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Abstract
Volcanic eruptions are dramatic events that can greatly endanger human lives, disrupt human

activities and impact climate on a global scale. Explosive volcanic eruptions are typically

associated with the injection into the atmosphere of large numbers of particles (known as

tephra) dispersed over long distances depending on their size, shape and density. Accumu-

lation at ground level of few millimetres to tens of centimetres of tephra can cause a wide

range of hazards including the collapse of roofs, damage to crops, killing of many grazing

animals, contamination of water supplies, disruption of electricity and telecommunication

networks and perturbation of ground transportation, while fine volcanic ash significantly

threatens aviation operations and human health. Consequently, even though other volcanic

phenomena are more likely to directly endanger human life (e.g., pyroclastic flows and lahars),

tephra dispersal and sedimentation can seriously impact entire economic sectors and disrupt

critical infrastructure services.

Computer models that simulate the transport in the atmosphere and deposition of tephra are

called VATDMs (Volcanic Ash Transport and Dispersion Models) or TTDMs (Tephra Transport

and Dispersion Models). They typically describe particle motion in a turbulent velocity field.

Volcanic particles are advected inside this field from the moment they leave the vent of the

volcano until they deposit on the ground. Volcanic eruptions involve phenomena occurring

at multiple temporal and spatial scales, such as fast rising of particles inside the volcanic

column, aggregation of fine particles into larger ones that tends to fall faster or transport of

fine particles over very long range. Volcanic eruptions are thus multiscale phenomena, which

needs multiscale-multiscience models to be fully depicted.

MMSF (Multiscale Modelling and Simulation Framework) is a set of tools and techniques that

allow to model, describe and simulate multiscale and multiscience phenomena in a stan-

dardized way. In this thesis, we focus on the design and implementation of tephra transport

models as multiscale applications. Each model is described as a coupling of submodels using

MMSF formalism. Tetras (TEphra TRAnsport Simulator) is a flexible simulation tool based on

a hybrid Eulerian-Lagrangian numerical model. As this kind of model needs computationally

intensive simulations, a parallel version on a distributed memory architecture using MPI was

developed. Then, we developed a multiscale implementation of the software. This imple-

mentation combines short and long-range transport of particles as well as particle aggregation.
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Abstract

A strong plume is a volcanic plume where the volcanic mixture first rises mainly vertically

before spreading horizontally to form an umbrella cloud at the level of neutral buoyancy.

The region of transition between this mainly vertical and mainly horizontal regime is called

the plume corner. A drawback of Tetras modelling strategy is its tendency to underestimate

deposits of particles in the plume corner area. Thus, we investigated how to better charac-

terize the source term (the description of the insertion of particles in the atmosphere) of the

transport model and propose the Spatially Extended Exit Rate (SEER) model where flux of

particles is injected in the atmosphere from the border of a three-dimensional volcanic plume.

We built on this model volcano-lagrangian-seer, which is a MPI parallel TTDM based on a

Lagrangian numerical scheme and volcano-semianalytical-seer, which is a simplified version

of the model offering fast solving.

Forward volcanic ash simulation models take Eruption Source Parameters (ESP) as input such

as initial temperature and velocity of the plume, particle size and density distributions and

atmospheric conditions and produces a ground deposition pattern and atmospheric concen-

tration of particles. The inverse problem is to consider the observed tephra accumulation to

reconstruct ESP. To achieve this, volcanologists usually use optimization algorithms combined

with a fast-solving semianalytical forward model. We propose an inversion strategy based on

parallel approximate Bayesian computation algorithms and our parallel MPI model Tetras.

ABCpy is a parallel Approximate Bayesian Computation framework, which allows running

hundreds or thousands of instances of a forward model to infer its parameters. To perform

inversion with ABCpy and Tetras, we developed a nested parallelization strategy which allows

integrating MPI parallel models in ABCpy. This opens the way of inversion using heavy MPI

parallel forward models on high performance computing infrastructure. Finally, we started

investigating inversion using volcano-semianalytical-seer and the Nelder-Mead simplex algo-

rithm. This could lead to hybrid inversion strategies, where the parameter space is first largely

explored with a fast analytical or semi-analytical model to give a starting point for a more local

optimization using a heavy sophisticated parallel model.
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Résumé
Les éruptions volcaniques sont des événements spectaculaires qui peuvent grandement

mettre en danger des vies humaines, perturber les activités humaines et avoir un impact sur

le climat à une échelle globale. Les éruptions volcaniques explosives vont généralement de

pair avec l’injection dans l’atmosphère d’un grand nombre de particules (appelées téphra)

dispersées sur de longues distances en fonction de leur taille, forme et densité. L’accumulation

sur le sol de quelques millimètres à plusieurs dizaines de centimètres de téphra peut causer un

grand nombre de dangers comprenant l’effondrement de toits, des dommages aux cultures, la

mort d’animaux de pâturage, la contamination de sources d’approvisionnement en eau, la

perturbation des réseaux électriques et de communication et la perturbation des transports

terrestres, tandis que les fines particules volcaniques menacent fortement l’aviation et la santé

humaine. Par conséquent, même si d’autres phénomènes volcaniques sont plus susceptibles

de mettre directement en danger des vies humaines (par exemple les nuages pyroclastiques ou

les lahars), la dispersion et la sédimentation de téphra peut gravement impacter des secteurs

économiques entiers et perturber des infrastructures critiques.

Les modèles informatiques simulant le transport dans l’atmosphère et le dépôt de téphra sont

nommés VATDM (Volcanic Ash Transport and Dispersion Models) ou TTDM (Tephra Trans-

port and Dispersion Models). Ils décrivent typiquement le mouvement des particules dans

un champ de vitesses turbulent. Les particules volcaniques sont advectées dans ce champ

dès le moment où elles s’échappent du cratère jusqu’à ce qu’elles se déposent au sol. Les

éruptions volcaniques impliquent des phénomènes se produisant à de multiples échelles de

temps spatiales et temporelles, telles que l’ascension rapide des particules dans la colonne

volcanique, l’agrégation de particules fines en particules plus grandes qui ont tendance à

tomber plus vite ou encore le transport de particules fines sur de très longues distances. Les

éruptions volcaniques sont donc des phénomènes multiéchelle, qui nécessitent des modèles

multiscience et multiéchelle pour être complètement représentés.

MMSF (Multiscale Modelling and Simulation Framework) est un ensemble d’outils et de

techniques permettant de modéliser, décrire et simuler des phénomènes multiscience et

multiéchelle de façon standardisée. Dans cette thèse, on se concentre sur la conception et

l’implémentation de modèles de transport de téphra en tant qu’applications multiéchelle.

Chaque modèle est décrit sous la forme d’un couplage de sous modèles en utilisant le forma-

lisme de MMSF. Tetras (TEphra TRAnsport Simulator) et un outil de simulation souple basé
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Résumé

sur un modèle numérique hybride eulérien-lagrangien. Puisque ce type de modèle nécessite

des simulations numériquement intensives, une version parallèle sur architecture à mémoire

distribuée utilisant MPI a été développée. Ensuite, nous avons développé une implémenta-

tion multiéchelle du logiciel. Cette implémentation combine le transport à courte et longue

distance ainsi que l’agrégation de particules.

Un "panache fort" (ou "strong plume") est un panache volcanique ou le mélange volcanique

s’élève principalement verticalement avant de s’étendre horizontalement pour former un

"nuage parasol" (ou "umbrella cloud") au niveau de poussée neutre (ou "neutral buoyancy

level"). La région de transition entre ces deux régimes est appelée le "coin du panache" (ou

"plume corner"). Un inconvénient de la stratégie de modélisation de Tetras est sa tendance à

sous-estimer les dépôts de particules en dessous de cette région. Ainsi, nous avons cherché

à mieux caractériser le terme source (ou "source term", la description de l’insertion des par-

ticules dans l’atmosphère) du modèle de transport et nous proposons le modèle "Spatially

Extended Exit Rate" (SEER) où des flux de particules sont injectés dans l’atmosphère depuis

le bord d’un panache volcanique en trois dimensions. Nous avons construit sur ce modèle

volcano-lagrangian-seer, qui est un TTDM parallélisé avec MPI basé sur un modèle numé-

rique lagrangien et volcano-semianalytical-seer, qui est une version simplifiée du modèle qui

permet une résolution rapide.

Les modèles de simulation de cendres volcaniques prennent en entrées des paramètres d’érup-

tion appelés "Eruption Source Parameters (ESP)", tels que la température et vitesse initiale du

panache, la taille et la densité des particules et les conditions atmosphériques et produisent

un motif de dépôt au sol ainsi que des concentrations atmosphériques de particules. On

appelle cela le problème direct. Le problème inverse est de considérer l’accumulation de

téphra observée et de reconstruire les ESP. Cette tâche est appelée inversion. Pour réaliser cela,

les volcanologues utilisent habituellement des algorithmes d’optimisation combinés à des

modèles volcanologiques à résolution rapide. On propose une stratégie d’inversion basée sur

des algorithmes d’inférence bayésienne parallèles (Approximate Bayesian Computation, ABC)

et notre modèle parallèle MPI Tetras. ABCpy est une infrastructure de développement parallèle

implémentant des algorithmes ABC qui permet de résoudre des centaines ou des milliers

d’instances d’un problème direct en parallèle afin d’en inférer ses paramètres. Afin de réaliser

une procédure d’inversion basée sur ABCpy et Tetras, nous avons développé une stratégie de

parallélisation imbriquée permettant d’intégrer des modèles MPI dans ABCpy. Cela ouvre la

voie à des procédures d’inversion basées sur des simulations MPI parallèles lourdes sur des

infrastructures de calcul haute performance. Finalement, nous avons commencé à étudier

une stratégie d’inversion utilisant volcano-semianalytical-seer et l’algorithme du simplexe

de Nelder-Mead. Cela pourrait conduire à des stratégies d’inversion hybrides, où l’espace de

paramètres est d’abord exploré largement avec un modèle analytique ou semi-analytique ra-

pide afin de donner un point de départ pour une optimisation plus locale utilisant un modèle

parallèle sophistiqué.
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1 Introduction

Volcanic eruptions can be separated in two main types : effusive and explosive eruptions.

Effusive eruptions are the most frequent types of eruption, showing large discharge of lava. On

the other hand, explosive volcanic eruptions inject into the atmosphere large amount of pyro-

clastic material (including tephra), ranging from fine ash that can remain in the atmosphere

for days to weeks, to large volcanic bombs.

Explosive volcanic eruptions are typically associated with the injection into the atmosphere of

large amounts of tephra dispersed over long distances depending on size, shape and density.

Accumulation at ground level of few millimetres to tens of centimetres of tephra can cause a

wide range of hazards including the collapse of roofs, damage to crops, killing of many grazing

animals, contamination of water supplies, disruption of electricity and telecommunication

networks and perturbation of ground transportation, while fine volcanic ash significantly

threatens aviation operations and human health [73, 66, 33, 118, 121, 122].

Consequently, even though other volcanic phenomena are more likely to directly endanger

human life (e.g., pyroclastic density currents and lahars), tephra dispersal and sedimentation

can seriously impact entire economic sectors and disrupt critical infrastructure services, as

demonstrated by the eruptions of Eyjafjallajökull (Iceland; 2010 [65]) and Cordón Caulle (Chile;

2011 [120]) volcanoes.

1.1 Modelling and simulation of volcanic tephra dispersal

Mathematical models have been used for centuries in science. More recently, usage of compu-

tational models have dramatically increased, and it is now one of the main techniques used to

model real world phenomena. Numerical models (also called computer simulations or com-

putational models) are tools that aims to mimic in silico (by the use of a numerical computer)

real life phenomena. Numerical models are developed with various levels of complexity. More

complexity in general involves the necessity of more computing power.

Computers are increasingly powerful, but this increase is now largely dominated by the
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increase in the level of parallelism in computer architectures (the number of computing

cores in a computer). Thus, to benefit from technological improvement in computer design,

software, and specifically simulation software, have to be parallelized in an efficient way.

Computer simulations are developed with various goals in mind, which includes a better

understanding of the modelled physics, forecasting of natural phenomena, such as weather

forecasting, or for engineering purpose, to design new tools and techniques.

Computer models that aim to reproduce tephra transport and deposition in the case of a

volcanic eruption are called VATDMs (Volcanic Ash Transport and Dispersal Models) or TTDMs

(Tephra Transport and Dispersal Models)[58]. During the past decades, several TTDMs have

been developed with variable levels of complexity and different objectives including a better

understanding of particle transport and sedimentation dynamics; the compilation of real

time and long-term hazard assessment associated with both ground load and atmospheric

concentrations of ash and the determination of eruption source parameters through inversion

strategies (see [58, 23, 24] for a review).

A classic way of modelling tephra transport and deposition is to apply the advection-diffusion-

sedimentation equation to tephra particles released in the atmosphere from a source term

(the description of quantity, time and position of injection of particles in the atmosphere)

and subject to atmospheric condition, such as wind. Models exist with a variety of semi-

analytical models (Tephra 2 [39, 22]), Eulerian numerical models (Fall3D [61, 94], Ash3D [102]),

Lagrangian or hybrid Lagrangian models (NAME [74], Hysplit [106], Vol-calpuff [7, 6], ATLAS

[97]).

Models describing movement of bulk eruption materials exist for volcanic plumes and um-

brella cloud. Such as integral plume models based on buoyant plume theory (BPT [87]) (Woods

model [123], Degruyter and Bonadonna model [49, 48], FPLUME [60], PLUME-MoM-TSM [86]).

Those models can be used to describe the density of particles along the plume to construct a

source term. The difficulty resides on the determination of the position and rate of injection

of particles in the atmosphere from a volcanic plume, which has an important impact on

proximal (regions close to the vent) deposition of particles. 3D fully resolved model exists as

well for volcanic plumes, such as ATHAM [90, 70, 71] and ASHEE [34]. While those models are

of great interest to study the physics of eruption columns, they are too computationally heavy

to be suitable for real time hazard assessment or eruption source parameters inversion.

1.2 A non-exhaustive review of TTDMs

Fall3D [61, 41, 59] is a three-dimensional parallel Eulerian model developed at the Barcelona

Supercomputing Center solving the advection-diffusion-sedimentation (ADS) equation. The

source term can be defined as a point, a uniform vertical line, a Suzuki distribution [109], a

plume model based on buoyant plume theory or a resuspension scheme. It has been originally

designed for volcanic tephra, but has been extended to other types of particles, aerosols

or radionuclides and can be coupled to external meteorological models. It can compute
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atmosphere particle concentration as well as particles deposits.

ATLAS [97] is a Lagrangian particle transport model. It shares the same physics as Fall3D and

can be viewed as a Lagrangian implementation of this model. The source term can be as well

defined as a point, a uniform vertical line or a Suzuki distribution. There is also a resuspension

scheme. Those different source terms can be combined within a given simulation. Aggregation

is handled in a simple way, by modifying the initial TGSD. This code is not parallelized.

Ash3D [102] is an Eulerian model developed by the U.S. Geological Survey that simulates the

transport and deposition of tephra. Particles are injected in domain cells, either in a single

cell, linearly distributed above the volcano, or following a Suzuki distribution. The model is

coupled with external numerical weather prediction models to compute the trajectories of

particles. The model can output atmospheric concentration of particles or ground mass load.

NAME (Numerical Atmospheric Dispersion modelling Environment) [74, 12, 11] is a La-

grangian particles model of the London Volcanic Ash Advisory Centre (VAAC). It is used

to provide real-time forecasts during volcanic eruptions, such as the 2010 eruption of Ey-

jafjallajökull volcano. It can be initialized using a variety of source terms, such as a vertical

distribution of particles above the vent, or using a BPT model with injection of particles at the

top of the plume.

Vol-calpuff [7] is a Lagrangian puff model based on a plume model that accounts for wind

entrainment and particle sedimentation from plume border. Particles are injected at the top

of the plume in the form of puffs.

Tephra2 [39, 22] is a semi-analytical model where particles are assumed to be distributed in

a line above the vent with a given density distribution. The atmosphere is divided in layers

that can account for user-submitted wind data. Particles bins are supposed to be released at

their given height, and the ADS equation is solved to compute where the particles bins will fall

on the ground. The model has been parallelized with MPI, and it’s simplicity makes that it’s

widely used for eruption source parameters (ESP) inversion [38].

1.3 Multiscale modelling

Volcanic eruptions are complex phenomena implying process at multiple time and space

scales. When volcanoes erupt, they inject in the atmosphere a wide range of materials, in-

cluding gas and solid particles which interacts in complex ways. Large particles are ejected

from the vent, and follow ballistic trajectories. The mixture of small particles and gas can

interact, forming a volcanic plume. Larger particles can fall from plume borders, and then

travel distances for hundreds of meters to tenth of kilometres. Fine ash can be transported

tens of thousands of kilometres away, or even at global scale, remaining in the atmosphere for

weeks to months. They can also aggregate and form larger particles, which falls closer to the

vent. A full volcano model is thus a multiscale model, where processes of multiple spatial and
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temporal scales interact to form a global process.

Models of multiple levels of complexity have been developed by scientists involved in the

research fields of volcanology, atmospheric sciences and physics. Each model relies on dif-

ferent assumptions or simplifications. They are expressed in different forms, ranging from

an analytical expression, solved almost instantly, to heavy numerical simulations requiring

powerful supercomputers to be solved in a reasonable time, and account for various number

of physical processes within each model. But they have the common characteristics, indepen-

dently from their internal formulation, of taking various number of parameters as input, and

output values for various number of variables of interest. Every output variable from a model

can be considered as input for another model. The construction of a multiscale model then

consists of defining how submodels exchange their data and on which computing resources

they are solved.

The problem of designing multiscale models where submodels with various characteristics and

scales interact is not limited to earth sciences, but arise to every other modelling science. In the

past decade, efforts have been made to formally define interaction of multiscale submodels

and develop tools and frameworks which allows for the design and implementation of multi-

scale multi-physics applications. This is the case of MMSF (Multiscale Modelling Software and

Framework) [27, 35] which we use in this work to design our multiscale volcano application.

This methodology allows for a clear view of the different parts of a multiscale model, and make

it easier to make submodels evolve without changing the whole structure of the overall model.

Moreover, computational load can be very different between submodels, which can raise

efficiency problems if submodels are not attributed to computing resources in a clever way.

It is thus important to model performances of submodels in order to predict their execution

time to maximize the usage efficiency of computing resources.

1.4 Inversion

Inversion is the task of optimizing input parameters of a model (called the forward model)

to obtain best fit of the model output with field measurements. For a volcanic eruption, this

allows estimating eruptions source parameters (ESP) such as plume height, initial plume speed,

radius and temperature, total erupted mass, eruption duration or particle characteristics, or

even atmospheric conditions [38]. Inversion is generally done through nonlinear optimization

algorithms, such as metaheuristics, or statistical inference algorithms coupled with light

numerical model. For example, [38] uses Tephra2 coupled with the Nelder-Mead simplex

algorithm and [124] uses Tephra2 as well, but coupled with the Metropolis–Hastings algorithm.

Those techniques work by running a lot of instances of the forward model (usually thousands)

and optimizing input parameters by exploration of the parameter space.

With modern supercomputers, it becomes possible to use mediumly heavy numerical mod-

els as forward model for inversion [55, 91]. This implies either that the forward model is

parallelized and can be solved very quickly thanks to a good strong scaling behaviour (i.e.,
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that the solving time becomes lower when adding computing resources when the size of

the problem remains the same), or that the optimization scheme is itself parallel and allows

running hundreds or thousands of instances of the forward model at the same time, which is

the case of a number of approximate Bayesian computation algorithms.

1.5 High performance computing systems used within this work

High performance computing systems for research comes in a great range of computing power

and availability, ranging from small clusters private to research groups, to large supercom-

puters often available at a national level. The need for a specific level of computing power

depends on the considered problem, and the capacity of the simulations tools to scale with the

number of the computing cores1 (i.e., to be able to efficiently use the computing resources).

We give a short description of the three HPC systems that have been used within this work.

Baobab and Yggdrasil are the high performance computing facilities of the Geneva’s higher

education institutions, hosted at the University of Geneva. They are heterogeneous clusters,

equipped with public nodes available to any user of the systems and private nodes, accessible

with higher priority to the owners. Baobab is running since 2013 and Yggdrasil since 2021.

Piz Daint is a supercomputer of the Swiss National Supercomputing Centre (CSCS) located in

Lugano. It is a Cray machine available since 2012, and has been updated several times since

then. It is, at the time of writing (July 2021), ranked 15th in the TOP500 list 2.

• Baobab is compounded of 54 public nodes equipped with 16 -core Intel E5-2660V0 @

2.20 GHz for a total of 864 public cores. There are also approximately 140 private nodes

equipped only with CPUs and 20 private nodes equipped with GPUs.

• Yggdrasil is compounded of 81 public nodes equipped with 36 -core Intel Xeon Gold

6240 @ 2.60 GHz and 4 public nodes equipped with 16 cores Intel Xeon Gold 6244 @

3.60Gz. There are as well 7 public nodes equipped with GPUs and 16-core Intel Xeon

Silver 4208 @ 2.10 GHz. This makes a total of 3092 publicly available cores. There are

also approximately 30 private CPU nodes.

• Piz Daint is compounded of 5074 computing nodes equipped with 12-core Intel Xeon

E5-2690 v3 @ 2.60 GHz and a GPU NVIDIA Tesla P100 and 1813 nodes equipped with

2×18 -core Intel Xeon E5-2695 v4 @ 2.1GHz for a total of 126′156 cores.

1Modern processor architectures are usually multicore. To avoid ambiguity, we use the term "core" or "comput-
ing core" to denote a sequential computing unit.

2https://www.top500.org/

5

https://www.top500.org/


Chapter 1. Introduction

1.6 Content of the thesis

In this thesis, we focus on the modelling and simulation of transport of volcanic tephra as a

multiscale phenomenon. While tephra accounts for particles of any size, we focus on small

sizes particles, for which the movement can be considered has a transport within an ambient

environment, rather than ballistic trajectories.

First, we present the TTDM Tetras (TEphra TRANsport Simulator), which is based on a hybrid

Lagrangian-Eulerian numerical model. Its hybrid representation allows for particle interaction

and outputting of atmospheric ash concentration at any given time. The modelling strategy is

based on a point source term located at the vent. Then, particles are transported according

to a velocity field described by an integral plume model, an umbrella cloud model, wind

velocity and sedimentation velocity. A parallelization on distributed architecture using MPI

has been developed and a performance model proposed. We developed the first version of

this simulation tool and modelled its performances before the present work. The first version

of Tetras integrated only a model for strong plumes, we extend the capacity of the tool by

integrating a plume model suited for bent over plumes. We published this work in [80]. We

describe as well Tetras in terms of a multiscale model, which allows us to introduce the MMSF

formalism.

Then, while the deposit in the plume corner area is underestimated by Tetras modelling

strategy, we propose the Spatially Extended Exit Rate source term model. With this model,

particles are injected along a three-dimensional volcanic plume and from the base of the

umbrella cloud at specific rates which depends on the geometry of the plume. We build on this

formulation two TTDMs that aims at reproducing tephra deposits : volcano-semianalytical-

seer which is a fast-solving semianalytical model and volcano-lagrangian-seer which is a heavy

MPI parallelized Lagrangian particles model. This latter has a good strong scaling behaviour,

which makes it potentially usable in sequential inversion schemes.

Then, we investigate ESP inversion strategies using the Approximate Bayesian Computation

framework ABCpy coupled with Tetras. For this, we implement a nested parallelism scheme

which opens the way of inversion using ABC techniques in conjunction with MPI parallelized

models. This work has been published in [91, 55]. We provide as well preliminary inversion

results using the Nelder-Mead simplex algorithm applied to volcano-semianalytical-seer.

Finally, we describe a full multiscale tephra transport and aggregation application. We use

MMSF tools and techniques to design and implements our application. We couple an aggrega-

tion model with the transport model to account for this phenomenon in the volcanic plume,

and we couple transport models at multiple scales to account for transport of particles at local

and global scales. We observe as well the impact of submodel placements on computing re-

sources and propose a technique based on Discrete Event Simulation to model performances

of a multiscale model. This work has been published in [79, 37].
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The document is structured as follows :

• Chapter 1 gives an introduction to the field of numerical simulations and volcanic

tephra transport simulations and defines the scope of this work.

• Chapter 2 present the TTDM Tetras, the related physical models on which it relies as

well as the MMSF formalism that is used in the rest of the thesis. We provide comparison

with field data as well as validation of the performance model.

• Chapter 3 present the Spatially Extended Exit Rate (SEER) family of models. We present

the TTDMs based on this source term and observe the scaling behaviour of volcano-

lagrangian-seer, the Lagrangian TTDM based on SEER source term.

• Chapter 4 describes the coupling of Tetras with ABCpy to perform ESP inversion. We pro-

vide as well preliminary results of inversion using volcano-semianalytical-seer coupled

with the Nelder-Mead simplex algorithm.

• Chapter 5 gives more details about the implementation of Tetras and volcano-lagrangian-

seer. We present as well the design and implementation of the full multiscale transport

and aggregation model. We describe how the aggregation model is coupled with the

transport model and investigates the impact on performances of the multiscale cou-

pling.

• Chapter 6 summarizes the work presented in this thesis and gives perspective for future

work. We discuss how the proposed multiscale model could evolve, and how it could be

coupled with cutting edge volcanological models recently published.

A large part of the work presented in this thesis has been published in the following journals

and international conferences publications :

• P. Künzli, K. Tsunematsu, P. Albuquerque, J.-L. Falcone, B. Chopard, and C. Bonadonna.

“Parallel simulation of particle transport in an advection field applied to volcanic ex-

plosive eruptions”. In: Computers & Geosciences 89 (2016), pp. 174–185. DOI: https:

//doi.org/10.1016/j.cageo.2016.02.005

• P. Künzli, J.-L. Falcone, E. Rossi, P. Albuquerque, and B. Chopard. “HPC Multiscale Simu-

lation of Transport and Aggregation of Volcanic Particles”. In: 2018 17th International

Symposium on Parallel and Distributed Computing (ISPDC). 2018 17th International

Symposium on Parallel and Distributed Computing (ISPDC). June 2018, pp. 25–32. DOI:

10.1109/ISPDC2018.2018.00013

• B. Chopard, J.-L. Falcone, P. Kunzli, L. Veen, and A. Hoekstra. “Multiscale modeling:

recent progress and open questions”. In: Multiscale and Multidisciplinary Modeling,

Experiments and Design 1.1 (2018), pp. 57–68. DOI: 10.1007/s41939-017-0006-4
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• L. Pacchiardi, P. Künzli, M. Schöngens, B. Chopard, and R. Dutta. “Distance-learning

For Approximate Bayesian Computation To Model a Volcanic Eruption”. In: Sankhya B

(Jan. 2020). DOI: 10.1007/s13571-019-00208-8

• R. Dutta, M. Schoengens, L. Pacchiardi, A. Ummadisingu, N. Widmer, P. Künzli, J.-P. On-

nela, and A. Mira. “ABCpy: A High-Performance Computing Perspective to Approximate

Bayesian Computation”. In: arXiv:1711.04694 [stat] (Feb. 25, 2021)

The content of those papers has sometimes been reorganized for the purpose of this document

and enriched with novel results. Details are given at the beginning of each chapter.
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2 The tephra transport model Tetras

The work in this chapter has been published in

P. Künzli, K. Tsunematsu, P. Albuquerque, J.-L. Falcone, B. Chopard, and C. Bonadonna.

“Parallel simulation of particle transport in an advection field applied to volcanic explosive

eruptions”. In: Computers & Geosciences 89 (2016), pp. 174–185. DOI: https://doi.org/10.1016/

j.cageo.2016.02.005.

Compared to the published version, the work has been enriched with coupling structure

description based on the gMML (Graphical Multiscale Modelling Language) and SSM (Scale

Separation Map) formalisms. The physical models are as well described in more details.

2.1 Introduction

Most existing TTDMs are either Eulerian finite difference schemes such as FALL3D [61, 94] or

Lagrangian particle-puff schemes such as VOL-CALPUFF [7, 6] or NAME III [74]. Some are

pure Lagrangian models such as PUFF [104] or ATLAS [97].

Pure Lagrangian models dealing with point particles have the advantage of allowing the

implementation of individual particle behaviour as well as particle interaction. Moreover,

they remain unconditionally stable, unlike for example finite difference schemes, and allow

monitoring ash concentration in the atmosphere as well as ground mass load at any given

time.

The drawback is that such representations require the simulation of large numbers of particles

to yield statistically accurate results. This may thus produce very computationally intensive

simulations. Although the increasing computational capacities of computers and supercom-

puters tend to make these simulations affordable, parallelization still remains essential to run

them on large numbers of computing cores. However, pure Lagrangian models are difficult to

implement on massively multicore systems when particle interactions are involved. This is

why we propose an implementation based on a hybrid model.
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(a) (b)

Figure 2.1: Representation of the main features of (a) a strong plume and (b) a weak plume
(adjusted from [20]). Hb : Neutral buoyancy level; Ht : total plume height; Hcb : base of the
umbrella cloud.

In this chapter, we present a hybrid Eulerian-Lagrangian model for the dispersal and sed-

imentation of tephra with an emphasis on computational efficiency and model flexibility.

Computational efficiency is particularly important for both real time forecasting and long-

term hazard assessments. In our approach, particles remain linked to a site and their exact

positions are continuously tracked. This allows for an accurate treatment of diffusion while

maintaining a known maximum spatial integration step. The associated data structure facili-

tates a parallel implementation as well as the addition of complex sedimentation processes,

such as particle aggregation [29, 42, 11].

The implementation was designed with a modular approach to permit modification or ad-

dition of components to the physical model. The modular design is presented based on the

gMML and SSM formalisms, which are part of MMSF, the Multiscale Modelling and Simulation

Framework [14, 35, 56]. It is then possible to use this simulation tool both for the study of the

dynamics of particle dispersion and as a prediction tool for hazard assessment. As previously

said, our model allows to easily monitor both atmospheric ash concentration and ground

mass load. In this work, we only focus on the latter.

2.2 Model description

During explosive volcanic eruptions, a hot mixture of particles and volcanic gases is typically

ejected with an initial density several times larger than in the atmosphere, and rises due to

momentum. As the ejected material entrains ambient air, the mixture density drastically

decreases and the eruptive plume starts rising due to buoyancy. If the plume upward velocity

is much larger than the horizontal wind velocity (strong plume, Figure 2.1a), the volcanic

plume buoyantly rises up to the neutral buoyancy level (Hb) where it starts spreading laterally
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as a gravity current (umbrella cloud). In contrast, if the horizontal wind velocity dominates, the

plume bends over above the basal jet before spreading laterally around the neutral buoyancy

level (weak plume, Figure 2.1b)[25, 31]. In all cases, cloud spreading results from the interplay

between buoyancy and wind advection, with the contribution of buoyancy being proportional

to plume height [25, 21, 43].

Depending on their size and density, particles are transported upward by the volcanic plume

and, if sufficiently small, might be entrained within the umbrella cloud and sediment accord-

ing to their terminal velocity. In particular, information on the Total Grain-Size Distribution

(TGSD), namely the size distribution of particles injected into the atmosphere, combined with

particle density is necessary to initialize the model.

Turbulent effects, which play an important role in this model, are represented through a

diffusion process. Different diffusion coefficients are applied in the atmosphere (Da) and in

the plume (Dp ), the latter coefficient being usually several times larger.

Atmosphere

Umbrella cloud

Plume

Figure 2.2: Velocity fields considered in the model. Note that velocities are summed to produce
the final advection field. For example, in the umbrella cloud, ~ub and ~uw will be summed, so
the umbrella cloud will be elongated in the downwind direction, as shown in Figure 2.1.
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We divide space into three main zones (Figure 2.2), where the velocity fields are described as

• atmosphere : ~u =~us +~uw +~ur a ;

• volcanic column : ~u =~us +~uw +~up +~ur p ;

• umbrella cloud : ~u =~us +~uw +~ub +~ur a ;

where

• ~us is the settling velocity of the particles [3, 25, 78];

• ~uw is the wind velocity, retrievable from analytical models [31, 72], weather reanalysis

databases or weather forecasting models;

• ~up is the plume velocity [49, 123];

• ~ub is the spreading velocity of the umbrella cloud [100, 25];

• ~ur a and ~ur p are random velocities for simulating diffusion in the atmosphere and in the

volcanic column.

Once a set of parameters is selected, a simulation is run by injecting particles at the vent (we

consider a point source term) inside the domain and waiting for particles to either deposits on

the ground or leave the domain. Figure 2.3 shows an example of Lagrangian particles during a

simulation.

2.2.1 Multiscale formulation

The Multiscale Modelling and Simulation Framework (MMSF) is a methodology and a set of

tools to describe multiscale, multiscience phenomena [35, 37, 27, 26]. A multiscale application

involves different processes occurring at different spatial and temporal scales. The first step

consists of decomposing a phenomenon in multiple single time and space scale processes,

called submodels. For example, particles move at the time scale of the second, while atmo-

spheric condition evolves at the time scale of the hour. Here, we make use of the graphical

formalisms Scale Separation Map (SSM) and graphical Multiscale Modelling Language (gMML)

of the MMSF framework to define the overall model as a set of submodels exchanging data.

The Scale Separation Map

The SSM shows graphically the temporal and spatial scale of each submodel by representing a

rectangle whose lower bound is the spatial step, upper bound is the size of the phenomenon,

left bound is the time step and right bound is the duration of the phenomenon. Two variations

of the transport model have been implemented, whose SSM are shown in Figure 2.4. One

version relies on Woods plume model [123] and an analytical approximation for atmospheric
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(a) t = 330 sec. (b) t = 500 sec.

(c) t = 700 sec. (d) t = 930 sec.

Figure 2.3: A volcanic plume is simulated by the numerical model over 15 minutes (physical
time). Colours represent size of particles. Grain size ranges from φ=−7 (blue) to φ= 10 (red),
φ=− log2(d) where d is the diameter of the particle in mm.

conditions [123, 72] (variant a, Figure 2.4a). The other one relies on Degruyter plume model

[49, 48] and atmosphere data from a reanalysis database (variant b, Figure 2.4b).

Note that while Degruyter plume model is an extension of Woods model accounting for wind,

the difference between both versions of the transport model relies on implementation aspects

only. Woods model is solved directly within the main transport code written in C++ while

Degruyter model is solved by an external Matlab code which results is read by the C++ code.

The consequence is that solving of Woods model is much faster than Degruyter, which is

important in an inversion context (see Chapters 3 and 4). An improvement would be to write
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Degruyter model in C++ in order to integrate it to the main C++ transport code.

The transport submodel of our application is the submodel that transport Lagrangian particles

in the atmosphere according to an advection field. The time step of this submodel is of the

order of the second (left bound of the model in Figure 2.4), and the total duration of the

phenomenon is usually days (right bound of the model in Figure 2.4). The lower bound of the

spatial scale is defined by the interplay between advection velocities and temporal time step

and is limited by the size of the sites of the domain ∆x (see Section 2.3, lower bound of the

model in Figure 2.4). The upper bound of the model is defined by the size of the simulation

domain, which is limited to hundreds of kilometres in this chapter (upper bound of the model

in Figure 2.4). Note that the transport of a volcanic ash cloud can span over thousands of

kilometres. This case is addressed in Chapter 5 with a multiscale implementation.

In the present model, we identify the following submodels :

Plume Steady state model computing the average velocity of particles in the plume and

geometry of the plume.

Transport Transport of Lagrangian particles in the atmosphere according to an advection

field.

Advection field Computation of the advection field, based on diffusion coefficients, particle

sedimentation velocity, plume velocity, umbrella cloud velocity and wind velocity.

Source term Insert particles at each time step in the transport domain at the vent position.

Atmosphere (only for variant b) Atmosphere characteristics from a reanalysis database.

The Submodel Execution Loop

We suppose that each discretized submodel implements a numerical solver in the form of

an iterative loop called SEL (Submodel Execution Loop). The steps of such a loop can be

abstracted with the following operators:

Initialization (Fi ni t ) This is where the state of the submodel domain is initialized.

Solver (S) This is where the model is applied to the domain.

Boundary (B) Is the operator that updates the boundary conditions.

Intermediate observation (Oi ) This operator provides the desired physical quantities during

the computation.

Final observation (O f ) This operator provides the desired physical quantities at the end of

the computation.
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sec hour day week months

m

10km

100km

Temporal 
scale

Spatial 
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1000km

1km
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Transport + Advection field

Plume

Source term

(a) SSM showing the submodels when using an analytical approximation for atmosphere conditions.
This corresponds to the gMML description in Figure 2.6a.
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(b) SSM showing the submodels when using a reanalysis database (here ECMWF-ERA-Interim) for
atmosphere conditions. This corresponds to the gMML description in Figure 2.6b.

Figure 2.4: SSM for the tephra transport applications. In both cases, the scale of advection
field overlaps with the scale of the transport model. In (a), atmosphere characteristics are
embedded in plume and advection field as a state equation, while in (b) it is a separate
submodel. plume is a steady-state model, so it does not have a time scale. source term is a
point in this model, it does not have a spatial scale.
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Chapter 2. The tephra transport model Tetras

Algorithm 2.1: General pattern of the SEL. f is the state of the submodel domain,
Fi ni t ,S,B ,Oi and O f are the operators of the SEL. Fi ni t ,S and B operators can modify
the state of the domain, while Oi and O f operators are used to retrieve state of the
domain, for example for exchanging data with other submodels through the network,
function call or writing results to disk.

1 f = f_init();
2 while not finished do
3 O_i(f);
4 f=S(f);
5 f=B(f);

6 end
7 O_f(f);

The graphical Multiscale Modelling Language

Submodels can interact through data exchange between SEL operators. The full coupling

pattern between submodels is given in a graphical specification language called gMML for

Graphical Multiscale Modelling Language. Figure 5.3 shows the components of a gMML

specification. The submodels are interconnected by components called conduits, each be-

ing connected to an out port from a submodel or mapper to an in port of a submodel or

mapper. Ports are software components of a submodel into which we can read or write data.

Figures 2.6a and 2.6b shows the gMML descriptions of the two tephra transport application

versions.

Coupling templates

MMSF defines various types of coupling templates [27]. By coupling templates, we mean

the structure of interaction and thus data exchange between submodels. Figure 2.7 shows

an example of the coupling template between transport and advection field which is a call-

release template. In our application, we identify the following coupling templates between

submodels :

Source term interaction with Transport is an interact coupling, where Oi operator of the first

submodel if connected to B of the second submodel. Source term exchange informations

with transport at each iteration.

Plume interaction with Advection field is a dispatch coupling, where O f operator of the first

submodel if connected to Fi ni t of the second submodel. Plume compute velocity profile

and geometry of the plume, possibly at different points in time, and send the result to

advection field.

Transport interaction with Advection field is a call-release coupling. Transport call advec-

tion field at each iteration, which computes the advection field.
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Figure 2.5: Components and markers considered in a gMML description. Mappers are compo-
nent that allows for data transformation between submodels. There is no mapper used in the
present application. See Chapter 5 for examples of the use of mappers. Circles representing
model parameters and output accounts only for physical parameters, numerical parameters
are not represented.

For the variant b of the application, we add the following coupling templates :

Plume interaction with Source term is a dispatch coupling. Plume computes the MER (Mass

Eruption Rate) and send it to source term.

Atmosphere interaction with plume and advection field are dispatch coupling. Atmosphere

retrieve atmospheric pressure, temperature and wind velocity from a reanalysis database

and makes it available to plume and advection field.

2.2.2 Details of the physical models

Now that we have defined the general structure of the application using MMSF formalisms, we

give the detail of the physical models involved. We have made the choice to keep the original

notation of each model to make it easier to refer to original publications.

Plume velocity and geometry

Strong plume For the strong plume, we rely on the integral plume model of Woods [123], based

on the buoyant plume theory. It is composed of a jet phase, where material is ejected from

the vent at high speed. Then, speed decrease and material continue to rise due to buoyancy.

When reaching the neutral buoyancy level (NBL), materials stop rising by buoyancy and starts

spreading laterally as a gravity current.

The model describes the velocity profile and radius of the vertically rising volcanic plume as a

17
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Transport

Plume

Advection field

Source term

(a) gMML description of the tephra transport application which is used with an analytical description
of the atmosphere and the Woods plume model. This corresponds to the design shown in Figure 2.4a.

Transport

Plume

Atmosphere

Advection field

Source term

(b) gMML description of the tephra transport application which is coupled with data from a reanalysis
database and Degruyter plume model. This corresponds to the design shown in Figure 2.4b.

Figure 2.6: gMML description of the two variants of the tephra transport application. Once
with atmosphere characteristics as a state equation integrated in plume and advection field
(a) and with atmosphere characteristics as a separated submodel (b). In (a) plume is not
connected to source term, because total erupted mass is given by model inputs, while in (b) it
is connected because mass eruption rate of plume is considered. This also means that source
term does not need to be connected to model parameters.
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advection fieldtransport

f=f_init

while(not stop)

O_i(f)
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f=B(f)
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Figure 2.7: Call-release coupling between transport SEL and advection field SEL.

function of the height. It considers a top hat velocity profile (the vertical velocity is the same

at a given height for any considered radius inside the plume).

The model is governed by the following set of differential equations :

d

d z

(
Cpθ

)= 1

βU L2

[(
CaT + U 2

2
−Cpθ

)
d

d z

(
βU L2)−αU L2g

]
(2.1)

1

β
= (1−n)

1

σ
+ nRgθ

P
(2.2)

n = 1+ (n0 −1)
L2

0U0β0

L2Uβ
(2.3)

Rg = Ra + (Rg 0 −Ra)

(
1−n

n

)(
n0

1−n0

)
(2.4)

Cp =Ca + (Cp0 −Ca)

(
1−n

1−n0

)
(2.5)

Jet phase model
dU

d z
=− U

8L

√
α

β
+ g (α−β)

βU
(2.6)

d

d z
(βU L2) = g (α−β)L2

U
−βL2 dU

d z
(2.7)

Convective phase model

dU

d z
= 1

βU L2

[
g (α−β)L2 −U

d

d z
(βU L2)

]
(2.8)
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d

d z
(βU L2) = 2kU Lα (2.9)

Where jet phase model is applied ifα(z) <β(z) (atmosphere density and plume density respec-

tively, variables of the model are listed in Table 2.2) and convective phase model otherwise.

This is a steady-state model. The set of differential equations is solved in the main C++ code

(see Section 2.4) with a simple Euler scheme before the transport model is applied.

Symbol Unit Definition
U m · s−1 plume vertical speed
L m plume radius
β kg ·m−3 plume density
Cp J ·kg−1 ·K −1 specific heat of the column material
θ K plume temperature
Rg J ·kg−1 ·K −1 specific constant of gas of the volcanic column
n gas mass fraction
z m height
g m · s−2 acceleration of gravity
σ kg ·m−3 pyroclasts density
α kg ·m−3 atmospheric density
Ca J ·kg−1 ·K −1 specific heat of air
P Pa atmospheric pressure
Ra J ·kg−1 ·K −1 specific gas constant of air
k entrainment constant
T K atmosphere temperature

Table 2.1: Symbols of Woods plume model.

The main parameters of the model are U0 the plume velocity at vent, L0 the plume radius at the

vent, n0 the gas mass fraction of exolved volatiles at vent and T0 the initial plume temperature.

A specific set of those parameters will produce a plume with a given height. While it is often

easier to have an estimation of the plume height rather than an estimation of those parameters,

a simple Monte Carlo inversion strategy (described in Chapter 4) is implemented allowing

retrieving a set of U0,L0,n0,T0 parameters compatible with a given value of plume height.

Weak plume When an eruption occurs in a windy atmospheric condition, the dynamic of

volcanic plume can be modified by higher entrainment of ambient air, potentially developing a

bent-over plume, or weak plume (Figure 2.1b). In that case, we rely on the model by Degruyter

and Bonadonna, described in [49] and [48].

Again, this model is a steady state integral plume model, describing a profile of radius and

velocity. This time, it does so along s, which is the curvilinear coordinate along the plume
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Figure 2.8: Geometry of a plume calculated with Woods model for U0 = 300m/s,L0 = 50m,n0 =
0.01,T0 = 1200K . Solid line is the height of the plume as a function of the radius. Horizontal
lines represent the top of the plume Ht , the NBL Hb and the base of the umbrella cloud Hcb .
The figure represents the radius of the plume as a function of the height, with the height on
the y-axis.

trajectory. The governing equations of this model are

d

d s
(ρd ur 2φd ) = 2uεrρa (2.10)

d

d s
(ρv ur 2φv ) = 0 (2.11)

d

d s
(ρsur 2φs) = 0 (2.12)

d

d s
(ρu2r 2) = g (ρa −ρ)r 2 sinϕ+ v cosϕ

d

d s
(ρur 2) (2.13)

ρu2r 2 dϕ

d s
= g (ρa −ρ)r 2 cosϕ− v sinϕ

d

d s
(ρur 2) (2.14)

d

d s

(
g
ρur 2(cθ− caθa)

ρa0caθa0

)
=− ρ

ρa0
ur 2N 2 sinϕ (2.15)
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Figure 2.9: Plume vertical velocity as a function of the height calculated with Woods model for
U0 = 300m/s,L0 = 50m,n0 = 0.01,T0 = 1200K . Ht is defined by the height at which the velocity
drops to zero. The figure represents averaged velocity of the plume material as a function of
the height, with the height on the y-axis.

where N is the atmospheric buoyancy frequency defined as

N 2 = g 2

caθa0

(
1+ ca

g

dθa

d z

)
(2.16)

and

φd +φv +φs = 1 (2.17)

(ρdφd Rd +ρvφv Rv )θ = P (2.18)

ρ = ρdφd +ρvφv +ρsφs (2.19)

c = cdρdφd + cvρvφv + csρsφs

ρ
(2.20)
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Figure 2.10: Atmosphere and plume bulk density calculated with Woods model for U0 =
300m/s,L0 = 50m,n0 = 0.01,T0 = 1200K . Hb is the NBL where plume bulk density becomes
equal to the atmosphere density at high altitude and is here estimated as Hb ≈ 0.7Ht [25].
For the air density computation, values at sea level are T0 = 288K ,P0 = 101325Pa. The figure
represents bulk density of the plume and air density as a function of the height, with the height
on the y-axis.

The entrainment velocity uε is defined as

ue =α|u − v cosϕ|+β|v sinϕ| (2.21)

and the pressure along the plume

dP

d s
=−ρa g sinϕ (2.22)

and the position of the centre of the plume

d x

d s
= cosϕ (2.23)

d z

d s
= sinϕ (2.24)

Again, this is a steady-state model that has to be solved before the transport model. It is solved

by a separate Matlab package provided by the authors of the model, and its output read by the
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main C++ code (see Section 2.4).

Symbol Unit Definition
s m plume centreline coordinate
x m horizontal coordinate
z m height
ϕ r ad angle between x and plume centreline
ρd kg ·m−3 density of dry air in plume
ρv kg ·m−3 density of water vapour in plume
ρs kg ·m−3 density of solids
ρ kg ·m−3 bulk plume density
ρa kg ·m−3 atmosphere density
φd volume fraction of dry air in plume
φv volume fraction of water vapour in plume
φs volume fraction of solids in plume
u m · s−1 plume centreline velocity
v m · s−1 horizontal wind velocity (considered constant)
r m plume radius
g m · s−2 acceleration of gravity
cd J ·kg−1 ·K −1 specific heat capacity at constant pressure of dry air
cv J ·kg−1 ·K −1 specific heat capacity at constant pressure of water vapour
cs J ·kg−1 ·K −1 specific heat capacity at constant pressure of solids
c J ·kg−1 ·K −1 specific heat capacity at constant pressure of the plume
ca J ·kg−1 ·K −1 specific heat capacity at constant pressure of the atmosphere
Rd J ·kg−1 ·K −1 specific gas constant of dry air
Rv J ·kg−1 ·K −1 specific gas constant of water vapour
θ K plume temperature
θa K atmosphere temperature
α radial entrainment coefficient
β wind entrainment coefficient

Table 2.2: Symbols of Degruyter and Bonadonna plume model.

Gravity current

When plume material reaches the NBL, it continues to rise up to Ht due to momentum, and

then starts spreading laterally as a gravity current. For the description of the velocity of this

radial current, we rely on the umbrella cloud model of Rossi from [100], which is

Ug c =
λNVwi nd

2r
cos(θ)R2 + UgλN R2

4

1−e−
r 2

b2

r


1
2

(2.25)

where λ≈ 1 is a correction factor, N the atmospheric buoyancy frequency, Vwi nd wind speed
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Figure 2.11: Example of umbrella cloud velocity as a function of the radius with plume charac-
teristics computed from Woods model with parameters U0 = 300m/s,L0 = 50m,n0 = 0.01,T0 =
1200K .

at umbrella cloud height, θ the angle of the plume centreline with horizontal at the NBL, r

the distance from the centre of the umbrella cloud, R the radius of the plume at NBL, Ug the

speed of the plume at NBL and b the characteristic width of the Gaussian profile of a plume,

defined as [45]

R2

b2 = 2 (2.26)

For a strong plume, Ht is the top of the plume, Hb ≈ 0.7Ht is the NBL, Hcb ≈ 0.8Hb is the height

at which particles starts to sediment from umbrella cloud base [25]. It has been observed that

h ≈ 0.3Ht , where h is the thickness of the umbrella cloud [31]. Umbrella cloud is considered

ranging from Hcb to Hcb +0.3Ht .

For the weak plume, we consider the same proportions, and that Hb is the height at which the

angle θ is 0. This model is solved at each iteration of the transport model.

Particles

Modelled particles are tephra particles, which designates solid material of all sizes ejected

during a volcanic eruption. Tephra is compounded of clasts (fragments of rocks), whose sizes

are noted using the Krumbein φ scale [76]

φ=− log2
D

D0
(2.27)
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Figure 2.12: TGSD estimated with Voronoi tesselation for Pululagua 2450 BP eruption [117],
with one class per φ size (a) and density (b) of volcanic particles.

where φ is the grain size in phi units, D is the diameter of the rock in mm and D0 is a reference

diameter of 1mm. Particles are classified in groups of the same density and size called classes

or families of particles.

Total grain size distribution and density The total grain size distribution (TGSD) denotes the

distribution in φ size of particles and their corresponding density. Usually, TGSD is expressed

in percent of the total mass, and can be estimated from field measurement using various

techniques, including Voronoi tesselation [19, 111].

Sedimentation velocity When a particle is released in the atmosphere, it accelerates due to

gravity, and reaches a constant speed due to air resistance. This velocity is called the terminal

velocity of the particle. While the distance to reach this terminal velocity is relatively small for

considered particles (130m for a 1cm spherical particle of density 2700 kg
m3 falling at sea level

[4]) compared to the height of volcanic plumes (several kilometres), we consider that particles

reach instantaneously their terminal velocity.

Sedimentation speed of particles can be approximated from fluid theory as

vt =
√

4g deq (ρp −ρ f )

3ρ f CD
(2.28)

where g is the acceleration of gravity, deq is the diameter of the sphere surrounding the

particle (the particle diameter for a sphere), ρp the density of the particle, ρ f the density of the

surrounding fluid and CD the drag coefficient. CD is the most difficult parameter to determine,
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Figure 2.13: Terminal velocity of particles ranging from a size of −7ϕ to 10ϕ in an atmosphere

at sea level (ρa = 1.225 kg
m3 , µ= 1.789×10−5 N s

m2 ) and particles of density 2500 kg
m3 .

as it depends on the particle Reynolds number, which is defined as

Re =
ρ f |vr |deq

µ
(2.29)

where vr is the relative velocity of the particle to the surrounding fluid.

In this work, we rely on the formulation of a drag coefficient of Bagheri [3], which gives an

expression valid for any regime Re < 3×105 and account for non-spherical particles. Particles

are considered spherical in the present work. The drag coefficient is expressed as

CD = 24kS

Re

(
1+0.125(Re kN /kS)2/3)+ 0.46kN

1+ 5330
Re kN /kS

Re < 3×105 (2.30)

where

kS = 1

2

(
F 1/3

S +F−1/3
S

)
(2.31)

kN = 100.45(− logFN )0.99
(2.32)

FS = f e1.3

(
d 3

eq

LI S

)
(2.33)

27



Chapter 2. The tephra transport model Tetras

FN = f 2e

(
d 3

eq

LI S

)
(2.34)

L, I and S are the dimensions of the particle and are respectively L : longest, I : intermediate

and S : shortest dimension of the particle. f and e are form factors, f is flatness and e is

elongation, defined as

f = S

I
(2.35)

e = I

L
(2.36)

For spherical particles,

FS = FN = 1 (2.37)

As

Re = f (vt ) and vt = f (Re ) (2.38)

an iterative scheme is used to compute vt , where vt is first computed with Re = 1, and vt

computed again from this new value, and the process is repeated until Re remains almost the

same between two iterations. The convergence of this procedure is usually fast (fewer than

four iterations).

Atmospheric conditions

Previously described models need atmospheric conditions, such as atmospheric temperature

and pressure. For this, it is either possible to rely on analytical approximation or on reanalysis

database. It would as well be possible to use data from weather forecasting models, but this

possibility has not been investigated in this work.

Weather reanalysis databases Weather reanalysis is the task of interpolating atmospheric

condition data from sensors to give values of atmospheric conditions all over the globe at any

time. For example, the ECMWF-ERA-Interim [47] provides data for any point on the globe

from 1979 to 2019 with a time resolution of 12 hours and a spatial resolution of approximately

80km.
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It’s replacement the ECMWF-ERA5 [15] database provides data from 1979 to present with a

30km grid and vertical resolution of the atmosphere over 137 levels from the ground to 80km

on an hourly basis [69]. Data from 1950 to 1978 are available in preliminary version (as of May

2021). Another widely used database is the NOAA NCEP/NCAR reanalysis database which

provides data every six hours on a 2.5◦ grid from 1948 to present [75, 88].

Analytical approximations Weather sensing only started last century, and for eruptions that

occurred in the distant past, it is necessary to have models in order to approximate atmosphere

characteristics. Regarding wind speed, we rely on the approximation proposed by [72], with a

linear increase of wind velocity from sea level to the tropopause where the wind is maximum,

and then a linear decrease of the speed of the wind up to the stratosphere where the wind is

set to 10% of the maximum wind speed :

uw (z) =



z

Ht p
·uwmax for z ≤ Ht p[

0.9

(
1−

(
z −Ht p

Hss −Ht p

))
+0.1

]
·uwmax for Ht p < z ≤ Hss

0.1 ·uwmax for Ht p > Hss

(2.39)

where Ht p is the height of the tropopause, Hss is the height of the stratosphere and uwmax

is the maximum wind speed (at the tropopause). Figure 2.14 shows an example of the wind

speed profile with this model. For atmospheric pressure and temperature, we use the same

approximation as [123]. With the temperature

T (z) =


T0 −ωt z for z ≤ Ht p

T0 −ωt Ht p for Ht p < z ≤ Hss

T0 −ωt Ht p +ωs (z −Hss) for z > Hss

(2.40)

and the pressure

P (z) =


P0

T (z)
T0

g
Raωt for z ≤ Ht p

P0
T (z)

T0

g
Raωt exp

( −g(z−Ht p )
Ra(T0−ωt Ht p )

)
for Ht p < z ≤ Hss

P0
T0−ωt Ht p

T0

g
Raωt exp

( −g(Hss−Ht p )
Ra(T0−ωt Ht p )

)
T (z)

T0−ωt Ht p

−g
Raωs for z > Hss

(2.41)

with ωt = 6.5e−3K /m the temperature gradient in the troposphere and ωs = 2e−3K /m the

temperature gradient in the stratosphere. Finally, air density is computed with

ρa(z) = P (z)

RaT (z)
(2.42)
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Figure 2.14: Wind velocity approximated with a maximum wind speed of 50m/s, Ht p =
10000m, Hss = 20000m. Ht p is the height of the tropopause, Hss is the height of the strato-
sphere.

Figure 2.10 shows an example of air density with those models.

2.3 The Lagrangian on grid transport model

The particle transport submodel (named transport in the SSM and gMML descriptions, Fig-

ures 2.4 and 2.6) is the most numerically intensive submodel of the application. Several

techniques like lattice Boltzmann, probabilistic multi-particle cellular automata or Lagrangian

methods, can be used to model point particle displacements in an advection field [104, 36, 84,

113]. Cellular automata are discrete Eulerian models where the simulated space is subdivided

along a Cartesian grid. Each grid site stores the number of particles residing on this site for

every particle class, together with the local advection field. A probabilistic scheme is then

applied to transport particles from one site to another at each iteration. This kind of model

has the advantage of facilitating parallelization. However, the probabilistic nature of particle

motion creates an anisotropic numerical diffusion ([112]).

The lattice Boltzmann method is another technique for modelling an advection-diffusion

process. However, its numerical stability and accuracy depend on simulation parameters

([108]). Cellular automata and lattice Boltzmann methods are compared in [112].

From the pure Lagrangian perspective, the characteristics of each particle are considered

individually. This kind of model doesn’t generate any numerical diffusion while particles are

not constrained to stay at grid positions on the domain sites (Figure 2.15). This allows a precise

treatment of diffusion, regardless of the spatial integration step. However, the drawback is that

parallelization is more tedious when particles can interact.
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(a) Representation of the Lagrangian on grid
model without the velocities.

~ul

~ul

~ue

(b) Differentiation between Eulerian and La-
grangian velocities.

Figure 2.15: Representation of the Lagrangian on grid model. Gray lines represent the grid,
gray points are the centre of the sites, black points are the particles and dotted lines represent
association between particles and their respective sites.

For these reasons, we chose a hybrid representation defined as a Lagrangian on grid model. In

this case, particles are moved according to a Lagrangian model, but remain attached to sites in

space (this representation is comparable to the one used in the cell linked-list algorithm [93]).

This method combines the simplicity of pure Lagrangian and cellular automata models. As for

a pure Lagrangian method, the Lagrangian on grid method doesn’t generate any numerical

diffusion. Moreover, this method remains unconditionally stable like cellular automata and

Lagrangian methods but unlike lattice Boltzmann methods.

The Lagrangian on grid model represents space as a Cartesian grid. The grid nodes are the

domain sites, each site storing the associated particles and applying the advection field to

them. But in contrast to a cellular automata model, each particle stores a velocity as well as a

location information (the displacement with respect to the site it is linked to).

Thus, the position of a particle at time t can be written ~r (t) =~rs(t)+~rp (t) with ~rs the site

position to which the particle is linked and~rp the particle displacement relative to this site.

Similarly, the velocity applied to a particle can be written ~u(t) = ~ue (t)+~ul (t) with ~ue the

Eulerian velocity (imposed by the site) and ~ul the Lagrangian velocity (specific to the particle).

Then, when a particle is moved, we compute its new position after a time step∆t via~r (t+∆t ) =
~r (t)+∆t ~u(t). If the particle displacement is such that ‖~r (t +∆t)−~rs(t)‖ ≤ ∆x

2 with ∆x the

distance between two sites, then~rs(t +∆t) =~rs(t) (the particle remains linked to the same

site). Otherwise the particle is linked to the closest site (Figure 2.15).

In the Lagrangian on grid model, no numerical diffusion is generated. In order to add some

diffusion, we apply random velocities ~ur to each particle (~ur a and ~ur p ) in order to generate a

given diffusion coefficient (see Appendix A for details).
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Chapter 2. The tephra transport model Tetras

2.4 Tephra transport simulator

The implementation of the model decribed in this chapter is concretely separated in three

main parts :

• A Python script that gathers data from ECMWF-ERA-INTERIM database. It embeds the

amtosphere submodel. Data gathering from NOAA NCEP/NCAR database has not been

automated.

• A Matlab application that solves the Degruyter plume model, provided by the authors of

the model. It embeds the plume submodel when working with Degruyter plume model.

• A C++ application named Tetras that solves the other described models. If necessary, it

reads outputs from the aforementioned softwares. It embeds the plume submodel when

working with Woods plume model, as well as the source term, transport and advection

field submodels.

Tetras is the software on which the main development effort has been put among those

components. It is structured as a generic C++ library to simulate particles in an advection field

by applying the Lagrangian on grid method parallelized on a distributed memory architecture

(PIAF, Particles In Advection Field). Tetras was then built on top of this library.

PIAF and Tetras have a modular structure that allows reusing software components and data

structures for custom particle advection applications. For example, velocities are defined as

function objects, which are data structures that can be called as functions. We have been able

to directly reuse the definition of the velocities to implement volcano-lagrangian-seer, which

is a pure Lagrangian TTDM described in Chapter 3. Implementation details of PIAF and Tetras

are given in Chapter 5, Section 5.2.

2.4.1 Adaptive time step

In our application, we can decrease the number of iterations (and thus the computation time)

by increasing ∆t . Nevertheless, a movement for a particle is valid if the particle stays linked to

the same site or moves to a direct neighbour. Consequently, the choice of ∆t is limited by the

choice of the grid spacing ∆x and by the velocities ~u.

We wish to choose the largest possible ∆t for a given ∆x. Since this value may vary over time,

we propose to dynamically adapt ∆t using the following simple heuristic :

• Every τ iterations, ∆t is increased by a small quantity δt .

• If a particle makes an invalid movement, ∆t is decreased by δt and the iteration can-

celled and performed again.

In order to cancel an iteration, we keep the state of the system unmodified using temporary
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buffers until the iteration is complete. The behaviour of the simulator with adaptive ∆t is

summarized in algorithms 2.2 and 2.3.

Algorithm 2.2: Main algorithm of the simulation, we suppose that data are shared
between the main algorithm and the function tryMove()

1 while particles in domain do
2 if iteration mod τ == 0 then
3 ∆t += δt ;
4 end
5 while not tryMove() do
6 ∆t -= δt ;
7 end
8 deposit particles of terrain buffer on the terrain; put all particles of repository buffer

into repository; swap domain and domain buffer;
9 end

2.4.2 Parallelization

For the implementation to scale well with the amount of data, our library has been parallelized

using the MPI (Message Passing Interface) library. In our case, we chose to split the domain into

blocks of sites, which are distributed across multiple cores1. We implemented two solutions :

a 1D domain splitting and a 3D block cyclic domain splitting (Figure 2.16). The first consists

in slicing the domain along a given axis, with each core taking care of one domain slice.

The latter distribution allows to deal better with an inhomogeneous distribution of particles

in the domain which would otherwise lead to load imbalance between the cores and thus

performance loss. Indeed, since the domain is split across multiple cores and there is a unique

injection point (in the case of the volcano model), at the beginning of a simulation, particles

tend to remain linked to sites managed by a single core.

We want to assign each core a certain number of small domain blocks, distributed over the

entire domain. We thus hope to obtain a better load balance as each core will have to manage

blocks located at different places in the domain. The technique described here is comparable

to the 2D block cyclic matrix distribution described in [92].

We first arrange the cores along a virtual 3D grid and thus assign each core an index (px , py , pz )

on the grid. Given the number of cores np, we factor np writing npx ·npy ·npz = np (it may

occur that only a 1D or 2D structure is constructed). To a core of rank p (0 ≤ p ≤ np −1), we

assign a grid index (px , py , pz ) with px = p mod npx , py = p mod (npx ·npy )
npx

and pz = p
npx ·npy

.

1We recall that we use the term "core" to denote a sequential computing unit.
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Chapter 2. The tephra transport model Tetras

Algorithm 2.3: Algorithm of the function tryMove()

1 forall site in domain do
2 compute velocity at the site; if site is in contact with ground then
3 forall particle in site do
4 put particle in terrain buffer;
5 end
6 else
7 forall particle in site do
8 compute velocity of the particle; compute new position of the particle; if new

position is valid then
9 if particle is outside the domain then

10 put the particle in repository buffer;
11 else
12 put the particle in domain buffer;
13 end
14 else
15 return false;
16 end
17 end
18 end
19 end
20 return true;
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2.5 Validation of the physical model with field observations

(a) Unidimensional domain splitting
(b) Two-dimensional block cyclic domain split-
ting

Figure 2.16: Illustration of (a) unidimensional domain splitting and (b) two-dimensional block
cyclic domain splitting with four cores, each colour representing a different core. The imple-
mented three-dimensional block cyclic domain splitting is an extension to three dimensions
of the two-dimensional block cyclic distribution presented here. Figures are inspired from
[92].

We now discuss the 3D domain block splitting and the assignment of blocks to the cores.

Let sx , sy , sz and hx ,hy ,hz be the dimensions respectively of the domain and of a block. The

number of blocks nbx ,nby ,nbz in each dimension is given by

(nbx ,nby ,nbz ) =
(
d sx

hx
e,d sy

hy
e,d sz

hz
e
)

(2.43)

Note that blocks on the boundary of the domain may be smaller than hx ·hy ·hz .

We next decide how to allocate the blocks to the cores. The domain blocks are assigned

cyclically to the cores along each dimension. More precisely, a site with global index (rx ,ry ,rz )

will belong to a block with index b =
(

rx
hx

,
ry

hy
, rz

hz

)
. It also has a local index inside the block as in

the case of the 1D splitting. This block will be managed by the core with index

(px , py , pz ) = (bx mod npx ,by mod npy ,bz mod npz ) (2.44)

A core with index (px , py , pz ) takes care along the x-axis of bnbx /npxc blocks if px < nbx

mod npx , and dnbx /npxe blocks otherwise. Similar expressions hold along the y- and z-axes.

2.5 Validation of the physical model with field observations

We ran our simulations on three systems : the Baobab and Yggdrasil clusters of the Geneva’s

higher education institutions and the Piz Daint supercomputer of the Swiss National Super-

computing Center.
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We compared the model output with field data for two eruptions characterized by very different

plume dynamics and interaction with the surrounding wind field. The first is the 2450 BP

eruption of Pululagua volcano (Ecuador)[117], which produced an approximately 25km high

strong plume above a vent located approximately at and altitude of 2500m that rose in the

absence of wind (plume heights are here all indicated as above the vent). The second is the 17

June 1996 eruption of Ruapehu volcano (New Zealand)[20], which produced an approximately

7km high weak plume above a vent located at approximately 3000m in a wind field with

an average speed of 24m · s−1 at the tropopause. The associated field observations used for

comparing computed and observed mass per unit area (MPA) include:

• the geographical position (UTM WGS84 for Pululagua or NZGD1949 for Ruapehu);

• the total deposited mass per unit area MPA kg ·m−2;

• the proportion of MPA for each particle family.

Some crucial input parameters are reported in the literature or can be derived from external

models (e.g., TGSD, erupted mass, wind profile and atmospheric conditions), while others

(mostly plume and diffusion parameters) are more difficult to define. In particular, the TGSD is

reported by [19] for Ruapehu (i.e., Mdφ and sorting of -0.8 φ and 2.4, respectively) and by [117]

for Pululagua (i.e., Mdφ and sorting of 0.2 φ and 1.9, respectively), while [117] suggests a total

erupted mass of 4.5×1011kg for Pululagua. Given that the Ruapehu eruption was observed

and consisted of two sustained events of 4h30 and 2h respectively, we derived the total mass

(i.e., 1010kg ) directly from the mass eruption rate (given by the plume model) combined with

the total eruption time. This result is in agreement with the total erupted mass of 5×109kg

derived by [20] based on field data. We used the NOAA NCEP/NCAR reanalysis database for

the wind and atmospheric data, which provides four daily profiles averaged on a 2.5◦×2.5◦

grid [75, 88]. For this particular test case, we used wind data at the vent location, and applied

it to the whole domain. It is worth noting that, as shown by [20], the spreading of the Ruapehu

cloud was strongly controlled by wind advection and, therefore, gravitational spreading was

neglected. In contrast, the spreading of the Pululagua cloud was controlled by buoyancy given

that the eruption occurred in absence or weak atmospheric wind.

Simulations have been performed based on Woods plume model (for Pululagua) and Degruyter

plume model (for Pululagua and Ruapehu). For simulations based on Degruyter plume model,

the strategy adopted was to derive the plume and diffusion parameters by stochastically

sampling appropriate variation ranges and identify the values associated with the best fit of

observed MPA. Parameter exploration for each eruption was made with : U0 ∈ [20,300]m · s−1,

r0 ∈ [10,100]m, Da ∈ [100,10000]m2 · s−1, Dp ∈ [1000,30000]m2 · s−1. For Ruapehu, T0 = 1273K

comes from [48] and n0 has been set to 0.03. For Pululagua, T0 was sampled in [1000,1200]K

and n0 set to 0.01. Table 2.3 shows the best-fit parameters for the simulations. Plume heights

above vent based on these best-fit parameters are 25km and 7km for Pululagua and Ruapehu,

respectively, which are in good agreement with observations [117, 19]. Cloud dispersal was

initialized considering plume height above vent (i.e., ∼ 3km for both Pululagua and Ruapehu
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2.5 Validation of the physical model with field observations

Symbol Unit 2450 BP Pululagua 1996 Ruapehu
U0 m · s−1 300 40
r0 m 50m 50
T0 K 1200 1273
Da m2 · s−1 300 1000
Dp m2 · s−1 3000 4500

Table 2.3: Results of parameter exploration. These values are used for the presented simulation
outputs.

volcanoes).

A quantitative comparison between results of simulations based on Degruyter plume model

with observed MPA for both eruptions is shown in Figure 2.17 and Figure 2.18. In particular,

the computed isomass map for the 1996 Ruapehu eruption well describes the strong wind

advection (Figure 2.17). The associated plume being strongly bent-over by the wind, most

lapilli and coarse ash particles fell in proximal area ([20]). Very proximal sedimentation

couldn’t be reproduced because of the lack of topography in our model. Topography would

indeed strongly affect particle deposition up to 20km from vent.
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Figure 2.17: Simulated contour map of MPA (coloured lines) and observed MPA (coloured
circles) for the 2450 BP Pululagua deposit (a) and the 1996 Ruapehu deposit (b).

For simulations based on Woods plume model, we can also determine plume parameters

through a Monte Carlo inversion strategy applied to the plume model which allows obtaining

eruption parameters based on a desired plume height (here ≈ 25km). This procedure is

described in Chapter 4, Section 4.2.
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Figure 2.18: Comparison of computed and observed MPA values for the Pululagua 2450 BP
(a) and 1996 Ruapehu (b) eruptions. In the case of a perfect match between computed and
observed values, dots would be located on the blue line. Dashed lines represent over or under
estimations of 5 and 1/5 times the observed values.
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Figure 2.19: (a) Deposited mass plotted as a function of distance from vent for Pululagua erup-
tion simulation with Woods plume model. (b) Comparison of measured MPA with computed
MPA for this same eruption simulation. Colour of dots is a function of distance from vent (in
m). Red dots are distal points and blue dot proximal points.

Figure 2.19 shows results of a simulation based on the Woods plume model with U0 = 318m ·
s−1,r0 = 52m,n0 = 0.01,T0 = 1256K . Dp = 1000m2 · s−1 and Da = 300m2 · s−1 have been set

empirically. As the deposit is considered axisymmetric, we plot the simulated deposit and

measured deposit as a function of distance from vent. We see that a drawback of the present

model is its inability to reproduce proximal deposits, where simulated deposited mass next

to the vent is very high, and then becomes underestimated several kilometres away from the

vent.
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2.6 Performance models

A dedicated sensitivity analysis, following [103], was performed to optimize the number

of particles used in the simulations. In fact, the total number of particles corresponding

to the erupted mass and the particle characteristics given in this section would be of the

order of magnitude of 1022 to 1023 particles for Ruapehu and Pululagua simulations. Current

computers cannot deal with such a number of particles injected in the simulator.

We therefore resorted to a statistical sampling approach. We injected a much smaller number

of particles, and then scaled the output to get the correct number. Running our simulations

with more than 106 particles proved to be statistically significant. We used a total of 18 ·106

particles for 2450 BP Pululagua simulations and 23 ·106 particles in 1996 Ruapehu simulations.

For a complete description of the procedure, see Appendix A.

The input TGSD of Pululagua and Ruapehu consider respectively 18 and 23 classes of particles.

In some cases, the number of classes of the TGSD is too low and particles of the same class

tends to deposit in groups on the ground. For such cases, we rely on an interpolation strategy

that allows us to increase the number of classes while keeping the same TGSD profile. For

example, this allows using 180 classes of particles instead of 18 for Pululagua.

Note that prior to running our volcano simulations, we validated the advection-diffusion

process (also in Appendix A).

2.6 Performance models

The main goal of a performance model is to characterize the execution time of a simulation in

terms of its parameters. This execution time will, of course, depend on the physical model

implemented. A parallel performance model will provide insight into the efficiency of the

parallel implementation with respect to the computational resources involved. We have

carried out a performance study with both simulation cases described before. Performance

measurements for Pululagua were made with square domains with the vent located in the

middle, and for Ruapehu with an elongated domain in the north direction with the vent located

near the south-west corner of the domain, while the wind was blowing towards north-east.

The performance model focuses on the submodels transport and advection field, which are

implemented as a monolithic code within Tetras and are the most computationally intensive

submodels of the overall application.

2.6.1 Choice of the adaptive time step

It is important to carefully choose δt to get an optimal performance improvement. We observe

the evolution of execution time as a function of δt s. Knowing that the initial value of ∆t ≈ 0.5s

at the beginning of the simulation, we empirically choose δt values ∈ [0.001 : 3.0]s (Figure 2.20).

We see that execution time falls steeply for small values of δt , then becomes stable and finally

begins to grow again slowly as δt increases in [0.5 : 3.0]s. The latter phenomenon occurs when
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Figure 2.20: Execution time and number of iterations for a sequential simulation of the 2450
BP Pululagua eruption. In this simulation, 18×106 particles are injected into a domain of size
60km ×60km ×30km. Parameter values: ∆t = 0.5s initially, ∆x = 500m, δt ∈ [0.001 : 3.0]s.

more and more adjustments are rejected.

Now a crucial question is to determine if the dynamic adjustment of ∆t involves a significant

overhead. Figure 2.20 shows the evolution of the number of iterations until the end of the

simulation as a function of δt as well as the corresponding simulation time. The curves are

very similar.

This supports the claim that the use of an adaptive ∆t scheme decreases the number of

iterations without adding a significant amount of work when the value of δt is properly

chosen.

2.6.2 Computational work

The total work performed in the simulation is the sum of the work Wi done at each iteration i ,

plus the initial and final work (W (i ni t ) and W ( f i nal )). With n(i t ) the total number of iterations,

we thus have

W (tot ) =W (i ni t ) +W ( f i nal ) +
n(i t )∑
i=1

Wi (2.45)
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The work Wi consists of several parts which are :

• the work required for the computation of Eulerian velocities n(s) ·W (ed) with W (ed) the

work to compute one site and ns the number of sites in the domain;

• the work to compute the Lagrangian velocities and to move the particles n(p)
i ·W (lm)

with W (l m) the work to compute and move one particle, and n(p)
i the number of particles

in motion at iteration i ;

• the work involved for the particles that leave the domain, which can be neglected as this

work occurs only once for each particle.

Thus, we can write Wi = n(s)W (ed) +n(p)
i W (lm)

Equation (2.45) can be rewritten (by taking into account that W (i ni t ) +W ( f i nal ) ¿∑n(i t )

i=1 Wi )

W (tot ) =
n(i t )∑
i=1

(n(s)W (ed) +n(p)
i W (lm))

= n(i t )n(s)W (ed) + (
n(i t )∑
i=1

n(p)
i )W (l m)

= n(i t )(n(s)W (ed) +n(p)W (lm))

(2.46)

where n(p) = 1
n(i t )

∑n(i t )

i=1 n(p)
i is the average number of particles in motion.

2.6.3 Sequential performances

We can directly deduce the sequential complexity from Equation (2.46).

Given the total work W (tot ) (in clock cycles) performed in a simulation and F r eq[H z] the

frequency of the core, the total computation time for a sequential execution is

T (tot ) = W (tot )

F r eq
(2.47)

T (tot ) = n(i t )(n(s)T (ed) +n(p)T (l m)) (2.48)

with n(s) the number of domain sites, n(p) the average number of particles in motion, n(i t ) the

number of iterations, and the times T (ed) =W (ed)/F r eq and T (l m) =W (lm)/F r eq .

We verified on some simulations that the execution time T (tot ) indeed depends linearly on

n(p) and n(s). Note that the average number of particles in motion in a simulation is itself

proportional to the total number of particles injected in the domain.
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We first observed the effect of the number of particles on the execution time. We fixed ∆x, ∆t

and n(i t ) as well as the domain size (we didn’t use the adaptive time step in this case) and varied

the number of particles injected in the domain in order to confirm the linear dependence of

the execution time on the number of particles (data not shown).

Next, we examined the effect of the number of domain sites on the execution time. Here, the

number of injected particles, the domain size and the number of iterations were kept constant,

while the number of sites was varied. Here again, we observed a linear dependence between

the number of sites and execution time (data not shown).

Finally, we express the execution time T (tot ) in terms of the time step∆t and the lattice spacing

∆x. If we assume the physical time and ∆t are constant in the simulation, then the number of

iterations is directly proportional to 1
∆t . Moreover, the number of sites n(s) can be expressed in

terms of volume V of the domain and ∆x as n(s) =V /(∆x)3.

By taking this into account and rewriting Equation (2.48), we get

T (tot ) =C
1

∆t

((
1

∆x

)3

·V T (ed) +n(p)T (l m)
)

(2.49)

for some constant C .

With the adaptive ∆t scheme, the value of ∆t is no longer a constant. Recall that the goal

of this optimization is to allow the fastest particles in the domain to perform the largest

possible movement. Their motion is, however, limited by ∆x. This hints towards the number

of iterations n(i t ) not being anymore proportional to 1
∆t , but to 1

∆x . Therefore, we will assume

that the number of iterations n(i t ) in Equation (2.48) is no longer proportional to 1
∆t , but to 1

∆x .

By taking that into account, we get the following expression

T (tot ) = Ĉ
1

∆x

((
1

∆x

)3

·V T (ed) +n(p)T (l m)
)

(2.50)

for some constant Ĉ .

To verify the model, we performed several simulations to record the execution time as a

function of ∆x with fixed physical simulation time and fixed number of particles injected

into the domain. The adaptive ∆t scheme is used. The results are shown in Figure 2.21. By

adjusting the constants using the curve_fit function of scipy2, we can make the theoretical

curve fit the simulation data well. It seems therefore that the proposed performance model is

satisfactory.

2Non-linear least squares method optimized with the Levenberg-Marquardt algorithm.
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Figure 2.21: Sequential execution time of the simulation of the 2450 BP Pululagua eruption as
a function of ∆x with a domain of size 60km ×60km ×30km and 1 ·105 particles, using the
adaptive ∆t scheme. Theoretical curve with Ĉ ·T (ed) ≈ 1.411 ·10−1 and Ĉ ·T (lm) ≈ 6.237.

2.6.4 Parallel performances

In an ideal context, the execution time of a parallel implementation should equal the se-

quential time divided by the number of cores used. Unfortunately, the performances and

scalability of a parallel application are limited mainly by three factors: network communi-

cations, work overhead and load imbalance. Their impact must be taken into account in a

parallel performance model.

Communication time

For simplicity, we consider that all cores can communicate at the same time. In the block cyclic

splitting of the domain, each domain block has 26 neighbours, implying that each core has

virtually 26 neighbours. At each iteration, each core sends and receives from its neighbours

a particle packet. Obviously, we don’t know how many particles will travel from a domain

block to another, but we can assume that for a given physical model, the average number

of particles n(p) travelling between domain blocks at each iteration, is proportional to the

number of particles injected into the domain.

So each core must send data to its 26 neighbours, first sending the data size, before transmitting

the data itself. This implies that each communication pays 52 times the latency. The rest of

the communication time is on average directly proportional to the number of particles in the

domain. However, the latency contribution can be neglected if n(p) is large enough, which is
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the case in our simulations. We will thus approximate the communication time by

T (com) =C ·n(p) (2.51)

for some constant C .

Work overhead

Each particle that travels from a domain block to another is placed into a particle packet before

being transmitted. Upon reception, the particles received must be inserted at the correct

location in the recipient’s local domain. We thus must add a term for this work, here again

proportional to n(p)

T (over ) =C ·n(p) (2.52)

for some constant C .

Load imbalance

Load imbalance is actually the factor that impacts the most performances in this application.

In order to characterize load imbalance, let’s define two notions: real work and apparent work.

Real work is simply the sum of the work achieved by each core during the execution of the

algorithm, in other words, the sum of all clock cycles consumed by the CPUs during the

computation. This can be written

W (r ) =
n(i t )∑
i=1

n(pr oc)∑
j=1

Wi j (2.53)

where Wi j is the work performed by core j ∈ {1, . . . ,n(pr oc)} at iteration i . Note that the total

work Wi at iteration i is given by Wi =∑n(pr oc)

j=1 Wi j .

cores must synchronize with each other at each iteration. Therefore, at each iteration, all cores

must wait for the core with the heaviest load. It thus appears as if all cores seems had the same

load as the core with the heaviest load at each iteration. We now define the apparent work as

W (a) = n(pr oc) ·
n(i t )∑
i=1

max
j=1,...,n(pr oc)

Wi j (2.54)
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Then a natural indicator of load balance is the ratio

E q = W (r )

W (a)
(2.55)

Load imbalance is then simply defined as the inverse of load balance.

In order to illustrate these definitions, let’s consider a simulation with 1D domain splitting

over 16 cores. The graph of real work W (r ) is shown in Figure 2.22a. We observe a very high

work load at the beginning of the execution. The load imbalance appears clearly during the

first 10000 iterations. This execution shows a global load balance of E q ≈ 0.45, implying a load

imbalance of 1/E q ≈ 2.2.

Figure 2.22b shows the same execution but with the block cyclic domain splitting. This time,

the load is better balanced between cores, and the value of the balance indicator is E q ≈ 0.72,

representing an imbalance of 1/E q ≈ 1.4. This is a big improvement over to the previous

simulation and shows that the 3D block cyclic domain distribution helps to reduce the load

imbalance.
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(a) Unidimensional domain splitting.
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(b) Block cyclic domain splitting.

Figure 2.22: Real work achieved by 16 CPUs in the first 3000 iterations of the 2450 BP Pululagua
simulation, each colour representing the work of one core.

Execution time and speedup

We saw that the block cyclic domain splitting allows achieving better load balance. We thus

examine the performance and speedup obtained with this implementation. Based on the
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Chapter 2. The tephra transport model Tetras

discussions of the previous section, we express the parallel execution time as

T (par ) = 1

E q

(
T (seq)

n(pr oc)
+T (over )

)
+T (com) (2.56)

with E q ∈]0,1] the load balance, T (seq) the sequential execution time, n(pr oc) the number of

cores used, T (over ) the work overload due to parallelization and T (com) the communication

time. We know that T (over ) and T (com) are proportional to n(p). Unfortunately, we don’t

know the evolution of load balance as a function of n(pr oc). We know that load balance has a

maximum value of 1 and it is likely that it decreases as n(pr oc) increases. Empirically, we state

for testing that

E q = (n(pr oc))
−1
C (2.57)

for some constant C could be an acceptable approximation.

Finally, the parallel execution time takes the following form

T (par ) = (n(pr oc))
1

C1

(
T (seq)

n(pr oc)
+C2 ·n(p)

)
+C3 ·n(p) (2.58)

with parameters C1, C2 and C3 which allow tuning the load balance, the work overhead and

the communication time.

Three simulation cases were tested in order to observe the behaviour of the parallelized

implementation and the accurateness of the performance model. The first two are simulations

of the 2450 BP Pululagua eruption, with a small domain of 60km ×60km ×30km then with

a larger domain of 200km ×200km ×30km. The last is a simulation of the 1996 eruption of

Ruapehu with a domain of size 650km ×1050km ×30km. Each simulation case was run with

∆x = 500m and 106 particles per family (18 families for Pululagua and 23 for Ruapehu).

Figure 2.23 shows the speedups obtained. We see that the expression in Equation (2.58) is a

good approximation for the parallel performances. Note that the average number of particles

in motion depends on the domain size. This is due to the fact that in a smaller domain more

particles will exit the domain during a given physical simulation.

Figure 2.24 shows a comparison between theoretical speedup for the different simulation cases.

We see that the larger the domain, the better the performances with Pululagua simulations.

Alternately, we see that Ruapehu parallel simulations are less efficient. Indeed, while particles

spread in every direction in the case of Pululagua, they mainly move along the same direction

in the case of Ruapehu, which makes it a more difficult case to parallelize, particles not being

well spread across the domain. Nonetheless, performance remains good thanks to the 3D

domain block cyclic distribution.
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(a) Domain size 60km×60km×30km. Theoretical
curve with C1 ≈ 1.745 ·101, C2 ≈ 6.463 ·10−4 and
C3 ≈ 1.259 ·10−10. R2 = 0.99. Computation time
with one core ≈ 10 hours.
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(b) Domain size 200km ×200km ×30km. Theo-
retical curve with C1 ≈ 1.095 ·101, C2 ≈ 4.546 ·10−4

and C3 ≈ 3.570−11. R2 = 0.995. Computation time
with one core ≈ 48 hours.
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(c) Domain size 650km ×1050km ×30km. Theo-
retical curve with C1 ≈ 1.013 ·101, C2 ≈ 3.484 ·10−4

and C3 ≈ 1.284 ·10−11. R2 = 0.996. Computation
time with one core ≈ 31 hours.

Figure 2.23: The speedup for two simulation cases of 2450 BP Pululagua eruption with 18×106

particles (a,b) and one simulation case of 1996 Ruapehu eruption with 23×106 particles (c),
∆x = 500m.

2.7 Conclusion

In this chapter, we introduced the SSM and gMML formalisms of MMSF. We used them to

describe the TTDM Tetras. We gave the details of the considered submodels and the underlying

physical models. The overall model is compounded of the submodels plume, source term,

transport, advection field and atmosphere.
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Figure 2.24: Theoretical speedup comparison between a small and a large domain for Pulu-
lagua eruption (respectively 60km×60km×30km and 200km×200km×30km) and a domain
of size 650km ×1050km ×30km for Ruapehu.

The central component of this design is the advection-diffusion C++ code, which embeds

the submodels source term, transport and advection field and plume when working with

Woods plume model. This software is based on a hybrid Eulerian-Lagrangian numerical

scheme (Lagrangian on grid model). The numerical model offers multiple advantages. First,

simulations remain unconditionally stable; second, it does not generate numerical diffusion;

third, space which is represented as a Cartesian grid, can be easily subdivided, thus facilitating

a parallel implementation. Finally, the modular structure of the numerical model makes

possible the addition of more processes (e.g., particle aggregation) and allows for both the

monitoring of atmospheric ash concentration and ground mass load at any given time during

a simulation.

The implementation Tetras consists of multiple parts: a library dedicated to the implemen-

tation of the numerical model and its parallelization (PIAF) , and the software Tetras itself,

which contains part of the physical model. It also integrates a particular optimization feature

with the dynamic adaptation of the time step, which was shown to increase the efficiency of

the simulator. Note that both the model and the simulation tool are flexible in the sense that

the design is made to include new components for additional physical submodels.

The correctness of the advection and diffusion processes described in the model was validated

(see Appendix A.2, we recall that turbulence was modelled using a diffusion process). We

also determined the adequate number of particles to use in the simulations as a function of

correlation thresholds. For our case studies, we obtained a mean correlation of 0.99 with a

little more than 106 particles.
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A performance model for the sequential implementation of Tetras is established, which takes

into account the adaptive time step scheme. A parallel performance model which also encom-

passes load imbalance is then derived. These models were validated by recording execution

times over many simulations. The computational efficiency of the parallel Lagrangian on

grid model makes it suitable in the context of reproduction of past eruptions, for real time

and ensemble forecasting as well as inversion of eruptions source parameters when a parallel

optimization strategy is used.

Agreement between simulated and field data is good, but we also illustrate the limitations of

the proposed particles insertion and transport scheme. The source term is considered to be a

point, and particles are transported according to plume, umbrella cloud and wind velocity

fields, together with diffusion generated by random velocities. This way of coupling together

physical models makes it difficult to reproduce proximal deposits, even in no wind condition

as shown by simulations of the Pululagua eruption. We propose in the next chapter a new

formulation of the source term that aims to cope with this issue.
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3 The spatially extended exit rate model
family, a new definition of source
term
The content presented in this chapter is original unpublished work.

3.1 Introduction

To model tephra transport and deposition, TTDMs apply a transport process governed by

wind, diffusion and sedimentation to particles released from a source term in a simulation

domain. The transport is then applied through an Eulerian finite difference scheme [61, 102],

particle-puff [7, 74] or Lagrangian particles framework [104, 97].

A crucial question is the characterization of the source term : where, and in what quantity

particles are released in the atmosphere. The source term can be implemented in the transport

code with various levels of complexity, such as a point [61, 7], a set of point [61], a line or a

distribution of density above the vent [38, 102]. More recent works have used a disk source

term to capture the geometry of the umbrella cloud [40]. Then quantity of particles injected in

the atmosphere from a source term can be characterized by a distribution of particles [109,

38] or a buoyant plume theory (BPT) model [123, 49, 48, 60, 86]. Fully resolved 3D plume

model exists as well [34], but they are too computationally intensive to be used in real time

forecasting or inversion context.

For example, Ash3d [102] and Tephra2[38] consider a vertical distribution of particles as the

source term. Fall3D-8 [61] can account for a source term made of a set of points that emit

a flow of particles governed by a BPT model. In vol-calpuff [7], there is as well a BPT model

taking into account particles fall out and re-entrainment, but particles are only injected at the

top of the plume in the transport model, in the form of particle puff. NAME [74, 12, 11] can as

well account for a vertical distribution of particles, or insertion at the top of a buoyant plume

model.

While those ways of characterizing source terms allow for a good reproduction of long-range

transport of volcanic ash and observed deposits, it does not originate from first principles (in
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the case of a source term characterized by a vertical distribution of mass) and lack the ability

to capture the spatial geometry of the volcanic plumes. This is usually alleviated by a diffusion

coefficient applied to the particles, which can be unrealistically high.

In the previous chapter, we proposed a solution where the source term is a point located at

the vent. A BPT model is used to approximate velocity of particles in the transport code and

diffusion is applied to account for turbulent processes in the plume and atmosphere. However,

the reproduction of the proximal deposition has shown to be difficult with this technique.

In this chapter, we propose a model that describes the movement of particles in the plume

and umbrella cloud from the moment they exit the vent. They are subject to a process of

transport, governed by the velocity of the surrounding material, and a process of exit, governed

by gravity and re-entrainment. While this type of model describes a source term that respects

the geometry of a plume and umbrella cloud, we call it the Spatially Extended Exit Rate (SEER)

model family.

We developed four SEER based models :

Simplified-analytical-seer which is an analytical solution for a simplified plume and um-

brella cloud geometry.

Volcano-semianalytical-seer which is the coupling of simplified-analytical-seer with a BPT

model to simulate tephra deposition of strong plumes eruptions in no wind condition

with a fast-solving time.

Volcano-lagrangian-seer which is the coupling of a numerical Lagrangian implementation

of SEER source term with BPT plume models and a Lagrangian transport model to

simulate tephra transport in any condition (with time and space varying wind field for

example).

Simplified-lagrangian-seer which is a numerical Lagrangian implementation that mimics

simplified-analytical-seer and is used to validate the numerical scheme of volcano-

lagrangian-seer.

In volcano-lagrangian-seer, we simulate individual particles through a pure Lagrangian

scheme. This numerical scheme is easy to parallelize as long as particle interaction or at-

mospheric ash concentration is not desired. If particle interaction is wanted, a Lagrangian

on grid numerical model would be preferable (see Chapter 2). The flexible design of Tetras

(also Chapter 2) allows us to use the same definition of the physical models, and usage of the

Lagrangian on grid numerical scheme would be easily doable.

Volcano-lagrangian-seer and simplified-lagrangian-seer are parallelized in a distributed mem-

ory architecture using MPI. We observe the strong scaling behaviour of the implementation.

The good speedup allows solving the model in a matter of seconds when enough comput-

ing cores are available. This makes possible the integration of volcano-lagrangian-seer in
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an optimization or inference framework, and thus makes eruption source parameters (ESP)

inversion possible either with volcano-semianalytical-seer on a standard computer or with

volcano-lagrangian-seer in a High Performance Computing (HPC) infrastructure.

By solving the model analytically in simplified-analytical-seer, we show that specific physical

conditions have to be met in order to obtain a deposit of particles on the ground which is

continuous between deposit from the plume and from the umbrella cloud under the plume

corner area. The question remains open to know if this condition is actually met in reality, or

if this discontinuity is not observed on the field due to atmospheric turbulent diffusion.

We propose a simple mechanistic model with three resolutions schemes (analytical, semi-

analytical and numerical) and four implementations (simplified-analytical-seer, volcano-

semianalytical-seer, volcano-lagrangian-seer, simplified-lagrangian-seer), suitable for repro-

duction of the deposit of past eruptions or ESP inversion (including plume initial speed, radius

and temperature) without relying on excessive diffusion to capture processes such as umbrella

cloud spreading. The correspondence of the analytical formulation with the numerical one

is validated. We show comparison between volcano-lagrangian-seer simulations and field

data for three past eruptions ; Pululagua 2450BP (strong plume without wind), Cotopaxi layer

3 (strong plume with wind) and Ruapehu 1996 (weak plume). We compare as well those

data with another model routinely used for inversion (Tephra2). The numerical model is

parallelized and a performance analysis is carried out.

3.2 Model description

We consider the two eruptions scenarios seen in Chapter 2, namely the strong plume and

the weak plume. In the case of a strong plume, the plume material rises up to the neutral

buoyancy level (NBL) and starts to spread horizontally as a gravity current (GC) and forms an

umbrella cloud (UC).

In the usual case of a strong plume eruption occurring in a windy atmosphere, the shape of

the UC results from an interplay between wind and GC velocities and is approximately the

shape of an ellipse. In more unusual situation of a strong plume eruption occurring in a steady

atmosphere, the spreading velocity of the UC is the same in every direction, and the resulting

shape is closer to a circle. If the wind is strong enough compared to plume speed, the plume

becomes bent over and the GC spread mainly in the wind direction.

3.2.1 Overview of the model

For a strong plume, space is divided into three regions : the plume, the umbrella cloud and

the atmosphere. SEER model is applied in the plume and umbrella cloud, while an advection-

diffusion model is applied in the atmosphere. Particles are first considered to be injected at

the plume base and rise at the velocity of the plume fluid Vp . They can exit the plume through

53



Chapter 3. The spatially extended exit rate model family, a new definition of source term

 Vp

Vgc + Vw

Exit process

Vs + Vw + Vr Plume
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Atmosphere

(a)

Atmosphere

Plume

Gravity current

Exit process

Vp
Vw + Vs + Vgc + Vr
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Figure 3.1: (a) Regions considered for a strong plume. Particles in the plume are subject to
a rising vertical velocity and can exit the plume by the border (red) due to an exit process
governed by exit rates. Once they reach the top of the plume (blue), they are transported to
the entry of the umbrella cloud (green) and are then subject to a horizontal velocity which is
the sum of the gravity current and wind speed. Particles can exit the umbrella cloud region by
an exit process governed by exit rates. (b) Regions considered for a weak plume. Particles in
the plume are subject to the plume velocity that is collinear to the plume centreline. They can
exit the plume by the plume border (red) due to an exit process governed by exit rates. Once
they reach the top of the plume (blue) they are scattered uniformly on the plume top. They
are then transported by an advection-diffusion process. Ground deposit appears to be too
concentrated along a line when SEER model is applied inside GC in the case of a weak plume,
advection-diffusion is then applied after particles exit the plume.

the plume border (red in Figure 3.1a) by an exit process. Particles reaching the top of the

plume (blue in Figure 3.1a) are considered to be injected at the entrance of the umbrella cloud
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with a random direction (green in Figure 3.1a). Particles entering the umbrella cloud are then

transported by a horizontal velocity that is the sum of the gravity current velocity Vg c and the

wind velocity Vw . They can exit the umbrella cloud by the base of this one through an exit

process. Particles exiting the plume or umbrella cloud are then transported in the atmosphere

by an advection-diffusion process until they reach the ground. In the atmosphere, they are

subject to sedimentation velocity Vs , wind velocity and random velocities Vr that generate a

diffusion coefficient (see Chapter 2 and Appendix A).

For a weak plume, space is also divided in three regions : the plume, the gravity current and the

atmosphere. However, on the contrary of the strong plume, SEER model is applied only in the

plume, and advection-diffusion is applied in the gravity current and in the atmosphere. Indeed,

ground deposits of particles were found to be too narrow (not scattered enough around wind

transport direction axis) if a SEER model without diffusion is applied in the gravity current

region of a bent-over plume. This hints toward the interpretation that turbulent diffusion

plays an important role in the dynamic of the GC. Particles are injected at the plume base and

transported by plume velocity. They can exit the plume by a plume border (red in Figure 3.1b).

Particles reaching the end of the plume (blue in Figure 3.1b) are scattered uniformly on

the plume top. They are then subject to wind, sedimentation, random and gravity current

velocities. When particles enter the atmosphere region, they are no more subject to gravity

current velocity and are transported until they reach the ground.

It is important to note that in the current formulation, particles leaving the SEER model cannot

re-enter it, and are subject to advection-diffusion only until they reach the ground. The SEER

model is then a source term of the advection-diffusion model.

3.2.2 Vertical plume

Let us consider a volcanic plume rising vertically. Particles distributed into classes of size φ

are injected at the vent and are rising at a given plume velocity u(z) with z the height. The

plume border is defined by the plume radius r (z).

By adopting a Lagrangian point of view following particles individually, each particle has a

probability to exit the plume at each second by plume margins pφ(z) at height z. We call this

probability an exit rate.

By adopting a Lagrangian point of view following a growing control volume of the shape of

a cylinder of thickness d z and radius r (z) moving at speed u(z), the control volume loose

particles from its margins as

∂Nφ(t )

∂t
=−pφ(z)Nφ(t ) (3.1)

where Nφ(t ) is the number of particles of size φ in the control volume.
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From an Eulerian point of view, one can divide the plume in fixed control volumes (slices)

of radius r (z) and height d z. Qzφ(z, t) is the flow of φ-sized particles crossing a horizontal

plane at height z and time t and Qrφ(z, t ) is the flow of φ-sized particles exiting a slice by the

margins at height z and time t .

Then, the variation in time of the number of particles of size φ in a slice at height z can be

written

∂Nφ(z)

∂t
=Qzφ(z, t )−Qzφ(z +d z, t )−Qrφ(z, t ) (3.2)

in a steady state where the number of particles in a slice remains constant over time ∂t Nφ(z) =
0. Thus the flow of exiting particles from a slice can be written

Qrφ(z) =Qzφ(z)−Qzφ(z +d z) = pφ(z)Nφ(z) (3.3)

Let us now consider that particles are evenly distributed in each slice. If we assume that the

flux of particles exiting a slice at height z by its side Jrφ(z) is proportional to the density of

particles in the slice ρφ(z) in particles per unit volume, we can write

Jrφ(z) = veφ(z)ρφ(z) (3.4)

where veφ(z) is an exit velocity specific to each particle class.

From equations 3.3 and 3.4, we can write

Qrφ(z) = Jrφ(z)2πr (z)d z

= veφ(z)
Nφ(z)

πr 2d z
2πr (z)d z

= 2veφ(z)Nφ(z)

r (z)

= pφ(z)Nφ(z)

(3.5)

Thus, the exit rate in that case is

pφ(z) = 2veφ(z)

r (z)
(3.6)

3.2.3 Circular umbrella cloud

Let us now consider the model of transport inside a radially spreading circular umbrella cloud

on top of the previously considered plume. Bottom of the umbrella cloud is at height zh and
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the top is at height zh +h, h being the thickness of the umbrella cloud. Particles reaching the

height zh are injected into the umbrella cloud in a random position on a ring centred on the

plume of radius Rh = r (zh). Particles inside the umbrella cloud are transported horizontally

and radially to the plume centre at a given velocity U (R).

Again, if we adopt a Lagrangian point of view following individual particles, each particle has a

probability to exit the umbrella cloud by the umbrella cloud base at each second Pφ.

Then, by following a control volume of the shape of an empty cylinder (or shell) of interior

radius R and exterior radius R +dR expanding at velocity U (R), the number of particles lost

by the bottom of the volume is

∂Nφ(t )

∂t
=−PφNφ(t ) (3.7)

We can divide the umbrella cloud into shells of thickness dR at radius R . QRφ(R) is the flow of

particles crossing a vertical plane at radius R, and Qzφ(R) is the flow of particles crossing a

horizontal plane leaving a shell.

The variation in time of the number of particles in a shell at radius R can be written

∂Nφ(R)

∂t
=QRφ(R)−Qzφ(R)−QRφ(R +dR) (3.8)

in a steady state where the number of particles in a shell remains constant over time ∂t Nφ(R) =
0. Thus the flow of exiting particles from a shell can be written

Qzφ(R) =QRφ(R)−QRφ(R +dR) = Pφ(z)Mφ(R) (3.9)

We consider particles to be evenly distributed in each shell. We assume that the flux Jzφ(R)

of φ-sized particles exiting a shell at radius R by the bottom is proportional to the density of

particles in the shell ρφ(R) in number of particles per unit volume. We can then write

Jzφ(R) =Veφρφ(R) (3.10)

where Veφ is an exit velocity specific to each particle class.
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From combining equations 3.9 and 3.10, we can write

Qzφ(R) = Jzφ(R)2πRdR

=Veφ
Nφ(R)

2πRdRh
2πRdR

=Veφ
Nφ(R)

h

= PφNφ(R)

(3.11)

Thus, in that case, the exit rate is

Pφ = Veφ

h
(3.12)

3.2.4 Simplified-analytical-seer, an analytical solution for a simplified setup

We consider now a simplified setup where the vertical velocity and exit velocity in the plume

are constant and where radius varies linearly with height. Horizontal velocity and exit velocity

in the umbrella cloud are considered constant as well and the thickness of the umbrella cloud

is constant too.

Even if those are large simplifications compared to the actual physics of a volcanic plume, this

model allows us to highlight the fact that sedimentation from the plume and from umbrella

cloud is not necessarily continuous, to produce a fast approximation of deposit and to validate

the Lagrangian numerical model later on. We call this model simplified-analytical-seer.

The rest of the demonstration applies to any class of particle, the φ subscript is omitted for

clarity.

Plume

Let us consider a slice of thickness d z located at height z. The number of particles in this slice

is

d N (z) = ρ(z)πr 2(z)d z (3.13)

Particles enter and leave the slice from its lower and upper sides. Let us denote Jz (z) the flux of

particles crossing a horizontal plane at height z. The balance of entering and exiting particles

within the slice reads

πr 2(z)d z
∂ρ(z)

∂t
= Jz (z)πr 2(z)− Jz (z +d z)πr 2(z +d z)−2πr (z)Jr (z)d z (3.14)
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which simplifies as

d z
∂ρ(z)

∂t
= Jz (z)− Jz (z +d z)

r 2(z +d z)

r 2(z)
−2

Jr (z)

r (z)
d z (3.15)

one has

Jz (z +d z) = Jz (z)+d z
∂Jz

∂z
and r (z +d z) = r (z)+d z

∂r

∂z

thus
r (z +d z)

r (z)
= 1+ d z

r (z)

∂r

∂z
and

(
r (z +d z)

r (z)

)2

= 1+2
d z

r (z)

∂r

∂z

equation 3.15 then becomes

∂ρ(z)

∂t
=−∂Jz

∂z
− 2Jz (z)

r (z)

∂r

∂z
−2

Jr (z)

r (z)
(3.16)

We need now to specify how the fluxes depend on ρ. For an exit velocity that does not change

with height ve (z) = ve we have

Jz (z) = ρ(z)u(z) and Jr (z) = veρ(z) (3.17)

Again, if we consider a steady state for which the number of particles in the slice is constant

over time, we have
∂ρ

∂t
= 0

and equation 3.16 becomes

∂u(z)ρ(z)

∂z
+ 2ρ(z)u(z)

r (z)

∂r

∂z
+2ve

ρ(z)

r (z)
= 0 (3.18)

Let us now make another simplification and assume that the plume velocity u(z) does not

depend on z and that r (z) grows linearly with z

u(z) = u r (z) = az

With these simplifications, equation 3.18 reads

u
∂ρ

∂z
+ 2au

az
ρ+ 2ve

az
ρ = 0 (3.19)

which can be written as
∂ρ

∂z
=−2

z

(
1+ ve

au

)
ρ =−b

ρ

z
(3.20)
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where

b = 2
(
1+ ve

au

)
(3.21)

Equation 3.20 is rewritten as
dρ

ρ
=−b

d z

z

and can be integrated as ∫ ρ(z)

ρ(z0)

dρ

ρ
=−b

∫ z

z0

d z

z

which gives the solution

ρ(z) = ρ(z0)

(
z

z0

)−b

(3.22)

Thus, the number of particles that leave the plume laterally from a slice of thickness d z is

2πr (z)Jr (z)d z = 2πr (z)veρ(z)d z

= 2πr (z)veρ(z0)

(
z

z0

)−b

d z

= 2πzveρ(z0)

(
z

z0

)−b

dr

(3.23)

where we used that r (z) = az and ad z = dr .

The plume velocity is u and the exit velocity is ve . Thus, there is a power law decay of the

number of particles falling off the plume as the height increases.

Assuming that the particles fall vertically from where they leave the plume (no wind and no

diffusion in the atmosphere), we have that the rate of the number of φ-sized particles d Nφ(r )

that deposit on the ground per unit time in the ring of radius r and width dr is

d Nφ(r ) = 2πveφρφ(z0)z

(
z

z0

)−bφ
dr (3.24)

with

bφ = 2
(
1+ veφ

au

)
(3.25)

where we reintroduced the φ particle class notation.

Umbrella cloud

The conservation equation reads (again for any class of particles)

2πRhdR
∂ρ

∂t
= 2πRh JR (R)−2π(R +dR)h JR (R +dR)−2πRdR Jz (R) (3.26)
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3.2 Model description

As before, we assume that the radial current is

JR (R) =U (R)ρ(R) (3.27)

Equation 3.26 becomes

dR
∂ρ

∂t
= JR (R)−

(
1+ dR

R

)
JR (R +dR)− dR

h
Jz (R) (3.28)

With

JR (R +dR) = JR (R)+dR
∂JR

∂R
(3.29)

we obtain

dR
∂ρ

∂t
= JR (R)−

(
1+ dR

R

)(
JR (R)+dR

∂JR

∂R

)
− dR

h
Jz (R) (3.30)

which reduces to

dR
∂ρ

∂t
=− JR

R
dR −dR

∂JR

∂R
− dR

h
Jz (R) (3.31)

and finally to

∂tρ =− JR

R
− ∂JR

∂R
− Jz

h
(3.32)

With equations 3.10 and 3.27, we get in a steady state

0 =−ρU

R
− ∂ρU

∂R
− Veρ

h
(3.33)

For U , h and Ve independent of R, we obtain

dρ

dR
=−

(
1

R
+ Ve

Uh

)
ρ (3.34)

which can then be cast as
dρ

ρ
=−dR

R
− Ve

Uh
dR (3.35)

which can be integrated as ∫ ρ(R)

ρ(R0)

dρ

ρ
=−

∫ R

R0

dR

R
− Ve

Uh

∫ R

R0

dR (3.36)

which gives

lnρ(R)− lnρ(R0) =−(lnR − lnR0)− Ve

Uh
[R −R0] (3.37)
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Then the solution is

ρuc (R) = ρuc (R0)
R0

R
exp

(
−Ve

U

R −R0

h

)
(3.38)

where we added the subscript uc to make it clear that this density refers to the umbrella cloud

density.

The condition to determine ρuc (R0) is that at some radius

R0 = Rh = r (zh) (3.39)

where the two models are coupled, the flow of particles leaving the plume is the same as the

flow of particles entering the umbrella cloud. So the flux times the surface should match.

2πRhh JR (r (zh)) =πR2
h Jz (zh) ⇒ 2Uhρuc (Rh) = uRhρp (zh) (3.40)

where we call ρp the density in the plume, as defined in Equation 3.22.

Equation 3.40 then reads

ρuc (Rh) = uRh

2Uh
ρp (zh) (3.41)

or in more details

ρuc (Rh) = uRh

2Uh
ρp (z0)

(
zh

z0

)−b

(3.42)

And finally, the density of particles in the umbrella cloud as a function of its distance to the

vent is

ρuc (R) = u

U

R2
h

2Rh
ρp (zh)exp

(
−Ve

U

R −Rh

h

)
(3.43)

At location R the deposition rate d Nφ of a given class of particle due to particles falling

vertically from the umbrella cloud in a ring of radius R and width dR is

d Nφ = 2πRVeφρucφ(R)dR (3.44)

Table 3.1 shows the list of parameters of simplified-analytical-seer model.

3.2.5 Continuity condition

Figure 3.2 shows the flux of particles depositing on the ground from the plume and from the

umbrella cloud. Figure 3.2a shows a result for arbitrary values of velocity, exit velocities and

arbitrary geometry. We see that the deposition rates from the plume and umbrella cloud are

not guaranteed to be continuous.
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3.2 Model description

Symbol Definition
z0 height of particles insertion
ρz0 particle density at z0

zh height of the umbrella cloud base
h thickness of the umbrella cloud
a slope of the plume border
u vertical speed
U horizontal speed
ve exit velocity in the plume
Ve exit velocity in the umbrella cloud

Table 3.1: Volcano-semianalytical-seer parameters.
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(a) veφ = 0.05,Veφ = 0.05,Rh = 100,h = 10, a =
0.5,u = 1,U = 1.
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Figure 3.2: Flux of particles reaching the ground according to equations 3.24 and 3.44 for two
sets of parameters. Units are arbitrary. In (a), parameters does not respect Equation 3.47 while
in (b) they do.

Then, for R = Rh , we want to establish the condition to have the same deposition rate from

the plume and from the umbrella cloud for a given class of particle in a ring of radius Rh and

width dR. By comparing equation 3.24 with equation 3.44, we get

2πveφzhρpφ(zh)dR = 2πRhVeφρucφ(Rh)dR (3.45)

or equivalently

veφzh = RhVeφ
uRh

2Uh
(3.46)

which, with zh = Rh/a, reduces to

veφ = aVeφ
u

U

Rh

2h
(3.47)
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Chapter 3. The spatially extended exit rate model family, a new definition of source term

Figure 3.2b shows a deposition pattern for a specific case where this continuity condition is

met.

3.2.6 Quantification and generalization of the exit velocities

Previous sections show the solution of the deposition of particles for a simplified geometry

with arbitrary constant exit velocities. Bursik et al. [30] propose that the sedimentation rate

from the base of the umbrella cloud should be equal to the sedimentation velocity of particles

and that sedimentation from plume borders should be proportional to sedimentation velocity

and dependent on the plume geometry, where the more vertical the plume border is, the

higher is the probability of a particle exiting the plume to be re-entrained.

We try to capture the same process of exit and re-entrainment with the following simple

assumption

veφ(z,θ) =−sin(θ)vsφ(z) (3.48)

where vsφ is the sedimentation velocity of particles and θ is the angle with the horizontal of

the vector normal to the plume or umbrella cloud border, pointing to the exterior of the plume

or umbrella cloud (Figure 3.3). We thus consider that the orientation of the surface through

which the particle is exiting is the determining factor of its exit velocity. The more this surface is

horizontal, the higher the exit velocity is, with the maximum being the sedimentation velocity

of the particle (case that is reached in the umbrella cloud).

Informally, that means that a particle exiting through a sub-vertical plume border will surely

be re-entrained, while a particle exiting through a horizontal border (from the umbrella cloud)

cannot be re-entrained. By definition, this angle is −π
2 in the umbrella cloud, then

Veφ(z) = vsφ(z) (3.49)

This formulation can be applied to any plume or umbrella cloud geometry. Particles exit

radially to the plume centreline. Then, for a strong plume, the exit velocity depends only

on the height, while θ is the same for any direction at a given height. For a weak plume,

however, the exit velocity depends on the coordinate along the plume centreline and on the

exit direction γ. This assumption allows defining an exit velocity for any geometry.

That means that when the exit surface points toward the ground, the exit velocity is positive.

Otherwise, the exit velocity is ≤ 0, which means that particles cannot exit the plume or

umbrella cloud through such a surface.
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Figure 3.3: Illustration of the exit angle θ and exit direction γ for a strong plume and a weak
plume. γ= θ in the front view of the weak plume, this is a specific case. Vectors N are normal
to the plume border or base of the umbrella cloud.
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3.2.7 Volcano-semianalytical-seer, solving for a volcanic eruption

To reproduce the deposition of a volcanic eruption, it would be possible to solve the simplified-

analytical-seer model by picking appropriate parameters shown in Table 3.1. However, in that

case, parameters would not be linked to any physical consideration.

We then propose a solution where parameters of simplified-analytical-seer are approximated

based on physical models. We thus make a coupling between plume, umbrella cloud, termi-

nal velocity and simplified-analytical-seer models and name this implementation volcano-

semianalytical-seer.

For this, we compute simplified-analytical-seer model parameters as follows :

z0 height of particles insertion above vent. It is a parameter of simplified-analytical-seer

that has to be set because density of particles in the plume cannot be computed at vent

where radius is considered to be 0. It is not deduced from another model.

ρz0 density of particles in number of particles per unit volume at z0. This is directly deducted

from the total injected mass M , TGSD and characteristics of particles. It is considered

that all the mass is injected during a time t = 1s in a volume of v =πr (z0)2ut .

zh height at which particles are released from the base of the umbrella cloud. This is deter-

mined by the plume model (Chapter 2, Section 2.2.2).

h is the thickness of the umbrella cloud (Chapter 2, Section 2.2.2).

a is the slope of the plume border with respect to the vertical. This is considered to be the

slope of the line originating at vent to the intersection of the plume model border with

zh (Figure 3.4a).

u is the vertical plume speed, set as the mean of plume velocity profile.

U is the horizontal umbrella cloud speed, set as the mean of the umbrella cloud speed profile.

ve is the exit velocity in the plume, set as indicated in equation 3.48 with sedimentation

velocity considered to be the terminal velocity of particles (Chapter 2, Section 2.2.2). As

terminal velocity depends on altitude, we take the average terminal velocity along the

plume profile (Figure 3.4).

Ve is the exit velocity in the umbrella cloud, which is considered to be equivalent to the

terminal velocity of particles (Chapter 2, Section 2.2.2).

Figure 3.4 shows an example of approximated geometry and sedimentation velocity of parti-

cles.

Parameters of the resulting model are summarized in Table 3.2. We make here a distinction

between parameters that are defined by underlying models and parameters introduced by the
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Figure 3.4: Approximation of plume geometry with the plume slope with vertical a = 0.2
and average sedimentation velocities of particles used to solve the analytical SEER model.
Sedimentation velocity is computed for each class from the vent height to the base of the
umbrella cloud and then averaged.

Symbol Unit Definition
Parameter specific to the model
z0 m Height of particles insertion above vent
Particles
TGSD % Distribution and sizes of particles
ρφ kg ·m−3 Particles density
M kg Total erupted mass
Plume model parameters
r0 m Radius at the vent
U0 m · s−1 Velocity at vent
T0 K Temperature at vent
n0 Initial gas mass fraction
z m Vent height

Table 3.2: Volcano-semianalytical-seer parameters. z0 is considered to be specific to the model
because it is not a parameter of another underlying model.

present model that we call specific to the model. For example, here z0 is a parameter specific

to the model, it defines at which height particles are considered to be inserted in the plume (or

that particles cannot exit the plume below this height) and is not inherent to any underlying

model.

3.2.8 Volcano-lagrangian-seer, particle-based computational formulation for a
volcanic eruption

The analytical resolution of the SEER model gives a solution only for a strong plume geometry

and constant velocities in the plume and umbrella cloud, constant exit velocities and a radius
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Chapter 3. The spatially extended exit rate model family, a new definition of source term

that is a linear function of the height. We provide a numerical implementation that is able

to work with arbitrary definition of those variables and couple it with a transport model

in the atmosphere. The numerical SEER model is then considered as a source term of the

atmospheric transport model which can account for diffusion, wind and sedimentation.

Multiscale formulation

The numerical transport model for the strong plume geometry is separated in three distinct

transport processes : transport in the plume, transport in the gravity current and transport

in the atmosphere. Transport in the plume and umbrella cloud for strong plume geometry

is done according to SEER model, and transport in the atmosphere by advection-diffusion

model. For the weak plume geometry, transport in the plume is done according to SEER model,

while transport in the gravity current and atmosphere is done by advection-diffusion. Using

SEER model for transport in the gravity current for a weak plume produces too narrow ground

deposits (concentrated along the wind direction axis). It is thus necessary to rely on diffusion

in that case to obtain a satisfactory correspondence of simulation results with field data. This

hints that atmospheric turbulence plays an important role in the transport of particles inside

the gravity current of a weak plume.

sec hour day week

m

10km

100km

Temporal 
scale

Spatial 
scale

1000km

1km

mn

Transport +
Advection field transport 

Plume Source term +
Advection field source term

Figure 3.5: SSM of the TTDM Seer-lagrangian-tetras. Plume solves a steady state plume model,
source term applies the SEER numerical model based on plume geometry and velocity field
using advection field source term, transport apply Lagrangian transport in the atmosphere
using advection field transport. The scale of transport overlaps with the scale of advection field
transport and the scale of source term overlaps with the scale of advection field source term.

Figure 3.5 shows the SSM description of a TTDM based on the numerical SEER source term

coupled with a plume model, a transport model and advection field models. We name this

implementation volcano-lagrangian-seer. In this application, we identify the following sub-

models :
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transport

Source term
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Transport

Plume Advection field 
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Source term

Advection field 
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Figure 3.6: gMML description of volcano-lagrangian-seer. (a) describes the case where total
erupted mass is given by an independent parameter (used with Woods plume model for strong
plumes). (b) describes the case where total erupted mass is derived from the plume model
(used with Degruyter plume model for weak plumes).

Plume computes the steady state plume profile of Woods [123] or Degruyter and Bonadonna

[49, 48].

Source term transport particles inside the plume and umbrella cloud and computes where

and when particles are injected into the atmospheric transport domain.

Transport transport particles in the atmosphere according to an advection field.

Advection field source term computes the advection field of the source term based on plume

velocity profile. Also include GC [100] velocity in the case of a strong plume.

Advection field transport computes the advection field for atmospheric transport based on

the diffusion coefficient, terminal [3] and wind velocity [72]. Also include GC velocity in

the case of a weak plume.

Figure 3.6 shows two variations of the gMML formulation of volcano-lagrangian-seer. As in
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Chapter 2, there are two versions of the coupling, one where injected mass is an independent

parameter (Figure 3.6a, used with Woods plume model for strong plumes) and the other where

the injected mass is derived from the plume model (Figure 3.6b, used with Degruyter plume

model for weak plumes). We identify the following coupling templates :

Plume interaction with source term is a dispatch template. Plume computes velocity and

radius profile and send them to source term together with the MER if needed.

Advection field source term interaction with source term is a call-release template. Source

term calls advection field source term at each iteration.

Plume interaction with advection field source term is a dispatch template where plume

characteristics are computed and sent once to advection field source term.

Source term interaction with transport is a call-release template. transport manage particles,

and use Source term at each iteration to move them while they are inside the plume or

umbrella cloud.

Advection field transport interaction with transport is a call-release template. Transport

calls advection field transport at each iteration to compute the advection field.

Computational formulation

Multiscale formulation gives the description of the model in terms of components called

submodels. Computational formulation of SEER model for strong plumes and weak plumes

are given in Algorithms 3.1 and 3.2 respectively. They differ from each other by the treatment

they apply to particles reaching the top of the plume. Algorithms 3.3 and 3.4 shows advection-

diffusion numerical models for strong plumes and weak plumes. They differ slightly from

each other by the velocity they apply (there is no gravity current region in the strong plume

advection-diffusion algorithm).

Then, two distinct algorithms are given, each making use of the previously described transport

models. Algorithm 3.5 shows the procedure applied to simulate a volcanic eruption and

correspond to the multiscale description displayed on Figures 3.5 and 3.6. Particles are

injected at a given flow rate during a certain time and are simulated inside a domain of size

x · y · z. They can deposit on a flat ground of size x · y (topography is not taken into account)

divided in squares of size ∆x2. The terrain retains the deposited mass in kg ·m−2 of each class

of particles in each square of size ∆x2. The procedure is applied until no particles (or a small

number of particles that has to be decided, for example less than 1% of the total number of

injected particles) are left in the domain. This corresponds to the volcano-lagrangian-seer

implementation used to simulate volcanic eruptions. Table 3.3 shows the list of parameters of

this model.
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Algorithm 3.1: Procedure move particle seer strong plume . This procedure takes a
particle as input and d t is the time step.

1 if particle is inside plume then
2 pick a random direction γ ∈ [0,2π];
3 pick a random number x ∈ [0,1];
4 if x ≤ pφ(z) ·d t then
5 put the particle on the plume border in direction γ;
6 else
7 move the particle according to vv (z);
8 end
9 if particle height > Zh then

10 pick a random direction γ ∈ [0,2π];
11 put the particle on the plume border in that direction;

12 end
13 else if particle is inside umbrella cloud then
14 pick a random number x ∈ [0,1];
15 if x <= Pφ(z) ·d t then
16 put the particle on the umbrella cloud base;
17 else
18 move the particle according to vh(R);
19 end
20 end

Algorithm 3.2: Procedure move particle seer weak plume. This procedure takes a
particle as input. s is the position on the curvilinear coordinate generated by the
plume centerline trajectory, d t is the time step. γ is chosen in [0,2π] because it’s the
orientation of the vector normal to the plume border at the potential exit position of
the particle that determines the exit probability (Figure 3.3).

1 pick a random direction γ ∈ [0,2π];
2 pick a random number x ∈ [0,1];
3 if x ≤ pφ(s,γ) ·d t then
4 put the particle on the plume border in direction γ;
5 else
6 move the particle according to vv (s);
7 if particle is outside plume then
8 put the particle at a random uniform position on plume top;
9 end

10 end

3.2.9 Simplified-lagrangian-seer, validation of the Lagrangian formulation

Analytical and numerical models are formulated in such a way that they should be in almost

exact correspondence when the later one is considered in a steady state, with enough particles,

ve ,Ve ,u and U constant, r (z) = az, a unique particle class and no wind or diffusion in the

71



Chapter 3. The spatially extended exit rate model family, a new definition of source term

Algorithm 3.3: Procedure move particles of transport model for strong plume geome-
try.

1 for each particle do
2 if particle is inside plume or umbrella cloud then
3 call move particle seer strong plume;
4 else
5 vr = random velocity;
6 vs(p) = sedimentation velocity;
7 vw (x) = wind velocity;
8 move particle accoring to vr + vs + vw ;
9 if particle reached the ground then

10 deposit particle on the ground;
11 end
12 end
13 end

Algorithm 3.4: Procedure move particles of transport model for weak plume geometry.

1 for each particle do
2 if particle is inside plume then
3 call move particle seer weak plume;
4 else
5 vr = random velocity;
6 vs(p) = sedimentation velocity;
7 vw (x) = wind velocity;
8 if particle is in gravity current area then
9 vg c = gravity current velocity;

10 move particle accoring to vr + vs + vw + vg c ;

11 else
12 move particle accoring to vr + vs + vw ;
13 end
14 if particle reached the ground then
15 deposit particle on the ground;
16 end
17 end
18 end

atmosphere.

Algorithm 3.6 is used for comparison with the analytical solution, only with the strong plume

geometry model. This allows for a cross validation between the analytical resolution and the

numerical implementation.

The analytical formulation gives a result in terms of rate of deposition of particles on the

ground in a ring of width dR at a distance R of the vent. Thus, in order to validate the corre-
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Algorithm 3.5: General volcano-lagrangian-seer algorithm. This correspond to the
implementation used to simulate volcanic eruptions. n is the total number of parti-
cles per class to inject, d is the total duration of the eruption and d t is the time step.

1 ni = n ·1/d/d t ;
2 t = 0;
3 while t < d do
4 insert ni particles of each class at vent position;
5 move particles;
6 t = t +d t ;

7 end
8 while there are particles in the domain do
9 move particles;

10 t = t +d t ;

11 end

Symbol Unit Definition
Parameter specific to the model
D m2 · s−1 Diffusion coefficient in the atmosphere
Particles
TGSD % Distribution and sizes of particles
ρφ kg ·m−3 Particles density
M kg Total erupted mass
Eruption and wind
t s Eruption duration
Wmax m · s−1 Maximum wind speed
γw r ad Wind orientation
Plume model
r0 m Radius at the vent
U0 m · s−1 Velocity at vent
T0 K Temperature at vent
n0 Initial gas mass fraction
Ht m Plume height (optional)

Table 3.3: Volcano-lagrangian-seer parameters summary. D if considered specific to the model
because it is not a parameter of an underlying model. Parameters not listed are considered
constants in this work. Ht has to be set if any of r0, U0, n0 or T0 is not defined. In that case, a
Monte Carlo inversion scheme is applied to find a compatible value for r0, U0, n0 and T0 (see
Chapter 4).

spondence between the numerical and analytical formulations, one has to use a numerical

model that works in a steady state and counts particles falling in rings on the ground instead

of squares.This algorithm is applied without wind. First, it waits for the system to reach steady

state (when particles reach the border of the domain), then run the simulation for a given

amount of time in order to observe the flux of particles reaching the ground. We state here
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Algorithm 3.6: Steady state model numerical model. ns is the number of particles to
inject per time unit, d t is the time step, t is the total measurment duration.

1 ni = ns ·d t
2 while steady state is not reached do
3 inject ni particles randomly distributed in a plume slice of thickness vv (z0) ·d t

centered on z0;
4 move particles;

5 end
6 clear g r ounddeposi t
7 repeat t/d t times
8 inject ni particles randomly distributed in a plume slice of thickness vv (z0) ·d t

centered on z0;
9 move particles;

10 end

the changes made to Algorithm 3.5 to make it consistent with the analytical model and obtain

Algorithm 3.6 :

• The ground is constructed as concentric rings of thickness ∆R centred on vent location.

• Particles are injected in a plume slice of thickness u(z0)∆t centred on z0.

• Particles are considered to reach the ground by falling vertically and instantaneously

after they exit the plume or umbrella cloud.

• The condition for reaching the steady state is when a particle reaches the border of the

domain.

• Units are arbitrary.

While the numerical model is stochastic by nature, its outcome cannot be exactly equal to the

analytical one. Even with an arbitrarily fine space and time discretization and arbitrarily high

number of simulated particles. The flux of particles reaching the ground as a function of the

distance to the vent is a random variable, and the similarity of the outcome with the analytical

expression should increase as we consider more samples (in that case, more particles).

Thus, we’ve designed a numerical experiment to ensure that simplified-lagrangian-seer out-

come converges to the value of simplified-analytical-seer as we increase the number of sim-

ulated particles. For this, we run a simulation using the Algorithm 3.6 and the parameters

summarized in Table 3.4. This procedure allows validating the submodel source term (Fig-

ures 3.5 and 3.6).

To monitor the evolution of the impact of the increase of the number of particles to the

correspondence between numerical and analytical formulations, one needs a measure to

quantify similarity or dissimilarity between the outputs.
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Symbol Definition Value
Physical parameters
z0 height of particles insertion 10
ρz0 particle density at z0 1e6
zh height of the umbrella cloud base 200
h thickness of the umbrella cloud 10
a slope of the plume border 0.5
u vertical speed 1
U horizontal speed 1
ve exit velocity in the plume 0.05
Ve exit velocity in the umbrella cloud 0.05
Numerical parameters
∆R thickness of terrain rings 0.1
∆t time step 0.1
ns numerical particles per unit of time 105

t measurement time [10,105]

Table 3.4: Parameters used to test convergence of the numerical model. Units are arbitrary.
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Figure 3.7: Comparison between the outcome of simplified-lagrangian-seer and simplified-
analytical-seer. In each case, 105 numerical particles are injected per unit of time. In 3.7a, we
can see statistical fluctuations due to the randomness of the process. In 3.7b, those fluctuations
cannot be seen anymore because the duration of the measure (thus the number of measured
particles) is much higher.

To do so, we rely on the mean absolute percentage error (MAPE) which can be defined as

follows

MAPE = 100

n

n∑
i=1

∣∣∣∣ Ai −Ni

Ai

∣∣∣∣ (3.50)

where Ai is the result of the analytical expression and Ni is the outcome of the numerical

model. The error is here expressed as a percentage of the reference value.
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Figure 3.8: Convergence of the numerical model by increasing measurement time.

Results of those simulations are shown in Figure 3.7 and 3.8, which shows that the numerical

model converges to a value that is close to the expected one (the smallest mean error is

less than 0.2%). Which allows us to conclude that the analytical and numerical stochastic

formulations are in agreement.

3.3 Simulation of past volcanic eruptions

In this section, we show simulation results of three past eruptions (Pululagua 2450BP, Ruapehu

1996 and Cotopaxi Layer 3). We show results from models volcano-lagrangian-seer, volcano-

semianalytical-seer and Tephra2.

3.3.1 Tephra2

Tephra2 [39, 22] is a semi-analytical tephra transport model used both for the compilation

of hazard maps and ESP inversion. Particles are considered to be released from a source

term that is a line above the vent, with a given distribution of mass (here specified by a beta

distribution). TGSD is approximated by a Gaussian distribution. Deposition of particles at

given points on the ground is computed by solving the advection-diffusion equation. The

atmosphere is layered, with each layer having a specific wind velocity.

Tephra2 offers an inversion procedure based on the downhill simplex optimization algo-

rithm [89] (the algorithm is described in Chapter 4, Section 4.4.1). The inversion version of

Tephra2 is parallelized using MPI. The parallelization is done on ground sites. While result of a

ground site does not depend on the solution of any other location, the parallelization does not

need communication between sites and the speedup is quasi linear with a small number of

processes [38].
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Symbol Unit Definition
Parameters specific to the model
α Inverted α parameter of mass distribution (beta distribution)
β Inverted β parameter of mass distribution (beta distribution)
D m2 · s−1 Inverted Diffusion coefficient (large particles)
FTT m · s−1 Inverted Fall time threshold
Particles
M kg Inverted Total erupted mass
max φ φ TGSD Maximum
min φ φ TGSD Minimum
µφ φ Inverted TGSD Median
σφ φ Inverted TGSD standard deviation
max ρφ kg ·m−3 Maximum density of particles
min ρφ kg ·m−3 Minimum density of particles
Plume and atmosphere
Ht m Inverted Plume height
Wmax m · s−1 Wind speed
γw r ad Wind direction

Table 3.5: Tephra2 parameters summary. Parameters not listed are considered constants in
this work. Parameters that are inverted in this work are marked as such. α,β,D and F T T are
considered specific to the model because they cannot be approximated by another model.
Tephra2 considers plume height above sea level. In this text, all considered plume heights are
above vent.

In its inversion version, Tephra2 requires ranges of parameters to explore and output the best

fit achieved with a set of field data given as input. It takes a seed value for the random number

generator as well. Thus, each seed produce a specific process of optimization. The table 3.5

summarizes the parameters of Tephra2 and specifies the parameters being inverted.

Here, we consider that α,β,D and F T T are parameters introduced by Tephra2 because we

don’t have models to compute them.

3.3.2 Considered models and procedure

We compare simulation results for three different models : volcano-lagrangian-seer, volcano-

semianalytical-seer and Tephra2. Tephra2 and SEER based models are very different in their

underlying principles, making the comparison of those models difficult. It has then been

chosen not to compare the models with the same set of parameters, as some of them does not

have the same meaning in Tephra2 and in SEER based models (diffusion for example) or are

found in a model but not in the other (like FTT in Tephra2 or U0 in SEER based models).

Parameters of Tephra2 come from inversion with a range of values proposed in the litera-

ture. Parameters for volcano-lagrangian-seer and volcano-semianalytical-seer does not come
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from an inversion procedure, but are taken from the literature, and manually adjusted when

necessary to achieve a good fit (see Chapter 4 for preliminary results on inversion using

volcano-semianalytical-seer).

Simulations with volcano-lagrangian-seer and Tephra2 have been made for the three eruption

cases. Simulations with volcano-semianalytical-seer, on the other hand, have been performed

only for the Pululagua eruption while this model is only able to reproduce strong plume

eruption in no wind condition.

Tephra2 considers plume heights above sea level, while SEER based models consider plume

heights above vent. We use the latter for plume heights in this text.

Results of Tephra2 are not given to show best achievable fit, but to give an idea of the kind of re-

sults the model produces. The same apply for SEER based models, where further investigations

on inversion could surely improve fit between simulation and observed deposits.

Volcano-lagrangian-seer simulate the transport of individual particles and output the deposi-

tion in a matrix that represent the ground. Tephra2 produces deposition quantity for specified

points on the ground. To produce outputs that can be visualized in the same way for both

models, we pass to Tephra2 a list of points on the ground that are the same as the modelled

terrain sites of volcano-lagrangian-seer. Volcano-semianalytical-seer output the deposition as

a function of distance from vent.

As the deposit of Pululagua is considered almost axisymmetric, data are plotted on a side view

as a function of distance from vent. Deposits of Cotopaxi and Ruapehu are shown on a top

view as a heatmap.

3.3.3 Simulations results

∆t = 1s for every volcano-lagrangian-seer simulation.

Pululagua 2450BP BF2

We refer the reader to Chapter 2 Section 2.5 for information on the Pululagua 2450BP eruption.

We recall that this is a strong plume that occurred in almost no wind condition [117].

For volcano-lagrangian-seer, values of U0 = 124m · s−1, r0 = 57m comes from work on inver-

sion with statistical inference using Tetras (see Chapter 4). n0 = 0.01 and T0 = 1256K comes as

well from Chapter 4. It produces a plume height Ht ≈ 22km. Diffusion in the atmosphere is

the same as in Chapter 2 and TGSD is from [117], Figure 2.12 illustrates the TGSD used for the

simulations of Pululagua. Density of particles is considered ranging from 600 to 2500kg ·m−3

[111]. Total erupted mass is set to 4.5×1011kg . Vent is located at an altitude of approximately

2500m.
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3.3 Simulation of past volcanic eruptions

Figure 3.4 shows the approximate geometry and sedimentation velocities considered for

volcano-semianalytical-seer. z0 has alternatively been set to 100m and to 0.1m to observe the

effect on the deposition pattern.

For Tephra2 simulations, parameters are explored in the range Ht ∈ [17.5,33.5]km,D ∈ [10,10000]m2·
s−1, M ∈ [3,6]×1011kg ,µφ ∈ [−1,2],σφ ∈ [1,3], FTT ∈ [10,7×105]s,α ∈ [0.1,2.0],β ∈ [0.1,2.0].

The retained parameters after one inversion run are Ht ≈ 33.5km,D = 10000m2 · s−1, M ≈
6×1011kg ,µφ ≈ 2,σφ ≈ 3, FTT = 457573s,α ≈ 2,β ≈ 0.1. It is important to note that those

results should be investigated furthermore and compared with [117] because some values

correspond to extremum values of the exploration range.
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Figure 3.9: Comparison between field data and simulations for Pululagua 2450BP eruption.
(a) and (b) show the same data with different y-axis scales.

Results of simulations with the different models are shown in Figure 3.9. We can see that

reproduction of proximal points is particularly difficult for a model like Tephra2 in such

an eruption occurring in no wind condition. Further from the vent, all models seems to

converge. The value of z0 has an important impact on the results of volcano-semianalytical-

seer. Informally, this parameter represents the minimum height of the exit of the particles. We

see that when z0 = 100m, outputs from volcano-semianalytical-seer and volcano-lagrangian-

seer are much closer. This can be due to the choice of ∆t = 1s for volcano-lagrangian-seer

simulations. While U0 ≈ 100m · s−1, there is a gap of approximately 100m where particles

cannot exit with ∆t = 1s. We could hypothesize that particles cannot exit the plume in the

jet phase, but more investigation would be needed. Moreover, volcano-semianalytical-seer

consider radius at the vent to be 0, while this is not the case in volcano-lagrangian-seer which

considers r0 > 0. This is another source of discrepancy.

To compare field measures with simulation results, we use the MAPE error as in section 3.2.9

and the mean squared error MSE. One outlier point that has a value of almost 0 has been

removed for the computation of MAPE. The result is shown in Figure 3.10. We see that SEER

based models outperforms Tephra2 in that case. We can see that choice of the error measure is

of great importance, for example volcano-lagrangian-seer has a better MSE (Figure 3.10b) than

volcano-semianalytical-seer with z0 = 100m ( Figure 3.10d ), while it’s the other way around
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for MAPE.
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(c) Mass per area comparison for volcano-
semianalytical-seer when z0 = 0.1m.
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(d) Mass per area comparison for volcano-
semianalytical-seer when z0 = 100m.

Figure 3.10: Field data compared to simulated data for Pululagua eruption. In the case of
a perfect match between simulation and field data, dots would be on the string line y = x.
Dots are colorized according to the distance to the vent of the considered point. Blue dots
corresponds to proximal points while red dots to distal points.

Cotopaxi layer 3

Cotopaxi is a volcano located in Ecuador, close to Quito like Pululagua, but south of the

city. The considered deposition layer 3 is thought to result from an eruption that occurred

approximately 900 years ago in a moderate wind condition, with the deposit elongated in the

north-west direction [17, 5]. Vent is located at an altitude of approximately 5700m.

For simplicity, wind is considered to be known with a maximum speed of 28m · s−1, blowing in

the direction 280.7° ([111], angle from the north with anti-trigonometric rotation). Density of

particles ranges from 600kg ·m−3 to 2600kg ·m−3 and TGSD is obtained by Voronoi tessellation

[111]. [17] investigates ESP and propose a total erupted mass of 1.7×1012kg and a plume

height of 29km.

For Tephra2, total mass has been set to 1.7× 1012kg according to [17] and plume height
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3.3 Simulation of past volcanic eruptions

empirically set to 23km. α= 0.1,β= 2,µφ = 2,σφ = 3 have been defined by inversion, as well

as FTT to 44897s. D has been manually set to 10000m2 ·s−1 while a high coefficient of diffusion

seemed to improve results.

For volcano-lagrangian-seer, rather than setting values for U0,r0,T0 and n0 as for Pululagua,

we set a value of Ht and the model finds a compatible set of plume parameters by random

sampling. Ht has been set to 23km as for Tephra2. The corresponding parameters obtained are

U0 = 230m · s−1,r0 = 65m,n0 ≈ 0.016,T0 = 1208 for a plume height of 23062m. Total injected

mass has been empirically set to 8×1011kg to improve fitting (approximately twice less than

suggested in [17]). Diffusion in the atmosphere is set to 300m2 · s−1, also empirically.

Results are shown in Figure 3.11 as a heatmap showing ground deposition compared to field

data in log scale. In Figure 3.11a, empty areas correspond to position where no particle

reached the ground. The deposition pattern again shows a very high deposit close to the vent

for volcano-lagrangian-seer, while the deposit from Tephra2 is smoother.

Again, comparison between mass per surface area from the field and from simulations is

compared in Figure 3.12.
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(a) Mass per area comparison for volcano-
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(b) Mass per area comparison for Tephra2.

Figure 3.11: Deposit on the ground computed with (a) volcano-lagrangian-seer and (b) Tephra2
compared to field data for Cotopaxi layer 3. Values of deposit are in kg ·m−2.
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(b) Mass per area comparison for Tephra2.

Figure 3.12: Comparison of mass per area between data from the field and from simulations for
(a) volcano-lagrangian-seer and (b) Tephra2 for Cotopaxi layer 3. Dots are colorized according
to the distance to the vent of the considered point. Blue dots corresponds to proximal points
while red dots to distal points.

Ruapehu 1996

We refer the reader to Chapter 2, Section 2.5 for details on Ruapehu 1966 eruption. To model

the eruption, we considered a wind field of 30m · s−1 at the tropopause. For Tephra2, the

following range of parameters has been considered for inversion : Ht ∈ [3,13]km, M ∈ [3×
109,2×1010]kg , FTT ∈ [10,7×105]s,α ∈ [0.1,2],β ∈ [0.1,2],µφ ∈ [−1,2],σφ ∈ [1,3]. Parameters

have been set to Ht ≈ 13km,α ≈ 2,β ≈ 1.13, M ≈ 4×109kg ,µφ ≈ 2,σφ ≈ 3,D = 1962m2 · s−1,

FTT ≈ 292000s. Here again, we note that results of some parameters correspond to extrema of

the inversion range, which indicates that more investigations are needed.

For volcano-lagrangian-seer, Degruyter plume model parameters have been selected as follows

: α= 0.1,β= 0.5,U0 = 40m · s−1,T0 = 1273K ,n0 = 0.03,r0 = 40m. Those parameters produce

a plume of Ht ≈ 5km with a mass eruption rate of ≈ 3.56×105kg · s−1. This produces a total

injected mass M ≈ 8.3×109kg .

Simulated points that have a difference larger than 105% with field data are considered outliers

and are not considered for error computation. Figure 3.14 shows the comparison between de-

position from volcano-lagrangian-seer and from Tephra2. Mass deposited from Ruapehu 1996

eruption are way smaller than depositions from Pululagua and Cotopaxi, this can disadvantage

percentage error measures because a small absolute error can produce a high percentage error.

Figures 3.14a and 3.14b show a comparison between measured and simulated deposition on

the ground in log scale. In case of a perfect match between simulation and field data, points

would be on a line. Dashed lines show the value of a perfect match times 5 and perfect match

divided by 5. We can consider that simulated values lying in this range are of the correct

order of magnitude. Here again it is interesting to note that both models are considered better

depending on the error considered, which show the importance of the choice of the error
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(a) Mass per area comparison for volcano-
lagrangian-seer.
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(b) Mass per area comparison for Tephra2.

Figure 3.13: Deposition on the ground computed with (a) volcano-lagrangian-seer and (b)
Tephra2 compared to field data for Ruapehu 1996 eruption. Values of deposition are in
kg ·m−2.
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(b) Mass per area comparison for Tephra2.

Figure 3.14: Comparison of mass per area between data from the field and from simulations
for (a) volcano-lagrangian-seer and (b) Tephra2 for Ruapehu 1996 eruption. Dots are colorized
according to the distance to the vent of the considered point. Blue dots corresponds to
proximal points while red dots to distal points.

measure. Absolute error is smaller with the volcano-lagrangian-seer, while the percentage of

error is in average lower with Tephra2.

3.4 Parallelization and performances

A use case of SEER based models is to couple them with optimization algorithms to do

inversion. This kind of task requires to solve hundreds or thousands of instances of a model.

This is easily doable for volcano-semianalytical-seer, but is a difficult problem for the volcano-

lagrangian-seer numerical implementation due to its heavier computational load. We are
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thus interested in the runtime of simulations. Some optimization algorithms allow running

multiple instances of the model at the same time, such as statistical inference algorithms [55],

while others require to run instances sequentially, such as the downhill simplex [89].

The property of a system to handle the growth of available resources is called scaling. In

the context of a parallel programming, scaling denotes the capacity of a program to use an

increasing number of cores. In the domain of HPC, two types of scaling are mainly considered

: strong scaling and weak scaling. Strong scaling denotes the capacity of a program to use

more cores while the total work remains constant (i.e., make the program run faster for a given

problem size), while weak scaling denotes the capacity of a program to use more cores while

the total work becomes larger (i.e., threat larger problems with a constant time, or simply

being able to treat larger problems due to memory occupancy).

In this work, we are particularly interested in the strong scaling of the program, while the goal

is to solve the model as fast as possible to integrate it in an optimization algorithm.

Volcano-lagrangian-seer is implemented in C++ and parallelized using MPI. While there is

no interaction between particles, the parallelization is done on particles. At each iteration,

ni particles of each class are injected while the duration of the eruption is not reached as

indicated in Algorithm 3.5. When running on p processor cores, each core will inject ni /p

particles of each class at each iteration. If this number is not an integer, the remainder ni

(mod p) of particles will be inserted uniformly on ni (mod p) cores.

The solving of Woods model is embedded in the main C++ code and is integrated with a simple

inversion strategy by random sampling which allows to find a set of compatible parameters

U0,r0,n0,T0 with a given plume height Ht (see Chapter 4, section 4.2). It is also possible to not

run this inversion by specifying U0,r0,n0,T0 parameters.

Degruyter plume model is solved by a separated Matlab code and its output written to a file

which is then read by the C++ code. This plume model is not integrated with an inversion

strategy at the moment.

3.4.1 Performance analysis

Computationally, a simulation involves three main steps :

• Inversion or solving of the steady state plume model;

• Transport and deposition of particles;

• Gathering and writing of data.

Performance of the model is strongly dependent on numerical parameters (number of parti-

cles, the size of the domain), but also on physical parameters (wind speed, diffusion coeffi-

cient). We give performance analysis for the three studied eruption cases.
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Model is evaluated in condition suited for inversion. A critical parameter to achieve reliable

results is the number of particles used for the simulation. We choose to run all simulations

with about 2×106 particles, which is enough to produce stable simulations (see Appendix A).

Each simulation configuration is run 5 times and we take the mean value of those 5 runs

as runtime. Simulations are run on the Yggdrasil cluster of the Geneva’s higher education

institutions on nodes equipped with Intel Xeon Gold 6240 CPU @ 2.60GHz processors.

Pululagua

A typical sequential run for Pululagua takes about 3400s to terminate, which is approximately

57mi n. Solving of Woods plume model is fast as it usually takes between 5 and 8ms. When

inversion on plume model is used, it can take up to p to 300 random samples (≈ 2s) to find a

correct set of parameters. This is negligible when running on one core, but while this part is

not parallelized, it can have an impact on speedup if the model is run on a large number of

cores as suggested by Amdahl’s law [2].
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(a) Speedup obtained for Pululagua simulation.
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(b) Execution time for Pululagua simulation.

Figure 3.15: Speedup (a) and execution time (b) for Pululagua Simulation. Measurements are
done with 1.8×106 particles injected over 200s in a domain of size 50km ×50km.

The final result produced by the model is a matrix of sites on the ground, where each element

of the matrix stores the number of particles for each class deposited on the ground at the

corresponding site. Thus, at the end of the computation, each process stores a partial result

that has to be gathered on the main process. This step is done by a reduction operation.

However, the internal data structure used (array of structures instead of structure of arrays)

is not well suited to perform this operation, while one reduction per matrix element and per

particle class is necessary. The impact is low when using a small number of cores, but becomes

problematic when this number is increased. This problem could be alleviated by changing the

data structure used for reduction and doing the reduction only on corresponding field points

which are necessary for inversion.

Figure 3.15 shows the runtime and speedup obtained for Pululagua simulation. We consider

first the runtime of transport only. The speedup is almost linear up to 250 cores. The only

85



Chapter 3. The spatially extended exit rate model family, a new definition of source term

overhead coming from synchronization and communication between cores to test the termi-

nation of the simulation. Beyond 250 cores, we observe an inflexion in the speedup, that could

be due to a slight load balancing problem, but performances remain good. Then, from 500

cores, we observe a stagnation of the speedup. This is due to the way particles are distributed

on computing cores in that case. 1.8×106 particles are injected in total over 200s with d t = 1s.

This means that 1.8×106/200 = 9000 particles per iteration are injected. When using 500

cores, which means that each core inject 9000/500 = 18 particles per iteration. In the current

implementation, each core inject particles of every class. While in this simulation we use 18

particle classes, that means that we cannot divide any more the number of particles injected

per iteration. This particle injection strategy could be modified to improve further the strong

scaling of the application.

Then, if we look at the speedup obtained with the overall time (including reduction) but

without plume parameters inversion, we see that the overhead induced by reduction becomes

significant with more than 250 cores, but the speedup remains reasonable up to 500 cores. If

we look at the plume parameters inversion impact on speedup, we see that it’s not significant

up to 500 cores.

Finally, by using 500 cores for this simulation, which is the maximum useful number of cores

for this implementation and this simulation, each simulation takes ≈ 8.7s without plume

parameters inversion, which would allow running more than 400 instances per hour. Each

simulation takes ≈ 9.7s with plume parameters inversion, which would allow running more

than 370 instances per hour.

Cotopaxi

Figure 3.16 shows the runtime of Cotopaxi simulations. The runtime on one core of a Cotopaxi

simulation is ≈ 1600s. This is less than a Pululagua simulation, partly because there are slightly

less particles, but the main reason is the presence of wind, that carry particles (1.6×106 instead

of 1.8×106) out of the domain faster.

The same conclusions can be drawn for Cotopaxi than for Pululagua, except that the final

reduction has a greater impact on performances. Which makes sense, because the transport

part of the computation is faster and the size of the data to reduce remains the same.

If we use 500 cores for this simulation, the runtime for one instance is ≈ 4.9s without using

plume parameters inversion, which allows to run more than 700 instances per hour. With

plume parameter injection, the runtime is ≈ 5.8s, which allows to run more than 600 instances

per hour.
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Figure 3.16: Speedup (a) and execution time (b) for Cotopaxi Simulation. Measurements are
done with 1.6×106 particles injected over 200s in a domain of size 50km ×50km.

Ruapehu

Degruyter plume model used for weak plumes such as Ruapehu is implemented in Matlab.

Runtime loading of Matlab takes about 7s on Yggdrasil and solving of plume model itself

about 0.4s, which is approximately 100 times more than Woods model implemented in C++.

Inversion of plume parameters is not implemented for weak plumes as it would require a

more optimized implementation. Thus, we consider here only the runtime of transport model

and reduction.

Runtime for one sequential simulation of Ruapehu takes ≈ 17200s, which is almost 5h. Fig-

ure 3.17 shows the evolution of speedup of the model. We see that the transport part is not

affected by a limit on the speedup, while it increases up to 2000 cores. However, the impact of

reduction makes useless to use more than 900 cores with the current implementation.

With the current implementation, running the model on 500 cores takes ≈ 41s, which would

allow running almost 90 instances per hour. On 900 cores, it takes ≈ 29s, for more than 120

instances per hour. With an optimization of the reduction step, this could drop under 15s per

run on 2000 cores, which would mean 240 runs per hour.
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Figure 3.17: Speedup (a) and execution time (b) for Ruapehu Simulation. Measurements are
done with 2.3×106 particles injected over 200s in a domain of size 100km ×200km.

3.5 Conclusion

We propose a family of models named SEER (Spatially Extended Exit Rate) that describes

volcanic particles movement from the moment they leave the vent until they reach the ground

by a set of mechanistic processes. We propose four SEER based models : simplified-analytical-

seer, volcano-semianalytical-seer, simplified-lagrangian-seer and volcano-lagrangian-seer.

Simplified-analytical-seer is an analytical solution for a simplified plume and umbrella cloud

geometry and constant velocities. It allows for a fast solving and a validation of the numerical

SEER based implementations. Volcano-semianalytical-seer is a coupling of volcanologi-

cal models with simplified-analytical-seer. It allows for a fast approximation of deposition

for strong plume in steady atmosphere. Simplified-lagrangian-seer is a numerical particle-

based model that mimics simplified-analytical-seer. It’s numerical model is validated using

simplified-analytical-seer and is used in volcano-lagrangian-seer. Volcano-lagrangian-seer is

a numerical particle-based model coupled with volcanological models and a transport model

in the atmosphere. It allows for simulations of eruptions of any type, in any atmospheric

condition.

In SEER models, a process describes how particles leave the plume or umbrella cloud region.

In volcano-semianalytical-seer and volcano-lagrangian-seer, this process is considered to be

quantified by settling velocity of particles and geometry of the plume. This avoids introduction

of new parameters. The only parameter introduced by volcano-lagrangian-seer is the diffusion

coefficient in the atmosphere.

Simplified-analytical-seer allows us to highlight that it is not obvious that sedimentation

regimes from plume and umbrella regions are continuous. The question remains open whether

this is an artefact of the model or an actual observable phenomenon. It could be that turbu-

lent diffusion in the atmosphere prevents from observing on the ground a discontinuity in
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sedimentation rates that exists at the junction between plume and umbrella cloud.

Simulations results for three past eruptions of different types are shown. Pululagua 2450BP

which is a strong plume without wind, Cotopaxi layer 3 which is a strong plume with wind and

Ruapehu 1996 which is a bent-over plume.

Pululagua 2450BP allows comparing results from volcano-semianalytical-seer and volcano-

lagrangian-seer. They cannot be in exact correspondence while volcano-semianalytical-seer

makes simplifications that are not made in volcano-lagrangian-seer. We see that for specific

value of z0 parameters of volcano-semianalytical-seer, results of each model are close. z0

parameter has an important impact on the behaviour of volcano-semianalytical-seer, which

indicates that sedimentation close to the vent is of high importance with SEER based models

and would deserve more investigations.

Volcano-lagrangian-seer is parallelized on a distributed memory architecture using MPI. The

strong scaling behaviour allows solving the model in less than a minute if enough computing

power is available. This allows using this model in an inversion context where the solving of

hundreds of instances is necessary. It would also be possible to use volcano-semianalytical-

seer for such a task, or as fast first exploration of the parameter space.

The main advantages of SEER based models are their modularity, their mechanistic nature

and their accounting for arbitrary plume geometry. They also do not rely on unrealistically

high diffusion coefficients. Other strategies could be used to solve SEER based models. Such

as numerically computing flux of particles on the plume and umbrella cloud borders using a

finite difference scheme.
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4 Toward new strategies for inversion
of eruption source parameters using
HPC
The Approximate Bayesian Computation part of this chapter has been published in

L. Pacchiardi, P. Künzli, M. Schöngens, B. Chopard, and R. Dutta. “Distance-learning For

Approximate Bayesian Computation To Model a Volcanic Eruption”. In: Sankhya B (Jan. 2020).

DOI: 10.1007/s13571-019-00208-8

and

R. Dutta, M. Schoengens, L. Pacchiardi, A. Ummadisingu, N. Widmer, P. Künzli, J.-P. Onnela,

and A. Mira. “ABCpy: A High-Performance Computing Perspective to Approximate Bayesian

Computation”. In: arXiv:1711.04694 [stat] (Feb. 25, 2021).

The text is adapted to focus on the integration of expensive MPI models in an ABC inference

framework. The rest is original unpublished work.

4.1 Introduction

Inversion is the task of optimizing input parameters of a model (called the forward model)

to obtain best fit of the model output with field measurements. For a volcanic eruption, this

allows estimating eruptions source parameters (ESP) such as plume height, initial plume

speed, radius and temperature, total erupted mass, eruption duration, particle characteristics,

or even atmospheric conditions when the eruption occurred before meteorological surveys

existed.

Inversion is generally done through heuristics or statistical inference algorithms. Those

techniques work by running a lot of instances of the forward model (usually thousands) and

optimizing input parameters by exploration of the parameter space. For heavy numerical

simulations, this imposes that the forward model is parallelized or that the optimization

algorithm itself is parallelized by allowing running multiple instances of the forward model at
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the same time.

This chapter is divided in three parts. In the first part, we describe a simple Monte Carlo

inversion strategy that allows retrieving plume model parameters given a plume height. Note

that this technique output only one set of compatible parameters, while multiple sets of

parameters can exist that generates a given plume height.

In the second part, we describe the integration of Tetras (see Chapter 2), which is a mildly

expensive C++ distributed memory parallel model, into the statistical inference Python frame-

work ABCpy [54, 55]. ABCpy is an open source framework for Approximate Bayesian Computa-

tion (ABC) which implements algorithms that allows inferring parameters of a model given

field observations. This framework is parallelized in a distributed memory architecture either

using Spark or MPI as backend. Tetras being itself parallelized using MPI, it is necessary to

develop a nested parallelized communicator structure to handle this model with ABCpy.

In the third part, we describe the integration of the SEER based model volcano-semianalytical-

seer (see Chapter 3) to the Nelder-Mead optimization algorithm [89] through the Python

package SciPy [116]. This allows us to show that the parameter space of the model is manage-

able by such an optimization algorithm. This opens the way for more investigations on ESP

inversion with SEER based model, with statistical inference or optimization algorithms and

with volcano-lagrangian-seer.

Various algorithmic approaches exist for inversion of eruption source parameters. Tephra2

software package includes an inversion procedure based on the Nelder-Mead algorithm [38].

In that case, Tephra2 forward model is parallelized, but the optimization procedure itself is

sequential. [119] propose an integration of Tephra2 to the Levenburg-Marquardt algorithm

and [124] with the Metropolis-Hastings algorithm.

The two later options have the advantage of allowing for uncertainty quantification. However,

those works all rely on the Tephra2 dispersal model, which does not account for a first princi-

ples plume model, and is thus not able to reproduce in a satisfactory way proximal deposit,

and does not account for position dependent wind field, which impacts greatly long-range

deposits. Moreover, all the aforementioned works make use of a sequential optimization

algorithm, which prevents benefiting from modern clusters and supercomputers, routinely

available in universities and research centres.

In this chapter, we propose a perspective of using high-performance computing to perform

inversion with parallel statistical inference algorithms and parallel MPI forward model. We

use the ABCpy approximate Bayesian computation(ABC) framework written in Python and

the Tetras model. ABCpy embed a great variety of ABC algorithms and is parallelized using an

Apache Spark or a MPI backend. In order to integrate Tetras, which is a parallel distributed

memory architecture MPI based parallel model, to this framework, we extend ABCpy with a

nested parallelization architecture. Nested parallelization makes possible to differentiate the

MPI communicator of the inference algorithm and the communicator of the forward model.
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We investigate as well the possibility to perform inversion with volcano-lagrangian-seer and

volcano-semianalytical-seer forward models. For this, we couple volcano-semianalytical-seer

with an optimization function of SciPy and perform inversion with the Nelder-Mead downhill

simplex algorithm. This allows confirming the feasibility of inversion using the parallel model

volcano-lagrangian-seer if an HPC infrastructure is available, or a joint optimization procedure

based on volcano-semianalytical-seer and volcano-lagrangian-seer.

4.2 Eruption source parameters

Eruptions source parameters (ESP) are the parameters describing the initial condition of a

volcanic eruption model. They can differ between models, but they usually include :

• plume height,

• eruption duration,

• mass eruption rate (MER) or total erupted mass or volume,

• particle characteristics and distribution.

The ability to quantify those parameters is of great importance for reconstructing past eruption

events or to study the impact of future eruptions. Often, the goal is to characterize those

parameters from tephra deposited on the ground after the eruption, which is sort of a footprint

of the eruption.

Some models, such as Tephra2 [38], take directly the plume height as a parameter of the model.

Others, such as the considered models in this work Tetras (Chapter 2) and SEER based models

(Chapter 3), rely on a plume model. In that case, the source parameters of the dispersion

model includes the parameters of the plume model, including

• initial velocity of the plume,

• radius of the plume at the vent,

• temperature of the plume at the vent,

• gas mass fraction of exoslved volatiles at the vent.

Plume height and mass eruption rate can then be derived from the forward plume model.

However in some situations, it is more convenient to consider the plume height as a parameter,

rather than an output of the model. For example, when trying to compare the model with

plume heights given in the literature, or when observing an eruption in order to do real time

forecasting. In the latter case, it is possible to estimates plume height from sensors such as

radar and cameras [53], while directly observing in real time plume source parameters such as

initial velocity and radius is much more challenging. A forward model like Tephra2 can then
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be directly used to invert plume height, while a supplementary step is necessary if we consider

Tetras or a SEER based model.

4.2.1 A simple Monte Carlo strategy to invert plume source parameters

We present here the simple strategy adopted to retrieve a set of compatible values for parame-

ters of a plume model with a given plume height. This is the strategy used in Chapter 2 and

3 when using Ht (the plume height) as an input parameter of the model. This is simple and

efficient and allows for a very accessible introduction to the principle of inversion.

We consider the plume model of Woods. We recall that this model describes the characteristics

of a vertical volcanic plume [123]. Its main parameters are the initial velocity of the plume U0,

the radius of the plume at the vent r0, the temperature of the plume at the vent T0 and the gas

fraction of exolved volatiles n0. The model outputs a velocity and radius profile from the vent

to the top of the plume. Plume height Ht is the height at which the vertical velocity becomes 0.

Algorithm 4.1: Woods plume model Monte Carlo inversion algorithm. f is the func-
tion that computes plume height from Woods plume model given a set of plume
parameters.

Input: The desired plume height Ht , the height tolerance ε, the maximum number of
iterations imax , the research intervals of the plume parameters
U mi n

0 ,U max
0 ,r mi n

0 ,r max
0 ,T mi n

0 ,T max
0 ,nmi n

0 ,nmax
0

Output: Plume models parameters U0,r0,T0,n0

1 U0 ←U (U mi n
0 ,U max

0 )
2 r0 ←U (r mi n

0 ,r max
0 )

3 T0 ←U (T mi n
0 ,T max

0 )
4 n0 ←U (nmi n

0 ,nmax
0 )

5 while
∣∣ f (U0,r0,T0,n0)−Ht

∣∣> ε do
6 U0 ←U (U mi n

0 ,U max
0 )

7 r0 ←U (r mi n
0 ,r max

0 )
8 T0 ←U (T mi n

0 ,T max
0 )

9 n0 ←U (nmi n
0 ,nmax

0 )
10 if Number of iterations > imax then
11 return No valid configuration found
12 end
13 end
14 return U0,r0,T0,n0

To find a set of parameters compatible with a given plume height we apply a naive Monte

Carlo sampling strategy shown on Algorithm 4.1. In our implementation, ε is set to 100m,

imax = 100000,U0 ∈ [10,400]m · s−1,L0 ∈ [20,200]m,n0 ∈ [0.01,0.05],T0 ∈ [200,1300]K . Woods

plume model is implemented in C++ and is solved in 5−8ms on an Intel Xeon Gold 6240 CPU

@ 2.60 GHz. The maximum observed number of samples when a valid configuration exists

does not exceed 300, which produce an inversion procedure of ≈ 2s maximum.
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4.3 High-performance computing inversion of eruption source pa-

rameters using approximate Bayesian computation

Statistical parameters inference of a model is the task of inferring parameters as a probability

distribution, allowing quantifying the uncertainty of the determined parameters. The main

bottleneck of the inference for mechanistic models is the intractability of the likelihood

function of the data generating process. Widely applicable frequentist or Bayesian inferential

techniques cannot be directly applied for these models due to the absence of the likelihood

function. To deal with such a situation, a technique is to estimate the form of the likelihood

function, such as in [124]. Other techniques have been developed which are collectively

referred to as likelihood-free inference or approximate Bayesian computation (ABC) [82].

In a nutshell, ABC algorithms are able to sample from an approximate posterior distribution

of the parameters by finding values which yield simulated ‘fake’ data resembling the observed

data to a sufficient degree. To quantify the resemblance, we need to find a discrepancy

measure between the simulated and observed dataset. ABCpy [55] is a modular scientific

library implementing a range of ABC algorithms in Python. Algorithms are parallelized in a

map reduce manner either using a Spark or a MPI backend, which makes them usable in a

HPC environment.

The two main difficulties in application of ABC methods are the choice of the discrepancy

measure and performing inference for computationally expensive models. In this chapter,

we develop a nested parallelization scheme based on MPI for ABCpy to deal with expensive

mechanistic models. A metric learning [107] and deep metric learning (see for instance [62]) is

used to learn a discrepancy measure between datasets.

We use ABC in conjunction with nested parallelization and deep metric learning to calibrate

Tetras, which is an expensive model. As a result of applying ABC to this context, not only we

can automatically and efficiently estimate the model parameters, but we can also perform

parameter uncertainty quantification in a rigorous manner. This also provides us with a way

to validate the numerical model. We illustrate the performance of the developed inferential

scheme for a simulated dataset and a real data collected from field observation of ground

tephra depositions at 72 ground locations associated with the 2450 BP Pululagua (Ecuador)

volcanic eruption [117].

4.3.1 Likelihood free inference

We can quantify the uncertainty of the parameter θ by its posterior distribution p(θ|x) given

the observed dataset x = x0. The posterior distribution is obtained by Bayes’ theorem as

p(θ|x0) = π(θ)p(x0|θ)

m(x0)
, (4.1)
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Figure 4.1: ABC rejection sampling: having observed data x0 provided by nature (the blue
dot), we sample parameter values and generate observations through the simulator, that are
then accepted (green) or rejected (red) according to their distance from the observation. The
visualization is in a 2-dimensional data space.

where π(θ), p(x0|θ) and m(x0) = ∫
π(θ)p(x0|θ)dθ are, correspondingly, the prior distribution

on the parameter θ, the likelihood function, and the marginal likelihood. If the likelihood func-

tion could be evaluated, at least up to a normalizing constant, then the posterior distribution

could be approximated by drawing a representative sample of parameter values from it using

(Markov chain) Monte Carlo sampling schemes [98]. Unfortunately, the likelihood function

induced by the volcanic eruption model is analytically intractable. In this setting, approximate

Bayesian computation (ABC) [82] offers a way to sample from an approximate posterior distri-

bution and opens up the possibility of sound statistical inference on the parameter θ. Here we

only focus on parameter estimation/calibration and uncertainty quantification but we stress

that ABC easily allows us to perform parameter hypothesis testing and model selection as well.

Approximate Bayesian computation (ABC)

The fundamental ABC rejection sampling scheme iterates the following steps:

1. Draw θ from the prior π(θ).

2. Simulate a synthetic dataset xsim from the simulator-based model M (θ).

3. Accept the parameter value θ if d(xsim, x0) < γ. Otherwise, reject θ.

See Figure 4.1 for a visualization of the above algorithm.

Here, the metric on the data space d(xsim, x0) measures the closeness between xsim and

x0. The accepted (θ, xsim) pairs are thus jointly sampled from a distribution proportional to

π(θ)pd ,γ(x0|θ), where pd ,γ(x0|θ) is an approximation to the likelihood function p(x0|θ)

pd ,γ(x0|θ) =
∫

p(xsim|θ)Kγ(d(xsim, x0))d xsim (4.2)

where Kγ(d(xsim, x0)) is in this case a probability density function proportional to
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1(d(xsim, x0) < γ)1. Besides this choice for Kγ(d(xsim, x0)), which has been exploited in

several ABC algorithms (for instance [8, 52, 50, 81]), ABC algorithms relying on different

choices exist, for instance being proportional to exp(−d(xsim, x0)/γ) in simulated-annealing

ABC (SABC) [1]. In general, Kγ(·) needs to be a probability density function with a large

concentration of mass near 0, in which the parameter γ denotes the amount of concentration

(the smaller γ, the more concentrated the density is). This guarantees that, in principle, the

above approximate likelihood converges to the true one when γ→ 0. Of course, decreasing

the threshold increases the computational cost, as fewer simulations will be accepted.

More advanced algorithms than the simple rejection scheme detailed above are possible, for

instance ones based on Sequential Monte Carlo [50, 81], in which various parameter-data

pairs are considered at a time and are evolved over several generations, while γ is decreased

towards 0 at each generation to improve the approximation of the likelihood function, so that

you are able to approximately sample from the true posterior distribution.

4.3.2 ABCpy algorithms and parallelism

A range of algorithms are implemented within ABCpy besides the standard ABC rejection

described above. Here, following [55], we present the explicit population Monte Carlo ABC

PMCABC [8, 110] algorithm which is a classical ABC algorithm and the difference with proba-

bilistic acceptance scheme like APMCABC [81] to illustrates ABCpy parallel design and the

importance of algorithm selection regarding the scalability of the inference scheme. Note that

the implementation of PMCABC and APMCABC algorithms and their performance evaluation

have not been conducted within this work. We present those algorithms and their scalabil-

ity because we used APMCABC for our inference on the volcano application and it allows

illustrating the parallelism of ABCpy in which we integrated the nested parallelization.

Algorithm 4.2 illustrates the PMCABC algorithm. The principle is to draw points randomly

(often called particles) in the parameter space according to the prior and forward simulate

the model. This step is repeated until the distance between simulated and observed data is

considered sufficiently small according to some level of tolerance ε1.

Then, at each iteration t , particles are modified according to a perturbation kernel and the

model forward simulates until the level of tolerance εt is reached. Those succeeding tolerances

must be decreasing in order for the algorithm to converge. Most of the ABC algorithm relies

on the same principle of drawing and perturbing particles in the parameter space.

Algorithms like PMCABC have an explicit acceptance step, where simulations of the forward

model are run until an acceptance criterion is met. There exist other algorithms with a

probabilistic acceptance step. In that case, the new particle is accepted with a probability that

depends on the distance of the simulated data to the observed data, otherwise we keep the

previous value. APMCABC belongs to the second category.

1
1(·) is used as an indicator function.
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Algorithm 4.2: Population Monte Carlo ABC (PMCABC) algorithm for generating N
samples from the approximate posterior distribution. Here Kt (·|θ,Σt−1) is the pertur-
bation kernel, and weigthed-Covariance (not shown here) updates the covariance
matrix of the perturbation kernel according to the drawn samples and weights. The
algorithm requires to specify qε ∈ [0,100] and a decreasing sequence of thresholds
ε1 ≥ ε2 ≥ ·· · ≥ εT for T iterations.

1 for i=1 to N do
2 repeat
3 Generate θ from the prior π(·)
4 Generate xsim from M using θ

5 until d(xsim, x0) ≤ ε1

6 d (i ) = d(xsim, x0)

7 θ(i )
1 ← θ

8 ω(i )
1 ← 1/N

9 end
10 Σ1 ← 2∗weighted-Covariance(θ1,ω1)
11 for t=2 to T do
12 εt = max(qε-th percentile of d , εt )
13 for i=1 to N do
14 repeat
15 Draw θ∗ from among θt−1 with probabilities ωt−1

16 Generate θ from Kt (θ∗,Σt−1)

17 Generate xsim from M using θ

18 until d(xsim, x0) ≤ εt

19 d (i ) = d(xsim, x0)

20 θ(i )
t ← θ

21 ω(i )
t ←π(θ)/(

∑N
k=1ω

(k)
t−1Kt (θ|θ(k)

t−1,Σt−1))

22 end

23 Normalize ω(i )
t over i = 1, . . . , N

24 Σt ← 2∗weighted-Covariance(θt ,ωt )

25 end
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Algorithms with explicit acceptance scheme are usually more expensive computationally

speaking as there is no way to know how many forward simulations will be performed until

acceptance is reached. Moreover, this can have an impact on load balance when parallelizing

the inference procedure.

ABCpy algorithms are usually compounded of the following main steps, as illustrated in

Algorithm 4.2 :

1) Sample the parameters from the prior or from existing set of parameters;

2) simulate the model to generate data and compute the distance between observed and

simulated data;

3) calculate the weight of parameters;

4) normalize the weights and calculate a covariance matrix.

Steps 1) and 4) are usually lightweight to compute so they are not parallelized. Step 2) on the

other hand when the forward simulation of the model is done can be very heavy to compute.

Step 3) implies a quadratic complexity regarding the number of parameters, so it is parallelized

as well.

There is dependence between iterations. Data from iteration t −1 are necessary to compute

iteration t , so it is not possible to parallelize over T . On the other hand, the computation of

θ(i )
t can be done independently. ABC algorithms are thus good candidates for parallelization

using the map-reduce approach [46]. In the map-reduce parallelism, a master node sends

task to execute to workers (the map phase) and once a worker finish to compute its task, it

sends its result to the master (the reduce phase). While θ(i )
t computations are independent,

worker-to-worker communications are not necessary. The parallel implementation of ABCpy

splits the parallel work into tasks which computes xsi m using M until the acceptance criterion

is met and compute the weights ω(i )
t .

ABCpy offers two types of backend to run the tasks. First, a backend based on Apache Spark

[125] which is an advanced implementation of map-reduce. A second option is the backend

based on MPI. As MPI only offers low-level one-to-one, one-to-many and many-to-many

communication operations, ABCpy offers a custom implementation of map-reduce based

on those primitives. Within the MPI backend, one node is selected as the master node and

attributes work to worker nodes. In MPI, there is no notion of nodes. Instead, the MPI runtime

run processes that have a rank attributed, and each process can be bound to a certain number

of cores. There is thus one process, that is assigned the role of master, which splits the work

into approximately equal parts and assigns the parts to the worker processes.

The parallel model Tetras we want to integrate to ABCpy is MPI-based, which means it needs

an MPI runtime which is not available when working with Spark. Thus, we concentrate on the

implementation of the MPI backend of ABCpy. To distributes the work, the master process has
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to split the work and distribute it on worker processes. To do that, a first naive approach is to

split the total number of tasks in batch of equal size. For example, let’s say we want to draw

m = 20000 samples at each iteration of the APMCABC algorithm and distribute it over n = 100

processes (or workers). It is possible to assign m/n = 200 tasks to each worker. However, as

possibly multiple sets of parameters have to be drawn for each θ(i )
t before the acceptance

criterion is met, different workers may have a different amount of work to achieve. And it is

not possible to know in advance how much work each worker will have to achieve due to the

stochastic nature of the process. This can lead to load imbalance between workers.

Another option is to attributes dynamically work to the worker processes by distributing n < m

tasks to the n workers. Then, when a worker finishes its tasks, it sends its results to the master

and request a new task. This way, the risk of a load imbalance is lower. The difference between

the naive and dynamic allocation of tasks for the MPI backend is illustrated in Figure 4.2.

Other techniques exist to run large number of tasks that exhibit heterogeneous workloads,

such as Pilot-Job systems [114, 85]. In this paradigm, a placeholder task is run on resources

requested to the scheduler of the cluster (Slurm form example) and is responsible for running

tasks within those resources. This allows for application-level resource management. However,

while ABCpy historically only offers parallelism based on MPI or Spark, only those options

have been considered. Moreover, if using more sophisticated techniques could allow for more

scheduling flexibility, it would as well imply more software layers, and thus more complexity

in the maintenance and deployment of the package.

(a) (b)

Figure 4.2: Comparison between straightforward (a) and dynamic (b) MPI backend workflow.
Figure from [55].

To evaluate the performances of the backend implementations, inference on weather pre-

diction benchmark model known as the Lorenz model [83] have been performed on the Piz

Daint supercomputer of the CSCS. Figure 4.3 displays the total amount of time spent by each

worker process, either with naive or with dynamic task allocation with the PMCABC algorithm.

Figure 4.4 shows the performance behaviour of Spark, MPI straightforward and MPI dynamic

backends.

As stated above, ABC algorithms with explicit acceptance step like PMCABC comes with an

intrinsic imbalance when parallelizing them. Indeed, some tasks can take way longer to

terminate than others, and this can become difficult to mitigate when a large number of
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Figure 4.3: Imbalance of the PMCABC algorithm using MPI straightforward (a) and dynamic
allocation (b) backend for the Lorenz95 model (T=1024). Note the large difference in the
time-scale (in seconds) on the horizontal axis. Figure from [55].
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Figure 4.4: Speedup and efficiency of the PMCABC algorithm for Lorenz95 model using Spark
and MPI backend with different number of cores n. Figure adjusted from [55].
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workers are used. Algorithms with a probabilistic acceptance step, like APMCABC, are, on

the other hand, much more scalable. This is illustrated in Figure 4.5 where inference on the

Lorenz model is performed on a large number of cores and a dynamic allocation is used with

PMCABC and APMCABC algorithms.
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Figure 4.5: Comparison of speedup and efficiency for PMCABC and APMCABC using the
Lorenz95 model (T=1024) with different number of cores n. Figure adjusted from [55].

4.3.3 Nested parallelization

Scheduler

Leader

Workers
Team communicator

Scheduler communicator

World communicator

Figure 4.6: Nested parallelization: Description of the communication architecture of the
nested MPI parallelization for ABCpy.

As mentioned above, ABCpy provides the user with seamless parallelization of ABC algorithms

using MPI or Spark. Modern cluster nodes usually have multiple cores, and by default the MPI

backend runs one simulation of the model per core. Yet, in case the model supports basic
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multithreading at the level of a single machine, the backend can be accordingly configured to

achieve this.

However, previous versions of ABCpy did not support models that were parallelized using

MPI, which is the case for the studied volcano model. The challenge in enabling MPI model

support is the fact that MPI code uses an object called MPI communicator to control com-

munication. In the Apache Spark backend, this communicator is just not available due to the

standard system setup and thus not usable in standard installations. In the MPI backend, the

communicator is available but used by the backend itself that has to coordinate the parameter

distribution and forward simulations. Thus, we made code contributions to ABCpy that en-

abled support for MPI parallelized models, broadening the field of applications beyond the

volcanic model discussed here.

Technically, MPI uses an object called communicator in order to control communication

between different ranks. Therefore, in order to achieve nested parallelization ABCpy creates

two types of communicators: each forward model uses a team communicator to parallelize

the computation on the ranks allocated by the backend object; moreover, the scheduler

communicator is used by the overall master (the scheduler) to control the whole execution.

The architecture is visualized in Figure 4.6. Note that one process of each team communicator

is part of the scheduler communicator as well in order for communication to be successful.

By default in MPI, a global communicator exists, which is called the world communicator.

Each process has a unique identifier (the rank) within this communicator. It is then possible

to split this communicator in custom sub-communicators in which MPI operations can be

performed. Note that when splitting a communicator, the encompassing communicator is

not destroyed, but communicators that are subsets of the parent are created. Communicators

are created using the comm_split primitive, which takes as parameters a communicator to

split, a key and a colour. The key is a unique identifier that will serve to attribute a rank to the

process in the new communicator. It can be the rank of the parent communicator. The colour

is a value that serves to identify in which communicator the process will be placed. Every

process in the same parent communicator calling the split primitive with the same colour will

be placed in the same new communicator.

Concretely, a first split is applied to create the team communicators. In the current imple-

mentation, the process 0 is the master (or scheduler) process. Each process with a rank > 0

is placed in a team communicator. Then, a new communicator encompassing the master

process and the process of rank 0 of each team communicator is created. Leader of each team

communicator will then ask for tasks to the scheduler, distribute and gather the work within

their team communicator and sends the results back to the scheduler when finished.

To be integrated into ABCpy nested parallelization, MPI parallelized models should not use

the world communicator to communicate, but rather use a custom communicator that is

passed as a parameter to the model. This is something that has to be taken into account while

MPI codes can be developed without this in mind. Tetras code had to be adapted to this end.
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Moreover, while ABCpy is a Python package and Tetras is a C++ code, it is necessary to have a

way to pass data structures between Python and C++ (parameters, results, MPI communicator).

This is achieved using SWIG [10, 9] which allows calling C and C++ code from scripting

languages, including Python, and exchange data structures like MPI communicators and

arrays of raw data between Python and C/C++.

4.3.4 Inference of Tetras parameters

For the purpose of the present study, the model M is parametrized in terms of two of the

plume parameters, namely the initial plume velocity U0 and the radius of the plume at the

vent of volcano R0, collectively defined as θ = (U0,R0). In this work, we assume the initial

temperature, the initial gas mass fraction of exsolved volatiles and the diffusion coefficients to

be known. However, the model could also be parametrized in terms of those parameters.

Initial temperature T0 and initial gas mass fraction of exsolved volatiles n0 have an influence

on the plume height. For the purpose of this work, their values are kept constant, respectively

T0 ≈ 1200K and n0 ≈ 0.01. Diffusion in atmosphere Da and diffusion in plume Dp have been

empirically chosen as Da = 300m2 · s−1 and Dp = 1500m2 · s−1.

By assuming that M is true, then we can simulate the deposition of tephra at those 72 locations,

denoted as xsim. If we have observed datasets x0, can we quantify the uncertainty or estimate

the model parameters ? As Tetras is a stochastic model in nature, the observed dataset could

have been simulated using a whole spectrum of values for θ with different likelihood. To

quantify this stochastic uncertainty in the parameters simulating the observed dataset, we

develop a likelihood-free approximate Bayesian inference scheme.

4.3.5 Distance learning

Traditionally, distance between xsim and x0 are defined by summing over Euclidian distances

between all possible pairs composed of one simulated and one observed data point in the

corresponding datasets. Recently, distances for ABC has also been defined through accuracy

of possible classification of xsim and x0 [67] or by Wasserstein distance [16], under the as-

sumption that the data points in each datasets are identical and independently distributed

and they are present in a large number in both xsim and x0. We notice here that we only have

one data point in the observed dataset for a volcanic eruption field study and also due to the

very expensive simulation model we can only have few data points in the simulated dataset.

Hence, here we concentrate on the definition of distances through Euclidian distance while

we only have one data point in both xsim and x0.

While performing ABC for inference, problems may arise in cases where the data x is high-

dimensional. In fact, the number of simulations needed before you get close enough to the

observation increases with the dimension of the data space. Therefore, a common practice

in ABC literature is to define d as Euclidian distance between a lower-dimensional summary
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statistics S : xsim 7→ S(xsim), so that d(xsim, x0) < γ would be replaced by

d(S(xsim),S(x0)) < γ

in Equation (4.2), boiling down to obtaining an approximation to the following likelihood

function

pd ,γ(S(x0)|θ) =
∫

p(xsim|θ)Kγ(d(S(xsim),S(x0)) < γ)d xsim (4.3)

so that now (θ, xsim) are jointly sampled from a distribution proportional to π(θ)pd ,γ(S(x0)|θ)

when performing ABC inference.

Reducing the data to suitably chosen summary statistics may also yield more robust inference

with respect to noise in the data. Moreover, if the statistics is sufficient, then the above

modification provides us with a consistent posterior approximation [51], meaning that we are

still guaranteed to converge to the true posterior in the limit γ→ 0. As sufficient summary

statistics are not known for most of the complex models, the choice of summary statistics

remains a problem [44] and they have been previously chosen in a problem-specific manner

[18, 57, 67].

For volcanic eruption model, y cannot be easily transformed into summary statistics S(y)

as there is a complex spatial dependence involved between the deposited tephra at each

location. Hence, here we consider two possible ways of learning a distance directly between

two datasets x1 and x2 rather than between the extracted summary statistics. The first entails

constructing a Mahalanobis distance,

dM (x1, x2) =
√

(x1 −x2)T M(x1 −x2) (4.4)

where M is a d ×d positive semi-definite matrix.

The second approach uses instead a neural network to transform non-linearly the dataset in a

new space; this is usually referred to as deep metric-learning and is a well-developed field in

computer vision literature [62]. The learned distance is the Euclidian distance between the

learned embeddings

dN N (x1, x2) = ||gw (x1)− gw (x2)||2 (4.5)

where gw (·) denotes the transformation applied by the network with weights w and || · ||2
denotes the L2 norm.

We don’t go into the detail of the distance learning here and refer the interested reader to the

original paper [91] for details on this matter. Simply put, the goal is to find a distance between

observations x1 and x2 that corresponds to the Euclidian distance between the parameters θ1

and θ2 that were used to generate the observations (called the true distance).
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The method used to learn the Mahalanobis distance is called the Sparse Distance metric

learning (SDML) algorithm [95]. Two methods to learn the weights of the neural network

are considered, the contrasive [68] and triplet [101]. A technique called summary statistics

learning is also considered in [91] but is considered less performant. The triplet loss distance

is selected as the most performant distance.
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Figure 4.7: Comparison of metrics: We compare Euclidian distance dE and the distances
learned with the discussed techniques on the 300 elements of the training set, computing
them between an observation point x0 and the other 99 samples in the test set, taken to be a
reference. x0 was simulated using U0 = 173.87m · s−1,R0 = 84.55m (red dot). All the distances
are scaled between [0,1]. The small black points denote the position of the reference data,
from which the contour plot is obtained by triangulation. Euclidian distance is the distance
between summary statistics of xsim and true distance is the Euclidian distance between the
parameters, reported for reference.

In Figure 4.7, comparison between the Euclidian distance between the parameters generating

the datasets (‘true distance’) with the learned distance functions on the corresponding datasets,

namely the Mahalanobis one with SDML algorithm and the triplet loss distances; the Euclidian

distance between outputs of the model is also reported. The comparison is made in the

following way: 400 parameters-simulation pairs have been generated, with parameters drawn

uniformly on the interval [30,100]m for R0 and [100,300]m · s−1 for U0. This dataset is split

into a training one (with 300 samples) and a test one (with 100 samples). Distances are learned

on the training set, and then all the distances between a chosen element in the training set x0

and the 99 remaining samples in the same test set (‘reference samples’) are computed; the

learned distances in parameter space are then plotted by using the corresponding parameter

value for each observation. x0 was simulated using θ0 = (173.87m · s−1,84.55m).

We see that the minimum values of the distances are much more concentrated around the

true parameter value for the triplet loss distance in comparison to the SDML one and the

Euclidian. Note also that the neural network based distance is able to partially reproduce the

behaviour of the distance between the true parameter values.
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4.3.6 Posterior inference

To draw Z samples approximating the posterior distribution p(θ|x0), we keep all the tuning

parameters for the APMCABC fixed at the default values suggested in ABCpy package, except

the acceptance rate cutoff, which was chosen to be 0.03. Different number of steps and samples

are used for the inference on the simulated and real data; check Section 4.3.9 for more details.

We consider independent uniform prior distributions for the parameters with a pre-specified

range for each of them, U0 ∼U [100,300]m · s−1, R0 ∼U [30,100]m. To explore the parameter

space of θ = (U0,R0), we use a two-dimensional truncated multivariate Gaussian distribution

as the perturbation kernel. APMCABC inference scheme centres the perturbation kernel at

the sample it is perturbing and updates the variance-covariance matrix of the perturbation

kernel based on the samples learned from the previous step.

4.3.7 Parameter estimation

Given an observed dataset x0, our main interest is to estimate the corresponding θ. In decision

theory, Bayes estimator minimizes the posterior expected loss, Ep(θ|x0)(L (θ,•)|x0) for an

already chosen loss function L . If we have Z samples (θi )Z
i=1 from the posterior distribution

p(θ|x0), the Bayes estimator can be approximated as

θ̂B = argmin
θ

1

Z

Z∑
i=1

L (θi ,θ). (4.6)

As we consider the Euclidian loss function L (θ,θ′) = (θ−θ′)2, the Bayes estimator can be

shown to be the posterior mean Ep(θ|x0)(θ|x0), corresponding to an approximate one θ̂ ≈
1
Z

∑Z
i=1θi .

4.3.8 Computational considerations

For this work, we used the supercomputer Piz Daint of the CSCS, where each compute node

consisted of 36 Intel Broadwell Xeon E5-2695 v4 @ 2.10 GHz cores. Each forward MPI simula-

tion was run on one node, resulting in the use of Z nodes (up to 500 in our case). With this

setup, each forward simulation takes about 15 minutes to terminate, which makes it possible

to run 6 iterations of the APMCABC algorithm in less than 2 hours.

We stress that ABC with distance or summary statistics learning comes at the expense of a

larger computational cost with respect to directly using the Euclidian distance between model

outputs in ABC, case in which no training step would be needed. When applying the learning

approach, instead, you need to generate the training data, which consist of results of 400

forward simulations in our case. This is quite expensive given the model we are considering,

but remains an approximately equivalent computational cost of one iteration of APMCABC

when using 500 samples.
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You then need to perform the training. Note that, once the training data is generated, the

SDML technique requires a much shorter time for fitting than the time required for training

the neural network in the other cases. However, in the overall balance, when compared with

data generation time and the ABC inference time, the training step has a much smaller cost no

matter the chosen method, and has to be performed only once. Therefore, it does not make

sense to prefer a distance learning method over another just because of a shorter training

time.

During inference, the computation of the new distance only requires multiplying output of the

mechanistic model by some matrices with all distance learning techniques (as transforming

some data with a neural network simply consists of matrix multiplications and the application

of element-wise non-linearity functions). Therefore, the impact of distance learning on the

computational complexity of the inference is very small, comparable to the use of hand-chosen

summary statistics.

In general, the larger computational cost is balanced by a more efficient ABC inference scheme

and a better approximation of the true posterior, given the same computational budget to the

inference itself. We also remark that this approach can be thought of as a pre-processing tech-

nique, as it can be used with any ABC algorithm. Also, once the training has been performed,

the same learned distance can be exploited for inference on several observations of the same

physical process.

4.3.9 Results of parameters inference

To validate the performance of the inference scheme, we first try to infer the posterior distribu-

tion (using Z = 100 samples and 12 iterations of APMCABC scheme) and the Bayes estimate

of the parameters given a dataset which was simulated from M (θ) using a known parameter

configuration, θ∗ = (173.87m · s−1,84.55m). In Figure 4.8, we plot the approximate posterior

distribution inferred by APMCABC using the triple distance learned with best value of ε ac-

cording to the above investigation, and the Bayes estimate for θ. We see the true parameter

value θ∗ = (173.87m · s−1,84.55m) falls in a region with high posterior probability and the

Bayes estimate θ̂ = (172.09m · s−1,86.92m) being close to the true value.

After the validation of our inference scheme for a simulated dataset, we perform inference

to learn the posterior distribution (using Z = 500 samples and 6 iterations of APMCABC

scheme) and the Bayes estimate of the parameters given the tephra deposits at 72 ground

locations associated with the 2450 BP Pululagua (Ecuador) volcanic eruption [117] in Figure 4.9.

The Bayes estimate of θ and the posterior correlation between (U0,R0) are correspondingly

θ̂ = (Û0, R̂0) = (123.84m ·s−1,56.78m) and Cor rpost(U0,R0) =−0.79, indicating that the similar

deposition of tephra could have been caused by combinations of higher injection velocity and

narrower radius at vent or a lower injection velocity and wider radius at vent.
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Figure 4.8: Inference on Simulated Data: Approximate posterior contour plot obtained through
kernel density (bandwith=0.8) estimate from Z = 100 samples after 12 iterations of APMCABC
scheme from the approximate posterior itself and Bayes estimate (black cross) of the parame-
ters given a dataset which was simulated from M (θ) using a known parameter configuration,
θ∗ = (173.87m · s−1,84.55m) (blue cross). The prior on the parameters was chosen to be uni-
form in the region represented in the plot.
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Figure 4.9: Inference on Real Data: Approximate posterior contour plot obtained through
kernel density (bandwith=0.8) estimate from Z = 500 samples after 6 iterations of APMCABC
scheme from the approximate posterior itself and Bayes estimate (black cross) of the parame-
ters given the tephra deposits at 72 ground locations associated with the 2450 BP Pululagua
volcanic eruption [117]. The prior on the parameters was chosen to be uniform in the region
represented in the plot.
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Figure 4.10: Posterior Prediction Check: To validate the numerical volcano model and the
inference scheme we perform a posterior prediction check by simulating 100 datasets, each
using a different parameter sample drawn from the posterior distribution. Here, we plot the
tephra deposit from field observation (black) used for inference, the boxplot of the empirical
predictive distribution (white patch) and the mean predicted dataset (red) at each location.

Next we do a posterior predictive check to validate our model and inference scheme. The main

goal here is to analyse the degree to which the observed data deviate from the data generated

from the inferred posterior distribution of the parameters. Hence we want to generate data

from the model using parameters drawn from the posterior distribution. To do so, we first draw

100 parameter samples from the inferred approximate posterior distribution and simulate

100 datasets, each using a different parameter sample. We call this simulated dataset as the

predicted dataset from our inferred posterior distribution and present the mean predicted

dataset (red) compared with the observed dataset (black) in Figure 4.10.

Note that since we are dealing with the posterior distribution, we can also quantify uncertainty

in our predictions. We plot the boxplot of the empirical predictive distribution (white patch)

at each location to get a sense of uncertainty in the prediction. This shows a good prediction

performance of the numerical model of volcanic deposition and the proposed inference

scheme. The discrepancies in some of the locations can mainly be explained by the inability of

the numerical model in providing a complete description of the process of volcanic eruption

and by the uncertainty on the field measures.
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4.4 Coupling the Nelder-Mead optimization algorithm and a SEER

based model for inversion of eruption source parameters

In the previous section, we showed how to use ABC algorithms to infer parameters of a tephra

dispersion model. Another technique used for the inversion of ESP is to apply an optimization

algorithm that explores the parameter space in search of a good solution using some heuristics.

A widely used technique is the inversion procedure included in Tephra2 [38], which applies

the downhill simplex method of Nelder-Mead [89] to the Tephra2 model. Here, we aim at

inverting ESP based on a SEER based model.

We consider here volcano-semianalytical-seer, which is lightweight to compute, and we project

to include a heavier model like volcano-lagrangian-seer in the inversion scheme at a later

time. Optimization or inference algorithms can be intrinsically parallel (as inference schemes

presented in Section 4.3). In that case, the parallelization of the optimization scheme or a

nested parallelization of the forward model in a parallel optimization scheme is possible.

In other situations, as with the Nelder-Mead simplex method, the optimization scheme is

purely sequential, and requires a parallel forward model with good strong scaling behaviour if

using a heavy numerical model. As we showed in chapter 3, volcano-lagrangian-seer has a

scaling behaviour which makes possible to use it either in a sequential or parallel optimization

scheme.

We present here some preliminary results of the coupling of volcano-semianalytical-seer

with the Nelder-Mead simplex algorithm. For this, we couple the forward model with the

optimization framework of the Python package SciPy [116], which implements a range of

optimization algorithms. Moreover, the Python interface makes the coupling with other

optimization frameworks easy. Those early results are encouraging as convergence can be

obtained with a reasonable number of forward simulations, but challenges remain in the

sense that the algorithms seems to easily be trapped in a local optimum region.

4.4.1 The Nelder-Mead simplex method

The Nelder-Mead simplex is a method that aims at minimizing a function f defined on a space

of N parameters. Each set of parameters represent a point in this space. Let’s assume we have

a set of N +1 distinct parameter sets, each set is a vertex of a simplex in the N -dimensional

space. For example, in a two-dimensional space a simplex of three points, or a triangle, can be

defined.

Starting from an initial simplex, the Nelder-Mead algorithm changes the point of the simplex

that has the highest value at each iteration with a reflection, expansion, contraction or shrink

operation until some convergence criterion is met. Algorithm 4.3 gives the Nelder-Mead

algorithm.
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Algorithm 4.3: The Nelder-Mead simplex algorithm. α,γ,ρ,σ are coefficients such as
α> 0,γ> 1,0 < ρ ≤ 0.5. Standard values are α= 1,γ= 2,ρ = 1/2,σ= 1/2. In the used
version of the simplex algorithm, vertices of a generated simplex are clipped if they
are out of bound.

1 Construct a simplex of N +1 points x1, x2, ..., xN+1

2 repeat
3 Compute f on the simplex points and sort them as f (x1) ≤ f (x2) ≤ ... ≤ f (xN+1)
4 Compute the center of gravity x0 of x1, x2, ..., xN

5 Compute xr = x0 +α(x0 −xN+1), the reflection of xN+1

6 if f (x1) ≤ f (xr ) ≤ f (xN ) then
7 Replace xN+1 by xr

8 else if f (xr ) < f (x1) then
9 Compute xe = x0 +γ(xr −x0), the expansion of the simplex

10 if f (xe ) ≤ f (xr ) then
11 Replace xN+1 by xe

12 else
13 Replace xN+1 by xr

14 end
15 else
16 Compute xc = x0 +ρ(xN+1 −x0), the contraction of the simplex
17 if f (xc ) < f (xN+1) then
18 Replace xN+1 by xc

19 else
20 Shrink the simplex by replacing all points except the best (x1) with

xi = x1 +σ(xi −x1)

21 end
22 end
23 until convergence criterion is met
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4.4.2 Coupling volcano-semianalytical-seer with the downhill simplex implemen-
tation of SciPy

Let’s recall that volcano-semianalytical-seer takes the parameters z0, M ,r0,U0,T0,n0 as well as

particle characteristics TGSD and density. In the present work, we consider z0 and particle

characteristics to be fixed. It remains a set of five parameters to optimize, which are respec-

tively the total erupted mass, the initial radius of the plume, the initial temperature and the

ratio of exoslved volatiles. The physical models (plume, umbrella cloud and settling velocity

models) have been implemented in C++, historically to be used within the Teras model. Then,

the model is solved by calling C++ functions from Python using SWIG, and using averaged

values to solve volcano-analytical-seer (see Chapter 3 for details).

The optimization is made by minimizing an objective function that is passed to the minimize

function of SciPy. In the present work, this function computes a MSE error between observed

and simulated data. Experiments using the MAPE error have been made, but this type of error

tends to always privilege underestimated simulation results, while the error is at maximum

100% when the result is underestimated. [38] use a χ2 error. More investigation to determine

an appropriate error measurement is needed. We pass bounds to the algorithm to constrain the

choice of parameters within acceptable values2. In the used implementation of SciPy, Nelder-

Mead coefficients are chosen as standard values, respectively α= 1,γ= 2,ρ = 1/2,σ= 1/2 and

the initial simplex is constructed as xi = (1+δ) · x0 given that x0 is an initial parameter passed

to the algorithm and δ= 0.05. It is also possible to specify a custom initial simplex.

Preliminary results

In order to benchmark the inversion scheme, we run it against depositions of the Pulu-

lagua 2450BP eruption with various initial guesses passed to the algorithm. Figures 4.11

and 4.12 shows results of those inversions runs. For each, we specify the initial guess passed

to the algorithm and the final result of the inversion. The bounds set for those runs are

M ∈ [3.5e11,5.5e11]kg ,U0 ∈ [20,400]m/s,r0 ∈ [20,200]m,n ∈ [0.01,0.05],T0 ∈ [1000,1300]K

and z0 = 100m. The continuity of deposition between plume and umbrella cloud is not im-

posed. Plume height Ht is also specified, but note that here plume height is an output of the

model, not an input. An inversion with plume height as input would be possible by using the

plume parameters inversion strategy described in Section 4.2. In that case, an inversion of

plume parameters from plume height would be necessary at each iteration of the Nelder-Mead

algorithm.

For each run, we show the deposition obtained with the inverted parameters, as well as the

evolution of the value of the objective function at each evaluation. Note that it is not the

evolution of the best value of the current simplex, but the value of every evaluation of the

function. We recall that in the worst case, an iteration of the Nelder-Mead simplex can generate

2Support for bounds in the Nelder-Mead algorithm has only been added recently in SciPy. Version 1.7.0 released
in June 2021 is necessary
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inversion of eruption source parameters

up to three evaluations of the objective function (in the case of a reflection, a contraction and

a shrink operation).
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(a) Initial guess : M = 4.5e11kg ,U0 = 170m · s−1,r0 = 80m,n = 0.01,T0 = 1200K , Ht ≈ 26.4km, MSE ≈
5120.
Inversion result : M ≈ 4.6e11kg ,U0 ≈ 189.6m ·s−1,r0 ≈ 108.8m,n ≈ 0.01,T0 ≈ 1171.7K , Ht ≈ 31km. Best
achieved MSE ≈ 3570.
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(b) Initial guess : M = 4.5e11kg ,U0 = 150m/s,r0 = 100m,n = 0.01,T0 = 1200K , Ht ≈ 28.7km, MSE ≈
4556.
Inversion result : M ≈ 5.01e11kg ,U0 ≈ 150.6m · s−1,r0 ≈ 120.7m,n ≈ 0.01,T0 ≈ 1038.8K , Ht ≈ 32.7km.
Best achieved MSE ≈ 3515.

Figure 4.11: Comparison of inversions results using volcano-semianalytical-seer coupling with
Nelder-Mead simplex algorithm. For each inversion run, we show the deposition obtained
after the inversion (left) and and evolution of values of evaluations of the objective function
(right).

First, we can observe that in the four cases we get visually close deposition patterns, but with

rather different plume parameters. There are also two plume heights that emerges, ≈ 32km

in Figures 4.11a and 4.11b and ≈ 27km in Figures 4.12a and 4.12b. We remark that obtained

plume heights are compatible with results found in [117].

It seems that the algorithm has difficulty to escape a given region of the parameter space. It

would then be interesting to explore other optimizations strategies or algorithms that would

maybe be more adapted to this problem. For example, by applying multiple downhill simplex

algorithms in parallel with different starting points, applying a simulated annealing or parallel

simulated annealing or some other metaheuristic. The quality of the optimization procedure

is, however, often problem dependent, and more investigations are needed to choose the

appropriate technique.
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(a) Initial guess : M = 4.5e11kg ,U0 = 150m · s−1,r0 = 50m,n = 0.01,T0 = 1200, Ht ≈ 21.3km, MSE ≈
7856.
Inversion result : M ≈ 3.5e11kg ,U0 ≈ 400m ·s−1,r0 ≈ 141.5m,n ≈ 0.05,T0 ≈ 1012.6K , Ht ≈ 27.2km. Best
achieved MSE ≈ 4488.
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(b) Initial guess : M = 4.5e11kg ,U0 = 80m · s−1,r0 = 30m,n = 0.01,T0 = 1200K , Ht ≈ 16.1km, MSE ≈
15790.
Inversion result : M ≈ 3.5e11kg ,U0 ≈ 400m · s−1,r0 ≈ 60.3m,n ≈ 0.01,T0 ≈ 1300K , Ht ≈ 27.2km. Best
achieved MSE ≈ 4490.

Figure 4.12: Comparison of inversions results using volcano-semianalytical-seer coupling with
Nelder-Mead simplex algorithm. For each inversion run, we show the deposition obtained
after the inversion (left) and and evolution of values of evaluations of the objective function
(right).
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4.5 Conclusion

The number of iterations to converge can greatly vary between inversions, but are always less

than 1000 iterations. Thus, applying this inversion procedure using volcano-lagrangian-seer

as the forward model instead of volcano-semianalytical-seer on 500 cores of Yggdrasil would

take less than three hours for Pululagua and certainly less than two hours for Cotopaxi, if

we consider that the number of evaluations to convergence would be of the same order of

magnitude. This would take less than 9 hours on 900 cores if the same procedure was applied

to the 1996 eruption of Ruapehu. This would, however, requires to implement Degruyter

plume model in a more efficient way than the current Matlab implementation. This is again

by supposing that the number of evaluations to convergence would remain of the same

order of magnitude. See Section 3.4.1 for performance analysis of volcano-lagrangian-seer.

Hybrid strategies could as well be conceived, where a first step of inversion would be done

with volcano-semianalytical-seer to find one or multiple initial guess for a refinement with

inversion using volcano-lagrangian-seer.

4.5 Conclusion

In this chapter, we introduced the notion of eruption source parameters and discussed three

inversion techniques based on different optimization algorithms and forward models.First, we

presented a simple Monte Carlo strategy that allows finding plume source parameters given a

plume height. This technique works because the forward model is very fast to solve, and that

it is necessary to find only one set of compatible parameters.

Then, we presented approximate Bayesian computation techniques and algorithms and the

Python package ABCpy which offers a large range of ABC algorithms and is parallelized using

Spark or MPI. We performed parameter inference on the Tetras model using ABCpy and a

sophisticated distance learning technique. We presented how we contributed to the code of

ABCpy to offer a nested parallelization architecture which allows integrating MPI parallelized

models, such as Tetras, in the ABCpy framework. Advantages of statistical inference technique

is that they are inherently parallel (it is possible to run hundreds or thousands of instances of

the forward model in parallel at each iteration) and they allow for an estimation of the posterior

distribution of parameters, which allow for uncertainty quantification, instead of finding

a unique parameter set considered as optimal. They are, however, very computationally

expensive (it is necessary to run hundreds or thousands of instances of the forward model at

each iteration). We demonstrated that this task is now achievable in a rather short time for

moderately heavy MPI models such as Tetras thanks to our nested parallelization scheme given

that a high-end HPC infrastructure is available. The inversion procedure took approximately

1000 nodes ×hour on Piz Daint (36000 cor es ×hour ), or 500 nodes (18000 cores) for two

hours. The same procedure would take multiple days on a medium-range HPC infrastructure

now routinely found in research centres and universities. We can estimate that this procedure

would take less than three days on 500 cores of the Yggdrasil cluster of the Geneva’s higher

education institutions ( 36000cor es×hour
500cor es = 72hour s, and by taking into account that processors

in Yggdrasil are of newer generation than those of Piz Daint). This kind of inversion procedure
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then still requires a rather important computing power, but it will become more and more

affordable as the time passes.

Another difficulty in inference and optimization is the design of a distance or discrepancy

measure between simulation outputs and / or field measurements. For the statistical inference,

we relied on a sophisticated distance measure obtained by machine learning whose goal is to

make the distance in the output space resemble the distance in the parameter space.

Finally, we presented preliminary results on an inversion strategy based on the Nelder-Mead

simplex algorithm and our new volcano-semianalytical-seer model. The procedure is a sequen-

tial improvement of an objective function based on a geometrical argument. Its advantage

compared to the statistical inference technique is to be less computationally intensive, but it

outputs only one value of parameter considered optimal and provides no insight on the uncer-

tainty quantification of the result. Another drawback seems the difficulty of the algorithm to

escape local optimum of the objective function. However, given the reasonable amount of

objective function evaluations and the parallelization of volcano-lagrangian-seer, this latter

model could be used with such an inversion strategy on an HPC cluster.

A strength of our inversion strategies is to rely on a first principle plume model. Again we stress

the flexibility of our design. Tetras and volcano-lagrangian-seer can be coupled with various

plume models found in the literature and they can easily be integrated to various inversion

schemes. The plume height seems to be the determining factor in the deposition profile, for

future work, it could then be interesting to perform inversion taking into account the plume

height and the simple inversion of plume parameters from plume height described in this

chapter to lower the number of dimensions of the problem. It would then be possible to look

for a range of compatible parameters with a given inverted plume height.

Other strategies could now be designed using hybrid techniques based on a first round of

optimization based on volcano-semianalytical-seer and improvement based on volcano-

lagrangian-seer. We could for example perform statistical inference using volcano-semianalytical-

seer as forward model to determine a prior for inference using volcano-lagrangian-seer. We

could as well find a starting point for an optimization algorithm using volcano-semianalytical-

seer and refine the optimization using volcano-lagrangian-seer. We could finally investigate

other metaheuristic optimization algorithms, some of them being applicable in parallel, such

as the parallel simulated annealing. Then, the nested parallelization design integrated into

ABCpy could prove useful to optimize a MPI parallelized model using a parallel metaheuristic.

118



5 Implementation of a multiscale
TTDM

This chapter describes the multiscale implementation of a TTDM, including an aggregation

process. The content of Section 5.4 has been originally published in

P. Künzli, J.-L. Falcone, E. Rossi, P. Albuquerque, and B. Chopard. “HPC Multiscale Simulation

of Transport and Aggregation of Volcanic Particles”. In: 2018 17th International Symposium on

Parallel and Distributed Computing (ISPDC). 2018 17th International Symposium on Parallel

and Distributed Computing (ISPDC). June 2018, pp. 25–32. DOI: 10.1109/ISPDC2018.2018.

00013

and some implementation details present in Section 5.2 are found in the supplementary

materials of

P. Künzli, K. Tsunematsu, P. Albuquerque, J.-L. Falcone, B. Chopard, and C. Bonadonna.

“Parallel simulation of particle transport in an advection field applied to volcanic explosive

eruptions”. In: Computers & Geosciences 89 (2016), pp. 174–185. DOI: https://doi.org/10.1016/

j.cageo.2016.02.005.

In the present chapter, we bring a stronger emphasis on implementation aspects.

5.1 Introduction

Real world phenomena involve processes of different natures, occurring at different spatial

and temporal scales and involving different physical concepts. Each of those processes can be

described by a model. The work of creating models to describe physical processes can be done

with a large range of mathematical and computational tools, ranging from a simple equation

to complex numerical models. Every model can rely on its own numerical description and

physical concepts. By coupling models together, then considered as submodels, one can

create a multiscale model, whose goal is to give an accurate representation of the real world

phenomena considered. The concrete implementation of a multiscale model is a multiscale

application.
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Models for specific processes of a multiscale application are routinely published in specialized

journals. If the design of the application is not thought since the beginning with flexibility in

mind, it can be cumbersome to integrate a newly published model, and thus, make the multi-

scale model evolve with more up-to-date science difficult. When implementing a multiscale

application, submodels can come in a variety of forms, usually a piece of software, either being

a self-contained program such as a Python script, or implemented as a function or a class in a

given language, for example in C++. The choice of the technology will depend on the model

type and preferences and skills of the model developer. If part of the model is computationally

intensive, it could be of interest to re-implement it with a different technology, for example on

GPU, or by parallelizing it on a distributed memory architecture to target supercomputers.

It is then necessary to have a way to distinctively express the logic of data transfer between

submodels, their concrete implementation in a computer language and their execution on

a given infrastructure, which can range from a small microcontroller to the most powerful

supercomputers coupled together.

Impact of volcanic ashes dispersal has been discussed previously in this document. Aggre-

gation is an important physical phenomenon that impacts the sedimentation of volcanic

particles [32]. Indeed, particle aggregation can modify particle sedimentation time. When

particles stick together, they form larger objects that fall faster than the original ones. Not

taking this phenomenon into account may lead to overestimate particle concentration in the

atmosphere [29, 99]. For this reason, we coupled an aggregation model with the transport

model.

When particles leave the volcanic plume, they are transported by wind, possibly over very long

distances. Thus, meteorological data have to be integrated. We use data from the ERA-interim

reanalysis provided by the ECMWF (European Centre for Medium-Range Weather Forecasts).

The aforementioned phenomena occur at various time and spatial scales: aggregation happens

at scales of the order of the meter and the second; advection inside the plume tens of kilometres

and hours to days; and advection in the atmosphere up to thousands of kilometres over weeks.

To design such a multiscale application, we rely on the MMSF (Multiscale Modelling Software

and Framework) set of tools and techniques. MMSF allow describing and simulating multiscale

and multi-science phenomena in a standardized way [35, 37].

Tetras is based on a hybrid Eulerian-Lagrangian numerical scheme which leads to important

workloads because it is necessary to simulate a huge number of particles to achieve statistical

significance. The transport code is thus parallelized on a distributed memory architecture

using MPI. Tetras’s functionalities are implemented within the library libpiaf (Particles In

Advection Field) which allows for representation of generic particles in an advection field

and the library libtetras, which account for all the specificities of volcanic ash particles

and related physical models. Tetras is implemented on top of those libraries. This allows for

flexibility and gives the user the possibility to write its own simulation code.
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Volcano-lagrangian-seer is based on a pure Lagrangian numerical model and also leads to

important workloads. It has thus been parallelized as well using MPI. Data structures of

libpiaf and libtetras have been reused to implement volcano-lagrangian-seer, but the

core of the numerical model has been rewritten because it is fundamentally different from

Tetras’s numerical model. This implementation has been done through a header only library

called lagrangiantetras, which is usable by custom client code. This architecture shows

the flexibility of our approach and allows for hiding complex parallelism considerations that

are embedded in libpiaf and lagrangiantetras.

For the multiscale implementation of the application, we rely on the MUSCLE-HPC coupling

library [13], which is an HPC implementation of the MUSCLE coupling library [28, 26, 115].

This library allows implementing submodels in the form of C++ classes, with the MMSF

operators being implemented as methods. The MMSF conduits are implemented as MPI

communication, allowing good performances for tightly coupled submodels. We give a

description of the multiscale implementation by building on the description of the single scale

Tetras implementation.

Then, we look at the performance impact of coupling the particle transport at multiple scales

and confirm that the impact of the usage of MUSCLE-HPC on the performances is low, and we

show that using coarser time scale for the long-range transport allows for shorter computation

time. Moreover, coupling multiple spatial domains requires a clever assignment to optimize

computing resource usage. We thus discuss a strategy to model performances of submodels

by a Discrete Event Simulation (DES) approach.

5.2 Tetras single scale implementation

This section describes the main data structures and algorithms used to implement the La-

grangian on grid method as well as the general structure of the single-scale implementation of

Tetras. For each data structure, there is a partial representation of the full C++ implementation,

where prototypes of the associated data and functions are given in C++ pseudo-code (for exam-

ple Array <Type> is the C++ template notation and can be read, “Array of Type”). Double2
and Double3 are types that store together respectively two and three numbers. MpiManager
that embeds and wraps MPI functionalities.

Code extracts are given in pseudo-C++. The syntax of C++ is not totally respected, and boil-

erplate code is neglected for simplicity. However, the logic of the objects construction and

dependencies is respected, so that the code extract are close to code that is actually written.

Functions members of classes are called “member functions” or “methods” in objected ori-

ented programming, depending on the language. In C++, it is more common to use the term

member function, while Java uses the term method. In this document, we choose to use the

latter.

Listing 5.1 gives a simplified example of implementation of a particles advection code using
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libpiaf and libtetras. It illustrates the use of the main data structures used to implement

a TTDM. Listing 5.2 gives an example of parameter file that FileManager can read.

5.2.1 Particles

Particles (Listing 5.3) are described based on three main features: their family (specified by

size and density, Listing 5.4), a position (relative to the site to which the particle is linked to)

and their own velocity (the Lagrangian velocity). A multi-particle cellular automata method

would only have stored the particle family, since velocity and position are directly attached to

the domain. Volcano-lagrangian-seer uses a similar data structure, except that it considers the

velocity and position to be relative to the domain’s origin.

5.2.2 Velocities and advection field

Particles in the model are subject to an advection field. It consists of several velocities which

are applied at points of the simulation space. Each of these velocities is described by a specific

model. The parameters taken into account for the computation of a velocity are the position,

the time, the time step and the particle family (or particle characteristics). The time step is

useful to compute the random velocities used to generate diffusion.

The advection field is defined by a set of function providing components at any position,

time, ∆t (for diffusion) and particle characteristics. In object-oriented programming, we can

define function objects, which are objects that we can call like a function. In C++, this is done

by adding the operator () as a method of a class. We have created an abstract class called

SpeedFunctor (functor is another name for function object in C++) with a virtual () operator

taking as parameters : position, time, d t and particle family. Thus, we define the advection

field by creating a set of function objects which will be used as advection field. It is then easy

to modify its definition.

Each velocity of the model must then be defined as a child class of the abstract class Velocity.

Then each velocity object is guaranteed to have an operator () with a known set of parameters,

and can embed the necessary data structures.

Listing 5.5 shows the abstract structure Velocity and Listing 5.6 shows an example of the

TerminalVelocity structures that inherits from Velocity which computes the terminal

velocity of particles. It embeds a data structure of class Atmosphere which is used to get

characteristics of the atmosphere (temperature, pressure, density) necessary to compute

terminal velocity of particles.
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5.2 Tetras single scale implementation

Listing 5.1: Simplified example of a simulation code based on libpiaf and libtetras. In
this example, we construct an advection field compounded of one constant velocity. To model
the transport of volcanic particles, the task consist on the construction of a set of velocities
that defines an advection field based on volcanological and atmospherical models. Those
velocities captures the physics of the model.

class ConstantVelocity : Velocity {
Atmosphere atmosphere
Double3 operator ()(

Double3 position ,
double t,
double dt ,
TephraParticleFamily family

){
return {1.0 , 1.0 , 1.0};

}
}

main (){
// Initialization
MpiManager mpiManager ();
FileManager fm( mpiManager );
EruptionParameters ep = fm. loadEruptionParameters (" parameters .csv");
Array <Velocity > velocities = [ ConstantVelocity () ];
Domain domain (origin , size , dx , mpiManager );
Terrain terrain (origin , size , dx , mpiManager );
ParticleRepository pr ( mpiManager );
Simulator simulator (domain , dt , terrain , particleRepository ,

mpiManager );

domain . addParticleClasses (ep. particleClasses ())
domain . addVelocities ( velocities )

// Solving
while ( domain . containsParticles ()){

if( currentTime < eruptionTime ) injectParticles ();
simulator .step ();
currentTime += dt;

}

// Finalization
fm. write (" output .h5", terrain );

}
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Listing 5.2: An example of input file that FileManager of libtetras can read.
plumeModel , degruyter
ventPosition , 0, 0, 3000
# eruption events
# start time , duration
# 8h30 , 4h30
eruptionEvent , 30600 , 16200
# 15h, 2h
eruptionEvent , 54000 , 7200
columnDiffusion , 1000
# particle classes
# phi , wtpct , density
family , -8, 0.00000 , 1100
family , -7, 1.37562 , 1100
family , -6, 0.60811 , 1100
...
family , 12, 0.00140 , 2650
family , 13, 0.00020 , 2650
family , 14, 0.00003 , 2650
# plume , time , file name
plume , 0, plume -ruapehu -0. csv
# atmosphere
windModel , files
tropopause , 16000
stratosphere , 24000
temperatureASL , 288
pressureASL , 101325
atmosphereDiffusion , 300
# wind
wind , 0, wind -ruapehu -0. csv

Listing 5.3: Particle data structure.
Particle :

Data :
int familyId
Double 3 displacement
Double 3 LagrangianSpeed

Listing 5.4: TephraParticleFamily data structure.
TephraParticleFamily :

Data :
int familyId
double density
double grainSize
double weightPercent
double diameter
double mass
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Listing 5.5: Velocity data structure.
Velocity :

Function :
Double 3 operator ()(

Double 3 position ,
double t,
double dt ,
TephraParticleFamily family

)

Listing 5.6: TerminalVelocity data structure. The syntax TerminalVelocity :
Velocity means that TerminalVelocity inherits from functions and data of Velocity.
TerminalVelocity : Velocity :

Data :
Atmosphere atmosphere

Function :
Double 3 operator ()(

Double 3 position ,
double t,
double dt ,
TephraParticleFamily family

)

5.2.3 Domain

The simulation occurs inside a discretized domain (Listing 5.7) which is split into boxes of size

∆x3. Each particle remains linked to the closest site of the domain (the centre of each box).

This way it is easy to track individual particles, to implement some aggregation function and

to parallelize the implementation (by assigning groups of sites to different cores).

Each site in contact with the ground is tagged. Thus, if a particle enters a site in contact with

the ground, the simulator transfers the particle to the terrain in order to be deposited. If

a particle leaves the domain without entering a tagged site, the particle is transferred to a

particle repository (described below).

Listing 5.7: Domain data structure.
Domain :

Data :
double dx
Double 3 position
Array < ParticleFamily > particleFamilies
Array < Array < Particle > > domain
Array < Velocity > velocities
Array < bool > isInGroundContact
MpiManager mpiManager
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Listing 5.8: ParticleRepository data structure.
ParticleRepository :

Data :
Array < Particle > storedParticles
Array < ParticleFamily > particleFamilies
MpiManager mpiManager

Function :
depositParticle ( Particle )

5.2.4 Particle repository and terrain

A particle can leave the domain in two cases: either the particle is transported outside the

domain, or the particle makes contact with the ground (the particle is deposited). Thus, we

need a structure able to deal with these outgoing particles. This is the purpose of the particle

repository and terrain structures.

A particle repository (Listing 5.8) is a structure that stores all particles that fall outside the

domain. The terrain (Listing 5.9) is a substructure of the particle repository with the extra

ability to identify the deposition position of the particles on the ground. When a particle is

transferred to a particle repository (either a simple particle repository or a terrain), the particle

inherits characteristics (position and velocity) from the domain. The particle then becomes a

Lagrangian particle.

The repository will store the particle in its current state in a list. The main purpose is to verify

the conservation of mass at the end of the simulation (each particle injected in the domain

must be located in a repository / terrain or in the domain at the end of the simulation). This

is also useful for the multiscale implementation, where it is necessary to intercept and store

particles that leaves a simulation domain in order to send them to another one.

The terrain has the additional capability to compute where the particle will fall on the ground.

It stores a digital terrain model as a square grid of elevations, where each element of the grid

represents the elevation of a portion of the terrain. When a particle is transferred to the terrain,

one must locate where the particle will fall on the ground. To this end, the terrain searches

for the intersection between the particle trajectory and the terrain by moving the particle

from a terrain portion to another, until the particle hits the ground. At this stage, the terrain

stores the particle. So, at the end of the simulation, the terrain contains a list of Lagrangian

particles deposited on the ground. There is also a data structure called LightTerrain that

directly computes the deposition of particles on a grid in kg ·m−2 to avoid storing individually

all particles that deposit.

5.2.5 Simulator

The simulator (Listing 5.10) manages a domain in which particles are injected. These particles

are transported within the domain by the advection field resulting from the various velocities.
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5.2 Tetras single scale implementation

Listing 5.9: Terrain data structure.
Terrain : ParticleRepository :

Data :
Array < Particle > storedParticles
Array < ParticleFamily > particleFamilies
double dx
Double 2 position
Array < double > terrain
MpiManager mpiManager

Function :
depositParticle ( Particle )

Listing 5.10: Simulator data structure.
Simulator :

Data :
Domain domain
double currentTime
double dt
Terrain terrain
Repository repository
MpiManager mpiManager

Function :
step ()

The simulator takes into account the following entities: the domain, the time step ∆t , the

terrain in which the particles are deposited, a particle repository to store the other particles.

At each time step, the simulator computes the advection field and moves the particles accord-

ingly. Each particle is moved individually and linked to a new site if necessary.

5.2.6 Parallel algorithm

Intercore communications

Each core works on a local subdomain which consists of a given number of blocks of the

domain. This means that cores must send their neighbours the particles leaving their local

blocks, and receive particles from these neighbours. Therefore, each core will prepare a packet

of particles for each of its neighbours at each iteration (26 neighbours in three dimensions).

These packets are then exchanged at the end of an iteration and particles are placed in the

local domain of each core.

Parallel simulator

The parallel simulator applies the same algorithm as for the sequential simulator to each

domain block. The behaviour of the parallel implementation differs mainly by two points.

Firstly, there is the particle exchange step at the end of each iteration. Secondly, recall that the

usage of an adaptive∆t implies the possibility that an iteration can be cancelled. However, in a
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Listing 5.11: SeerModel data structure.
SeerModel :

Data :
VolcanicPlume plume
Velocity plumeVelocity
Velocity umbrellaCloudVelocity
Array < ParticleFamily > particleFamilies
function < double ( SeerParticle , double ) > plumeExitRate
function < double ( SeerParticle ) > umbrellaCloudExitRate
MpiManager mpiManager

Function :
move( SeerParticle &)

Listing 5.12: SeerSimulator data structure.
SeerSimulator :

Data :
double currentTime
double dt
Terrain terrain
Double 3 origin
Double 3 size
SeerModel seerModel
Array < ParticleFamily > particleFamilies
Array < SeerParticle > particles
Array < Velocity > velocities
MpiManager mpiManager

Function :
step ()

parallel context, each core needs to know the success state of the iteration of all cores. Indeed,

a constraint violation can occur in any domain block. The success state being a boolean

value, we need to perform a parallel logical “and” over each local value. Therefore, we have to

perform a reduction operation and distribute the result to all the cores. This is done using the

MPI_AllReduce primitive.

For the parallel implementation, the computation of an iteration is completed by each core.

Then the result of the reduction allows to determine if this iteration can be validated or not.

5.3 Volcano-lagrangian-seer implementation

To implement volcano-lagrangian-seer, we have been able to reuse a large part of the useful

data structures of Tetras : particles, velocities, file manager, eruption parameters management

Listing 5.13: SeerParticle data structure.
SeerParticle : Particle :

Data :
bool sourceTermParticle
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and terrain. However, this model relies on a pure Lagrangian scheme and does not need to

rely on an actual grid in memory to represent a domain. The simulator manages a list of

Lagrangian particles. Thus, the parallelization is made simpler because there is no particle

exchange implied between cores. Particles are equally distributed across cores when they are

created and remain managed by the same core until they reach the ground. This comes at the

price that particle interactions or computation of atmospheric ash load are not available and

not easily doable with this model.

It has, however, been necessary to implement new components in addition to the new simula-

tor. First, there is the ExitRate data structure. Indeed, we present in the Chapter 3 how exit

rates are quantified, but as for the velocities, we decided to implement them in the form of

functions that are exposed to the end user. Here, rather than defining a class with an abstract

() operator as for velocities, we define exit rates (one is defined for the plume, another for

the umbrella cloud) to be standard functions created through lambda expressions. Those

expressions allow in C++ to construct unnamed functions that can be bound to variables.

Moreover, they are able to capture variables within the scope at the creation of the function

(i.e., they can embed data as a regular C++ object). The end result is close to what we obtain

with the velocities : objects that encapsulate necessary data and that can be called as functions.

This is illustrated on lines 21 and 27 of Listing 5.14.

The exit rates for plume takes as input a particle and an orientation, because the exit rate in

the plume is dependent on exit orientation in the case of a weak plume (see Algorithm 3.2 in

Chapter 3). For the umbrella cloud, however, only the particle is necessary (see Algorithm 3.1

in Chapter 3).

Then, those exit rates are passed to theSeerModel (Listing 5.11) data structure, which manages

behaviour of particles inside the plume and umbrella cloud. This component embed as well a

data structure describing the plume geometry and characteristics. In the current implementa-

tion, SeerModel does not manage directly particles. Instead, SeerSimulator(Listing 5.12)

manage particles that can be tagged as lying inside the plume or the umbrella cloud or not (List-

ing 5.13). When particles exit the plume or umbrella cloud, they are subject to the advection

field of the atmosphere until they reach the ground.

The usage of function objects for velocities and exit rates definitions allows exposing in the

client code the physics of the model, without the need of modifying the underlying numerical

model and parallelism. This way of doing thus increase the flexibility of the tool. This has

been demonstrated by the possibility of implementing volcano-lagrangian-seer by reusing the

definition of velocities from Tetras.
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Listing 5.14: Summary of volcano-lagrangian-seer implementation. The syntax [=] in lines 21
and 27 means that variables used in the function are automatically captured by copy. That
means that they are stored in the corresponding function object. The result is close to a
function object as in the case of the velocities, but avoid the necessity of explicitly creating
a class. The physics is mainly captured by velocities, as in Tetras, but it is necessary to pass
a VolcanicPlume data structure to the model, because the simulator needs to know the
geometry of the plume and umbrella cloud, which is not the case in Tetras.

1 class ConstantVelocity : Velocity {
2 Double3 operator ()(
3 Double3 position ,
4 double t,
5 double dt ,
6 TephraParticleFamily family
7 ){
8 return {1.0 , 1.0 , 1.0};
9 }

10 }
11

12 main (){
13 // Initialization
14 MpiManager mpiManager ();
15 FileManager fm( mpiManager );
16 EruptionParameters ep = fm. loadEruptionParameters (" parameters .csv");
17 Array <Velocity > velocities = [ ConstantVelocity () ];
18 Terrain terrain (origin , size , dx , mpiManager );
19 VolcanicPlume plume ( ventPosition , wind , u0 , r0 , n0 , t0);
20

21 function < double ( SeerParticle , double )> plumeExitRate = [=]( SeerParticle part ,
22 double direction ){
23 // this function should return the probability
24 // for a particle to exit the plume at each second
25 return 1.0;
26 }
27 function < double ( SeerParticle )> ucExitRate = [=]( SeerParticle part){
28 // this function should return the probability
29 // for a particle to exit the umbrella cloud at each second
30 return 1.0;
31 }
32

33 SeerModel seerModel (ep. particleClasses () , plume , plumeExitRate ,
34 ucExitRate , mpiManager );
35 SeerSimulator simulator (seerModel , velocities , origin , size , mpiManager );
36

37 // Solving
38 while ( seerModel . containsParticles ()){
39 if( currentTime < eruptionTime ) injectParticles ();
40 simulator .step ();
41 currentTime += dt;
42 }
43

44 // Finalization
45 fm. write (" output .h5", terrain );
46 }
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5.4 A multiscale TTDM based on Tetras and MUSCLE-HPC

When particles are entrained inside the volcanic plume, they can stick together to form larger

particles. Some of them are transported over a very long range by the wind. In the atmosphere,

we suppose that particle concentration is too low so that their interaction can be neglected.

In the plume, speed of particles can be several orders of magnitude higher than when trans-

ported by the wind. Moreover, aggregation is a computationally intensive task, occurring at

the time scale of a second. The full volcano simulation is therefore a multiscale process. A way

to deal with it is to simulate each of the phenomena separately, and transfer data between

them.

This problem is general to modelling science. This area of research aims at modelling more

and more complex physical processes. One of the main paradigm that has emerged in the last

decades to meet this challenge is multiscale modelling, where a physical process is viewed

as a set of submodels, each one simulating a model at a specific time and temporal scale

while exchanging data with other submodels. Various theoretical and operational multiscale

frameworks have been proposed, [64] gives a review of those tools.

One approach is the Multiscale Modelling and Simulation Framework (MMSF) [27, 37], which

defines a theoretical formulation of submodels and their data exchange and tools to implement

the pairing and execution of submodels. A solution to implements a MMSF multiscale model

is to rely on MUSCLE2 [26] which is a library that allows establishing communication channels

between submodels written in Python, Java, C/C++ or Fortran, called conduits. This has the

advantage of the wider compatibility, but the communication channels are TCP connections,

which can prevent from using high bandwidth available on clusters. In this work, we rely on

the MUSCLE-HPC framework [13]. This library is only compatible with C++ submodels, while

submodels have to be implemented as C++ classes, but communications occurs through MPI

communication. Which allows implementing multiscale models fully compliant with MMSF

theoretical foundations while using the plain network capacity of modern clusters.

In the previous chapters, we have focused and described the transport processes of particles.

In this section, we start by describing the aggregation model. Then, we describe how the

multiscale application is implemented using MUSCLE-HPC as well as the implementation of

the aggregation process.

5.4.1 Aggregation

Particle aggregation creates larger agglomerates starting from single and smaller objects. When

they aggregate, volcanic particles tend to fall faster. Then, not taking this phenomenon into

account can lead to the overestimation of atmospheric particle concentration, and underesti-

mation of particle deposition close to the vent [32].

As a first step, we used an aggregation model inspired by water droplet aggregation. Note that
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there is ongoing work to produce models more suited to volcanic particle aggregation [11].

The modular design of an MMSF application allows us to substitute submodels when more

accurate ones are available.

The creation of a new aggregate depends on the capacity of particles to interact, i.e., to get

physically in contact, and to stick together. In the present work, the theoretical description

of particle aggregation is based on the general concepts contained in the so-called Popula-

tion Balances Equation [96]. The underlying assumption is that there is a density function

that describes the number of particles inside a population with a given selected property,

“mass” in our case. This density function gives the number of particles with a mass in the

interval [m,m +dm]. The equations that govern the interaction of droplets are the so-called

Smoluchowski Coagulation Equations (SCE) [105]. This set of ordinary integro-differential

equations describes the evolution in time of a population of particles of mass m in a given

control volume:

dn(t ,m)

d t
= 1

2

∫ m

0
K (t ,m − ε,ε)n(t ,m − ε)n(t ,ε)dε − n(t ,m)

∫ ∞

0
K (t ,m,ε)n(t ,ε)dε (5.1)

The key quantities that appear in equation (5.1) are :

• the distribution n(t ,m) of the number of particles per unit volume with mass m at time

t ;

• the aggregation kernel K (t ,m,ε), which contains all the information about collision

rates and sticking efficiency for a two-particle collision of mass m and ε. According

to the general description of an aggregation process, K (t ,m,ε) is usually the product

of the collision rate β(t ,m,ε), i.e., the flow rate of particles colliding with the object

under analysis, and the sticking efficiency α(t ,m,ε), i.e., the probability of a successful

collision.

It is worth mentioning that Equation (5.1) assumes that objects are only classified according

to their mass. This approach is sufficiently exhaustive to describe the interaction of water

droplets, since the product of aggregation is modelled as a larger sphere with the total mass of

the interacting droplets of the same density. However, since solid aggregates are more complex

than droplets, a more detailed perspective will be adopted in a future improvement of the

present model. The solution of Equation (5.1) for a realistic case is non-trivial and analytic

solutions are only available for simple cases. We adopted here the Fixed-Pivot Technique

[77] to obtain the numerical solution of the SCE. It is based on the discretization of the mass

density function over a fixed binning. The higher the number of bins, the lower the numerical

diffusion introduced by the discretization process.
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Figure 5.1: SSM of the multiscale tephra transport and aggregation application. The advection
field submodels overlay transport submodels.
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Figure 5.2: Examples of two coupling templates.
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5.4.2 Multiscale coupling

In our multiscale volcano application, compared to Tetras, we added the submodel aggregation

and divided transport in two submodels transport plume and transport region. Which, in total,

makes an application compound of the following submodels :

aggregation Computation of the transformation of a distribution of particles during a given

time.

plume Compute the characteristics of the volcanic plume.

source term Manage the insertion of particles inside the simulation domain.

transport plume Transport of volcanic particles at the scale of the volcanic plume.

transport region Transport of particles over a long range by the wind.

atmosphere Representation of all useful characteristics of the atmosphere, such as wind

velocity or atmospheric pressure.

advection field Definitions for the advection field.

With the following coupling templates :

plume interaction with advection fields is a dispatch coupling, where O f of plume is con-

nected to Fi ni t of advection fields.

plume interaction with source term is a dispatch coupling.

source term interaction with transport plume is an interact coupling, where Oi of source

term is connected to B of transport plume.

atmosphere and advection field atmosphere retrieves all the data from the ECMWF servers

and provides them to advection field. O f of atmosphere is used for Fi ni t of advection

field, which is referred to as a dispatch coupling.

advection fields and transport plume or transport region advection field computes at each

iteration components of the advection field for transport plume. Oi of transport plume

is used for Fi ni t of advection field, which is named a call coupling. O f of advection field

is then used for S of transport plume, which is referred to as a release coupling. The

situation is the same between advection field and transport region.

aggregation and transport plume aggregation computes a new distribution of particles for

each site at each iteration of transport plume. It is again a call-release coupling.

transport plume and transport region transport plume sends particles and completion sta-

tus at each iteration to transport region, and transport region sends completion status to

transport plume. We thus have a so-called interact coupling template.
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Figure 5.3: gMML representation of the full transport and aggregation multiscale application.
When submodels are duplicated, that means that multiple instances are created. There are
two model inputs and outputs because parameters are reads and results produced by two
distinct processes. Plume submodel output is necessary for advection field of transport region
because it is necessary to compute the advection field in the umbrella cloud.

Mappers are components which adapt data between submodels. In our case, we have three

different mappers :

Distribution mapper Transforms a list of particles to a distribution of particles.

Particles mapper Transforms a distribution of particles to a list of particles.

Transport mapper Accumulates particles from plume in order to deal with different time

step in plume and region.

Multiscale implementation

The next step is to actually couple the submodels. MUSCLE-HPC [13] allows us to couple

submodels implemented as C++ classes with communication between submodels occurring

through MPI. This allows a full use the network capacity of parallel machines.Transport

submodels and mappers are implemented through MUSCLE-HPC API. Concretely, that means

that submodels and mappers are C++ classes that inherit from the MpiSubmodel abstract

class of MUSCLE-HPC. MMSF operators are defined as abstract methods F_init(), S(), B(),

Oi(), Of and isConverged() of the class MpiSubmodel that the user should implement. The

method simulate() will call them successively (Listing 5.15).
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Listing 5.15: simulate() method of the MpiSubmodel class that implements the SEL. Opera-
tors are succesively executer until the model is converged. The user of the framework must
define submodels as derived classes of the class MpiSubmodel and implements the operators
F_init(), S(), B(), Oi(), Of() and isConverged().
void MpiSubmodel :: simulate (){

F_init ();
while (! isConverged ()){

S();
B();
Oi ();

}
Of ();

}

For instance, in the case of transport submodels (transport plume and transport region) :

void F_init() Create the simulation domain and simulator data structures.

void S() Update advection field from advection field and move particles accordingly. For

plume only: inject particles from source term, and apply aggregation (send particles to

the distribution mapper, receive new particles from the particles mapper).

void B() Receive new particles from transport mapper for transport region.

void Oi() Send leaving particles to transport mapper for transport plume. Write state of the

domain on disk if needed.

void Of() Write particles deposited on the ground and state of the domain on disk if needed.

boolean isConverged() Check if local (transport plume) and remote (transport region) con-

vergences are reached.

Then, the method simulate() will call them successively, following the SEL model. The

Listings 5.17 and 5.16 shows a partial implementation of the multiscale application. The class

MpiSubmodel also provides the following methods :

ConduitEntrance <DataType > getConduitEntrance <DataType >( String );
ConduitExit <DataType > getConduitExit <DataType >( String );

They are used to retrieve conduit entrances and exits from their names, which should match

those defined in the coupling file (Listing 5.18).

The role of the transport mapper is to couple both transport models with different time steps.

Indeed, ∆t of transport region can be larger than that of transport plume. To achieve that,

the mapper accumulates particles leaving transport plume in a buffer and move them to the

appropriate physical time when requested by transport region. When particles are leaving

transport plume, they store their velocity. This allows the mapper to do its job.

136



5.4 A multiscale TTDM based on Tetras and MUSCLE-HPC

Listing 5.16: f_ou t is a conduit entrance because it has to be seen as the entrance of a pipe
in which we write. The opposit applies to f_in, which has to be seen as the exit of a pipe from
which we read. We use the methods getConduitEntrance() of the MpiSubmodel class that
allows to retrieve conduit connector corresponding to the given name. There is also a function
getConduitExit() that is used to retrieve the output of a conduit.
class TransportPlume : MpiSubmodel {

bool isConverged (){
return isLocalConverged && isRemoteConverged ;

}

F_init (){
// Initialization
ep = fm -> loadEruptionParameters (" parameters .csv");
velocities = [ ConstantVelocity () ];
domain = new Domain (origin , size , dx , mpiManager );
terrain = new Terrain (origin , size , dx , mpiManager );
simulator = new Simulator (domain , dt , terrain , particleRepository ,

mpiManager );
domain -> addParticleClasses (ep. particleClasses ());
domain -> addVelocities ( velocities );

// get conduit entrance and exit
f_out = getConduitEntrance <char >(" f_out ");
f_in = getConduitEntrance <char >("f_in");

}

S(){
// Solving
// With optional aggregation step
if( currentTime < eruptionTime ) injectParticles ();
if( aggregate ) domain -> aggregate ();
simulator ->step ();
currentTime += dt;

}

B(){
// update local convergence and receive remote convergence
if (! domain -> containsParticles ()) isLocalConverged = true ;
auto res = f_in ->read ();
isRemoteConverged = deserialize (res);

}

Oi (){
// send particles exiting the domain and local convergence
f_out -> write ( serialize (pr. getParticles () , isLocalConverged ));

}

Of (){
// write the result on disk
fm -> write (" output_plume .h5", terrain );

}

}
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Listing 5.17: Implementation of the multiscale volcano application with three MUSCLE-HPC
submodels. Classes TransportPlume, TransportRegion and TransportInterpolation
have to implement the methods F_init(), S(), B(), Oi() and Of() to respect the
MpiSubmodel interface.
main (){

MMSF_MPI mmsf ();

// --------- create kernels ---------------------
MpiSubmodel * plume = new TransportPlume ();
MpiSubmodel * region = new TransportRegion ();
MpiSubmodel * interpoler = new TransportInterpolation ();

// --------- register kernels -------------------
mmsf. addSubmodel (plume , " plume ");
mmsf. addSubmodel (region , " region ");
mmsf. addSubmodel ( interpoler , " interpoler ");

// --------- setup conduits connections ----------
mmsf. loadCouplingFile ();

// --------- start simulation -------------------
mmsf. compute ();

delete plume , continent , interpoler ;
}

interpolerplume region

f2_outf1_inf_out f_in

f1_outf_in f2_in f_out

Figure 5.4: MUSCLE-HPC coupling.

Transport domain is split into volumes called sites and the aggregation model describes the

evolution in time of populations of particles in a control volume. We then apply aggregation

to each site of transport plume at each iteration.

In the MMSF terminology, ports are interconnected by conduits, which have to be defined

in a configuration file specifying the coupling topology, number of cores and command line

parameters for each submodel. An example of coupling file for the multiscale volcanic particle

transport model is given in listing 5.18. The conduit instructions allow us to connect ports of

submodels, the cores instructions provide the number of cores allocated to each submodel

and the cmdline ones enable passing command line parameters to submodels. The resulting

submodels, ports and conduits are depicted in Figure 5.4.
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Listing 5.18: Example of MUSCLE-HPC coupling file.
conduit 1<char >: plume .f_out -> interpoler .f1_ in
conduit 2<char >: region .f_out -> interpoler .f2_ in
conduit 3<char >: interpoler .f1_ out -> plume .f_in
conduit 4<char >: interpoler .f2_ out -> region .f_in
cores <plume >: 6
cores <region >: 24
cores < interpoler >:1
cmdline <plume >:-x 30000 -y 30000 ...
cmdline <region >:-x 100000 -y 100000 ...
cmdline < interpoler >:

MUSCLE-HPC creates a process that acts as manager of the submodels to which other models

have to connect. All submodel must not necessarily run within the same MPI runtime, but

it is necessary to run a manager to which submodels will connect. It is thus necessary to

allocate one more process than the actual sum of cores indicated in the coupling file. The

MUSCLE-HPC multiscale model depicted in Listing 5.17 would be run in the following way

with the configuration file of Listing 5.18 by supposing that the executable is named volcano
and the configuration file couplingfile :

mpirun -np 32 volcano --coupling -file couplingfile --main --all

The parameter –main means that the manager process is run within this MPI execution and

–all that all submodels are run. While there are 31 cores requested for the submodels in the

configuration file, it is necessary to run 32 MPI processes.

Aggregation

While some submodels are coupled using specifically designed API like MUSCLE-HPC, some

coupling templates do not necessarily imply using such an API, and are even better imple-

mented by simple function calls. This is the case of the coupling between transport plume and

aggregation, as they share the same spatial domain. aggregation works on a distribution of

particles, while transport plume works on point particles. It is then necessary to convert from

one representation to the other. This is why we placed mappers between transport plume and

aggregation.

aggregation is a Fortran code, taking a distribution of particles as input, and giving another

distribution as output. We have thus integrated this Fortran code inside a C++ wrapper

function taking the role of the mapper which converts from particles to distribution and the

other way around. To convert from particles to distribution, we count the number of particles

of each class in a site. To produce particles from the distribution, we try to keep existing

particles before injecting particles at random places in the site if new particles have to be

created.

The implementation of the aggregation model used in this work tends to produce output

particle distributions with slightly less mass than the input. Then, to avoid losing mass with
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Figure 5.5: Comparison of simulation results between a monolithic and a multiscale simulation
of a hypothetical volcanic eruption. In the monolithic case, simulation domain is of size
60km ×60km ×30km with ∆t = 1s. In the multiscale simulation, transport plume simulate
particles in a domain of size 10km ×10km ×20km with ∆t = 1s. When particles exit transport
plume, they are transferred to transport region where∆t = 3s and of size 60km×60km×30km.

multiple aggregation steps, the wrapper scales the output distribution to match the input

mass.

5.4.3 Submodels placement

Once the MMSF application designed, its submodels developed and possibly parallelized, the

question of the placement of the submodels on available computing resources remains.

Let’s consider the two transport submodels which are tightly coupled by the interact template

(transport plume and transport region). For example, suppose that the ∆t of both submodels

are the same. One has to choose the allocation of resources so that one iteration of plume

takes the same time as one iteration of transport region. Now suppose that ∆t of transport

plume is 1s and ∆t of transport region is 3s. One now has to choose the allocation of resources

so that when transport region executes one iteration, transport plume executes three.

Simulations are done with a hypothetical eruption and we do not compare the results to

field deposits. Simulations are done with a vent located at 2500m, a total mass of particles

injected of 4.5× 1011kg , and plume parameters U0 = 200m · s−1,L0 = 50m,n0 = 0.01,T0 =
1200K diffusion in the volcanic plume of 500m2 · s−1 and diffusion in the atmosphere of

200m2 · s−1. All performance evaluations of this section have been performed on the Yggdrasil

cluster of the Geneva’s higher education institutions.
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First, to validate that the multiscale implementation does not have a huge impact on simu-

lation results, we ran a monolithic simulation as a reference with a domain of size 60km ×
60km × 30km with ∆t = 1s and we compare with results obtained when transport plume

simulate a domain of size 10km ×10km ×20km with ∆t = 1s and transport region simulate a

domain of size 60km ×60km ×30km with ∆t = 3s. Figure 5.5 shows a comparison between

the two simulations. This allows to conclude that the change in the observed deposition is

minimal.
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Figure 5.6: Comparison of execution time and speedup between monolithic, multiscale with
same time scale in transport plume and transport region and multiscale with separate time
scales in transport plume and transport region. The total number of allocated cores is 40, one
is dedicated to MUSCLE-HPC manager, one to the transport mapper and the 38 remaining to
submodels transport plume and transport region. The horizontal axis indicates the number of
cores allocated to transport plume. Thus, on the left, one core is allocated to transport plume
and 37 to transport region, while on the right 37 cores are allocated to transport plume and
one to transport region.

Then, we observed the effect of the multiscale coupling on performances. For this, we first

ran a multiscale simulation where transport plume and transport region simulates domains

respectively of size 10km ×10km ×20km and 60km ×60km ×30km with both ∆t = 1s and

∆x = 500m and vary the allocation of cores from one core to transport plume and 37 cores

to transport region to 37 cores to transport plume and one core to transport region. We then

did the same thing, but with ∆t = 1s for transport plume and ∆t = 3s for transport region. It is

possible to choose a higher ∆t for transport region because the speed of particles is lower in

this area.

The obtained execution times and speedup compared to the monolithic simulation are shown

in Figure 5.6. First, we can conclude that the impact of the multiscale coupling on performance

is low, because with the appropriate placement of submodels, the simulation with identical

∆t in both submodels is achieved in almost the same time as the monolithic simulation.

Then, while the particles in the transport region submodel deposits faster when ∆t is higher,

it is possible to achieve best performances with separates ∆t . The speedup is approximately
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two in the best case, when the number of cores assigned to plume is between 6 and 8. This

demonstrates the importance of a clever choice of submodels placement.

It is important to note that this performance gain should be considered in a wider context.

Here, there is a factor 3 between values of ∆t in the two transport subdomains. It could

be possible to further differentiate the subdomains, for example by having a subdomain

dedicated to the transport in the plume, one to medium range transport and one to long range

transport. This would allow for a ∆t value more than an order of magnitude higher in the long

range transport subdomain compared to the plume transport subdomain. This would allow

for largely increased performance gains compared to a monolithic implementation.
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Figure 5.7: Comparisons of multiscale simulations results where aggregation is enabled or not.
transport plume (where aggregation occurs) is of size 5km ×5km ×5km with ∆x = 100m and
∆t = 0.2s while transport region is of size 60km ×60km ×30km with ∆x = 500m and ∆t = 1s.

Then, we ran the simulation with transport plume of size 5km ×5km ×5km with ∆x = 100m

and∆t = 0.2s and transport region is of size 60km×60km×30km with∆x = 500m and∆t = 2s

with aggregation enabled in transport plume. Simulation results are shown in Figure 5.7. The

aggregation model has not been carefully calibrated for volcanic ash aggregation, but we

observe that particles deposit much closer to the vent location, which is compatible with

smaller particles aggregation into larger ones, and the total observed mass on the ground

match the injected mass. Which means that there is no mass loss resulting from the coupling.

Figure 5.8 shows the obtained execution time with aggregation enabled by varying the number

of cores allocated to transport plume and transport region as previously. We observe that the

overall execution time is lower than previously, even if applying aggregation model implies

a much higher computational load per iteration. This is because larger particles falls faster.

Then, we observe that the ideal number of cores allocated to transport plume is again around

10 cores, even with a higher computational load per iteration for the transport plume submodel.
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Figure 5.8: Comparison of execution times for a multiscale simulation where aggregation is
enabled inside transport plume. The total number of allocated cores is 40, one is dedicated
to MUSCLE-HPC manager, one to the transport mapper and the 38 remaining to submodels
transport plume and transport region. The horizontal axis indicates the number of cores
allocated to transport plume. Thus, on the left, one core is allocated to transport plume and
37 to transport region, while on the right 37 cores are allocated to transport plume and one
to transport region. Note that the time is not compared to a monolithic run because the
current implementation does not support application of aggregation in the plume only with a
monolithic code.
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Figure 5.9: Comparison of two hypothetical placements of plume, region and aggregation
on two 50-core machines. Red segments indicate idle CPU, green segment indicate useful
computation.

This could be attributed to the fact that parallelism in transport plume is lower than in transport

region due to the smaller domain and particles being spatially concentrated in a specific area,

making useless to allocate too many cores to transport plume.

5.4.4 Performance analysis through Discrete Event Simulation

As we saw, allocation of submodels to available resources is a crucial question. It is common

in the HPC community to provide performance analysis and performance models for parallel

codes, it is then possible to predict execution time of each submodels and then optimize their

placement. We designed a simulator based on Discrete Event Simulation (DES) which aims to

evaluate submodel placement on computing resources.

This DES technique allows us to simulate the interaction between submodels and thus the

execution time of a full multiscale application. The submodels are represented by state

machines, whose states represent the current step inside the submodel execution loop (see

Figure 5.2). We can predict the time of each step of a submodel by relying on a performance

model and a model of the hardware on which the submodel runs, or with statistical measures

of the execution time of the submodel on a specific hardware. This approach can also be used

to evaluate the placement of submodels on multiple heterogeneous machines.

In Figure 5.9, we illustrate two placements of the three main submodels (transport plume,

transport region and aggregation) when using two 50-core machines. At each iteration, trans-

port plume must send data from all its domain to aggregation and aggregation must be exe-

cuted entirely before transport plume can continue, as required by the call-release coupling.

Here, we suppose that ∆t of transport plume is the same as ∆t of transport region. Thus,

transport region must wait for transport plume and aggregation to finish at each iteration.

Due to the tight coupling and the call-release template between transport plume and aggrega-

tion which implies that only one of the two submodels can run at any given time, it is natural
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to assume that allocating the same computing resources to both submodels is a good option.

We compare this situation with a hypothetical situation where aggregation is placed on the

same machine as transport region. In that case, we see that performances will be greatly

limited. Communication time will limit performances and idle CPU time will increase. We can

see that increasing the number of cores only for transport region or for both transport plume

and aggregation will not reduce computation time because the other submodel will limit the

performance.

5.5 Conclusion

In this chapter, we gave a detailed description of the main data structures implied in the imple-

mentation of Tetras and volcano-lagrangian-seer. We have shown that the adopted software

architecture based on generic libraries and function objects allows for a good reusability of the

code, while it has been possible to reuse and easily adapt the code defining the physics of Tetras

to develop volcano-lagrangian-seer, developing only a new underlying parallel numerical

model.

The dispersal of volcanic ashes during eruptions is a phenomenon involving multiple physical

processes which occurs at multiple temporal and spatial scales. We can decompose such

a phenomenon into multiple submodels. MMSF proposes solutions for the modelling, the

implementation, and the coupling of this type of multiscale system.

The submodels needing large computational effort can benefit from parallelization in order to

solve larger problems in a reasonable time. This is the case of our transport model, which has

been parallelized on distributed memory architecture using MPI.

We focused on the design and implementation of the multiscale aspect of the application

and showed how this task has been achieved following the MMSF methodology and using

the MUSCLE-HPC API. We showed that the implementation of our multiscale application

using MUSCLE-HPC has a low impact on performances, and that the adaptation of the scales

of the transport models allow for increased performances. Then, we addressed the problem

of submodel allocation on computing resources through a DES strategy. We gave as well

the description of the aggregation model and shown some simulation results enabling this

aggregation process.

Future work would be necessary to improve the DES simulation tool and verify its prediction

ability with various simulation cases. Finally, improvements on the physical submodels will

have to be achieved. Thanks to the modular design of the application at each level, this can be

done smoothly without interacting with the development of other components of the model.
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Volcanic eruptions are dramatic large-scale events that can endanger human life or have a

long-range impact due to the transport of fine volcanic ash. Their dynamics can be described

by various physical models, possibly coupled together, such as models describing the dynamic

of volcanic plumes, fall speed of particles or the ability of particles to stick together. It is,

however, very difficult to get accurate observations of those phenomena, due to the extreme

conditions in which they occur, their unpredictability and their interaction with meteorological

phenomena. It is thus particularly interesting to design a simulation tool for such phenomenon

with a clear decomposition in terms of components working at distinct scales coupled together.

This allows updating specific parts of the multiscale model when research progress is made.

Another problem is the ability to reconstruct eruption characteristics (namely ESP, eruption

source parameters) from external observations, such as the deposit pattern of particles on

the ground. This task is called inversion of eruption parameters, and is done by running a

large number of simulations with different sets of parameters and applying a clever strategy to

update those parameter sets until finding the best possible solution.

In this thesis, we addressed those problems by designing our volcanic simulation tools as

multiscale applications, coupling different submodels using a well-defined formalism. We

developed parallel numerical models usable for inversion strategies, as well as a nested paral-

lelization scheme which allows integrating MPI parallel applications in parallel optimization

algorithms.

6.1 Summary and contributions

In Chapter 2 we presented Tetras (TEphra TRAnsport Simulator), a tephra transport simulator

based on a hybrid Lagrangian-on-grid numerical model that applies an advection-diffusion

process to point particles. We introduced the multiscale MMSF formalism and used it to

describe the architecture of Tetras and described the volcanological models on which we rely

for this description. A theoretical description of the performance of Tetras is also given in the
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form of a performance model. The strong points of Tetras are its modular design, its underly-

ing numerical model allowing for fast computation of atmospheric concentration, tracking

of individual particles and implementation of particle interaction and a clever underlying

parallelism. We identified a drawback in the model, in the fact that proximal deposition tends

to be underestimated under the plume corner with the pure advection-diffusion approach.

This led us to reevaluate the description of the dynamic of the particles in this area.

We ended up with a new way of describing the source term of the advection-diffusion process

by quantifying the flux of particles exiting the plume and umbrella cloud and considering a

3D representation of those objects. We called this model the SEER (Spatially Extended Exit

Rate) model and result in a new category of tephra transport models based on this source

term. By solving analytically a simplified geometry of the model, we raised the question of the

continuity of the rate of particle sedimentation under the plume corner. We also developed a

simplified semi-analytical version of the model able to produce results for eruptions occurring

in no wind condition with a fast resolution time called volcano-semianalytical-seer. We

developed as well a full Lagrangian version of a tephra transport model based on SEER that we

called volcano-lagrangian-seer. This allowed us to demonstrate the modularity of the strategy

adopted to develop Tetras, where the physics is mainly embedded in a series of function

objects which describes the velocity of particles. We were able to reuse the physical definition

of Tetras and develop a new numerical model with a new parallelization scheme. We studied

empirically the scaling of the application and observed a good strong scaling behaviour. This

is important because it makes the usage of volcano-lagrangian-seer usable together with

non-parallel optimization algorithms in order to do inversion.

In Chapter 4, we addressed the problem of ESP inversion. First, we did so by coupling Tetras

with the ABCpy approximate Bayesian computation package. ABCpy runs a high number of

forward models and refine approximations using ABC iterative algorithms. The package is

parallelized using Spark or MPI. While Tetras is parallelized using MPI, it has been necessary

to develop a nested parallelization scheme. This work has made possible the integration

of any MPI model into ABCpy. Then, we made some preliminary investigation by coupling

volcano-semianalytical-seer with the Nelder-Mead simplex algorithm. Indeed, the fast-solving

time of volcano-semianalytical-seer allows integrating it in a sequential optimization strategy.

Finally, in Chapter 5 we described in more details the implementation of Tetras and volcano-

semianalytical-seer. We gave the description of the full multiscale volcano application using

MMSF and implements it using MUSCLE-HPC. We demonstrated the importance of submodel

placement on computing resources and showed that the multiscale aspect of the implemen-

tation allows optimizing resource usage by varying the scale of submodels and allocate the

appropriate quantity of resources. We addressed the question of submodel placement with a

Discrete Event Simulation (DES) strategy.
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6.2 Perspectives

A variety of directions could be explored following this work.

• We showed in Chapter 3 that particular conditions of particles velocities and exit rates

have to be met to guarantee a continuous deposition pattern between particles sedi-

menting from the plume and from the umbrella cloud in the absence of diffusion. It

would be interesting to investigate if this condition is actually met in reality, or if atmo-

spheric diffusion prevent from observing a discontinuity on the field. It is, however,

difficult to answer this question, while explosive eruptions produce extreme conditions,

it is not possible to measure directly the rate of sedimentation of particles from the

plume border and umbrella cloud base.

• Our multiscale volcano application uses a Lagrangian framework in the plume and

applies an Eulerian aggregation model that works on particle distributions of equal

density. We could compare our strategy to alternative approaches such as [11] where an

aggregation model is coupled with a BPT plume model, itself used as a source term of

the NAME transport model (with the insertion of particles at the top of the plume) or

with other integral plume models that integrates aggregation such as [60] and [86]. We

recall as well that we can update the aggregation model when models better suited to

volcanic particles are available thanks to our modular design.

• The modular multiscale design of our application allows replacing submodels without

changing the entire implementation. While there exist now plumes and umbrella cloud

models that account for particle aggregation [60, 86], we could use those models as the

source term of our numerical transport models (Lagrangian-on-grid and Lagrangian)

using the SEER framework. That is to say, injecting particles in the transport model from

all over the 3D surface defined by the plume and umbrella cloud models with specific

insertion rates defined as well by the plume and umbrella cloud models.

• While a Lagrangian framework is interesting for transport at short and medium range

because it allows tracking individual particles, simulating enough particles at long range

to global scale can become computationally very intensive. It could then be interesting

to couple our Lagrangian or semi Lagrangian transport model with an Eulerian transport

model for long-range transport, by considering the Lagrangian transport as a source

term of the Eulerian transport.

• Volcano-lagrangian-seer is a Lagrangian model parallelized on CPU using MPI. It is

possible to parallelize this model on GPU. A difficulty would be to evenly attribute

particles to GPU threads all along the simulation to maintain a good device occupancy.

This could be done by attributing groups of particles of different density and sizes and

injected at various time points to GPU threads. If good performance is achieved, this

would allow performing fast forward simulations on GPU and inversion on GPU or GPU

cluster if a parallel inference or optimization scheme is used.
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• Volcano-semianalytical-seer does not include advection of particles by wind, and can

currently only be used for a strong plume eruption in no wind condition, which is

quite uncommon. It would be possible to add a fast numerical resolution if the wind is

stratified and constant in time.

• Some development effort can be made to increase the flexibility and usability of our

tools. For example, the usage of a digital elevation model could be added as a submodel

to automate integration of topography from sources such as the ASTER global digital

elevation model of the USGS [63] and the atmosphere submodel adapted to act as a

wrapper of various reanalysis databases such as the NCEP/NCAR from the NOAA [75] or

ERA5 from ECMWF [69, 15], or even from weather prediction models.

• The presented DES approach to model performances is still at a proof a concept stage,

more development to produce a usable tool and validation with actual multiscale simu-

lations implementations are needed.

• Various investigations can be made regarding inversion. Inversion within this work is

done on plume model parameters, such as the radius, velocity and temperature at vent.

It is possible to produce a plume with a given height with multiple combination of those

parameters (for example, keeping the same plume height by decreasing the radius and

increasing the temperature). We should then conduct a sensibility analysis to determine

if highly different deposition patterns can be obtained with a given plume height and

various plume parameters. If not, then it would make more sense to consider the plume

height as a parameter and obtain initial velocity, temperature and radius through the

Monte Carlo inversion described in Chapter 4. This would dramatically decrease the

size of the parameter space to explore and consequently make the problem much easier.

A study of the parameter space should as well be conducted to determine if multiple

local optimum exists. Then, various optimization algorithms could be investigated to

determine which ones have the best convergence behaviour for this problem. Hybrid

strategies could also be adopted, such as a first exploration of the parameter space with

a fast solving forward model before conducting more in depth local optimization using

a heavy forward model.

• Finally, due to the flexible structure of our implementation and its ability to deal with

generic types of particles and source term, we could explore the possibility to model

transport of other types of passive particles, such as pollen. We could still benefit from

the parallel implementation and generic design whilst changing the target application.

Modelling of active particles, such as radionuclides, would require the adaptation of the

particles data structure and the addition of processes currently not integrated in the

model.
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A The advection-diffusion process with
Lagrangian particles

A.1 Diffusion

This section shows how random speeds used to generate diffusion are calculated.

We know from the central limit theorem that a random walk produces a Gaussian distribution

with variance

σ2 = t

∆t
ε2 (A.1)

where t is the elapsed time since the beginning of the random walk, ε the size of a step and ∆t

the time step. In our case we have

ε= ur∆t (A.2)

Thus

σ2 = u2
r∆t · t (A.3)

According to the Einstein relation, diffusion can be written

D = σ2(t )

2d · t
(A.4)

where d is the number of dimensions considered. We can now write the associated random

speed

ur =
√

2d ·D

∆t
(A.5)

We finally select with uniform probability a direction for the random velocities. In the one
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dimensional case (1D) we have

r = 1 or−1

~ur = ur · r
(A.6)

where r is chosen randomly with probability 0.5. Then in the two dimensional case (2D) we

have

θ ∈ [0;2π]

~ur = ur

(
cos(θ)

sin(θ)

)
(A.7)

where θ is drawn with uniform probability. And in the three dimensional case (3D) we have

θ ∈ [0;2π]

φ= arccos(2r −1) with r ∈ [0;1]

~ur = ur

cos(θ)sin(φ)

sin(θ)sin(φ)

cos(φ)

 (A.8)

where θ and r are drawn with uniform probability. Then, we can choose to generate an

isotropic diffusion in 3D, or to combine a 2D and a 1D diffusion in order to produce different

diffusions horizontally and vertically.

A.2 Validation of the advection-diffusion process

In order to validate the advection-diffusion process using the simulator, we inject N particles

in a domain at position ~r0 = (x0, y0, z0) at time t0. We then apply a constant velocity field

~v0 = (vx , vy , vz ) during a time t with a diffusion coefficient D. We compare the simulation

results with the analytical solution of the diffusion equation. The particle distribution can be

expressed as

n(x, y, z, t ) = N

[4π(t − t0)]3/2
√

Dx D y Dz
·exp

[
−‖~ξ‖2

4

]
(A.9)

where~ξ=
(

x−x0−vx (t−t0)p
Dx (t−t0)

,
y−y0−vy (t−t0)p

D y (t−t0)
, z−z0−vz (t−t0)p

Dz (t−t0)

)
We perform a simulation with N = 106, t0 = 0[tu], t = 10[tu],~r0 = (0,0,0)[lu], ~v = (1,1,1)[ l u

tu ],

D = 0.5[ lu2

tu ], ∆t = 0.1[tu] 1. We recall that diffusion arises from the random velocities ~ur

applied to each particle at each time step as given by Equation (A.8) for the three dimensional

case.

1tu and l u stand respectively for time unit and length unit
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Then we compare the simulated particle distribution to the analytical distribution at time

t = 10[tu] along on a line through (10,10,10)[l u] parallel to the x-axis. This comparison is

shown on Figure A.1. We observe a very good correspondence between experimental results

and the analytical solution (the same holds along any line). Figure A.2 shows a horizontal slice

through the middle of the simulated particle distribution at time t = 10[tu], illustrating that

our diffusion is isotropic as expected.
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Figure A.1: The simulated particle distribution (red dots) compared to the analytical distri-
bution (blue line) at time t = 10[tu] along on a line through (10,10,10)[l u] parallel to the
y-axis.
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Figure A.2: Horizontal cut of the simulated particle distribution at time t = 10[tu] with a plane
through (10,10,10)[lu] parallel to the x y-plane.
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A.3 Number of particles

A dedicated sensitivity analysis was performed to optimize the number of particles used in

the simulations. In fact, the total number of particles corresponding to the erupted mass

and the particle characteristics of Ruapehu and Pululagua eruptions would be of the order of

magnitude of 1022 to 1023 particles. Current computers cannot deal with such a number of

particles injected in the simulator.

We therefore resorted to a statistical sampling approach. We injected a much smaller number

of particles, and we then scaled the output to get the correct number of particles.

An obvious question is how many particles should we inject in order to obtain accurate results ?

In our case, we are interested in the number of particles deposited on the ground. Our output

is stored in the form of a matrix containing the mass of particles per area.

As the generated diffusion is a stochastic process, outputs differ from each other. However,

for a given physical configuration, the dispersion of the simulation results is relatively small

provided the sample consists of enough particles.

We use the procedure described in [103] to determine the number of particles to use. We

run s simulations with n particles. To estimate the similarity between two outputs p and q

(p, q ∈ {1, . . . , s}), we compute the correlation coefficient

ρ(n)
pq = cov(Rp ,Rq )

σpσq
= E {(Rp −µp )(Rq −µq )}

σpσq
(A.10)

where R is a vector containing the output matrix, µ the mean value and σ the standard

deviation of R. There are s(s −1)/2 distinct pairs of results. We consider the average

ρ̄(n) =

s∑
p<q

ρ(n)
pq

s(s −1)/2
(A.11)

which is a measure of the relative stability of the results.

For a given number of outputs, we observe the number of particles n necessary for ρ̄(n) to be

greater than a given threshold (e.g., ≥ 0.99). Beyond this threshold, we consider the outputs

to be stable. It is important to note that this accuracy estimation greatly depends on the

physical configuration of the simulation (size of the domain, physical model applied and its

parametrization), it is then not possible to determine the required number of particles before

running simulations.

For each n with values in the range 1800 to 18 ·106 particles, we ran s = 20 simulations. We

computed the s(s −1)/2 = 190 values ρ(n)
pq and then their average ρ̄(n). The value of ρ̄(n) as a

function of n is shown on Figure A.3.
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A.3 Number of particles

We see that a 0.99 correlation is reached with slightly more than 106 particles (red dot on

Figure A.3) for the Pululagua simulation. The same order of magnitude holds for Ruapehu.

We chose to run our simulations with 106 particles per family, which gives a total of 18 ·106

particles with 18 particle families for 2450BP Pululagua simulations and 23 ·106 particles for

1996 Ruapehu simulations.
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Figure A.3: Mean correlations between simulation outputs for given numbers of injected
particles for the Pululagua simulation.
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