 22 23 24

Obs. 487 486 484 489 492 491 488 490
Threshold 1050 4345 13262 10382 6742 2847 3147 14600
Lower Confid. Int. 779 2037 6514 9626 5885 2155 2532 3030
Upper Confid. Int. 7633 13531 13404 13696 6899 6161 3284 14600
Obs. below TH (pct.) 11.1 56.2 95.0 90.4 76.6 41.3 45.1 97.1
Obs. above TH (pct.) 88.9 43.8 5.0 9.6 23.4 58.7 54.9 2.9
LM-Statistic 20.21 24.89 25.54 25.00 33.88 28.87 24.60 21.72
p-Value 0.144 0.031 0.024 0.025 0.001 0.002 0.019 0.057
R2
without Threshold

0.76 0.82 0.79 0.78 0.78 0.76 0.74 0.74
R2
with Threshold

0.77 0.83 0.81 0.79 0.80 0.78 0.76 0.75
R2
below TH

0.77 0.84 0.81 0.79 0.82 0.82 0.78 0.73
R2
above TH

0.76 0.78 0.71 0.76 0.68 0.71 0.71 0.95
MAE 3.11 3.49 3.80 3.53 2.99 2.50 2.18 2.14
MAPE 0.059 0.061 0.062 0.059 0.053 0.049 0.044 0.049
σe 3.99 4.61 5.09 4.77 3.93 3.28 2.88 2.90
D/W 1.83 1.82 1.85 1.92 1.87 1.81 1.88 1.75

Table 6.1: Summary of in-sample results for hourly threshold regression mod-

els. The underlying dataset starts on January 1, 2010 and ends on December

31, 2011. LM-statistics and according p-values are based on the Lagrange Mul-

tiplier test as proposed by Hansen (1996). The p-value denotes the probability

that the null hypothesis of no threshold is wrongly rejected.
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Figure 6.1: Normalized likelihood ratio sequences LR∗n(γ) plotted as functions

of the threshold variable (expected wind infeed). The dashed line denotes the

95% confidence interval of the threshold.
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6.2.1.2 Factor Loads

In order to investigate the role of wind forecast in price building dynamics, we take

a closer look at coefficients of different fundamental variables below and above the

threshold level. For some of the variables we see distinct patterns whereas our results

do not reveal rich information for others. In tables 6.2 and 6.3 detailed estimation

results for two exemplary hours (hour 3 representing off-peak hours and hour 12 rep-

resenting peak hours) are presented.

The factor load of expected wind infeed itself proves to be relatively stable in the

regimes above the estimated threshold levels for most hours. However, for times dur-

ing which the expected level of wind infeed is below the threshold, our estimation

yields higher absolute coefficient values (in the negative area) meaning that spot prices

react much more sensitively to changes in expected wind infeed within these regimes.

This is particularly the case for peak hours with high demand around noon. A possible

explanation for this pattern could be derived from the fact that when demand is rela-

tively high and wind infeed is low at the same time, the situation is tense. Accordingly,

spot prices are particularly sensitive to intermittent supply from renewables. This ra-

tional makes especially sense given that thresholds for noon peak hours are generally

low and the regime below the threshold represents a tense situation. The observed

pattern is clearly revealed by the results for hour 12 which are presented in table 6.3.

For hour 12, the factor load of wind forecast below the threshold is more than four

times the factor load above the threshold (i.e. -0.0029 versus -0.0007).

In the coefficients referring to prices of emission allowances we can observe the

most distinct pattern. In times of expected wind levels above the threshold, absolute

coefficient values of CO2 prices are higher than in times of expected wind levels below

the threshold. This behavior might be reasoned by the fact that higher wind infeed into

the grid shifts the merit order curve to the right. As a result, the spot price is no longer

set by gas fired plants but rather by CO2 intense hard coal fired plants (for peak hours)

or even more CO2 intense lignite fired plants (for off-peak hours) for which prices of

emission allowance certificates are more relevant. The observed pattern is reflected in

the results for hours 3 and 12 presented in tables 6.2 and 6.3. For these hours, factor

loads below the threshold are 0.60 and 0.71 while they amount to 0.85 and 0.92 in the

regime above the threshold.

Looking at the factor loads of fuel prices, we can generally note that the statistical

significance of coefficients is rather poor, driven by high standard errors. This obser-

vation is contrary to the results from GARCH regression models where factor loads

for fuel prices were more or less persistently highly significant.

Expected demand and expected power plant availability have highly significant



6.2 Empirical Results 91

factor loads in both regimes for all hours. For expected demand, results indicate higher

(positive) factor loads for the regime above the threshold. For expected power plant

availability, absolute sensitivities (negative coefficient values) in the regime above the

threshold are in general relatively higher for early morning hours with low demand

levels and relatively lower for peak hours.

Observations 486 R2
without TH

0.64

Threshold 5052 R2
with TH

0.69

LM-Statistic 41.11 MAE 3.67

p-Value 0.000 MAPE 0.142

D/W 1.71 σe 4.95

Regime 1: Wind Forecast ≤ Threshold Regime 2: Wind Forecast > Threshold

Variable Coefficient t-Stat Variable Coefficient t-Stat

Constant 24.63 1.41 Constant -46.28 -1.13

Spot(-1) -0.04 -0.85 Spot(-1) 0.07 0.66

Spot Av.(-1) 0.22 2.69 Spot Av.(-1) 0.21 1.19

Spot Price Volatility -0.21 -2.15 Spot Price Volatility -0.38 -1.60

Coal Price 0.32 2.32 Coal Price -0.90 -2.92

Gas Price -0.01 -0.99 Gas Price 0.06 3.41

Coal/Gas Price Ratio -407.58 -1.48 Coal/Gas Price Ratio 1464.15 2.47

CO2 Price 0.60 5.61 CO2 Price 0.85 3.33

Wind Forecast -0.0013 -6.20 Wind Forecast -0.0010 -5.12

Exp. Power Plant Av. -0.0005 -4.62 Exp. Power Plant Av. -0.0016 -5.97

Exp. Demand 0.0009 5.70 Exp. Demand 0.0018 5.66

Seasonality 2.80 4.41 Seasonality 6.49 3.37

Observations 331 Observations 155

R2 0.68 R2 0.61

Table 6.2: Threshold regression in-sample results for hour 3 using expected

wind infeed as threshold variable. The observation window starts on January 1,

2010 and ends on December 31, 2011. T-statistics are computed based on

White-corrected error terms to account for heteroskedasticity (for details see

White (1980)).
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Observations 490 R2
without TH

0.66

Threshold 2110 R2
with TH

0.69

LM-Statistic 42.27 MAE 3.44

p-Value 0.000 MAPE 0.056

D/W 1.78 σe 4.49

Regime 1: Wind Forecast ≤ Threshold Regime 2: Wind Forecast > Threshold

Variable Coefficient t-Stat Variable Coefficient t-Stat

Constant 26.06 0.84 Constant 0.89 0.04

Spot(-1) 0.43 4.70 Spot(-1) 0.08 1.17

Spot Av.(-1) 0.13 0.71 Spot Av.(-1) 0.16 1.82

Spot Price Volatility -0.15 -0.98 Spot Price Volatility 0.15 1.41

Coal Price -0.36 -1.74 Coal Price -0.30 -1.74

Gas Price 0.02 1.68 Gas Price 0.02 2.49

Coal/Gas Price Ratio 405.72 1.01 Coal/Gas Price Ratio 396.59 1.12

CO2 Price 0.71 3.80 CO2 Price 0.92 7.58

Wind Forecast -0.0029 -4.23 Wind Forecast -0.0007 -12.26

Exp. Power Plant Av. -0.0008 -4.31 Exp. Power Plant Av. -0.0006 -6.20

Exp. Demand 0.0005 3.45 Exp. Demand 0.0007 5.04

Seasonality 4.16 3.70 Seasonality 1.37 1.97

Observations 162 Observations 328

R2 0.65 R2 0.68

Table 6.3: Threshold regression in-sample results for hour 12 using expected

wind infeed as threshold variable. The observation window starts on January

1, 2010 and ends on December 31, 2011. T-statistics are computed based on

White-corrected error terms to account for heteroskedasticity.
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6.2.2 Out-of-Sample Results

Table 6.4 depicts a summary of the out-of-sample results we obtained by applying the

calibrated threshold regression models to data between January 1, 2012 and April 30,

2012. Already at first sight we realize that the fit is rather poor. While the in-sample

fit was superior to the results from GARCH regression models, out-of-sample results

of threshold regression models seem to be worse. We observe that especially for early

morning and afternoon hours, results indicate a rather bad fit with R2 being negative

and the MAPE ranging between 15% and 25%. When considering exclusively hours

which we did not exclude from discussion due to lack of statistical significance in

section 6.2.1, we note that the MAPE for out-of-sample threshold regression models

is, on average, about 10 percentage points higher than for GARCH regression models.

This is contrary to in-sample results where we were able to improve the fit by splitting

the sample. Figure 6.2 displays out-of-sample fits for hours 3 and 12 where the fit

proves to be rather bad as well as for hour 22 where we observe a better fit with an R2

of 0.54.

Hour 1 2 3 4 5 6 7 8

Obs. 76 75 76 77 77 76 77 77

R2 0.30 -0.29 -0.70 -0.16 0.18 0.13 -0.95 0.61

MAE 4.48 5.62 6.49 5.46 4.77 3.68 6.36 7.32

MAPE 0.154 0.199 0.235 0.212 0.195 0.133 0.148 0.127

σe 6.17 8.94 9.87 7.70 6.37 5.89 10.69 9.13

Hour 9 10 11 12 13 14 15 16

Obs. 76 75 77 76 75 76 76 76

R2 0.56 0.40 0.46 0.22 -0.21 -0.18 -0.26 -0.31

MAE 7.34 8.00 9.73 9.48 10.30 9.81 8.14 7.42

MAPE 0.112 0.142 0.191 0.200 0.238 0.224 0.189 0.169

σe 10.70 9.91 9.57 8.27 7.20 6.71 5.89 6.21

Hour 17 18 19 20 21 22 23 24

Obs. 76 77 75 77 76 77 77 76

R2 0.24 0.68 0.51 0.46 0.21 0.54 0.50 -21.09

MAE 6.13 7.25 10.90 9.65 6.67 3.85 3.43 8.10

MAPE 0.140 0.139 0.181 0.142 0.123 0.077 0.071 0.224

σe 5.38 7.32 12.74 13.37 6.52 4.91 4.45 31.32

Table 6.4: Summary of out-of-sample results for hourly threshold regression

models. The underlying out-of-sample dataset starts on January 1, 2012 and

ends on April 30, 2012.



94 Chapter 6: Threshold Regression Models

E
U
R
/M

W
h

Hour 3

Spot Price

Forecast

E
U
R
/M

W
h

Hour 12

E
U
R
/M

W
h

Hour 22

Feb12 Mar12 Apr12

Feb12 Mar12 Apr12

Feb12 Mar12 Apr12

40

50

60

70

40

50

60

70

80

90

100

20

40

60

80

100

Figure 6.2: Out-of-sample fit of threshold regression models for hours 3, 12,

and 22. The underlying dataset starts on January 1, 2012 and ends on April 30,

2012.
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6.3 Intermediate Summary

In general, out-of-sample results of the threshold regression models prove to be poor.

As possible explanations for the inferior out-of-sample fits we see the following. On

the one hand, the location of the thresholds may be heavily driven by the occurrence

of rather extreme and non-repetitive values in spot prices as well as in explanatory

variables. Moreover, allowing for two regimes might still be too restrictive given

the dynamic behavior of electricity spot markets. Complementary to GARCH regres-

sion results, threshold regression models confirm that static regression models perform

rather well in catching price dynamics by fundamental variables in-sample. However,

out-of-sample there is obviously a need to apply models which allow for more flexi-

bility.

Given our findings from both, GARCH regression and threshold regression models,

we will introduce a more dynamic approach in the following chapter. We will estimate

a time-varying parameter regression model which allows continuous adaption of price

sensitivities.





Chapter 7

Time-Varying Parameter Regression

Models

When applying conventional regression models, researchers have to assume that fac-

tor sensitivities are constant over time. This assumption is often inappropriate either

because it conflicts with empirical data or because the author is interested in the in-

tertemporal changes of factor loads. Formulating a state space model which allows

for changing regression coefficients and estimating it by means of a filter developed

by Kalman (1960) is a viable approach to tackle the problem.

Subsequently, we will first introduce the Kalman filter algorithm in its general

form. We will then explain how we shall apply it to estimate a fundamental regression

model allowing for time-varying coefficients. This methodical part will be followed

by the presentation and discussion of empirical results and a comparison of forecast

accuracy with mainly GARCH regression but also threshold regression models.
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7.1 The Kalman Filter

7.1.1 Main Algorithm

The approach pioneered by Kalman (1960) is based on the following filtering problem

represented by a stochastic, linear discrete-time state space model:1

yt = x′tβt + vt (7.1)

βt = Aβt−1 + But−1 +Gwt (7.2)

Equation 7.1 is referred to as the measurement equation which relates a known quan-

tity (vector of exogenous variables) xt to an observed variable yt while 7.2 describes

the process governing the unobserved state βt and is called transition equation. More-

over, the two equations are composed of structural matrices A, B, andG and zero-mean

error components vt ∼ N
(

0,R
)

and wt ∼ N
(

0,Q
)

. Measurement noise covariance

R = Evtv
′
t and transition noise covariance Q = Ewtw

′
t can either be constant or change

with every time step. The control input u is often omitted in applications. In order to

solve the problem of estimating the unknown quantity βt, Kalman provides a power-

ful set of equations which works in a recursive mode and on which we will elaborate

subsequently.

Throughout the estimation algorithm, as we run from t = 1 to t = T , we distinguish

between two possible states of knowledge, namely the a priori state when observa-

tions (i.e. elements of vector y) up to t − 1 are known and the posterior state when
observations up to t are available. Following this separation we define

β̂−t = E
(

βt | yt−1
)

(7.3)

as the a priori state estimate conditional on yt−1 and

β̂t = E
(

βt | yt
)

(7.4)

as the posterior state estimate conditional on yt. The true state βt is, as mentioned,

unobserved and unknown. Consequently, any estimation procedure will result in esti-

mation errors

e−t ≡ βt − β̂−t (7.5)

1When introducing the Kalman filter algorithm, we follow Welch & Bishop (2006).
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and et ≡ βt − β̂t (7.6)

which are known as a priori and posterior estimation error, respectively. They have

corresponding error covariances

P−t = E[e−t e
−
t
′] (7.7)

and Pt = E[ete
′
t]. (7.8)

At any time step t the a priori state estimate conditional on yt−1 is governed by the

posterior state estimate of the last time step, by an optional control input, and by the

structural transition matrices A and B:

β̂−t = Aβ̂t−1 + But−1 (7.9)

The covariance of the corresponding estimation error e−t is projected by the following

linear equation:

P−t = APt−1A
′ + Q (7.10)

7.9 and 7.10 are called prediction equations. As yt becomes observable we can derive

the measurement innovationwhich is defined as the discrepancy of ŷt (estimated using

the a priori state estimate β̂−t and any exogenous variable available at time step t) and

the true yt:

ξt = yt − ŷt
= yt − x′t β̂

−
t

(7.11)

The goal is now to compute the posterior state estimate β̂t minimizing the covariance

of its estimation error, namely Pt. The linear equation defining the posterior state esti-

mate is defined as the sum of the a priori state estimate and the weightedmeasurement

innovation

β̂t = β̂
−
t + Ktξt (7.12)

with a corresponding posterior covariance

Pt = P−t − P−t Ktxt. (7.13)

7.12 and 7.13 are called update equations. The weighting factor Kt is called Kalman

gain and chosen to minimize Pt and is defined as follows:

Kt =
P−t x

′
t

xP−t x
′
t + R

(7.14)
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After the posterior state estimate in 7.12 has been computed, it is used to project the

next state β̂−
t+1. The entire procedure is repeated until all information in y = {y0, ..., yT }

has been used.2

Assuming normally distributed disturbances, the recursion is optimal in the sense

that it minimizes the mean square error among all estimators. Another advantage of

the method is that no information is lost. Instead, all information is transmitted from

one stage to the next, mainly through the prediction equations. The updating equations

care for a discounting of older information and over time, older observations become

less important. The prediction errors are not weighted with a fixed or given factor.

Instead, the weight is determined by the dynamic Kalman gain Kt.

As an additional (optional) step, a smoothing algorithm can be performed when

the filter procedure has come to an end. The so-called Kalman smoother re-estimates

state variables βt given the full information set of y up to T applying a backwards

working iteration. In finance the Kalman smoother is a popular method to estimate

style exposures of hedge funds ex post.3 We will not explain the smoother in more

detail as this feature will not be used in the thesis at hand. An introduction to the

smoothing algorithm can be found in Kim & Nelson (1999) or, in a more detailed

format, in Chui & Chen (2009).

For our estimation of a time-varying-parameter (TVP) regression model, the mea-

surement equation of the state space model is implemented as in 7.1 with yt denoting

the day-ahead electricity spot price and regressor matrix xt incorporating all funda-

mental variables including a constant (we repeat it for convenience):

yt = x′tβt + vt (7.15)

Furthermore, the evolution of the state βt (i.e. the time-varying regression coefficient)

is assumed to follow a random walk according to

βt = βt−1 + wt (7.16)

meaning that we represent matrices A and G by the identity matrix. We do not use

the optional control variable ut−1 in 7.2. The predicted day-ahead electricity spot price

for time t is projected applying the a priori estimated regression coefficient β̂−t of this

stage to the observed exogenous variables.

2For a more detailed derivation of the filter see Hamilton (1994a) or Hamilton (1994b).
3See for example Lhabitant (2004).
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From a methodological perspective, this approach of modelling time-varying pa-

rameter regression models has for example been followed by Kim & Nelson (1989),

Song & Wong (2003), or Karakatsani & Bunn (2010).

7.1.2 Initialization of Critical Parameters

Besides the state βt there is a set of parameters (A, B,G,R,Q) which are also unob-

served. While finding an appropriate specification for the structural matrices A, B, and

G is usually a rather easy task, initializing the covariances of the disturbances R and Q

is less obvious. In some rare cases, the two are partly or even completely known from

former empirical work. However, most of the time they have to be determined by the

researcher. This is a critical task as ill defined matrices R and Q lead to a filter which

is no longer optimal.4 Mohamed & Schwartz (1999) elaborate on the consequences

of suboptimal a priori statistics. For example, if R and/or Q on the one hand have too

small values, the probability band around the true value decreases accordingly and the

resulting state estimate may be biased. On the other hand, if they are chosen too large,

the result can be a practical divergence of the filter.

Following the introduction of the filter in the sixties, several methods to mitigate the

risk of initializing wrong covariances R and Q have been introduced. Odelson et al.

(2005) group them into four main categories: Bayesian, maximum likelihood, covari-

ance matching, and correlation techniques. Filter routines applying one of these meth-

ods to derive matrices R and Q are often summarized under the term Adaptive Kalman

Filters. Adaptive Kalman filtering means that the overall estimation procedure is split

into two related steps. Noise covariances are determined during data processing in

a first step and applied to estimate the unobserved state via the Kalman filter algo-

rithm in a second step. Bayesian and maximum likelihood approaches were largely

pioneered and developed by Schweppe (1965), Hilborn & Lainiotis (1969), Kashyap

(1970), Bohlin (1976), and Alspach (1974). In the thesis at hand we will apply the

maximum likelihood approach as explained subsequently.

In chapter 5 we have introduced the generalized form of the log likelihood function

which reads as

lnL
(

θ
)

=

T
∑

t=1

ln
(

f
(

yt |θ
))

. (7.17)

Schweppe (1965) and also Harvey (1981) show that the log likelihood function to

4See Oussalah & de Schutter (2000) or Odelson et al. (2005).
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estimate noise covariances R and Q can be built on the measurement innovations as

introduced in equation 7.11 and is formulated as follows:

lnL(θ) = −1
2

T
∑

t=1

(

ln | Ct | +ξ′tC−1t ξt
)

(7.18)

where Ct denotes the contemporaneous variance covariance matrix of the measure-

ment innovations ξt which corresponds to the denominator in equation 7.14, xtP
−
t x
′
t +

R. Matrix Ct is dependent on R and additionally on Q, namely through the estimation

error covariance P−t as defined in equation 7.10. Based on the assumption that inno-

vations ξt are normally distributed we can rewrite the log likelihood function more

detailed:

lnL(θ) = −1
2

T
∑

t=1















ln
[

2π × (

xtP
−
t x
′
t + R

)

]

+

(

yt − xtβ̂
−
t

)2

(

xtP
−
t x
′
t + R

)















= −1
2

T
∑

t=1

ln
[

2π × (

xt(APt−1A
′ + Q)x′t + R

)

]

− 1

2

T
∑

t=1















(

yt − xtβ̂
−
t

)2

(

xt(APt−1A
′ + Q)x′t + R

)















(7.19)

The log likelihood function is constructed using a first limited number of observations

(in our case 50 observations) and is then minimized in order to obtain estimates for

covariance matrices R and Q which we assume to be constant over time. Afterwards,

the pre-estimated covariances are passed to the second stage, where the Kalman filter

is applied using the remaining observations in order to obtain the desired estimates for

the state βt.

7.2 Empirical Results

Subsequently, we will present empirical results for the in-sample and out-of-sample

estimation of the hourly TVP regression models and compare them with the results

from GARCH regression and threshold regression models. When discussing results

for the in-sample dataset we will additionally investigate seasonal patterns in the re-

gression coefficients of expected wind infeed. Furthermore, we will analyze the condi-

tional volatility of measurement innovations which we extract from the Kalman filter

algorithm.
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7.2.1 Conditional Mean Modelling

7.2.1.1 In-Sample Results

In order to measure the explanatory power of expected wind infeed we first estimate

the models excluding the expected wind infeed variable and then we account for it in

a second step.

Table 7.1 depicts the in-sample results for the estimated models without wind fore-

cast and table 7.2 shows the in-sample results of the estimated models including wind

forecast. Without considering wind we can observe an R2 of between 0.46 and 0.75

with an average of 0.58 across the 24 hourly models while the MAPE is between

5.4% and 31.9% with an average of 9.5%. The MAE amounts to between 2.71 and

5.40 with an average of 3.86. Similar to the GARCH regression models, it is obvi-

ous that particularly for early morning hours the model fit proves to be at rather poor

levels.

Including the wind variable we can improve the fit significantly and report an R2

of between 0.57 and 0.85 with an average of 0.71. At the same time, the MAPE for

models including wind reduces to between 4.7% and 21.7% with an average of 7.5%

and the MAE reduces to between 2.32 and 4.16 with an average of 3.19. Table 7.1

illustrates the improvements which are achieved by the inclusion of the wind variable.

R2 is improved by 0.13 on average and the MAPE is reduced by 2.0% on average. The

MAE is reduced by 0.67 on average which in economic terms means that including

the wind variable has a value of 67 cents per MWh. When comparing TVP regression

in-sample results with the results for the GARCH regression models, it is apparent that

for the case where wind is excluded, the model fit of GARCH regression models is

slightly better for most hours. Results for the TVP models are, however, clearly better

than the GARCH regression estimates for most hours when including wind. Excep-

tions are hours 22 to 24 where GARCH regression models dominate TVP regression

models for in-sample results. At first sight it may seem dubious that TVP regression

models do not consistently provide superior results. Allowing for time-varying coef-

ficients, they should be much better able to model price variability. However, one has

to consider that estimations via TVP regression models only use information which

is available before the respective spot price is observed whereas GARCH-regression

models applied to in-sample data use all information provided by the entire dataset. It

is therefore sensible that despite time-varying coefficients, the results for TVP regres-

sion models are not consistently superior compared to GARCH regression models for

the in-sample period.
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Hour 1 2 3 4 5 6 7 8

Obs. 436 437 436 441 439 434 439 442

R2 0.54 0.50 0.46 0.49 0.48 0.59 0.50 0.61

R
2

0.47 0.43 0.38 0.41 0.41 0.53 0.43 0.55

MAE 3.32 4.09 4.86 5.40 5.09 3.16 3.28 4.03

MAPE 0.097 0.142 0.201 0.319 0.235 0.092 0.068 0.070

σǫ 4.79 5.75 6.70 7.37 6.97 4.36 4.43 5.51

D/W 1.88 1.88 1.93 1.85 1.87 1.98 2.05 2.05

LLF -1304 -1388 -1451 -1510 -1478 -1256 -1277 -1382

Hour 9 10 11 12 13 14 15 16

Obs. 441 441 440 440 442 442 442 441

R2 0.60 0.59 0.56 0.54 0.54 0.54 0.53 0.55

R
2

0.55 0.53 0.50 0.47 0.47 0.48 0.46 0.49

MAE 3.94 3.76 3.79 4.05 3.98 3.92 4.06 3.97

MAPE 0.065 0.062 0.063 0.066 0.068 0.069 0.073 0.073

σǫ 5.43 5.15 4.99 5.30 5.11 5.06 5.25 5.12

D/W 2.10 2.10 2.02 2.01 1.93 1.90 1.92 2.02

LLF -1373 -1349 -1333 -1361 -1350 -1346 -1361 -1346

Hour 17 18 19 20 21 22 23 24

Obs. 437 436 434 439 442 441 438 440

R2 0.65 0.74 0.74 0.75 0.69 0.61 0.58 0.51

R
2

0.60 0.70 0.71 0.71 0.64 0.56 0.52 0.45

MAE 3.60 4.12 4.20 4.02 3.55 3.04 2.71 2.76

MAPE 0.066 0.071 0.069 0.067 0.062 0.058 0.054 0.064

σǫ 4.71 5.68 5.99 5.38 4.83 4.12 3.57 3.88

D/W 1.96 2.03 2.05 1.90 1.97 1.99 2.09 2.05

LLF -1297 -1345 -1361 -1363 -1323 -1251 -1181 -1223

Table 7.1: Summary of in-sample results for TVP regression models excluding

expected wind infeed as exogenous variable. The observation period starts on

January 1, 2010 and ends on December 31, 2011. LLF denotes the value of the

log likelihood function used to estimate R and Q in a preliminary step.

In order to test whether our models are appropriately specified we investigate po-

tential autocorrelation in one step ahead forecast errors as suggested by Engle & Wat-

son (1981).5 For this purpose we apply the Ljung-Box Q-test as introduced in section

4.1.3 to the measurement innovations ξt (as defined in equation 7.11) for all 24 hours.

We test autocorrelation at lags 1, 5, 10, and 20 and find that for most hours, we cannot

5We exclusively test forecast errors of the models including expected wind infeed.
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Hour 1 2 3 4 5 6 7 8

Obs. 436 437 436 441 439 434 439 442

R2 0.66 0.66 0.67 0.69 0.69 0.67 0.57 0.69

R
2

0.61 0.62 0.62 0.64 0.65 0.62 0.51 0.64

MAE 2.81 3.29 3.69 4.16 3.89 2.83 3.05 3.58

MAPE 0.080 0.111 0.149 0.217 0.166 0.082 0.063 0.062

σǫ 4.13 4.71 5.22 5.75 5.36 3.89 4.09 4.92

D/W 1.85 1.92 1.95 1.97 1.95 1.94 2.05 2.03

LLF -1220 -1279 -1323 -1371 -1336 -1199 -1237 -1331

Hour 9 10 11 12 13 14 15 16

Obs. 441 441 440 440 442 442 442 441

R2 0.69 0.70 0.69 0.68 0.70 0.71 0.70 0.72

R
2

0.64 0.66 0.65 0.64 0.65 0.66 0.65 0.67

MAE 3.54 3.27 3.23 3.38 3.21 3.16 3.27 3.11

MAPE 0.059 0.054 0.054 0.055 0.054 0.055 0.059 0.057

σǫ 4.82 4.37 4.19 4.39 4.12 4.06 4.20 4.07

D/W 2.12 2.08 2.04 2.01 1.97 2.01 2.01 2.06

LLF -1320 -1275 -1255 -1276 -1250 -1244 -1258 -1238

Hour 17 18 19 20 21 22 23 24

Obs. 437 436 434 439 442 441 438 440

R2 0.77 0.85 0.80 0.83 0.79 0.71 0.68 0.69

R
2

0.74 0.82 0.77 0.80 0.76 0.67 0.64 0.64

MAE 2.90 3.10 3.67 3.15 2.95 2.67 2.38 2.32

MAPE 0.054 0.053 0.060 0.053 0.052 0.051 0.047 0.053

σǫ 3.81 4.36 5.30 4.46 3.92 3.53 3.10 3.12

D/W 2.02 2.17 2.21 2.01 2.04 2.06 2.05 1.92

LLF -1195 -1226 -1277 -1273 -1217 -1175 -1119 -1116

Table 7.2: Summary of in-sample results for TVP regression models including

expected wind infeed as exogenous variable. The observation period starts on

January 1, 2010 and ends on December 31, 2011. LLF denotes the value of the

log likelihood function used to estimate R and Q in a preliminary step.

reject the null hypothesis of no autocorrelation at a 99% significance level (the same

applies in general for a significance level of 95%). Exceptions are hours 18, 19, and

22 where we can reject the null hypothesis at the 99% level (for higher lags). Detailed

results are reported in table C.1 in the appendix. These results are confirmed by the

Durbin/Watson statistics in table 7.2.
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Figure 7.1: Improvement in goodness of fit for TVP regression models if ex-

pected wind infeed is included as exogenous variable. Black bars denote good-

ness of fit measures for in-sample estimated models excluding expected wind

infeed, measures denoted by white bars include expected wind infeed.
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7.2.1.2 Seasonal Patterns

In this section we look at the evolution of time-varying regression coefficients for in-

sample estimated models. As expected wind infeed is the focus variable of this thesis,

we present corresponding regression coefficients for 12 selected hours in figures 7.2

and 7.3. As can be seen from the plots, the first 50 days in 2010 have no values because

these days were used to estimate covariances R and Q using maximum likelihood

in a preliminary step. Overall, the plots provide evidence that the price sensitivity

towards expected wind infeed displays different patterns depending on the hour of

the day. When looking at hours 2, 4, and 6 we see that for early morning hours the

coefficient evolves highly dynamically with a tendency for higher absolute sensitivities

during summer months and lower absolute sensitivities during winter months. For

peak hours until noon we can observe more constant patterns which stabilize within

a certain range once enough information has become available. As section 4.2.4 has

revealed, expected wind infeed is at a low for these hours which comes along with

a lower infeed volatility. This probably makes prices more robust with regard to the

expected infeed. After noon, when higher wind levels are observed, we discern again

a more volatile behavior with some evidence for seasonality noting higher absolute

sensitivities during winter time and lower absolute sensitivities during summer time

(see especially hour 14 in figure 7.3). Overall, the regression coefficient of expected

wind infeed evolves highly dynamically for most hours which supports the application

of TVP regression models.

We will not discuss the evolution of other regression coefficients in detail as this

is beyond the scope of this thesis whose main focus is the role of expected wind

infeed. However, coefficients of selected variables for hours 12 and 18 are depicted in

figures 7.4 and 7.5 for illustrative purposes. A comparison of the dynamics of various

regression coefficients with patterns observed for expected wind infeed shows that

the former are less volatile and behave more persistent in most cases. For example,

we can study the coefficients of the expected power plant availability which stabilize

once enough information is available. There are exceptions such as the evolution of

the coefficient for CO2 prices at hour 18 which displays a rather dynamic pattern.
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Figure 7.2: Evolution of expected wind infeed regression coefficients over the

in-sample observation period between January 1, 2010 and December 31, 2011

for hours 2, 4, 6, 8, 10, and 12. The coefficients have been estimated applying

the introduced Kalman filter routine. 50 initial observations are excluded as

they were used for preliminary initialization of unknown covariances R and Q.
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Figure 7.3: Evolution of expected wind infeed regression coefficients over the

in-sample observation period between January 1, 2010 and December 31, 2011

for hours 14, 16, 18, 20, 22, and 24. The coefficients have been estimated apply-

ing the introduced Kalman filter routine. 50 initial observations are excluded

as they were used for preliminary initialization of the unknown covariances.



110 Chapter 7: Time-Varying Parameter Regression Models

Spot(-1) Spot Volatility

Coal Price Gas Price

Coal/Gas Ratio CO2 Price

Exp. PPA Exp. Demand

Jan10 Jan11 Jan12Jan10 Jan11 Jan12

Jan10 Jan11 Jan12Jan10 Jan11 Jan12

Jan10 Jan11 Jan12Jan10 Jan11 Jan12

Jan10 Jan11 Jan12Jan10 Jan11 Jan12

0.0

0.5

1.0

1.5 ×10
−3

-10

-5

0

5 ×10
−4

0.01

0.02

0.03

0.04

0.05

-50

0

50

100

150

200

0.010

0.015

0.020

0.025

0.00

0.05

0.10

0.15

0.20

-0.10

-0.08

-0.06

-0.04

-0.02

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Figure 7.4: Evolution of various regression coefficients over the in-sample ob-

servation period between January 1, 2010 and December 31, 2011 for hour

12. The coefficients have been estimated applying the introduced Kalman filter

routine. 50 initial observations are excluded as they were used for preliminary

initialization of unknown covariances R and Q.
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Figure 7.5: Evolution of various regression coefficients over the in-sample ob-

servation period between January 1, 2010 and December 31, 2011 for hour

18. The coefficients have been estimated applying the introduced Kalman filter

routine. 50 initial observations are excluded as they were used for preliminary

initialization of unknown covariances R and Q.
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7.2.1.3 Out-of-Sample Results

In order to test the hourly TVP regression models out-of-sample, we estimate them

on the same dataset as GARCH regression and threshold regression models which

starts on January 1, 2012 and ends on April 30, 2012. As input variables Pt and β̂t for

t = 0 we use the last updates of these variables from the in-sample estimation. Thus,

all past information is preserved in the system which is a characteristic feature of the

Kalman filter algorithm. Covariances R and Q remain the same as in the in-sample

dataset. Throughout the out-of-sample dataset the predicted electricity spot price at

time t is again computed using consecutively generated a priori estimated regression

coefficients for this stage.

Summaries of out-of-sample results are depicted in table 7.3 (excluding wind fore-

cast) and table 7.4 (including wind forecast). Looking at out-of-sample results from

models including wind forecast we can report an R2 of 0.61 on average with a mini-

mum value of 0.31 (hour 20) and a maximum value of 0.83 (hour 18). The best fit

can generally be observed for early morning hours. From hours 1 to 5, R2 is at 0.73 or

higher. This is insofar remarkable as these hours proved to have the least accurate fit

when estimating in-sample. The worst out-of-sample results we report for hours 13,

20, and 21.

The results from models excluding expected wind infeed are clearly worse by 0.27

on average in terms of R2. An analysis of MAE measures shows an improvement

of 1.29 EUR/MWh on average when accounting for wind, which we consider a re-

spectable result. Also the MAPE can be reduced by 4 percentage points on average

to a MAPE of 10% on average. Overall, incorporating expected wind infeed in TVP

regression models can significantly improve out-of-sample results.

Comparing TVP regression results with GARCH regression and threshold regres-

sion out-of-sample results (including wind) we note a significant improvement in fit.

Compared to GARCH regression models, the R2 is higher by 0.25 on average. Com-

pared to threshold regression models, where out-of-sample results are generally dis-

appointing, we obtain an improvement of even 0.48 (excluding hour 24) on average.

Figure 7.6 depicts the out-of-sample fit for hours 3, 12, and 18. The plots underpin the

superior ability of TVP regression models to forecast day-ahead electricity spot prices

compared to GARCH regression and threshold regression models.
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Hour 1 2 3 4 5 6 7 8

Obs. 76 75 76 77 77 76 77 77

R2 0.26 0.20 0.11 0.14 0.13 0.14 0.24 0.50

MAE 5.04 5.59 5.67 5.33 5.15 4.26 5.04 7.38

MAPE 0.172 0.202 0.209 0.203 0.198 0.141 0.109 0.127

σǫ 6.91 7.32 7.40 7.14 7.03 5.98 6.80 11.13

Hour 9 10 11 12 13 14 15 16

Obs. 76 75 77 76 75 76 76 76

R2 0.38 0.27 0.53 0.52 0.42 0.46 0.43 0.46

MAE 8.28 7.94 7.68 6.80 6.38 5.61 4.60 3.96

MAPE 0.129 0.134 0.139 0.134 0.140 0.123 0.103 0.089

σǫ 12.78 11.67 10.78 8.93 8.34 7.65 6.37 5.76

Hour 17 18 19 20 21 22 23 24

Obs. 76 77 75 77 76 77 77 76

R2 0.48 0.59 0.27 0.20 0.28 0.47 0.39 0.24

MAE 4.11 5.82 9.64 10.87 5.08 3.75 3.71 4.57

MAPE 0.089 0.101 0.139 0.155 0.091 0.075 0.079 0.117

σǫ 6.26 9.88 16.96 16.59 7.68 5.24 4.90 5.85

Table 7.3: Summary of out-of-sample results for TVP regression models exclud-

ing expected wind infeed as exogenous variable. The dataset starts on January

1, 2012 and ends on April 30, 2012.
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Hour 1 2 3 4 5 6 7 8

Obs. 76 75 76 77 77 76 77 77

R2 0.74 0.78 0.75 0.77 0.73 0.66 0.47 0.69

MAE 2.88 2.99 3.22 3.00 3.01 2.89 4.33 5.92

MAPE 0.088 0.097 0.114 0.111 0.114 0.094 0.092 0.100

σǫ 4.11 3.85 3.91 3.71 3.88 3.78 5.70 8.77

Hour 9 10 11 12 13 14 15 16

Obs. 76 75 77 76 75 76 76 76

R2 0.66 0.60 0.60 0.70 0.44 0.64 0.62 0.61

MAE 6.35 6.05 6.59 5.55 5.72 4.54 3.83 3.75

MAPE 0.096 0.100 0.118 0.107 0.121 0.097 0.084 0.083

σǫ 9.45 8.60 9.92 7.11 8.21 6.31 5.19 4.89

Hour 17 18 19 20 21 22 23 24

Obs. 76 77 75 77 76 77 77 76

R2 0.63 0.83 0.34 0.31 0.37 0.56 0.57 0.64

MAE 3.66 4.30 8.55 9.71 4.74 3.43 3.16 3.17

MAPE 0.077 0.075 0.123 0.136 0.084 0.068 0.066 0.078

σǫ 5.31 6.46 16.01 15.37 7.19 4.77 4.13 4.01

Table 7.4: Summary of out-of-sample results for TVP regression models includ-

ing expected wind infeed as exogenous variable. The dataset starts on January

1, 2012 and ends on April 30, 2012.
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Figure 7.6: TVP regression out-of-sample fit for hours 3, 12, and 18. The

dataset starts on January 1, 2012 and ends on April 30, 2012.
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7.2.2 Conditional Volatility Modelling

As a side product, the Kalman Filter estimation procedure provides the variance of

forecast errors ξ−t conditional on information up to t − 1 which, at every time step t, is
derived from the variance-covariance matrix of the a priori state estimates β̂−t and R,

which is the variance of the disturbance term of the measurement equation vt:
6

Ψ−t = xtP
−
t x
′
t + R (7.20)

From equation 7.20 it follows that within the TVP regression framework, conditional

volatility is not only derived from past error terms information (as in a GARCH set-

ting) but directly incorporates information on current exogenous variables (included

in xt). Therefore, uncertainty consists of two parts: First, uncertainty which is related

to dynamically evolving regression coefficients (introduced by the error covariance

P−t ) and, second, uncertainty which arises because of future disturbances (introduced

by R and assumed constant in our case).7

We can now compare the conditional volatility extracted from TVP regression mod-

els with the conditional volatility from GARCH regression estimations. Figure 7.7

displays the conditional volatility (i.e. the square root of the conditional variance as

defined in equation 7.20) estimated via the Kalman Filter for hours 3, 12, and 18. Sim-

ilar to chapter 5, we plot 250 trading days within the in-sample dataset. Comparing

the conditional volatility plots of GARCH regression (figure 5.6) and TVP regression

models, we can observe that the a priori volatility structure extracted from the TVP re-

gression models is finer and at a consistently lower level. On the contrary, conditional

volatility from the GARCH(1, 1) model specification is more persistent and overall

higher. For hour 12 for example, the conditional volatility of the GARCH regression

model evolves within a range between 4.0 and 7.0, whereas volatility from the TVP

regression model stays within a range between 4.8 and 5.2 most of the time.

The results give evidence that by allowing for time-varying regression parameters

uncertainty can be reduced significantly although GARCH volatility is by construc-

tion derived from all information available (before and after the observation date),

unlike TVP volatility. Furthermore, a time-varying specification obviously removes

the autoregressive structure in volatility as we can observe it in the plots of conditional

volatility from GARCH regression models (figure 5.6).

6See Kim & Nelson (1999). The same time-dependent specification of the variance is incorporated in
the log likelihood function in equation 7.19.

7See Kim & Nelson (1989).
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When investigating spot prices of the British electricity market by TVP regression

models, Karakatsani & Bunn (2010) observe the same phenomenon concluding that

TVP regression models better reflect characteristics of electricity prices which are

instantaneous and highly adaptive.
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Figure 7.7: Conditional volatility of forecast errors obtained by the Kalman

filter algorithm for hours 3, 12, and 18. The observation window includes 250

observations between March 23, 2010 and March 29, 2011.
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7.3 Intermediate Summary

The estimation of time-varying parameter regression models reveals that results can

be significantly improved when allowing for dynamic regression coefficients. We see

that the sensitivity of prices towards various fundamental variables is governed by

distinct patterns. Looking at the evolving coefficient for expected wind infeed - the

focus variable of this thesis - we can observe a seasonal behavior which is more or

less pronounced depending on the hour of the day.

Especially when comparing out-of-sample results with results from GARCH re-

gression and threshold regression models we can report significant improvements.

Using a TVP regression approach we can for example explain about 75% of the total

spot price variation for early morning hours, whereas within the GARCH regression

framework we can only explain between 40% and 55% of price variability for the

same hours. These findings expand to the remaining hours of the day. There is, how-

ever, a handful of hours where the approach is not able to provide solid results. This

applies particularly for hours 19 to 21, when the on/off-peak switch takes place. We

report R2 measures below 0.40 which, for hours 19 and 20 only, is slightly inferior to

the fit of the GARCH regression models.

Overall, significant improvements can be reported when comparing TVP regression

models without and with consideration of the expected wind infeed variable. Within

the TVP regression framework expected wind infeed proves to have a high in-sample

as well as out-of-sample explanatory power for day-ahead electricity spot prices.

The analysis of the conditional volatility of forecast errors obtained by the Kalman

filter algorithm additionally provides evidence that accounting for the adaptive nature

of electricity spot prices reduces forcasting uncertainty considerably.

Autocorrelation tests applied to obtained measurement errors generally confirm

that the hourly TVP regression models are appropriately specified.



Chapter 8

Forward Market Analysis

8.1 Economic & Regulatory Background

This thesis analyzes and models electricity prices by means of fundamental variables.

Special attention is paid to the role of expected wind infeed. Over the last decade,

wind energy has become an increasingly important market driver along with the de-

velopment of laws and policies on renewable energies in Germany. As discussed

in section 2.2, with the introduction of the equalization mechanism ordinance (Aus-

glMechV) which became effective as of beginning 2010, the way of how electricity

from renewable sources enters the system has changed significantly.

In the old regime, transmission system operators (TSOs) sold renewable energy

through so-called monthly bands (economically comparable to forward contracts) to

energy supply companies (ESCs). In order to eliminate the resulting market exposure

it is conceivable that ESCs hedged their positions by entering a forward contract at

the EEX which would have resulted in additional short positions in front-month EEX

electricity futures.1 Under the new ordinance, electricity from renewable sources is

to be sold on the day-ahead spot market directly. This theoretically lowers supply

on the forward market and increases supply on the day-ahead market, leading to an

increasing spread (the risk premium) between the two. However, it is probable that

before, ESCs also used other markets in addition to front-month futures (e.g. OTC

or other futures contracts than the front-month) to hedge market exposures. It can

be assumed that under the new regime, ESCs have to buy electricity somewhere in

1Today, there is not enough transparency to investigate this exactly.
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the market in order to close the gap which results from the abandoning of delivery

through monthly bands. If the required volumes are bought on the day-ahead market,

the excess supply caused by increased green electricity sales by TSOs is most likely

eliminated. Unfortunately, getting sufficient information to draw a final conclusion

on how the behavior or all involved parties has changed is not possible given today’s

level of transparency.

In its report published two years after the introduction of the ordinance, the Ger-

man Federal Network Agency notes that volumes and thus liquidity on the day-ahead

marked have immediately and significantly increased as of January 2010. The author-

ity reports a total trading volume of TSOs in the day-ahead market of 81 TWh in 2010

versus 20 TWh in 2009. They find no such structural change when looking at the price

pattern considering the price level and volatility though. Only for the very first weeks

of 2010 a higher price volatility was observed as a result of uncertainty introduced by

the new rule.2 These findings are confirmed by von Rintelen & Wragge (2010).

In addition to the observed, we intend to get a clearer idea on how market partici-

pants’ behavior changed on the short-term forward markets following the introduction

of the AusglMechV. We will therefore analyze risk premia on two sorts of electricity

forward contracts. First, we will investigate risk premia on day-ahead contracts which

are traded at the Energy Exchange Austria (EXAA) earlier in the day and which can be

settled in the same geographical area. Second, we will look at premia on EEX front-

month futures contracts which have the same time-to-maturity as the before existing

monthly bands of green electricity delivery.

In the remainder of this chapter we will proceed as follows. First, we will give an

introduction to forward pricing and risk premia in commodity markets in general as

well as in electricity markets specifically. Afterwards, we will provide an overview on

according research which has been done on electricity forward markets. We will then

perform an empirical analysis on day-ahead prices traded in Vienna/Austria which,

following other researchers, we define as the shortest possible forward contracts for

EEX day-ahead prices. Our empirical analysis will focus on the development of risk

premia as well as their dependence on expected wind infeed. In addition to risk premia

we will estimate the market price of risk and see whether our findings are confirmed.

Besides premia on EXAA contracts we will also investigate front-month EEX futures

contracts and finally conclude the chapter with a summary of our findings.

2See Federal Network Agency (2012).
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8.2 Forward Pricing in Electricity Markets

8.2.1 Commodity Forward Pricing Concepts

Keynes (1930) was one of the first to put forward a fundamental theory to explain price

differences between commodity spot and forward prices. Known as the Expectations

Theory it claims forward prices of a commodity to be equal to the expected future spot

price:

F(t,T ) ≈ E[S (T )|Ft] (8.1)

where F(t,T ) denotes the forward price at time t with delivery at time T (could be a

period instead) and E[S (T )|Ft] denotes the expected future spot price adapted to the
filtration Ft. The difference between the forward and the (expected) later on realized
spot price is referred to as risk premium:

π(t,T ) = F(t,T ) − E[S (T )|Ft] (8.2)

Following the formula, a positive risk premium is a premium paid by the buyer to the

seller of the futures contract and vice versa.

According to Keynes, commodity markets typically exhibit negative risk premia

meaning that forward prices trade below spot prices. He characterizes this situation a

Normal Backwardation formation which he deems the result of a market situation that

is made up of two main sorts of participants. On the one hand, commodity producers

(’hedgers’) enter short positions in futures contracts in order to hedge against possible

future price decreases. On the other hand, their counterparties (’speculators’), who

assume the long positions, are paid a risk premium compensating them for bearing the

future price uncertainty. In Keynes’ Normal Backwardation theory hedgers always act

as insurance buyers and thus exert downside pressure on forward prices. This strict

assumption is considered one of the main limitations of the approach. Working (1942)

for instance mentions that market participants are often prepared to pay a premium for

carrying the price uncertainties in futures contracts on speculation purposes.

As an alternative to Keynes’ approach, a concept known as the Theory of Storage

was developed by Kaldor (1939) and advanced by Working (1942 & 1949), Brennan

(1958), Telser (1958), Weymar (1966), and Williams (1986). It concentrates less on

the hedging and speculation intentions of market participants but links the intertem-

poral pricing relationship between spot and forward markets to the cost of storing a

commodity and the stream of benefits resulting from holding it. The latter is known
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as the convenience yield. The Theory of Storage can be summarized by the following

equation:

F(t,T ) = S (t)e(r−δ+s)(T−t) (8.3)

where r denotes the continuously compounded risk-free rate, δ denotes the cost of

storage, and s denotes the convenience yield earned by the holder of the commodity.3

The concept of the absence of arbitrage in a perfect market implies that any de-

viation of (8.3) from its equilibrium can be exploited by market participants pushing

the relationship between spot and forward prices back to comply with the stated equa-

tion. One of the main prerequisites for the arbitrage condition to hold is the storability

of the underlying commodity. Whereas for most commodities such as precious met-

als, base metals, or oil, storability seems a reasonable assumption, it fails for others.

Electricity is a case in point for which the storability requirement is hardly fulfilled

and the commodity has to be consumed immediately once purchased. We use the

term hardly intentionally as one could argue that the presence of hydroelectric power

plants (HPPs) offers potential storage capacities in the way that during times of (too)

low spot prices, electricity could be bought and used to pump water up into storage

lakes and then retransformed into electricity at a later stage when spot prices are at

higher levels.4 Switzerland is a prominent example where such a behavior of market

participants can be observed, particularly in summertime when mountain lakes are not

frozen. However, as the focus of this thesis is the German electricity market where

storage opportunities as described do not exist to a relevant extent, we will assume

non-storability of electricity. Non-storability makes the application of the storage or

convenience yield related approach to price derivatives in general and forward con-

tracts specifically impossible.5 Instead, a focus on hedging needs of producers and

consumers, and thus risk premia, seems more reasonable when analyzing differences

between quoted futures and spot electricity prices.

8.2.2 Risk Premia

As reasoned in the preceding paragraph, due to the characteristics of the underlying

commodity, risk premia seem an appropriate instrument to analyze and discuss the

3Some researchers argue that the convenience yield in commodity pricing is comparable to the dividend
yield used in standard (equity) option pricing theory (see e.g. Burger et al. (2007)).

4Benth et al. (2008) refer to this as indirect storability.
5See Eydeland & Geman (1999).
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dynamics of electricity forward prices. Following the liberalization of electricity mar-

kets, research on the existence and dynamics of risk premia in exchange traded futures

contracts has increasingly been performed over the last decade. There are basically

two types of risk premia discussed.
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The ex ante risk premium is evaluated at time t and defined as the difference between

the current forward market price and the expected future spot price:

π(t,T ) = F(t,T ) − Et[S (T )] (8.4)

The ex post risk premium is only computed at time T once the realized spot price is

known and is defined as follows:

π(T ) = F(t,T ) − S (T ) (8.5)

Obviously, the identification of the ex ante risk premium is much more critical. To

define Et[S (T )] in (8.4) an appropriate estimation model needs to be in place which

requires numerous assumptions regarding the underlying spot price dynamics. This is

probably the reason why most researchers base their analyses on the ex post premium.

Both, the ex ante risk premium as well as the ex post risk premium can be expressed

either in absolute terms or in relative terms as a percentage of the forward price.

8.2.3 Literature Review

Bessembinder & Lemmon (2002) were among the first to deal with risk premia in

electricity markets. Based on hedging arguments they formulated a moment-based

equilibrium model finding that risk premia are negatively related to the variance and

positively related to the skewness of the expected spot price:

π(t,T ) = α + βVar
(

Et[S (T )]
)

+ γS kew
(

Et[S (T )]
)

(8.6)

They allow for negative as well as positive risk premia which is in contrast to Keynes

(1930) who exclusively assumes the existence of negative and thus one-sided risk

premia.

Shortly after, Longstaff &Wang (2004) investigated hourly spot and futures prices

from a two year dataset in the Western US (PJM market) finding strong support for

the Bessembinder-Lemmon (B/L) model. They also identify significant risk premia in

forward prices which are positive on average and exhibit systematic behavior patterns

driven by economic factors like spot prices, volatility, or intraday changes in demand.

Douglas & Popova (2008) derive an empirical model for the PJM market confirming

the results of Longstaff &Wang (2004). In addition they analyze how risk premia are

affected by natural gas storage finding a measurable negative effect of gas inventories

on premia in times of high demand for electricity and low expected future demand for

gas.
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With liberalization developments in Europe, which were to follow the efforts in the

US, risk premia in the newly formed electricity markets started to arouse researchers’

interest. The Scandinavian Nordpool electricity market, which together with the UK

market initiated the liberalization process in Europe, was analyzed by Botterud et al.

(2002) who find positive risk premia for futures contracts with a maturity of up to one

year. With a longer dataset of 11 years at hand, they confirm their findings and in

addition identify a convenience yield which is negative on average.6 By considering

the convenience yield they refer to the indirect storability of electricity which seems

a reasonable assumption for the Nordpool market due to the extensive existence of

hydro reservoirs and related pump facilities. Lucia & Torro (2008) investigate the

four nearest week futures at the Nordpool from 1998 to 2007 confirming the existence

of positive risk premia. On top of that, their results are consistent with the B/L model.

Redl et al. (2009) compare the relationship between spot and forward prices in the

Nordic and the German markets between 2003 and 2008 mentioning similarities in

the futures price formation. Especially, they provide evidence that market participants’

behavior is heavily influenced by current spot prices rather than fundamental models

when trading in the forward market. Overall, their findings agree with earlier analyses

demonstrating positive risk premia (especially for short-term contracts).

Given the later start of exchange-based electricity trading, most literature on the

German market has come forward over the last couple of years. Bierbrauer et al.

(2007) introduce and estimate different spot price models for data between 2000 and

2003. Applying the model results to compute risk premia, their results underpin earlier

findings from other electricity markets that risk premia for short-term futures contracts

are significantly positive. Pietz (2009) performs a comprehensive analysis on a longer

dataset, reaching from 2002 to 2008, looking at monthly, quarterly, and yearly con-

tracts. His results indicate that electricity consumers mainly use short-term futures to

hedge their risks whereas producers mainly trade in long-term contracts. Besides, he

discerns a term structure as well as seasonal patterns for risk premia in German elec-

tricity futures. For contracts with delivery during winter months, risk premia prove

to be positive whereas for contracts with delivery during summertime, there is ev-

idence for an opposite sign. These results are in accordance with earlier analyses

by Benth et al. (2008) who investigate data from 2002 to 2006. Relating the market

power of producers to risk premia they find high positive risk premia for short ma-

turities and significant discounts for longer maturities. Additional results confirming

the existence of significant risk premia in German electricity futures contracts were

6See Botterud et al. (2010).
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published by Diko et al. (2006), Daskalakis & Markellos (2009), and Spitzen (2010).

While the so far mentioned literature mainly focuses on monthly futures and, to

some extent, on quarterly and yearly contracts, a smaller group of researchers has in-

vestigated risk premia on contracts which are auctioned only a very short time before

the German day-ahead spot contracts. For the German market Kolos & Ronn (2008),

Ronn & Wimschulte (2009), and Viehmann (2011) use prices of day-ahead EXAA

spot contracts traded in Vienna as the ’nearest’ futures contracts for EEX day-ahead

contracts. This seems an acceptable approach for mainly two reasons. First, EXAA

contracts facilitate delivery in exactly the same market area (Germany, Austria) as

EEX contracts. Second, the auction of EXAA day-ahead contracts takes place about

two hours before EEX day-ahead contracts are auctioned. Hence, at the time when

market participants submit their bids for the EEX auction, they already possess full

information on the results of the EXAA auction. Having said this, EXAA contracts

are the last possibility for market participants at the EEX to hedge their exposures.

Viehmann (2011) reports that the B/L equilibrium model is, to a large extent, valid

for EXAA risk premia confirming the hypothesis of energy traders behaving like risk

averse agents. He also finds seasonal patterns in risk premia for different hours of the

day as well as for summer and winter months. The observed period reaches from 2005

to 2008. Kolos & Ronn (2008) and Ronn & Wimschulte (2009) consider datasets be-

tween 2004 and 2007.7 Unlike the research discussed so far, they do not analyze risk

premia the conventional way. Instead, they estimate the market price of risk by ap-

plying both, parametric and non-parametric approaches. When looking at EXAA and

EEX data they arrive at the conclusion that market participants are willing to pay a

positive risk premium for contracts which trade earlier in the day, identifying ’intra-

day’ forward prices (EXAA contracts) as upward-biased predictors of expected spot

prices (EEX contracts).

The existing literature is in wide agreement on the statistically significant existence

of risk premia in electricity markets. However, especially with regards to futures

contracts with longer maturities, findings about the sign of the premia differ.

7Whereas Kolos & Ronn (2008) consider US and foreign electricity and other energy markets,
Ronn & Wimschulte (2009) solely investigate the German/Austrian electricity market.
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8.3 EXAA Risk Premia

8.3.1 Methodology

In our analyses, we will focus on absolute risk premia. We have verified that, de-

spite varying price levels over the analyzed periods, investigating relative instead of

absolute risk premia would neither change our findings and interpretations nor the

statistical significance of them.

The absolute ex post risk premium on EXAA contracts for hour t is defined as

RPt =
1

N

N
∑

n=1

(

DAEXAA,n,t − DAEEX,n,t

)

(8.7)

where DA denotes day-ahead spot prices and n denotes the observation out of the set

of relevant delivery dates {n = 1, ...,N}. To investigate the existence of significant

EXAA risk premia in 2009, 2010, and 2011, we apply a straight-forward t-test with

test statistic

t =
x̄ − µ
s/
√
n

(8.8)

where x̄ is the arithmetic mean of all n risk premia observed in the relevant period and

s denotes their standard deviation. To investigate whether risk premia are different

from zero, we set µ = 0. We perform the test as both, a one-sided and a two-sided

test. The two-sided test shall provide evidence whether risk premia are significantly

different from zero whereas the one-sided test shall give further insight into whether -

in case of significance - they are positive or negative.

In order to check whether EXAA risk premia grouped according to the expected

level of wind infeed originate from different statistical distributions, we apply a distance-

based Kolmogorov-Smirnov test with test statistic

max
[|F1(x) − F2(x)|

]

(8.9)

to all 24 hours.8 F1 and F2 denote the empirical distribution functions of two groups

of risk premia, composed according to the expected level of wind infeed. Critical

values of the test statistic for n > 40 are approximately formula-based according to√
ln(2/α)/

√
2n where α denotes the level of significance.9

8For a detailed introduction see Massey (1951), Miller (1956), Stephens (1970), or Marsaglia et al.
(2003).

9See Massey (1951).
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8.3.2 Development of EXAA Risk Premia

We investigate only working day data and exclude all weekends, holidays, and bridge

days. Because we do not want to have our results distorted by the influence of outliers

which may occur due to technical breakdowns or other non-repetitive situations, we

drop all risk premia three standard deviations below and above the mean risk premium

in all subsequent analyses.

Figure 8.1 displays absolute risk premia on EXAA day-ahead contracts for years

2009 to 2011. Additionally, t-test results for all hours in 2009, 2010, and 2011 (the

years before and after the introduction of the equalization mechanism ordinance) are

shown in tables D.1, D.2, and D.3, respectively, in the appendix.
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Figure 8.1: Absolute ex post risk premia on EXAA contracts for years 2009,

2010, and 2011. Hourly risk premia are computed as arithmetic averages of

the risk premia of all relevant delivery days in the respective year, excluding

weekends, holidays, and bridge days. Risk premia 3 standard deviations below

and above the mean risk premium are excluded.

We first look at risk premia for off-peak hours 1 to 8 and 21 to 24. During this

period we observe strongly negative premia for 2009 which have reduced in 2010

and turned positive in 2011. This observation is confirmed by the t-test results. For
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2009 the H0 of a risk premium equal to zero as well as the H0 of a positive premium

can both be rejected with high significance levels of 99% for hours 1 to 8, hence

significant negative risk premia for this period are confirmed. When looking at the

results for 2010, we observe that the H0 of a zero risk premium can no longer be

rejected for these hours. Finally, for 2011 we can reject the null hypothesis of no

risk premium as well as the null hypothesis of a negative risk premium for hours 1,

4, 5, and 7 at the 95% significance level. To summarize, we have overall evidence

that risk premia for early morning hours until hour 8 have increased. The observed

development is similar for off-peak hours in the evening, though not as pronounced as

for early morning hours.

Looking at peak hours 9 to 20, figure 8.1 reveals positive premia for all hours ex-

cept hour 12 in 2009 with highest values at hours 16 to 20. During 2010 and 2011

changes turn out to be mixed. For hours 9 to 13 and 17 to 18, i.e. the hours when

demand is highest, we also observe an increase in risk premia in 2010 followed by

some reduction in 2011, however, not back to the levels of 2009. The inference from

graphical illustration is confirmed by the t-tests. Whereas for noon hours in 2009, risk

premia were not significantly different from zero, they were in 2011 where we can

even reject the H0 of negative risk premia at the 95% significance level. Also, after-

noon and evening hours until hour 19 prove to have significant positive risk premia in

2011. Only for hour 20 we cannot reject the null hypothesis of a zero risk premium

in 2011. Overall, we can report that risk premia have increased for peak hours 9 to 12

and 17 and 18, and somewhat reduced for other peak hours.

The overall increase in risk premia on EXAA day-ahead contracts implies that, with

the introduction of the equalization mechanism ordinance, the willingness of market

participants to pay more (in relative terms) for contracts traded earlier in the day has

increased. It is conceivable that this behavior is the result of a market situation for

EEX contracts that has become more uncertain with the obligation of the transmission

system operators to market all electricity from renewable sources in the day-ahead

auction. The observed changes are most pronounced for early morning hours (when

intermittent wind infeed increases uncertainty) and peak demand hours (when a tense

market situation caused by particular high demand increases uncertainty).

Our findings of increased risk premia for early morning hours are not only valid for

years 2010 and 2011 compared to 2009. Viehmann (2011) investigated EXAA premia

between October 2005 and September 2008. When comparing risk premia for 2010

and especially 2011 with his results, our conclusion of an increase for these hours is

confirmed.

What seems unclear is why market participants are willing to accept a higher price

(in absolute or relative terms) for EXAA contracts during early morning hours when
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during this period, downward price spikes at the EEX are observed with a higher prob-

ability than upward spikes. Germany and Austria form a single market area meaning

that electricity to be consumed at any point of the grids in the two countries can orig-

inate from either EXAA or EEX contracts. Accordingly, one would expect buyers

of electricity to depart from the EXAA auction and take on the chance of getting a

lower price at the EEX. As a result, demand for EXAA contracts would decrease and

prices would fall on a relative basis, letting risk premia move downwards rather than

increase. We have to assume that traders who are buying electricity at the EEX either

face some restrictions to freely move between the two exchanges or that risk premia

are not high enough to justify a switch and thus, EXAA prices deviate from EEX prices

in early morning hours. In other words, what we observe may primarily be pressure

on EEX prices through higher supply initiated by renewable energy laws and rigidity

in traders’ action rather than a risk-based behavior of market agents. For premia on

EXAA contracts during peak hours the rational seems more straightforward. During

these hours, downward spikes in spot prices are less likely than upward spikes due to

the tense market situation caused by very high demand levels. Electricity stemming

from renewable sources, which around noon is not only wind but also solar energy to

a large extent, influences the risk that we do or do not observe a price spike. In view of

this, the attempt of electricity buyers to get a firm price at the earlier auction in Vienna

seems reasonable.

8.3.3 Conditional Distributions of EXAA Risk Premia

In the previous section we have noted that price differences between EEX and EXAA

traded contracts have changed over the last years. In order to get a deeper under-

standing whether the observed price differences are driven by renewable energies and

related regulatory directives, we analyze the distribution of risk premia conditional on

the expected wind infeed relevant for the German market area. We perform our anal-

ysis on the observation period starting on January 1, 2010 and ending on December

31, 2011. We only include working days and remove risk premia outside the 3-sigma

band from our dataset.

Our results seem rather unambiguous for early morning hours. For illustration we

show statistics of absolute risk premia for hour 4 in table 8.1 and the corresponding

frequency distributions in figure 8.2. Being representative for all morning off-peak

hours, the statistics indicate an increase in risk premia when the expected wind infeed

into the German grid is higher. Whereas for hour 4, market participants pay a premium

of 1.40 EUR/MWh when expected wind speed is high, they get EXAA contracts at a

discount of 0.95 EUR/MWh when the wind speed is at lower levels. As for volatility,
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the standard deviation of paid premia increases as expected wind infeed increases

which implies a higher price uncertainty at high wind levels. Although as for skewness

the picture is less clear-cut, there is some evidence that risk premia are negatively

skewed at low wind levels and positively at high wind levels. Looking at the kurtosis,

distributions of risk premia are more leptokurtic at low wind levels and less peaked at

higher wind levels.

To test whether risk premia at different wind levels originate from different proba-

bility distributions, we apply a distance-based two-sample Kolmogorov-Smirnov test.

Results for hour 4 are depicted in table 8.2. As can be seen from the table, for bin pairs

1/3, 1/4, and 2/4 we can reject the H0 that risk premia originate from the same sample.

For adjacent bins, the null hypothesis cannot be rejected at a significance level of 95%.

Overall, the results are another evidence that differences between EEX and EXAA

prices during early morning hours are heavily driven by renewables and that variation

in EEX prices due to the new ordinance does not fully transmit to EXAA prices.

For peak hours the findings are different. As an illustrative example, table 8.3

shows risk premia statistics for different wind levels and table 8.4 depicts results of the

Kolmogorov-Smirnov test for hour 12. Apparently, we cannot infer that differences

between EEX and EXAA prices during peak hours are mainly driven by expected

wind infeed. Hence, we have to conclude that for these hours, there must be other

drivers which reason risk premia on EXAA contracts. It is conceivable that electricity

from photovoltaics, which also has to be sold preferentially on the spot market, plays a

major role during these hours. However, to test this, consistent data is not yet available

for a sufficiently long time period. Hour 12 can be considered a representative example

for most peak hours.

1st Bin 2nd Bin 3rd Bin 4th Bin

Mean Wind Forecast 1172 2540 4612 9525

Mean -0.95 -0.13 1.21 1.40

Standard Deviation 3.87 3.99 5.30 5.55

Skewness -0.23 0.09 0.57 0.24

Kurtosis 4.41 3.95 3.87 2.76

Table 8.1: Descriptive statistics of ex post absolute risk premia conditional on

the expected wind infeed for hour 4. The observation period starts on January

1, 2010 and ends on December 31, 2011.
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Figure 8.2: Distributions of ex post absolute risk premia conditional on the

expected wind infeed for hour 4. The observation period starts on January 1,

2010 and ends on December 31, 2011.

1st Bin 2nd Bin H0 test-Stat p-Value

1 2 - 0.12 0.372

1 3 reject 0.20 0.015

1 4 reject 0.24 0.002

2 3 - 0.15 0.125

3 4 - 0.09 0.679

2 4 reject 0.21 0.010

Table 8.2: Results of two-sample Kolmogorov-Smirnov test on pairs of empir-

ical distribution functions of absolute ex post risk premia for hour 4. The null

hypothesis claims that the two compared data samples originate from the same

continuous distribution and is tested applying a 95% significance level. The

observation period starts on January 1, 2010 and ends on December 31, 2011.
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1st Bin 2nd Bin 3rd Bin 4th Bin

Mean Wind Forecast 957 2395 4760 11087

Mean 0.41 1.12 0.95 0.84

Standard Deviation 3.96 3.98 3.58 4.15

Skewness -0.01 0.02 0.38 0.10

Kurtosis 3.46 3.22 2.75 3.55

Table 8.3: Descriptive statistics of ex post absolute risk premia conditional on

the expected wind infeed for hour 12. The observation period starts on January

1, 2010 and ends on December 31, 2011.

1st Bin 2nd Bin H0 test-Stat p-Value

1 2 - 0.12 0.291

1 3 - 0.09 0.679

1 4 - 0.08 0.786

2 3 - 0.07 0.879

3 4 - 0.06 0.985

2 4 - 0.08 0.786

Table 8.4: Results of two-sample Kolmogorov-Smirnov test on pairs of empiri-

cal distribution functions of absolute ex post risk premia for hour 12. The null

hypothesis claims that the two compared data samples originate from the same

continuous distribution and is tested applying a 95% significance level. The

observation period starts on January 1, 2010 and ends on December 31, 2011.
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8.4 EXAA Market Price of Risk

In order to further investigate the differences between EEX and EXAA day-ahead

prices before and after the introduction of the equalization mechanism ordinance, we

will estimate the market price of risk. The reason why we introduce this measure in

addition to the risk premia analysis is its consideration of volatility. It thus allows us

to perform a risk-adjusted analysis of changes in price differences between the two

exchanges.

8.4.1 Methodology

Kolos & Ronn (2008) demonstrate a way of estimating the market price of risk for

energy commodities which is summarized subsequently. In general, the market price

of risk is defined as the return per unit standard deviation, λ ≡ µ

σ
.10 Assuming that the

market price of risk is constant, the evolution of the forward price F of a commodity

can be expressed by the following stochastic differential equation:

dF = µtFdt + σtFdz

= λσtFdt + σtFdz
(8.10)

In a discretized form, the SDE can be restated as follows:

∆lnFt ≡ ln
Ft+∆t

Ft

=
(

λ − σt

2

)

σt∆t + σt

√
∆tǫt

(8.11)

with σt being dependent on the time to maturity. Ft denotes the price of the EXAA

day-ahead contract and Ft+∆t denotes the price of the EEX day-ahead contract (which

is actually considered the spot contract).

The authors argue that in the case of futures contracts with a very short time to

maturity, issues related to the term structure of volatility can be neglected which fa-

cilitates the estimation of the market price of risk significantly. Essentially, they show

that the maximum likelihood estimator of the market price of risk can easily be derived

10In the case of equities the market price of risk is usually denoted as
µ−r
σ

accounting for the riskless rate
of return. Kolos and Ronn argue that unlike equity investments, commodity forward contracts are costless
to enter which let them have a zero drift under the risk-neutral measure.
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by reformulating (8.11) as the following process:

ln
Ft+∆t

Ft

−
(

λσ − σ
2

2

)

∆t = σ
√
∆tǫt (8.12)

with the following first and second moment:

T
∑

t=1

ln
Ft+∆t

Ft

− n
(

λσ − σ
2

2

)

∆t = σ
√
∆t

T
∑

t=1

ǫt (8.13)

T
∑

t=1

[

ln
Ft+∆t

Ft

−
(

λσ − σ
2

2

)

∆t

]2

= σ2∆t

T
∑

t=1

ǫ2t (8.14)

After rearranging they report the following estimator for the market price of risk:

λ̂ =
ln Ft+∆t

Ft

σ̂∆t
+
σ̂

2
(8.15)

with

σ̂ =
1
√
∆t

√

n

n − 1Var
(

ln
Ft+∆t

Ft

)

(8.16)

Interpreting the EXAA day-ahead prices as the nearest futures contracts for EEX day-

ahead prices qualifies for the use of such an estimator for the market price of risk.

This approach was applied to EXAA/EEX contracts by Kolos & Ronn (2008) and

Ronn & Wimschulte (2009). However, their datasets consist of older observations

dating back to the period between 2002 and 2007.

8.4.2 Empirical Results

Table 8.5 and figure 8.3 depict the market price of risk (MPR) for all hours in 2009,

2010, and 2011. Looking at morning hours we see a significant reduction in the market

price of risk after 2009. Whereas in 2009, the MPR was positive for hours 1 to 8, it

is zero to negative in 2011. This observation corresponds with our conclusion from

the analysis of risk premia. The same applies to noon peak hours, evening peak hours,

and late evening hours.

As for afternoon hours 14 to 16, the analysis of the MPR leads to slightly different

results. The analysis of risk premia showed positive premia which decreased from

2009 to 2011. Accordingly, we would expect negative market prices of risk which

decreased in absolute values for the same period. However, as can be seen from figure
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8.3, the MPR for these hours increased in absolute values within the negative territory.

This can be attributed to the decrease of volatility from 2009 to 2011 (σ̂16,2009 = 1.72

vs. σ̂16,2011 = 1.00) which lead to an absolute increase in the negative MPR.

Overall, the analysis of the MPR gives evidence that on a risk-adjusted basis, the

price market participants pay for EXAA contracts compared to EEX contracts in-

creased from 2009 to 2011.

As we investigated the link between expected wind infeed and risk premia, we also

want to analyze the relationship between wind and the market price of risk. Our aim

is to find out whether patterns change if we account for volatility in the differences

between EXAA and EEX prices. For our analysis, we sort EXAA and EEX data for

the years 2010 and 2011 according to the expected wind infeed for the same hour.

We then split them into bins 1 to 4 where bin 1 contains hours with the lowest wind

levels and bin 4 contains hours with the highest wind levels. For every single bin we

compute the market prices of risk.

Table 8.6 depicts all market prices of risk and figure 8.4 illustrates the data graphi-

cally. For early morning hours we discern a pattern which confirms our findings from

the analysis of risk premia. As the expected wind infeed in the German market area in-

creases, the market price of risk gets under pressure and for high wind levels becomes

negative. For peak hours the figure indicates the existence of two regimes. For wind

levels in the lowest bin, we observe a market price of risk which is around zero. On the

contrary, clearly negative market prices of risk for bins 2 to 4 are hardly distinguish-

able. This gives evidence that if wind is not in the lowest quartile, it does obviously

not directly impact the market price of risk. Rather, other factors might drive the MPR

then.
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Hour 1 2 3 4 5 6 7 8

λ̂2009 4.99 5.39 5.63 3.41 4.61 5.70 4.34 4.97

λ̂2010 0.04 1.15 1.93 1.82 1.47 1.20 0.55 1.09

λ̂2011 -2.18 -0.93 -0.44 -2.12 -0.63 0.36 -1.05 0.21

σ̂2009 2.54 4.99 7.43 7.88 8.18 4.41 2.40 2.39

σ̂2010 2.33 2.94 3.29 3.72 3.63 2.68 1.41 1.40

σ̂2011 1.55 1.82 2.08 2.52 2.20 1.50 1.37 1.04

Hour 9 10 11 12 13 14 15 16

λ̂2009 -0.26 -1.54 -1.02 0.95 -1.01 -1.15 -1.62 -2.56

λ̂2010 -1.90 -3.17 -4.17 -2.65 -3.94 -3.36 -3.02 -3.83

λ̂2011 -1.76 -3.24 -2.83 -2.24 -2.65 -2.10 -2.10 -3.34

σ̂2009 1.77 1.53 1.53 1.71 1.56 1.56 1.69 1.72

σ̂2010 1.27 1.16 1.06 1.21 1.08 1.10 1.02 0.94

σ̂2011 0.92 0.90 0.84 0.89 0.94 0.89 0.99 1.00

Hour 17 18 19 20 21 22 23 24

λ̂2009 -2.31 -1.59 -1.52 -2.02 2.04 1.87 1.12 1.93

λ̂2010 -6.17 -2.85 -0.92 -2.95 -0.40 -1.01 0.30 0.33

λ̂2011 -5.35 -2.76 -1.10 -1.00 -0.35 -1.68 0.26 -0.55

σ̂2009 1.55 1.56 1.63 1.63 1.76 1.47 1.55 1.73

σ̂2010 0.92 1.14 1.13 1.16 0.99 0.94 0.97 1.17

σ̂2011 0.90 0.91 0.95 0.89 1.08 1.14 1.12 1.03

Table 8.5: Annualized market price of risk and volatility of EXAA day-ahead

contracts for years 2009, 2010, and 2011 after correcting for weekends, holi-

days, bridge days, and outliers.
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Figure 8.3: Annualized market price of risk of EXAA day-ahead contracts for

years 2009, 2010, and 2011 after correcting for weekends, holidays, bridge

days, and outliers.
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Figure 8.4: Annualized market price of risk of EXAA day-ahead contracts con-

ditional on the level of expected wind infeed. Bin 1 contains observations with

lowest expected wind infeed and bin 4 contains observations with highest ex-

pected wind infeed. The observation period starts on January 1, 2010 and ends

on December 31, 2011. Weekends, holidays, bridge days, and outliers are ex-

cluded.
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Hour 1 2 3 4 5 6 7 8

λ̂Bin1 1.23 2.70 4.04 3.95 3.69 2.42 1.44 1.74

λ̂Bin2 0.24 -0.24 0.54 1.62 1.33 1.44 0.26 2.78

λ̂Bin3 -1.27 -0.71 -0.22 -1.12 -0.57 0.37 -0.53 -0.16

λ̂Bin4 -1.42 -1.51 -0.99 -1.60 -1.66 -0.37 -0.51 -1.29

σ̂Bin1 0.95 1.13 1.35 1.31 1.28 1.02 0.88 0.76

σ̂Bin2 0.90 1.00 1.19 1.45 1.38 0.77 0.97 0.76

σ̂Bin3 1.17 1.53 1.84 2.87 2.72 1.34 1.12 0.98

σ̂Bin4 3.13 2.68 3.51 2.81 2.80 2.55 1.06 0.96

Hour 9 10 11 12 13 14 15 16

λ̂Bin1 0.44 -0.10 -0.91 -0.04 -0.90 0.09 0.83 0.55

λ̂Bin2 -0.26 -1.40 -3.02 -2.91 -2.65 -2.91 -1.79 -2.77

λ̂Bin3 -3.19 -2.97 -2.31 -2.80 -1.95 -1.61 -2.93 -3.17

λ̂Bin4 -2.35 -3.11 -3.78 -2.16 -3.10 -3.27 -3.14 -4.59

σ̂Bin1 0.78 0.68 0.64 0.72 0.61 0.62 0.64 0.63

σ̂Bin2 0.78 0.67 0.64 0.67 0.72 0.62 0.61 0.68

σ̂Bin3 0.76 0.79 0.67 0.68 0.68 0.69 0.70 0.69

σ̂Bin4 0.82 0.78 0.81 0.80 0.78 0.82 0.82 0.75

Hour 17 18 19 20 21 22 23 24

λ̂Bin1 -0.77 1.38 1.87 0.27 2.52 2.17 2.55 2.29

λ̂Bin2 -4.72 -2.79 -0.59 -2.42 -0.70 -2.79 -1.89 0.08

λ̂Bin3 -4.77 -3.52 -2.43 -2.31 -1.96 -2.36 -0.85 -1.65

λ̂Bin4 -6.16 -3.19 -1.30 -1.48 -0.66 -0.42 1.40 -0.57

σ̂Bin1 0.64 0.68 0.59 0.62 0.58 0.57 0.57 0.63

σ̂Bin2 0.65 0.72 0.73 0.66 0.57 0.66 0.67 0.72

σ̂Bin3 0.66 0.74 0.81 0.74 0.76 0.80 0.75 0.79

σ̂Bin4 0.62 0.75 0.83 0.97 0.95 0.87 0.96 1.18

Table 8.6: Annualized market price of risk and volatility of EXAA day-ahead

contracts conditional on the level of expected wind infeed. Bin 1 contains ob-

servations with lowest expected wind infeed and bin 4 contains observations

with highest expected wind infeed. The observation period starts on January 1,

2010 and ends on December 31, 2011. Weekends, holidays, bridge days, and

outliers are excluded.
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8.5 Analysis of EEX Month-Futures Risk Premia

In a next step we investigate whether the introduction of the equalization mechanism

ordinance has caused changes on the EEX forward market. It is conceivable that

after the elimination of selling renewables in Germany via monthly bands, supply has

disappeared from the front-month forward market. Therefore, we analzye risk premia

on EEX front-month futures contracts.

In figures 8.5 and 8.6 we plot the evolution of absolute ex post risk premia on the

base and peak forward contracts with delivery during the next month. Risk premia are

computed according to equation 8.5 which we repeat for convenience:

π(T ) = F(t,T ) − S (T ) (8.17)

where F(t,T ) is the price of the futures contract with delivery at (or during) T (front

month) on trading day t and S (T ) is calculated as the average spot price of day-ahead

peak contracts for all relevant dates in the delivery month. A vertical line is plotted

on December 1, 2009 when the front-month contract with delivery in January 2010

started trading. The underlying time window of this contract started as the new ordi-

nance became effective.

We can see that after the beginning of 2010, the volatility in risk premia seems to

reduce somewhat, particularly compared to the year 2008. This could theoretically

be reasoned by highly volatile electricity from renewable sources which as of 2010

was no longer offered through monthly bands. However, looking at risk premia on

contracts with delivery starting 2, 3, and 5 months ahead (results are not reported),

we can observe the same pattern. It is thus unlikely that the reduced volatility was

caused by the introduction of the AusglMechV. The same applies to the level of risk

premia. We looked at moving averages of risk premia which imply an increase in

premia starting in 2010 (results are not reported). However, also this pattern is similar

for contracts with a longer time-to-maturity.

The reason why we investigate front-month contracts is the implicit assumption that

before 2010, ESCs hedged their obligations resulting from the creation of monthly

bands via the corresponding forward market. With these monthly bands ceasing to

exist, a reduction in supply on the front-month market should have lead to higher

forward prices (on a relative basis). However, as we see from figures 8.5 and 8.6,

there is not even enough evidence for statistical testing procedures to make sense.

To investigate further we look at changes in risk premia for time-to-maturities of 1

to 5 months in different years. This means that we compute average risk premia for

month futures based on trading prices in the fifth, the fourth, the third, the second, and
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the first month before delivery starts.11 Results for base delivery contracts are depicted

in figure 8.7 and results for peak delivery contracts are depicted in figure 8.8. While

we see much steeper curves for 2009, the curves for 2011 are comparable to the ones

for 2008. Consequently, this analysis does not provide any reasonable indication that

there has been a significant change in pattern as of January 2010 either.

To sum up, based on the data investigated we are not able to find evidence that the

introduction of the equalization mechanism ordinance had an observable impact on

the risk premia on front-month EEX forward contracts.
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Figure 8.5: Absolute ex post risk premia on EEX front-month futures with base

delivery. The vertical dashed line indicates the date (December 1, 2009) when

trading of the contract with delivery in January 2010 started.

11Example: The risk premium for a two months time-to-maturity is computed using average effective
spot prices for all individual months January to December of the respective year as well as average trad-
ing prices of the respective futures contracts in the period starting two months before the delivery starts
and ending one month before the delivery starts (by that time the two-month contract becomes the front-
month contract). This results in 12 risk premia which are again averaged to receive one final figure for the
respective year.
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Figure 8.6: Absolute ex post risk premia on EEX front-month futures with peak

delivery. The vertical dashed line indicates the date (December 1, 2009) when

trading of the contract with delivery in January 2010 started.
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Figure 8.7: Absolute and relative ex post risk premia on EEX futures with base

delivery for time-to-maturities of 1 to 5 months for years 2008 to 2011. Only

trading dates within five months before the first delivery date have been consid-

ered.
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Figure 8.8: Absolute and relative ex post risk premia on EEX futures with peak

delivery for time-to-maturities of 1 to 5 months for years 2008 to 2011. Only

trading dates within five months before the first delivery date have been consid-

ered.
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8.6 Intermediate Summary

Our analyses on the differences between EXAA and EEX prices, defined as risk pre-

mia, reveal that EXAA prices have increased relative to EEX prices from 2009 to

2011. Investigating conditional risk premia distributions we obtain strong indications

that the increased risk premia on EXAA prices are significantly driven by expected

wind infeed in Germany during off-peak hours. At the same time we find no evi-

dence that the increase in risk premia during peak hours is driven by expected wind

infeed. However, we assume that during these hours, other renewables, especially

photovoltaics, may be important driving factors. This would have to be investigated

in further research as respective data become available for a sufficiently long time

horizon.

When accounting for volatility by analyzing the market price of risk on EXAA

contracts, we find our conclusion of increased EXAA prices relative to EEX prices

confirmed. The analysis of market prices of risk depending on the expected wind

infeed shows that during peak hours, unless expected wind infeed is at very low levels,

it does not directly impact the magnitude of the MPR.

When analyzing front-month EEX contracts for peak and base delivery we were not

able to discern any noteworthy change in pattern after the introduction of the equal-

ization mechanism ordinance. As a potential explanation we consider the possibility

that before 2010, exposures from monthly bands were not passed on through the one-

month forward markets mainly, but other means were used, in particular OTC markets

which constitutes a significant part of all electricity traded in Germany.
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Conclusion

Political efforts to promote electricity from renewable sources have changed the pro-

cess of electricity price formation. In Germany, especially electricity from wind power

plants is taking a more and more important role, not least because such electricity sup-

ply is highly volatile and practically unpredictable except in the very short run. At the

same time, improving transparency in electricity markets makes fundamental mod-

elling increasingly attractive to researchers. The application of fundamental forecast

methods provides an alternative to established purely stochastic models which still

constitute the most common approach in electricity spot markets. Considering these

developments, it is the objective of this thesis to contribute to the existing research of

electricity spot price modelling and, particularly, to investigate the explanatory power

of expected wind (electricity) infeed in fundamental forecast models.

9.1 Summary of Main Results

We estimate three main classes of fundamental models on prices of day-ahead elec-

tricity contracts for the German market. We calibrate hourly models on an in-sample

dataset consisting of data from January 1, 2010 to December 31, 2011. To test their

forecasting power we apply the models to an out-of-sample dataset starting on January

1, 2012 and ending on April 30, 2012. Although the results of the three model classes

are not directly comparable due to different assumptions underlying the methodolo-

gies, we can report distinct differences in their price forecasting abilities.

To start we estimate hourly Student-t GARCH(1,1) regression models which com-

bine a multiple linear regression with a conditional variance specification. The in-

sample fit of the models including expected wind infeed proves to be rather good with
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an average R2 of 0.69 meaning that the models can explain nearly 70% of the spot

price variability ex post. When comparing results with and without accounting for

expected wind infeed as an exogenous variable, we can note an improvement in R2 of

0.09 on average. Investigating conditional volatility confirms that including expected

wind infeed substantially reduces uncertainty in the models. Our analysis on the intra-

day behavior of regression coefficients reveals that sensitivities of spot prices towards

different fundamental variables possess distinct seasonal patterns. The patterns are

mainly driven by the merit order curve and by the seasonal nature of electricity de-

mand. Looking at out-of-sample results, GARCH regression models show a rather

poor performance with an average R2 of less than 0.50.

In order to allow for two regimes depending on the level of expected wind infeed,

we estimate threshold regression models on the spot prices. By statistical testing we

find a significant threshold for most hours. Analyzing the factor loads of different

hours for the two regimes reveals two main facts. First, absolute coefficient values

of expected wind infeed are higher in the regimes below the threshold meaning that

spot prices react much more sensitively to changes in expected wind infeed. This

is particularly the case for peak hours with high demand around noon. We assign

this behavior to a tense situation which is the result of high demand during these

hours. Accordingly, spot prices are particularly sensitive to intermittent supply from

renewables. Second, we observe that coefficients for CO2 prices are much higher in

times of expected wind levels above the threshold than below. We reason this behavior

by the fact that higher wind infeed into the grid shifts the merit order curve to the right.

As a result, the spot price is no longer set by gas fired plants but rather by CO2 intense

hard coal fired plants (for peak hours) or even more CO2 intense lignite fired plants (for

off-peak hours) for which prices of emission allowance certificates are more relevant.

Although in-sample fits of threshold models are satisfying with an improvement in R2

of between 0.02 and 0.11 when allowing for a second regime, out-of-sample fits prove

to be poor. Obviously, modelling approaches which assume static linear dependencies

in electricity spot prices are rather well suited for ex post modelling but not capable

of providing accurate out-of-sample forecasts.

By estimating time-varying parameter regression models via a Kalman filter algo-

rithm we obtain results which are much more satisfying for the majority of all hours.

This methodology, which assumes price sensitivities to evolve dynamically and thus

allows for seasonalities in dependency structures, provides out-of-sample results with

an R2 of 0.61 on average. Especially during early morning hours, when prices are very

sensitive with regards to intermittent supply from wind power plants, we can report

R2 measures of above 0.70. The best fit we find for hour 18 with an R2 of 0.83. On the

contrary, the fit for hours 19 to 21, when the on/off-peak switch takes place, proves to
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be clearly inferior with R2 measures below 0.40. Testing our models with and with-

out including expected wind infeed we note an average improvement in R2 of 0.27.

Looking at the mean absolute error we note an improvement of 1.29 EUR/MWh. We

see this as a clear evidence that accounting for expected wind infeed can substantially

improve forecasting accuracy. Furthermore, time-varying parameter regression mod-

els seem a reasonable method to incorporate information on intermittent supply from

renewable sources when modelling electricity spot prices in the German market. The

analysis of the behavior of the dynamic coefficients of expected wind infeed in the in-

sample estimation reveals seasonal patterns depending on the hour of the day. In other

words, the price formation process reacts differently to changes in electricity supply

from wind power plants depending on the hour of the day and different seasons.

Although time-varying parameter regression models can significantly improve price

forecasts, a considerable part of the price variability remains unexplained. We ascribe

this to two main reasons. First, market power in the German electricity market is still

rather concentrated. This means that market efficiency has not yet reached the level of

more mature markets such as equities. Second, we believe that strategic and specula-

tive behavior of market participants has a substantial impact on market prices. Such

behavior is difficult to capture by quantitative models, especially given the current

level of transparency in the market.

In a forward market analysis we investigate the impact of one of the latest regula-

tory amendments which became effective as of January 1, 2010 and which has changed

the way of how electricity from renewable sources is marketed in Germany. We per-

form our analysis by defining day-ahead contracts traded at the EXAA in Austria as

the nearest forward contracts for EEX day-ahead contracts. Looking at risk premia

on EXAA contracts we find that they have increased, particularly for off-peak hours

when demand is low and the intermittent supply of electricity from wind power plants

causes large price movements. Whereas before January 1, 2010 negative risk premia

can be observed during these hours, they have turned into positive premia by 2011. We

can report an increase in risk premia for peak hours as well. However, during these

times, we do not find evidence that expected wind infeed is the main driver which is

the case for off-peak hours. Our findings are generally confirmed by an analysis of

the development of the market price of risk on the same contracts between 2009 and

2011.

In addition to EXAA contracts we investigate risk premia on short-term EEX fu-

tures contracts. Following the latest amendment, electricity from renewable sources is

no longer sold through monthly bands (economically comparable to monthly forward

contracts). Considering this, the aim is to find out whether this has had any impact

on the development of risk premia on short-term monthly futures contracts. However,
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our analysis does not indicate any structural changes. Our findings let us assume that

before 2010, exposures from monthly bands were to a large extent hedged by other

means than monthly futures contracts.

9.2 Future Research

Modelling day-ahead electricity prices using fundamental variables is still rather un-

developed. One of the main reasons for this might be the fact that a lot of information

has not been published for a long time, making the market quite intransparent.

We expect that day-ahead spot price forecasts from time-varying parameter regres-

sion models can be improved by the inclusion of expected electricity infeed from

photovoltaic power plants. Over the last years electricity supply from this source

has significantly increased. Especially during summertime and over noon electricity

from photovoltaics represents an important part of todays’ energy mix. Similar to

wind, expected infeed from photovoltaics is published by transmission system oper-

ators the day preceding the delivery. However, these publications started much later

than publications of wind-related figures which is why there was no sufficiently long

and consistent dataset available for our analysis. It is conceivable that out-of-sample,

R2 measures for hours 9 to 17 for which, except hour 12, we obtained an R2 of below

0.70 in the TVP regression models, can be significantly improved when accounting

for photovoltaics.

It would also be interesting to investigate to what extent differences between EXAA

and EEX prices during peak hours can be attributed to intermittent infeed from pho-

tovoltaics. As discussed, we were not able to explain observed changes in risk premia

for these hours by electricity from wind power plants.

We consider the derivation of a more accurate demand forecast model for the Ger-

man market as another possible field of future research following this work. As

demonstrated in the overview on existing literature, research in this area is still rather

undeveloped. With a more accurate model at hand, day-ahead spot price forecasts

could certainly be further improved.
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Hour 1 2 3 4 5 6 7 8

Obs. 499 499 499 499 499 499 499 499

Min 25738 21144 20848 21904 23855 25876 29297 31999

Max 48092 45487 43845 43157 43265 45115 50846 56785

Mean 36111 34339 33407 33630 34718 37330 43052 47846

St.Dev. 3864 3767 3714 3597 3491 3221 3288 3650

Skewness 0.27 0.21 0.13 0.03 -0.10 -0.27 -0.73 -0.69

Kurtosis 2.93 3.17 3.05 2.97 2.89 3.17 4.22 4.54

Hour 9 10 11 12 13 14 15 16

Obs. 499 499 499 499 499 499 499 499

Min 33960 32551 31084 31793 31608 31155 30188 29843

Max 57944 58348 58176 58350 58151 58754 58492 58813

Mean 49131 48555 48418 48750 47779 47179 46591 46660

St.Dev. 3584 3695 3927 3997 4258 4395 4445 4439

Skewness -0.57 -0.41 -0.29 -0.22 -0.07 0.01 0.05 0.07

Kurtosis 4.47 4.02 3.49 3.21 2.85 2.73 2.73 2.75

Hour 17 18 19 20 21 22 23 24

Obs. 499 499 499 499 499 499 499 499

Min 29170 29705 29924 30141 29593 28968 26781 23624

Max 60320 62015 61092 59483 57205 55450 54182 50704

Mean 46838 48376 49543 49697 47882 46006 43840 39896

St.Dev. 4641 5017 4820 4257 3533 3034 3338 3469

Skewness 0.24 0.35 0.01 -0.30 -0.76 -0.65 -0.21 0.09

Kurtosis 2.86 2.62 2.74 3.04 4.88 5.58 4.58 3.93

Table A.1: Descriptive statistics of total electricity demand. Total demand

is defined according to equation 4.1 in chapter 4. The observation window

is between January 1, 2010 and December 31, 2011 and excludes weekends,

holidays, and bridge days.
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Lag 1 5 10 15 20

Critical Values

0.99-Significance 6.63 15.09 23.21 30.58 37.57

0.95-Significance 3.84 11.07 18.31 25.00 31.41

Test Statistics

Hour 01 192.74 930.92 1658.68 2273.46 2720.14

Hour 02 193.38 927.86 1635.77 2223.05 2649.22

Hour 03 201.52 975.72 1740.81 2364.54 2829.12

Hour 04 199.71 962.81 1722.46 2327.30 2783.86

Hour 05 207.46 994.25 1786.05 2414.88 2898.12

Hour 06 219.69 986.27 1721.99 2277.58 2713.59

Hour 07 224.37 873.46 1330.29 1627.22 1835.42

Hour 08 259.05 911.58 1402.70 1707.76 1907.37

Hour 09 261.70 862.48 1318.05 1650.96 1859.12

Hour 10 247.36 812.22 1312.07 1738.12 2000.36

Hour 11 227.87 704.03 1128.44 1498.56 1729.06

Hour 12 219.67 692.52 1090.89 1461.91 1704.33

Hour 13 227.71 768.18 1238.64 1658.25 1965.37

Hour 14 245.89 838.98 1360.52 1813.04 2125.00

Hour 15 253.85 884.40 1438.88 1921.41 2273.62

Hour 16 266.89 1003.40 1677.34 2252.23 2686.66

Hour 17 300.67 1238.46 2152.44 2924.92 3517.63

Hour 18 345.20 1576.32 2874.89 3968.47 4815.67

Hour 19 328.52 1534.73 2819.69 3918.05 4782.77

Hour 20 284.45 1294.16 2304.12 3163.85 3833.48

Hour 21 200.86 875.83 1498.73 2027.93 2406.54

Hour 22 175.68 718.78 1212.00 1648.17 1967.16

Hour 23 260.82 1083.71 1872.85 2599.90 3126.78

Hour 24 319.84 1343.78 2338.51 3234.71 3881.42

Table A.2: Results of Ljung-Box Q-test performed on demand Dt in advance

to the demand model estimation. Test statistics with values higher than the

respective critical values reject the null hypothesis of no serial correlation. The

observation window starts on January 1, 2010 and ends on December 31, 2011.

Weekends, holidays, and bridge days are excluded.
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Lag 1 5 10 15 20

Critical Values

0.99-Significance 6.63 15.09 23.21 30.58 37.57

0.95-Significance 3.84 11.07 18.31 25.00 31.41

Test Statistics

Hour 01 214.67 307.60 321.02 318.41 314.99

Hour 02 218.61 304.34 316.19 313.46 309.68

Hour 03 225.31 312.40 321.95 318.64 314.61

Hour 04 220.93 311.78 320.92 318.85 316.22

Hour 05 225.32 311.78 319.24 317.88 316.25

Hour 06 235.44 305.69 310.66 309.54 310.31

Hour 07 245.16 284.47 284.24 281.88 285.61

Hour 08 282.72 305.37 301.83 297.41 296.22

Hour 09 283.08 301.71 299.28 295.20 290.92

Hour 10 263.57 281.74 279.98 277.02 269.96

Hour 11 243.44 259.65 257.14 253.63 244.64

Hour 12 235.18 252.22 249.68 247.31 238.71

Hour 13 244.21 263.97 260.32 257.79 248.97

Hour 14 260.87 279.20 274.81 272.73 263.99

Hour 15 269.76 289.19 284.80 282.16 274.94

Hour 16 283.26 306.55 302.07 299.35 294.36

Hour 17 317.84 341.21 336.46 333.28 329.33

Hour 18 361.46 385.80 380.94 375.90 372.27

Hour 19 350.65 382.51 378.39 373.85 370.17

Hour 20 306.31 349.48 350.12 346.12 342.48

Hour 21 225.01 281.35 282.73 280.37 276.84

Hour 22 198.53 252.02 258.94 255.76 253.07

Hour 23 287.37 318.98 316.62 312.09 307.15

Hour 24 345.51 362.27 359.60 354.25 347.43

Table A.3: Results of Engle’s ARCH test performed on demand Dt in advance

to the demand model estimation. Test statistics with values higher than the

respective critical values reject the null hypothesis of homoscedasticity. The

observation window starts on January 1, 2010 and ends on December 31, 2011.

Weekends, holidays, and bridge days are excluded.
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Lag 1 5 10 15 20

Critical Values

0.99-Significance 6.63 15.09 23.21 30.58 37.57

0.95-Significance 3.84 11.07 18.31 25.00 31.41

Test Statistics

Hour 01 0.44 5.44 6.79 9.32 21.22

Hour 02 0.03 3.78 8.96 10.80 20.69

Hour 03 1.19 3.53 11.99 15.07 21.59

Hour 04 1.09 5.05 14.24 17.77 24.72

Hour 05 1.12 5.43 12.36 16.11 25.45

Hour 06 4.22 15.04 19.36 24.50 36.03

Hour 07 6.44 21.41 28.64 29.90 35.55

Hour 08 3.80 12.04 19.39 21.12 27.37

Hour 09 1.63 12.30 21.63 23.64 25.46

Hour 10 7.91 32.92 49.44 60.36 64.58

Hour 11 1.50 16.50 24.87 32.36 34.75

Hour 12 0.18 18.08 26.60 40.08 44.01

Hour 13 0.59 24.59 37.30 54.62 64.88

Hour 14 0.74 26.75 39.99 61.53 70.95

Hour 15 0.31 12.28 16.69 27.93 34.14

Hour 16 4.88 24.90 30.41 37.92 45.63

Hour 17 0.26 6.29 10.43 13.68 15.53

Hour 18 0.03 12.95 17.95 21.83 24.67

Hour 19 0.27 15.92 20.32 26.81 32.62

Hour 20 0.03 1.92 5.96 8.63 13.47

Hour 21 0.22 17.10 18.04 21.20 29.10

Hour 22 7.11 22.52 26.77 27.91 31.95

Hour 23 20.42 49.33 57.83 62.99 65.26

Hour 24 7.29 16.85 20.96 23.97 28.47

Table A.4: Results of Ljung-Box Q-test performed on standardized residuals

after the estimation of demand models. Test statistics with values higher than

the respective critical values reject the null hypothesis of no serial correlation.

The observation window starts on January 1, 2010 and ends on December 31,

2011. Weekends, holidays, and bridge days are excluded.
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Lag 1 5 10 15 20

Critical Values

0.99-Significance 6.63 15.09 23.21 30.58 37.57

0.95-Significance 3.84 11.07 18.31 25.00 31.41

Test Statistics

Hour 01 0.05 0.67 1.38 2.27 40.67

Hour 02 0.10 1.22 9.63 11.51 25.89

Hour 03 0.05 1.59 26.55 30.68 38.60

Hour 04 0.05 1.77 25.45 29.35 37.71

Hour 05 0.05 1.64 13.08 15.08 25.46

Hour 06 0.09 1.60 2.54 3.92 14.75

Hour 07 0.00 2.03 6.26 8.25 23.95

Hour 08 0.14 2.36 10.12 10.49 15.95

Hour 09 0.14 0.79 2.92 3.32 4.03

Hour 10 0.00 1.68 7.57 8.18 9.45

Hour 11 0.02 3.09 9.22 10.72 13.39

Hour 12 0.30 4.27 6.17 7.48 9.09

Hour 13 0.20 5.37 6.46 9.13 9.19

Hour 14 0.13 3.05 4.57 6.51 7.21

Hour 15 0.03 0.77 1.65 2.92 3.64

Hour 16 0.01 1.12 1.93 2.68 3.07

Hour 17 1.80 2.05 2.32 3.20 3.79

Hour 18 2.10 2.42 2.91 3.65 4.30

Hour 19 2.99 3.73 4.03 5.02 6.00

Hour 20 3.04 4.07 4.57 5.70 6.92

Hour 21 2.04 2.45 2.84 3.82 5.11

Hour 22 0.00 1.68 3.11 3.96 5.85

Hour 23 0.09 0.94 3.76 4.56 5.91

Hour 24 0.02 1.01 1.46 1.85 2.54

Table A.5: Results of Engle’s ARCH test performed on standardized residuals

after the estimation of demand models. Test statistics with values higher than

the respective critical values reject the null hypothesis of homoscedasticity. The

observation window starts on January 1, 2010 and ends on December 31, 2011.

Weekends, holidays, and bridge days are excluded.
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Test Stat. p-Value Test Stat. p-Value

Hour 01 -7.02 0.001 Hour 13 -7.12 0.001

Hour 02 -6.90 0.001 Hour 14 -6.89 0.001

Hour 03 -6.67 0.001 Hour 15 -6.68 0.001

Hour 04 -6.81 0.001 Hour 16 -6.22 0.001

Hour 05 -6.57 0.001 Hour 17 -5.50 0.001

Hour 06 -6.42 0.001 Hour 18 -4.31 0.001

Hour 07 -6.39 0.001 Hour 19 -4.32 0.001

Hour 08 -6.11 0.001 Hour 20 -5.02 0.001

Hour 09 -6.51 0.001 Hour 21 -6.33 0.001

Hour 10 -7.08 0.001 Hour 22 -6.97 0.001

Hour 11 -7.37 0.001 Hour 23 -5.68 0.001

Hour 12 -7.38 0.001 Hour 24 -4.90 0.001

Table A.6: Results of augmented Dickey-Fuller tests (ADF tests) applied to

total demand. The null hypothesis claims that the tested variable follows a zero

drift unit root process. The number of lags is 1 which corresponds to the later

applied first order autoregressive component to forecast demand. The critical

value for a 95% significance level is -2.87 (see Fuller (1976)). n is 499 for all

hours.
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Normal GARCH Student-t GARCH LR-Test

LLF AIC BIC LLF AIC BIC Test-Stat.

Hour 01 -1343 2716 2779 -1286 2603 2665 113.22

Hour 02 -1429 2887 2950 -1379 2788 2851 99.16

Hour 03 -1484 2997 3060 -1456 2942 3005 54.85

Hour 04 -1556 3142 3205 -1548 3126 3189 15.91

Hour 05 -1534 3097 3160 -1514 3059 3121 38.91

Hour 06 -1333 2696 2758 -1299 2629 2692 66.85

Hour 07 -1375 2781 2844 -1352 2734 2797 46.39

Hour 08 -1464 2959 3022 -1456 2942 3005 17.18

Hour 09 -1459 2947 3010 -1443 2916 2978 31.86

Hour 10 -1436 2901 2964 -1428 2887 2950 14.30

Hour 11 -1417 2864 2926 -1412 2853 2916 10.35

Hour 12 -1451 2931 2994 -1443 2916 2979 15.05

Hour 13 -1403 2836 2899 -1403 2836 2899 -0.08

Hour 14 -1401 2833 2896 -1402 2833 2896 -0.13

Hour 15 -1421 2871 2934 -1420 2870 2933 1.49

Hour 16 -1406 2843 2906 -1407 2844 2907 -0.77

Hour 17 -1352 2734 2797 -1352 2734 2797 0.00

Hour 18 -1397 2824 2887 -1395 2820 2883 4.37

Hour 19 -1433 2896 2958 -1423 2877 2940 18.70

Hour 20 -1446 2922 2985 -1435 2900 2963 22.36

Hour 21 -1394 2818 2881 -1381 2791 2854 27.03

Hour 22 -1294 2618 2681 -1286 2602 2665 16.04

Hour 23 -1224 2477 2540 -1216 2462 2525 15.47

Hour 24 -1231 2491 2554 -1208 2445 2508 45.94

Table B.1: Comparison of normal and Student-t GARCH models including ex-

pected wind infeed. AIC denotes the Akaike Information Criterion, BIC denotes

the Bayesian Information Criterion (for both, a lower value implies superior-

ity of the model), and LLF denotes the value of the log likelihood function (a

lower absolute value implies superiority of the model). The test statistic for the

likelihood ratio test is computed using the log likelihood function values of both

models and one degree of freedom. For test statistics (χ2-distributed) with val-

ues above 3.84 the null hypothesis that the normal GARCH model is superior

can be rejected at the 95% significance level (the critical value for the 90% level

ist 2.71). An introduction to likelihood ratio tests can for example be found in

Hamilton (1994b).
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Model 1: R2 Model 2: R2 F-Stat. p-Value

Hour 01 0.5497 0.5526 3.115 0.078

Hour 02 0.4847 0.4897 4.593 0.033

Hour 03 0.4502 0.4511 0.780 0.377

Hour 04 0.4704 0.4769 5.890 0.016

Hour 05 0.4637 0.4706 6.119 0.014

Hour 06 0.5898 0.5957 6.863 0.009

Hour 07 0.5234 0.5297 6.385 0.012

Hour 08 0.6014 0.5987

Hour 09 0.6125 0.6127 0.198 0.657

Hour 10 0.5964 0.5968 0.467 0.495

Hour 11 0.5841 0.5857 1.905 0.168

Hour 12 0.5528 0.5557 3.075 0.080

Hour 13 0.5633 0.5664 3.479 0.063

Hour 14 0.5728 0.5751 2.623 0.106

Hour 15 0.5765 0.5781 1.713 0.191

Hour 16 0.5908 0.5952 5.167 0.023

Hour 17 0.6654 0.6676 3.044 0.082

Hour 18 0.7449 0.7449

Hour 19 0.7315 0.7321 0.899 0.344

Hour 20 0.7121 0.7133 1.954 0.163

Hour 21 0.6964 0.6969 0.804 0.370

Hour 22 0.6905 0.6902

Hour 23 0.6632 0.6692 8.563 0.004

Hour 24 0.6026 0.6057 3.838 0.051

Table B.2: Results of F-test to investigate whether including the oil price vari-

able improves the model fit significantly. Model 1 excludes the oil price vari-

able and model 2 includes it. Rejecting the null hypothesis implies that the

increase in R2 is statistically significant. Critical values (the difference for sep-

arate hours is marginal) are 6.69 and 3.86 for a significance level of 99% and

95%, respectively. No test is performed for hours where R2 for model 2 is lower

than for model 1. n is between 484 and 492. Models 1 and 2 exclude expected

wind infeed as an explanatory variable. However, we have verified that includ-

ing wind would not change the results of the analysis.
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Model 1: R2 Model 2: R2 F-Stat. p-Value

Hour 01 0.5497 0.5501 0.433 0.511

Hour 02 0.4847 0.4865 1.688 0.194

Hour 03 0.4502 0.4498

Hour 04 0.4704 0.4734 2.662 0.103

Hour 05 0.4637 0.4606

Hour 06 0.5898 0.5898 0.043 0.835

Hour 07 0.5234 0.5280 4.655 0.031

Hour 08 0.6014 0.6056 5.028 0.025

Hour 09 0.6125 0.6157 3.954 0.047

Hour 10 0.5964 0.5976 1.339 0.248

Hour 11 0.5841 0.5844 0.373 0.542

Hour 12 0.5528 0.5529 0.097 0.755

Hour 13 0.5633 0.5634 0.162 0.688

Hour 14 0.5728 0.5730 0.285 0.594

Hour 15 0.5765 0.5766 0.042 0.838

Hour 16 0.5908 0.5914 0.733 0.392

Hour 17 0.6654 0.6676 3.027 0.083

Hour 18 0.7449 0.7465 3.074 0.080

Hour 19 0.7315 0.7316 0.006 0.936

Hour 20 0.7121 0.7130 1.593 0.208

Hour 21 0.6964 0.6966 0.430 0.512

Hour 22 0.6905 0.6908 0.386 0.535

Hour 23 0.6632 0.6634 0.295 0.587

Hour 24 0.6026 0.6021

Table B.3: Results of F-test to investigate whether including the lagged demand

variable improves the model fit significantly. Model 1 excludes the lagged de-

mand variable and model 2 includes it. Rejecting the null hypothesis implies

that the increase in R2 is statistically significant. Critical values (the difference

for separate hours is marginal) are 6.69 and 3.86 for a significance level of

99% and 95%, respectively. No test is performed for hours where R2 for model

2 is lower than for model 1. n is between 484 and 492. Models 1 and 2 exclude

expected wind infeed as an explanatory variable. However, we have verified

that including wind would not change the results of the analysis.
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Lag 1 5 10 20

Critical Values

0.99-Significance 6.63 15.09 23.21 37.57

0.95-Significance 3.84 11.07 18.31 31.41

Test Statistics

Hour 01 2.46 5.52 8.11 22.80

Hour 02 0.61 2.95 12.34 24.67

Hour 03 0.25 1.46 4.09 19.97

Hour 04 0.12 1.80 6.10 13.50

Hour 05 0.27 0.54 4.70 10.28

Hour 06 0.32 4.84 10.39 24.51

Hour 07 0.38 1.34 10.57 21.02

Hour 08 0.12 3.98 19.16 26.95

Hour 09 1.77 11.85 19.44 29.18

Hour 10 0.92 12.49 15.43 22.50

Hour 11 0.30 10.61 14.20 20.59

Hour 12 0.02 8.68 13.03 21.72

Hour 13 0.08 12.45 13.90 25.90

Hour 14 0.04 9.51 13.14 30.83

Hour 15 0.04 10.75 13.62 29.38

Hour 16 0.38 5.25 6.64 32.02

Hour 17 0.05 12.33 21.94 34.00

Hour 18 3.38 24.97 30.34 36.59

Hour 19 5.12 23.47 35.79 43.30

Hour 20 0.01 3.26 8.22 23.84

Hour 21 0.23 4.05 14.59 23.88

Hour 22 0.45 17.69 25.14 31.79

Hour 23 0.38 3.40 10.38 14.91

Hour 24 0.67 10.75 14.58 24.51

Table C.1: Results of Ljung-Box Q-test performed to estimation errors after

the in-sample estimation of TVP regression models. Test statistics with values

higher than the respective critical values reject the null hypothesis of no serial

correlation. The observation window starts 50 trading days (pre-estimation pe-

riod for parameter initialization) after January 1, 2010 and ends on December

31, 2011. Weekends, holidays, and bridge days are excluded.
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H0 : RP = 0 H0 : RP > 0 H0 : RP < 0

Hour Mean DoF t-Stat p-Value t-Stat p-Value t-Stat p-Value

1 -0.948 246 -3.59 0.000 -3.59 0.000 -3.59 1.000

2 -1.153 249 -3.37 0.001 -3.37 0.000 -3.37 1.000

3 -1.430 244 -4.23 0.000 -4.23 0.000 -4.23 1.000

4 -1.098 247 -2.95 0.003 -2.95 0.002 -2.95 0.998

5 -1.043 248 -2.71 0.007 -2.71 0.004 -2.71 0.996

6 -1.382 246 -4.31 0.000 -4.31 0.000 -4.31 1.000

7 -1.154 247 -3.25 0.001 -3.25 0.001 -3.25 0.999

8 -2.008 246 -4.07 0.000 -4.07 0.000 -4.07 1.000

9 0.169 247 0.43 0.666 0.43 0.667 0.43 0.333

10 0.714 244 2.13 0.034 2.13 0.983 2.13 0.017

11 0.426 245 1.16 0.249 1.16 0.875 1.16 0.125

12 -0.131 247 -0.31 0.760 -0.31 0.380 -0.31 0.620

13 0.364 245 1.10 0.271 1.10 0.865 1.10 0.135

14 0.685 245 2.14 0.033 2.14 0.984 2.14 0.016

15 0.748 244 2.32 0.021 2.32 0.989 2.32 0.011

16 1.042 246 3.29 0.001 3.29 0.999 3.29 0.001

17 0.949 247 3.17 0.002 3.17 0.999 3.17 0.001

18 0.725 248 2.05 0.042 2.05 0.979 2.05 0.021

19 0.792 245 1.96 0.051 1.96 0.974 1.96 0.026

20 1.030 247 2.76 0.006 2.76 0.997 2.76 0.003

21 -0.392 248 -1.19 0.235 -1.19 0.117 -1.19 0.883

22 -0.258 248 -1.04 0.302 -1.04 0.151 -1.04 0.849

23 -0.076 247 -0.31 0.760 -0.31 0.380 -0.31 0.620

24 -0.216 245 -0.93 0.353 -0.93 0.176 -0.93 0.824

Table D.1: Results of t-test applied to absolute risk premia on EXAA day-ahead

contracts in 2009. The observation window is between January 1, 2009 and

December 31, 2009. Weekends, holidays, and bridge days are excluded as well

as all observation dates with risk premia 3 standard deviations above or below

the mean risk premium of the respective time period.
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H0 : RP = 0 H0 : RP > 0 H0 : RP < 0

Hour Mean DoF t-Stat p-Value t-Stat p-Value t-Stat p-Value

1 0.220 244 0.80 0.422 0.80 0.789 0.80 0.211

2 -0.085 246 -0.28 0.781 -0.28 0.391 -0.28 0.609

3 -0.393 247 -1.17 0.243 -1.17 0.122 -1.17 0.878

4 -0.132 248 -0.39 0.699 -0.39 0.349 -0.39 0.651

5 -0.217 247 -0.66 0.511 -0.66 0.255 -0.66 0.745

6 -0.308 244 -1.12 0.264 -1.12 0.132 -1.12 0.868

7 0.043 245 0.17 0.865 0.17 0.567 0.17 0.433

8 -0.321 245 -1.05 0.296 -1.05 0.148 -1.05 0.852

9 0.720 246 2.42 0.016 2.42 0.992 2.42 0.008

10 0.972 246 3.61 0.000 3.61 1.000 3.61 0.000

11 1.059 244 4.05 0.000 4.05 1.000 4.05 0.000

12 1.044 244 3.69 0.000 3.69 1.000 3.69 0.000

13 1.030 246 4.11 0.000 4.11 1.000 4.11 0.000

14 0.912 246 3.90 0.000 3.90 1.000 3.90 0.000

15 0.727 246 3.46 0.001 3.46 1.000 3.46 0.000

16 0.798 246 4.14 0.000 4.14 1.000 4.14 0.000

17 1.206 247 6.17 0.000 6.17 1.000 6.17 0.000

18 0.760 244 2.91 0.004 2.91 0.998 2.91 0.002

19 0.229 244 0.79 0.428 0.79 0.786 0.79 0.214

20 0.816 244 3.15 0.002 3.15 0.999 3.15 0.001

21 0.058 245 0.28 0.779 0.28 0.610 0.28 0.390

22 0.244 248 1.37 0.171 1.37 0.914 1.37 0.086

23 -0.008 247 -0.04 0.966 -0.04 0.483 -0.04 0.517

24 0.009 246 0.04 0.966 0.04 0.517 0.04 0.483

Table D.2: Results of t-test applied to absolute risk premia on EXAA day-ahead

contracts in 2010. The observation window is between January 1, 2010 and

December 31, 2010. Weekends, holidays, and bridge days are excluded as well

as all observation dates with risk premia 3 standard deviations above or below

the mean risk premium of the respective time period.
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H0 : RP = 0 H0 : RP > 0 H0 : RP < 0

Hour Mean DoF t-Stat p-Value t-Stat p-Value t-Stat p-Value

1 0.706 243 3.16 0.002 3.16 0.999 3.16 0.001

2 0.339 241 1.49 0.137 1.49 0.931 1.49 0.069

3 0.341 240 1.44 0.150 1.44 0.925 1.44 0.075

4 0.692 245 2.48 0.014 2.48 0.993 2.48 0.007

5 0.553 243 2.22 0.028 2.22 0.986 2.22 0.014

6 0.088 243 0.41 0.685 0.41 0.657 0.41 0.343

7 0.578 245 1.99 0.048 1.99 0.976 1.99 0.024

8 0.139 247 0.52 0.603 0.52 0.698 0.52 0.302

9 0.584 246 2.36 0.019 2.36 0.990 2.36 0.010

10 0.802 247 3.41 0.001 3.41 1.000 3.41 0.000

11 0.837 247 3.81 0.000 3.81 1.000 3.81 0.000

12 0.593 246 2.63 0.009 2.63 0.995 2.63 0.005

13 0.676 245 3.01 0.003 3.01 0.999 3.01 0.001

14 0.532 246 2.45 0.015 2.45 0.992 2.45 0.008

15 0.568 247 2.44 0.016 2.44 0.992 2.44 0.008

16 0.771 247 3.38 0.001 3.38 1.000 3.38 0.000

17 1.107 244 5.37 0.000 5.37 1.000 5.37 0.000

18 0.763 245 3.34 0.001 3.34 1.000 3.34 0.000

19 0.471 244 1.82 0.069 1.82 0.965 1.82 0.035

20 0.379 245 1.52 0.129 1.52 0.936 1.52 0.064

21 0.124 245 0.49 0.627 0.49 0.687 0.49 0.313

22 0.516 245 2.14 0.033 2.14 0.983 2.14 0.017

23 0.097 245 0.41 0.680 0.41 0.660 0.41 0.340

24 0.189 245 0.91 0.362 0.91 0.819 0.91 0.181

Table D.3: Results of t-test applied to absolute risk premia on EXAA day-ahead

contracts in 2011. The observation window is between January 1, 2011 and

December 31, 2011. Weekends, holidays, and bridge days are excluded as well

as all observation dates with risk premia 3 standard deviations above or below

the mean risk premium of the respective time period.
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