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Executive Summary

This dissertation consists of four parts, focusing on alternative investments,
catastrophe risk, and asset pricing in an insurance context. Several financial
instruments (i.e., funds, options, and stocks) are analyzed with different perspec-
tives on an insurer’s balance sheet. The first part pertains infrastructure as an
alternative investment and considers the asset side of life insurers, which are in
need of stable, long-term cashflows in the current low-interest rate environment
to match their liabilities. The second part analyzes equity returns of non-life
insurers and the risk factors driving them. In a similar vein, the third part
takes a look at the equity value of non-life insurers implied by option prices to
analyze their catastrophe risk exposure. The fourth part considers the liabil-
ity side of non-life insurers and how policyholder liabilities can be securitized
to act as alternative investments through insurance-linked securities (ILS) funds.

The first part, “Common Risk Factors of Infrastructure Investments,” deals
with infrastructure as an alternative investment opportunity, which is driven by
unique risk factors that cannot be well described by standard asset class factor
models. Thus, a nine-factor model based on infrastructure-specific risk exposure
is created. A large dataset of U.S. infrastructure stocks in different subsectors
(utility, telecommunication, and transportation) and over a long period of time
(1983 to 2011) is used to test the model. The new factor model is able to
capture the variation of infrastructure returns better than the Fama/French
three-factor, the Carhart four-factor or the extended Fung/Hsieh eight-factor
models. The model helps to improve the evaluation of infrastructure funds and
to better determine the cost of capital of infrastructure firms, which is increas-
ingly relevant in light of the growing need for privately financed infrastructure
projects.

The second part, “Insurance Asset Pricing is Different” examines stock re-
turns of non-life insurers, due to their exposure towards natural and man-made
disasters. A comprehensive asset pricing exercise is conducted using monthly
data from 1988-2013. There is evidence that state-of-the-art models such as the
Fama and French (2015) five-factor model cannot fully explain the abnormal
returns of non-life insurance stocks. Hence, an insurance-specific five-factor
asset pricing model is proposed, which is able to explain these return anomalies.
Priced factors include the book-to-market ratio, short-term reversal, illiquidity,
and cashflow volatility, which are primarily tied to exogenous events affecting
insurance supply and demand such as catastrophes.



In the third part, “Pricing of Catastrophe Risk and the Implied Volatility
Smile,” the relation between catastrophe risk and the implied volatility smile of
options written on non-life insurance stocks is analyzed. It can be shown that
the slope is significantly steeper compared to non-financials and other financial
institutions. There is also evidence that this effect has increased over time,
suggesting a higher risk compensation for natural catastrophes. Furthermore, a
link between the insurance-specific tail risk component derived from options
and the risk spread from the catastrophe bond market can be established. The
results thus provide an accurate, high-frequency calculation for catastrophe risk
linking the traditional derivatives market with ILS.

In the fourth part, “Asset Pricing and Extreme Event Risk: Common Factors
in ILS Funds,” the focus is on ILS as an alternative investment, which behaves
unlike those of any other asset class. Therefore, traditional asset pricing models
are not suitable for dedicated ILS funds. A unique and comprehensive database
of ILS funds is set up and a detailed empirical analysis of these investment
vehicles is provided. Furthermore, a factor model, which is able to explain both
their time-series and cross-sectional return characteristics is derived. It can
be shown that ILS funds have historically exhibited a superior risk-adjusted
performance when traditional performance measures are considered. Using key
return drivers, three new factors models are introduced. Despite a strong overall
fit, significant positive alphas remain for one quarter of all funds in our sample.
These are either attributable to manager skill, luck, or other unknown beta
exposures.



Zusammenfassung

Die vorliegende Dissertation besteht aus vier Teilen, die sich mit den The-
men Alternative Investments, Katastrophenrisiko und Asset Pricing im Ver-
sicherungskontext auseinandersetzen. Mithilfe verschiedener Finanzinstrumente
(Aktien, Fonds und Optionen) wird die Bilanz eines Versicherungsunternehmens
aus mehreren Blickwinkeln betrachtet. Der erste Teil der Dissertation un-
tersucht Infrastruktur als eine alternative Investitionsmöglichkeit. Auf der
Aktivseite eines Lebensversicherers stellen Infrastrukturinvestitionen im derzeit-
igen Niedrigzinsumfeld eine vielversprechende Möglichkeit für langfristig stabile
Kapitalzuflüsse dar, um Verpflichtungen auf der Passivseite nachzukommen.
Der zweite Teil analysiert die Aktienrendite der Nichtlebensversicherer und die
Risikofaktoren, welche diese beeinflussen. Eng verbunden hiermit ist der dritte
Teil, der das implizite Eigenkapital der Nichtlebensversicherer, ausgedrückt
durch Optionspreise, betrachtet um das Katastrophenrisiko genauer zu unter-
suchen. Der vierte Teil schaut sich die Passivseite der Nichtlebensversicherer
genauer an und welche Performance deren verbriefte Versicherungspolicen durch
Insurance-Linked Securities (ILS)-Fonds als alternative Investitionsmöglichkeit
bietet.

Der erste Teil, “Common Risk Factors of Infrastructure Investments,”
beschäftigt sich mit Infrastruktur als alternative Investitionsmöglichkeit, welche
durch besondere Risikofaktoren beeinflusst werden und sich nur schwer durch
Standardmodelle erklären lassen. Aus diesem Grund wird ein Neun- Faktoren-
modell, basierend auf infrastruktur-spezifischen Risikoeigenschaften, abgeleitet.
Hierzu wird ein umfangreicher Datensatz an U.S. amerikanischen Infrastruk-
turaktien in verschiedenen Subsektoren (Versorgungsunternehmen, Telekom-
munikation und Transport) und über einen langen Zeitraum (1983 bis 2011)
verwendet, um das Modell zu testen. Das neue Faktormodell ist in der Lage
die Renditeänderungen der Infrastrukturaktien besser aufzufangen als das
Fama/French Drei-Faktoren-, das Carhart Vier-Faktoren- oder das erweiterte
Fung/Hsieh Acht-Faktoren-Modell. Das Modell eignet sich zur Bewertung
von Infrastrukturfonds und zur besseren Bestimmung der Eigenkapitalkosten
von Infrastrukturfirmen. Dies erscheint vor dem Hintergrund des wachsenden
Bedarfs an privat finanzierten Infrastrukturprojekten besonders relevant.

Der zweite Teil, “Insurance Asset Pricing is Different,” untersucht die Ak-
tienrenditen von Nichtlebensversicherern aufgrund ihrer Gefährdung durch
Naturkatastrophen und von Menschen verursachten Unglücken. Hierzu wird
eine Faktormodellanalyse auf Basis monatlicher Daten zwischen 1988 und 2013
durchgeführt. Offensichtlich sind moderne Faktormodelle, wie zum Beispiel das



Fama und French (2015) Fünf-Faktoren-Modell, nicht gänzlich in der Lage die
abnormale Rendite der Nichtlebensversicherer zu erklären. Aus diesem Grund
wird ein versicherungsspezifisches Fünf-Faktoren-Modell vorgeschlagen, welches
in der Lage ist diese abnormalen Renditen zu erklären. Die gepreisten Faktoren
setzen sich aus dem Buch-zu-Marktwert Verhältnis, der Short-Term Reversal,
der Illiquidität und der Cashflow-Volatilität zusammen, die in erster Linie mit
exogenen Ereignissen in Verbindung stehen und Nachfrage und Angebot nach
Versicherungen beeinflussen.

Im dritten Teil, genannt “Pricing of Catastrophe Risk and the Implied
Volatility Smile,” wird die Beziehung zwischen Katastrophenrisiko und dem im-
pliziten Volatilitäts-Smile von Optionen auf Nichtlebensversicherern untersucht.
Es kann gezeigt werden, dass die Steigung des impliziten Volatilitäts-Smiles im
Vergleich zu anderen Unternehmen signifikant steiler ist. Dieser Effekt scheint
über die Zeit hinweg stärker geworden zu sein, was wiederum für eine höhere
Risikokompensation von katastrophalen Ereignissen spricht. Des Weiteren lässt
sich eine Verbindung zwischen dem versicherungsspezifischen Tail-Risiko aus
Optionspreisen und dem Risiko-Spread aus Katastrophenanleihen herstellen.
Die Ergebnisse bieten sich daher auch als Ansatzpunkt zur genauen Hochfre-
quenzberechnung von Katastrophenrisiko an und verbinden den traditionellen
Derivatemarkt mit ILS Instrumenten.

Der vierte Teil,“Asset Pricing and Extreme Event Risk: Common Factors in
ILS Funds,” fokussiert sich auf ILS als eine alternative Investitionsmöglichkeit,
die sich anders als traditionelle Anlageklassen verhält. Aus diesem Grund
sind traditionelle Faktormodelle nicht für ILS-Fonds geeignet. Für diesen Teil
wird eine umfangreiche Datenbank an ILS-Fonds angelegt und eine detaillierte
empirische Analyse durchgeführt. Darüber hinaus, wird ein Faktormodell
entwickelt, das in der Lage ist sowohl die Zeitreihe als auch den Querschnitt
der Fondsrenditen zu erklären. Auf Basis traditioneller Risikomasse wird
gezeigt, dass ILS-Fonds eine historisch betrachtet bessere risikoadjustierte
Performance erzielten als andere Anlageklassen. Mithilfe theoretisch motivierter
Renditetreiber werden drei neue Faktormodelle vorgestellt. Trotz des hohen
Erklärungsgehaltes, ist ein Viertel aller Fonds in der Lage eine Outperformance
zu erzielen. Diese Outperformance ist entweder der Managerfähigkeit, Glück,
oder anderen unbekannten Beta-Faktoren geschuldet.



Synopsis

The first paper is titled “Common risk factors of infrastructure investments” and

is co-authored with Martin Eling. It has been published in Energy Economics,

Vol. 49, 2015, pp. 257–273.

Despite the economic importance of infrastructure, there is very little academic

work on infrastructure investments and most of the studies that do exist use

only infrastructure indices and a limited period of investigation. This paper con-

tributes to the empirical literature on transport, telecommunication, and utility

firms by developing an asset class factor model for infrastructure investments.

Specifically, in this paper five factors are identified in addition to the market

beta that are characteristic for infrastructure firms in terms of risk and return.

We use these factors to develop a six-factor model and an augmented nine-factor

model that is built on Carhart (1997). We empirically test the new models on

a large dataset of U.S. infrastructure companies. The empirical focus on U.S.

firms is advantageous for three reasons. First, most of the existing infrastructure

papers consider markets outside the United States even though there is a great

need for infrastructure investment in the United States. Second, a long time hori-

zon can be investigated, which allows us to consider different subperiods. Third,

analyzing individual shares of infrastructure firms instead of indices allows us to

sort portfolios by size, book-to-market ratio, and other characteristics to control

for stock anomalies and, thus, enhances the validity of the infrastructure models.

Abstract of “Common risk factors of infrastructure investments”: The risk

of infrastructure investments is driven by unique factors that cannot be well

described by standard asset class factor models. We thus create a nine-factor

model based on infrastructure-specific risk exposure, i.e., market risk, size,

value, momentum, cash flow volatility, leverage, investment growth, term risk,

and default risk. We empirically test our model on a large dataset of U.S.

infrastructure stocks in different subsectors (utility, telecommunication, and

transportation) and over a long period of time (1983 to 2011). The new factor

model is able to capture the variation of infrastructure returns better than the

Fama/French three-factor, the Carhart four-factor or the extended Fung/Hsieh
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eight-factor models. Thus, our model helps to improve the evaluation of in-

frastructure funds and to better determine the cost of capital of infrastructure

firms, something that is increasingly relevant in light of the growing need for

privately financed infrastructure projects.

The second paper is titled “Insurance asset pricing is different” and is co-

authored with Martin Eling and Andreas Milidonis. It is currently under review

at the Journal of Banking and Finance and has been published as a working

paper at the University of St.Gallen.

In spite of the risk-absorbing role for both p/l insurance stocks and insurance-

linked securities, the underlying risk exposure has not been subject to a great

deal of debate in the academic literature. For example, although the analysis of

the cross-sectional risk exposure is the heart of modern asset pricing (see, e.g.,

Garlappi and Yan (2011); Brennan et al. (2012); Eisfeldt and Papanikolaou

(2013)), there is very little literature addressing the insurance context. Our

paper closes this gap by analyzing the cross-section of expected p/l insurance

stock returns. We propose a new insurance-specific asset pricing model that

takes into account the unique characteristics (anomalies) of the insurance in-

dustry. We compare its performance to the performance of six existing asset

pricing models using the universe of the 127 U.S. p/l insurance stocks on a

monthly basis over the time period from 1988 to 2013. We sort insurance

stocks on 22 well-known and potential anomalies from the finance and insurance

literature and test our model to the six competing models by running time-series

regressions, Fama–MacBeth (1973) regressions, and testing the equality of the

Hansen-Jagannathan distance (Kan and Robotti (2009)).

Abstract of “Insurance asset pricing is different”: Property/liability in-

surers are important financial institutions exposed to natural and man-made

disasters. We first conduct a comprehensive asset pricing exercise for the U.S.

property/liability insurance universe using monthly data from 1988-2013. We

find that state-of-the-art models such as the Fama and French (2015) five-factor

model cannot fully explain the abnormal returns of property/liability insurance

stocks. Hence, we propose an insurance-specific five-factor asset pricing model



which is able to explain these return anomalies. Priced factors include the

book-to-market ratio, short-term reversal, illiquidity, and cashflow volatility,

which are primarily tied to exogenous events affecting insurance supply and

demand such as catastrophes.

The third paper is titled “Pricing of catastrophe risk and the implied volatil-

ity smile” and is a single authored paper. This paper received the 2016 Dorfman

Award by the Western Risk and Insurance Association (WRIA) as the best

PhD paper and is published as a working paper at the University of St.Gallen.

Risk-averse households are interested in offloading catastrophe risk but face

high insurance premiums given the expected losses (see Froot (2001) and Zan-

jani (2002)). Any insight into catastrophe risk can thus further enhance our

understanding of risk-adequate compensation for this type of risk. The contri-

bution of this paper is fourfold. First, we derive an option pricing model unique

to P&C insurers which accounts for catastrophe risk and illustrates another

financial source eligible for accurate pricing of catastrophe risk. Due to the

limited understanding of catastrophe risk in combination with pricing, new

methods to comprehend this risk in greater detail can reduce market imperfec-

tions. Second, fair pricing for catastrophe reinsurance can affect the capital

requirements for catastrophe risk and thus reduce the cost of capital (Zanjani

(2002)). Third, we further enhance the reasoning with regard to the implied

volatility smile. That is, we address why there is an implied volatility smile and

why it is shaped the way it is (Dennis and Mayhew (2002)). Fourth, we create

a link between the traditional derivatives market and ILS. From an investor’s

perspective, this link might be an indicator for potential arbitrage opportu-

nities if expectations on catastrophe risk in the two markets significantly diverge.

Abstract of “Pricing of catastrophe risk and the implied volatility smile”:

Property-casualty (P&C) insurers are exposed to rare but severe natural disas-

ters. This paper analyzes the relation between catastrophe risk and the implied

volatility smile of insurance stock options. We find that the slope is significantly

steeper compared to non-financials and other financial institutions. We show

that this effect has increased over time, suggesting a higher risk compensation



for natural catastrophes. We are also able to link the insurance-specific tail

risk component derived from options with the risk spread from the catastrophe

bond market, which specifically securitizes tail risk events. Our results thus

provide an accurate, high-frequency calculation for catastrophe risk linking the

traditional derivatives market with insurance-linked securities (ILS).

The fourth paper is titled “Asset Pricing and Extreme Event Risk: Common

Factors in ILS Funds” and is co-authored with Alexander Braun and Martin

Eling. It has been published as a working paper at the University of St.Gallen.

Over the last two decades, a new asset class called insurance-linked securities

(ILS) has emerged. Its dominant representative is the catastrophe (cat) bond,

a financial instrument which pays regular coupons unless a disaster occurs

during the contract term, leading to full or partial loss of principal. Cat bonds

have been developed by (re)insurance companies as a hedge against extreme

event exposure in their property risk portfolios. Regardless of the attractive

historical performance and the substantial diversification potential offered by

ILS, little is known about their return drivers to date. The paper at hand aims

at filling this gap. Our contribution is threefold. First, we analyze the asset

class’ risk-return profile for the period from January 2002 to December 2015

relative to corporate bonds and hedge funds. For this purpose, we set up a

dataset that almost covers the entire universe of existing and terminated ILS

funds. Second, we demonstrate the inability of traditional factor models to

explain both the time-series and cross-sectional return characteristics of ILS

funds. Subsequently, we introduce three new factor models to address this

issue: a single-index, a fixed-income-oriented four-factor, and a perils-based

three-factor approach. Third, we draw on these factor models to determine

whether certain funds were able to outperform their peers on a risk-adjusted

basis in the past.

Abstract of “Asset Pricing and Extreme Event Risk: Common Factors in

ILS Funds”: The returns of funds that focus on catastrophe (cat) bonds and

other insurance-linked securities (ILS) behave unlike those of any other asset

class. Therefore, traditional asset pricing models, such as the five-factor ap-
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proach of Fama and French (1993) and the seven-factor approach of Fung and

Hsieh (2004), are not suitable for dedicated ILS funds. We set up a unique and

comprehensive database of ILS funds, provide a detailed empirical analysis of

these investment vehicles and derive a factor model, which is able to explain

both their time-series and cross-sectional return characteristics. First of all,

we show that ILS funds have historically exhibited a superior risk-adjusted

performance when traditional performance measures are considered. Subse-

quently, we identify key return drivers and introduce three new factors models,

relying on publicly-available indices. Despite a strong overall fit, we are left

with significant positive alphas for one quarter of all funds in our sample. These

are either attributable to manager skill, luck, or beta exposures associated with

non-cat-bond ILS.

The different parts of this dissertation are linked in several different ways.

The first connection consists of explaining the returns of financial instruments

using common systematic risk exposures. As such, investors, managers, and

policymakers are able to identify and focus on the main drivers of risk com-

pensation and how to manage their risk based on a parsimonious number of

factors. The second aspect connecting the different parts of this thesis is the

overall perspective on a representative balance sheet of an insurer. Specifically,

infrastructure can be an investment on the asset side of an insurer as a source of

less volatile cash flows. ILS funds are extracting the liability side of an insurer

which is then transferred to other risk takers and insurance stocks are the

residual claims of investors on the equity side of an insurance company. The last

aspect connecting this thesis is the investor’s need for alternative investment

opportunities in the current low-interest rate environment. On the one hand,

infrastructure is an investment opportunity with theoretically stable cash flows,

which is an interesting alternative for insurance companies themselves. On

the other hand, funds, stocks, and options containing insurance risks can be a

diversifying asset for mutual funds, pension funds, and other investors who do

not have insurance risks on their liability side.

Overall this thesis is a helpful aide to several different parties. This includes



policymakers and insurers who are given more insight on the pricing and finan-

cial effects of catastrophe risk. Investors benefit from this thesis by having a

better understanding on the systematic risk components in ILS funds, insurance

stocks, and infrastructure stocks. Thus, they can understand which funds /

companies earn sufficiently high returns based on their risk assumption – and

which do not.
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Part I

Common Risk Factors of
Infrastructure Investments

SEMIR BEN AMMAR and MARTIN ELING

Abstract
The risk of infrastructure investments is driven by unique factors that cannot
be well described by standard asset class factor models. We thus create a nine-
factor model based on infrastructure-specific risk exposure, i.e., market risk,
size, value, momentum, cash flow volatility, leverage, investment growth, term
risk, and default risk. We empirically test our model on a large dataset of U.S.
infrastructure stocks in different subsectors (utility, telecommunication, and
transportation) and over a long period of time (1983 to 2011). The new factor
model is able to capture the variation of infrastructure returns better than the
Fama/French three-factor, the Carhart four-factor or the extended Fung/Hsieh
eight-factor models. Thus, our model helps to improve the evaluation of
infrastructure funds and to better determine the cost of capital of infrastructure
firms, something that is increasingly relevant in light of the growing need for
privately financed infrastructure projects.

Keywords: Infrastructure · Asset class · Factor model · Leverage · Cashflow
Volatility
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1 Introduction

A well-developed infrastructure, whether energy, transport, or telecommuni-

cation, is often considered the foundation for economic growth (Esfahani and

Ramirez (2003); Hashimzade and Myles (2010); Czernich et al. (2011); Andersen

and Dalgaard (2013)). Due to renewal and extension, the need for infrastructure

investment is continuously growing, and public finance by itself does not provide

sufficient funds for such investments (OECD (2007)). This situation increases

the relevance of privately financed projects for which financial markets can

be a useful intermediary, for example, through infrastructure funds. The aim

of this paper is, thus, to derive an asset class factor model for infrastructure

investments that explains the specific characteristics of these investments. The

study is motivated by the claims of investment advisors and many trade articles

that infrastructure investments have a number of unique characteristics, such

as uncorrelated returns with major asset classes, stable cash flows because

of long-term contracts, and inflation protection (see Newell and Peng (2008);

Finkenzeller, Dechant, and Schäfers (2010); Bird, Liem, and Thorp (2012)). For

these reasons, institutional investors increasingly seek infrastructure investments

as an alternative asset class promising sustainable returns at relatively low risk.

There is very little academic work on infrastructure investments and most

of the studies that do exist use only infrastructure indices and a limited period

of investigation. Newell and Peng (2008) analyze U.S. infrastructure indices

with respect to risk-adjusted performance and portfolio diversification and show

that listed infrastructure improved portfolio performance during the period

2003 to 2006, but strongly underperformed other asset classes during 2000

and 2003. Looking at Australian and U.S. infrastructure indices, Finkenzeller,

Dechant, and Schäfers (2010) and Dechant and Finkenzeller (2012) document

the asset allocation benefits of infrastructure both in a mean-variance and a

mean-downside risk framework. Bitsch, Buchner, and Kaserer (2010) compare

the infrastructure deals of private equity funds with non-infrastructure deals and

find higher performance and lower default rates for infrastructure investments,

but no evidence of more stable cash flows. To date, Bird, Liem, and Thorp

(2012) is the only study to extent the traditional Fama/French three-factor
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for infrastructure investments. They show that infrastructure offers a partial

inflation hedge, but they reject the hypothesis that infrastructure has defensive

characteristics in the sense that infrastructure firms perform well during eco-

nomic downturns.

This paper contributes to the empirical literature on transport, telecom-

munication, and utility firms by developing an asset class factor model for

infrastructure investments.1 This paper is linked to the ongoing discussion in

energy economics about the risk and return characteristics of energy, trans-

portation and telecommunication investments (see Boyer and Filion (2007);

Ford (2007); Gasmi and Oviedo (2010); Elyasiani, Mansur, and Odusami (2011);

Ramos and Veiga (2011); Aggarwal, Akhigbe, and Mohanty (2012); Sklavos,

Dam, and Scholtens (2013); Bianconi and Yoshino (2014); or Lopatta and

Kaspereit (2014)). Specifically, we identify five factors in addition to the market

beta that are characteristic for infrastructure firms in terms of risk and return:

cash flow volatility, leverage, an investment growth factor, a term premium and

a default premium. We use these factors to develop a six-factor model and an

augmented nine-factor model that is built on Carhart (1997). We empirically

test the new models on a large dataset of U.S. infrastructure companies. The

empirical focus on U.S. firms is advantageous for three reasons. (1) Most of the

existing infrastructure papers consider markets outside the United States even

though there is a great need for infrastructure investment in the United States.2

1Bird, Liem, and Thorp (2012) restrict their analysis to the inflation hedge and downside
protection characteristics, thereby controlling for conditional heteroscedasticity (using GARCH
models) and the impact of regulatory power through simulations of a covered call strategy.
We expand their model by factors related to cash flow volatility, leverage effects, investment
growth, default risk, term premium, and the consideration of a very long time horizon.
Furthermore, we look at individual infrastructure returns; Bird, Liem, and Thorp (2012)
consider indices.

2Although for several decades in the United States, capital has been allocated to alternative
investments such as private equity or hedge funds, investors in the U.S. have only recently
begun to pay attention to infrastructure as an investment opportunity. While other markets,
such as the United Kingdom, Canada, and, especially, Australia, discovered infrastructure
as an alternative field of investment in the early 1990s, the United States “do[es] not have
a strong history of infrastructure privatization” (Newell and Peng (2008)). However, the
current debt crisis in the United States implies a strict fiscal policy that will continue to affect
public spending for infrastructure projects, while continuous urban development and growth
in the country will demand intensive investment in infrastructure. Due to this increasing
importance of infrastructure in the United States from both a governmental and investor’s
point of view, the empirical part of this study focuses on the U.S. infrastructure sector.
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(2) A long time horizon can be investigated, which allows us to consider different

subperiods. (3) Analyzing individual shares of infrastructure firms instead of

indices allows us to sort portfolios by size, book-to-market ratio, and other

characteristics to control for stock anomalies and, thus, enhances the validity of

the infrastructure models.

This paper extends the findings of Bird, Liem, and Thorp (2012) by going

beyond the aspects of inflation and downside protection and creates a detailed

asset class factor model for infrastructure stocks that takes into account the

relation between stock performance and cash flow volatility, large-scale up-front

investments, high financial leverage and interest rate sensitivity. Our paper

contributes to the emerging body of literature on the risk-return characteristics

of infrastructure in several ways. First, we help explain the return variation in

infrastructure stocks to improve the measurement of cost of capital and perfor-

mance for such companies. We show that an infrastructure six-factor model

based only on the infrastructure-specific characteristics is superior in explain-

ing the cross-section of infrastructure returns compared to the Fama/French

three-factor, the Carhart four-factor, or the Fung/Hsieh eight-factor models.

Second, we shed some light on the mixed results in the literature as to whether

infrastructure generates stable cash flows and tackle the heretofore unaddressed

issue of infrastructure being sensitive to interest rate changes. Finally, we

find that oligopolistic infrastructure industries earn on average 1.44% p.a. less

than competitive infrastructure industries, while their Sharpe ratios are more

than twice as high as those of industries with with more competitive market

structures. Thus, infrastructure investments are most beneficial for investors in

concentrated (i.e., oligopolistic) industries from a risk-return perspective.

Finding the common risk factors among infrastructure companies is impor-

tant in understanding the pricing process of such firms. This is true for both

investors and for public policymakers, who, in light of increasing privatization

in the United States, need to know the fair rates of return so as to prevent

monopolistic exploitation (Newbery (2002); Kessides (2004)). Our results allow

better understanding of the risk and return drivers of infrastructure investments.

We show that investors value cash flow stability with a premium and find that
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infrastructure firms are sensitive to interest rate changes with respect to the

term and default premium. Furthermore, we show that only companies with

low book-to-market ratios tend to invest in their asset base, which is positively

valued with a risk premium.

The following section reviews the infrastructure literature and derives an

asset class factor model for infrastructure stocks. Section 3 discusses the data

and how the factors are constructed. Section 4 presents the empirical results,

including robustness tests. Section 5 concludes.

2 Model development and hypotheses

Finkenzeller, Dechant, and Schäfers (2010) point out that infrastructure, despite

having some characteristics in common with real estate, cannot be classified

as such due to the monopolistic, less transparent structures, higher regulatory

constraints, and higher investment necessary for the realization of infrastructure

projects compared to real estate. Thus, the goal of this paper is to derive an

asset class factor model for infrastructure based on the specific characteristics

infrastructure companies are believed to have. More specifically, we want to

determine which characteristics (i.e., mimicking portfolios) offer the highest

explanatory power and the lowest pricing errors for the return variation of

infrastructure firms.

One of the major challenges in constructing such a model is that – depending

on the definition – “infrastructure” covers a wide array of activity. For example,

companies operating pipelines might be affected by oil prices, but the returns

of telecommunication businesses are not. Common to these companies are

operational networks (Newbery (2002)) characterized by low risk, stable cash

flows, high debt-to-equity ratios, a monopolistic structure, downside protec-

tion, and large-scale investments. We replicate these common characteristics

to explain the cross-section of the return profiles. We also test whether the

infrastructure sector is homogenous or heterogeneous by analyzing different

subsectors (transport, telecommunication and utility firms) in our setting and

analyze downside and inflation protection in more detail. Table 1 summarizes
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the infrastructure characteristics analyzed in previous studies.

Table 1: Characteristics of infrastructure investments and results from ex-
isting literature

Characteristic Measured by Result in existing literature

Low risk RM-Rf Rothballer and Kaserer (2012): mar-
ket risk is lower compared to other
equities.

Inflation hedge Consumer Price Index
(CPI), Treasury Infla-
tion Protected Securities
(TIPS)

Rödel and Rothballer (2012): hedge
appears to be more wishful thinking
than empirical fact; Bird, Liem, and
Thorp (2012): support for utility sec-
tor to hedge against inflation but not
infrastructure as a whole.

Stable cash flows Volatility of cash flows Bitsch (2012): infrastructure pro-
vides more stable cash flows than
non-infrastructure investments, but
investors’ value cash flow volatility at
a premium.

Uncorrelated returns Comparison with re-
turns of stocks, bonds,
real estate

Finkenzeller, Dechant, and Schäfers
(2010): low correlations with tradi-
tional asset classes in Australia.

Downside protection Market timing (i.e.,
squared market factor)

Bird, Liem, and Thorp (2012): no
downside protection of infrastructure
investments. Dechant and Finken-
zeller (2012): direct infrastructure
investments reduce downside risk in
portfolios.

Rothballer and Kaserer (2012) observe low market beta values and conclude

that infrastructure is less risky than the overall market. Results about inflation

are ambiguous, but it seems that no general inflation hedge is provided by in-

frastructure investments. Cash flow volatility is analyzed by Bitsch (2012), who

finds more stable cash flow for unlisted infrastructure deals but cannot confirm

a premium for such stability. Uncorrelated returns with traditional asset classes

are confirmed for Australia by Finkenzeller, Dechant, and Schäfers (2010), a

result that goes hand in hand with the low beta characteristic. Bird, Liem,

and Thorp (2012) cannot confirm any downside protection from infrastructure

investments. The interest rate sensitivity of infrastructure assets that might

arise from the long-term horizon of future cash flows has not yet been analyzed.

The literature proposes two approaches for the construction of asset class

factor models. The first is to consider macroeconomic factors; the second is
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to construct return portfolios based on firm-specific characteristics that reflect

underlying risks (Campbell, Lo, and MacKinlay (1997)). Including both firm-

specific and macroeconomic factors in the form of excess returns as in Fama

and French (1993), we create dynamic portfolios that capture the infrastructure-

specific relation between risk and return. Using mimicking portfolios measured

as excess returns allow us to reveal pricing errors through a significant intercept

in the time-series regression model, i.e., the alpha not being equal to zero for

all test assets (Gibbons, Ross, and Shanken (1989)).

We consider a combination of common equity factors (i.e., Fama/French fac-

tors and momentum) and additional risk factors to explain the return variation

of infrastructure stocks. We therefore augment the Carhart four-factor model

with a cash flow volatility factor, an investment factor, a leverage factor, as

well as with a term and default risk premium. For comparison, we also present

the capital asset pricing model (CAPM), the Fama/French three-factor model,

the Carhart four-factor model and the extended Fung/Hsieh eight-factor model.

The CAPM (Sharpe (1964); Lintner (1965); Mossin (1966)) uses the market

excess return (RM,t −Rf,t) to explain stock returns:

Ri,t −Rf,t = αi + βi,M (RM,t −Rf,t) + εi,t. (1)

However, the CAPM cannot explain anomalies such as the size effect or the

performance differences between value and growth stocks. Fama and French

(1992, 1993) developed a model to account for these empirical facts:

Ri,t−Rf,t = αi+βi,M (RM,t−Rf,t)+βi,SMBSMBt+βi,HMLHMLt+εi,t. (2)

The Fama/French three-factor model adds a zero investment portfolio to

the pricing equation that goes long in stocks with small market capitalization

and short in stocks with large market capitalization (SMB). The other factor is

constructed as a zero investment portfolio going long in value stocks and short

in growth stocks (HML).

Carhart (1997) extended this model by a momentum factor based on previous

findings by Jegadeesh and Titman (1993) that past year winners outperform
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past year losers:

Ri,t −Rf,t = αi + βi,M (RM,t −Rf,t) + βi,SMBSMBt + βi,HMLHMLt

+ βi,MOMMOMt + εi,t.
(3)

We also test the well-known seven-factor model of Fung and Hsieh (2004),

originally designed for hedge funds, in our setting given that infrastructure

investment is often considered an alternative investment opportunity (Della

Croce (2012)) and thus alternative investment risk factors should be considered

as well. Moreover, it is common in the hedge fund literature to use many factors

to explain these funds’ returns. In addition to the Fung/Hsieh seven-factor

model, we include a tradable liquidity factor resulting in an eight-factor model

as proposed by Sadka (2010). The other factors of the eight-factor model

are a market factor, a size factor, a term and credit spread factor, and three

trend-following factors, i.e., PTFSBD regarding bonds, PTFSFX regarding

currencies, and PTFSCOM regarding commodities. Following Sadka (2010) we

use excess returns for all factors so as to test our hypotheses on the intercept.

Formally, the extended Fung/Hsieh eight-factor model is:3

Ri,t −Rf,t = αi + βi,M (RM,t −Rf,t) + βi,SMBSMBt + βi,TERMTERMt

+ βi,DEFDEFt + βi,PTFSBDPTFSBDt + βi,PTFSFXPTFSFXt

+ βi,PTFSCOMPTFSCOMt + βi,LIQLIQt + εi,t.

(4)

Given that our analysis deals with a specific sector, we would expect that

these models can capture some of the return variation of infrastructure firms.

However, the additional characteristics relevant for the pricing of infrastruc-

ture stocks will require an augmented CAPM, Fama/French three-factor, or

Carhart four-factor model as, e.g., suggested by Mohanty and Nandha (2011)

for U.S. oil and gas stocks or by Sadorsky (2001) for Canadian oil and gas stocks.

3We use Pastor and Stambaugh’s (2003) tradable liquidity factor from Robert F. Stam-
baugh’s website http://finance.wharton.upenn.edu/~stambaug/ and the trend-following fac-
tors from David A. Hsieh’s website, https://faculty.fuqua.duke.edu/~dah7/HFRFData.htm.
Note that the trend-following factors are available only from January 1994 onward, which is
why tests involving the Fung/Hsieh eight-factor model refer to a shorter time period compared
to the other models.
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Bird, Liem, and Thorp (2012) are the first to develop an augmented factor

model for infrastructure investments. In fact, they propose two separate models.

The first model augments the Fama/French three-factor model with the yield

of Treasury Inflation Protected Securities (TIPS) minus the risk-free rate. The

second model includes a market timing factor that accounts for the defensive

characteristics of infrastructure investments. Motivated by Treynor and Mazuy

(1966), Bird, Liem, and Thorp (2012) replicate market timing by the squared

market excess return, assuming that the defensive investment characteristic of

infrastructure is able reduce the decline in infrastructure asset prices during

economic downturns. Both models are corrected for conditional heteroscedas-

ticity and non-linearities in the error term using the GARCH approach. The

model is empirically tested for sub-indices of the UBS Global Infrastructure

and Utilities Index starting between 1990 and 1998 and ending in December 2011.

Extending the Fama/French three-factor or the Carhart four-factor model

by additional factors when it comes to specific categories of equities is often

proposed in the literature. Mohanty and Nandha (2011) augment the Carhart

four-factor model by two additional factors when examining the cross-section of

U.S. oil and gas stocks. The two factors are changes in oil prices and changes

in the interest rate. Mohanty and Nandha (2011) find that the oil price has

substantial influence on the oil and gas industry, whereas interest rates have no

significant effect on the stocks of such companies. Moreover, their results show

that companies classified as being in the pipeline subsector are neither sensitive to

changes in oil price nor to changes in interest rates. Following that intuition, we

first augment the Carhart four-factor model with the previously mentioned five

factors, which should capture the special characteristics of infrastructure stock

returns and, hence, explain the return variation of infrastructure investments in

more detail. Formally, this infrastructure nine-factor model is described as:

Ri,t −Rf,t = αi + βi,M (RM,t −Rf,t) + βi,SMBSMBt + βi,HMLHMLt

+ βi,MOMMOMt + βi,CFV OLACFV OLAt + βi,LEV LEVt

+ βi,INV INVt + βi,TERMTERMt + βi,DEFDEFt + εi,t,

(5)

where the dependent variable is the excess return of infrastructure firms over
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the U.S. 1-month Treasury bill rate. In the following we discuss the rationale

for including each factor in the six- and nine-factor model, respectively.4 Table

2 provides an overview of the relationships we expect between the excess returns

of infrastructure investments and all explanatory variables.

Furthermore, we specify an infrastructure six-factor model that is solely based

on the infrastructure-specific characteristics and the market beta, arguing that

these factors alone are superior in explaining infrastructure returns compared to

the Fama/French three-factor or Carhart four-factor models. The infrastructure

six-factor model is formally defined as:

Ri,t −Rf,t = αi + βi,M (RM,t −Rf,t) + βi,CFV OLACFV OLAt + βi,LEV LEVt

+ βi,INV INVt + βi,TERMTERMt + βi,DEFDEFt + εi,t.

(6)

2.1 Cash flow volatility

Including cash flow volatility in our model is based on the assumption that

infrastructure firms have stable cash flows because of “long-term sales contracts,”

low competition due to high entry barriers, and low research and development

risk (Sawant (2010); Rothballer and Kaserer (2012)). Following the idea of

the CAPM one might expect a positive link between cash flow volatility and

returns. Huang (2009) has, however, documented that cash flow volatility is

negatively correlated with future stock returns, thereby contradicting the tradi-

tional notion that volatility connotes risk.5 We analyze ex post returns based on

the past historical cash flow volatility and thus also expect to find a negative link.

The existing empirical literature on infrastructure shows mixed results.

Bitsch, Buchner, and Kaserer (2010) analyze unlisted infrastructure deals

worldwide and the difference in cash outflow volatility between infrastructure

4Note that all factors in our analysis are excess returns and hence the estimate of the
factor risk premium corresponds to the sample mean of the factor (Cochrane (2005, p. 244)).

5These findings underline the results by Ang et al. (2006) for return volatility. Different
explanations such as limits to arbitrage or overconfidence are discussed by Huang (2009), but
a credible theoretical explanation for the phenomenon has not yet been developed.
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Table 2: Hypotheses

Variable Hypothesis Rationale

RM-Rf Positive relation
between the market
and infrastructure
returns, but smaller
than 1.

Infrastructure should co-move with
the market but be less sensitive to
the overall market given the constant
demand for infrastructure services
(Rothballer and Kaserer (2012)).

SMB Negative relation
between size effect
and infrastructure
returns.

Infrastructure can be considered as a
large-cap industry on average; thus,
a negative relation between SMB and
infrastructure returns should be ob-
served (Fama and French (1997)).

HML Positive relation
between value effect
and infrastructure
returns.

Since infrastructure firms do not of-
fer many growth options, they can
be considered as value stocks; thus,
a positive relation between HML and
returns should be observed. Bird,
Liem, and Thorp (2012) refer to the
“large asset base” resulting in a posi-
tive coefficient on HML.

Momentum (MOM) Positive relation be-
tween past returns
and infrastructure
returns.

Constant (and sustainable) demand
for infrastructure services should con-
tinuously generate positive returns.

Cash flow volatility
(CFVOLA)

Negative relation
between cash flow
volatility and infras-
tructure returns.

Long-term concessions and inelastic
demand for infrastructure services
(e.g., electricity) should be valued at
a premium by investors.

Leverage (LEV) Positive relation
between leverage
and infrastructure
returns.

High leverage allows initiating
larger infrastructure projects, which
promise higher returns, but also
more risk, which needs to be
compensated.

Investment growth
(INV)

Positive relation
between investment
growth and infras-
tructure returns.

Infrastructure firms that invest in
large-scale projects and renew their
physical assets are able to generate
excess returns in the long run.

Term premium
(TERM)

Positive relation be-
tween term struc-
ture and infrastruc-
ture returns.

Term premium catches unexpected
changes in interest rates. Infrastruc-
ture’s long-term assets (investments)
might be sensitive to interest rate
changes.

Default premium
(DEF)

Positive relation
between default
premium and infras-
tructure returns.

With increasing default probability,
firms need to pay a risk premium, es-
pecially infrastructure firms with ex-
tensive use of debt.
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and non-infrastructure deals. Their results show that there is no difference

in volatility between the two categories. In contrast, Bitsch (2012) finds a

difference in cash flow volatility between listed infrastructure and listed non-

infrastructure funds. Infrastructure funds have lower cash flow volatility than

non-infrastructure funds, and yet investors do not value this stability because

cash flow volatility is positively correlated with the fund’s value.

2.2 Leverage

According to the Modigliani-Miller theorem, capital structure should not influ-

ence expected returns. The infrastructure sector, however, is driven by high

capital requirements to realize large-scale projects, resulting in very high leverage

ratios. Bhandari (1988) shows that stock returns are positively correlated with

leverage after controlling for market beta, size, and other factors. Under the

assumption that leverage does not have the same meaning for different sectors,

deviations within a specific sector could have an effect on stocks returns. As

Bradley, Jarrell, and Han Kim (1984) show, telecommunication, transportation,

and utility companies have by far the highest debt ratios. Bianconi and Yoshino

(2014) show that leverage is significantly and robustly priced in oil and gas

companies of the nonrenewable energy sector. Rothballer and Kaserer (2012)

show that higher financial leverage also has a positive impact on return volatility

of infrastructure stocks, meaning that higher leverage increases the risk profile

of stocks. Fama and French (1992) argue that their HML factor accounts for

differences in leverage, i.e., HML can be interpreted as an “involuntary leverage

effect” that is able to capture the difference between market leverage and book

leverage. However, the HML factor does not fully capture the impact of debt

because it does not take into consideration the ratio between equity and the

more relevant debt value but only the ratio between market and book equity.

Higher leverage represents higher risk because there is a larger uncertainty for

shareholders about whether payments will be made “due to the seniority of debt

claims” (Rothballer and Kaserer (2012)). Hence, we believe that different levels

of debt-to-equity ratios lead to substantial differences in the ability to generate

cash flows. Leverage should thus be more relevant in explaining the variation

of infrastructure returns than the book-to-market ratio, especially given the
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high significance of debt in infrastructure firms. We expect this relation to be

positive because the borrowing of outside capital increases the return on equity.

2.3 Investment factor

There are two key assumptions behind our decision to include an investment

factor in the pricing model. First, according to the investment-based asset

pricing theory, investments “predict returns because high costs of capital imply

low net present values of new capital and [hence] low investment. Low costs of

capital, on the other hand, imply high net present values of new capital and thus

high investment” (Ammann, Odoni, and Oesch (2012)). Second, infrastructure

assets are not only characterized by high investment payments, especially at

the beginning of their lifecycle; additionally, the very long time horizon of such

infrastructure assets implies a high sensitivity toward investment payments.

Also, renewing physical infrastructure is profitable only in the long run (Baur

et al. (2006)). Thus, investments by infrastructure companies might be an

important indicator of profit generation and, thereby, be a good predictor for

the variation in equity returns. For a detailed description of the investment

factor see Section 3.2.

2.4 Term structure and default premium

We include both a term premium (TERM) and a default premium (DEF), where

the term premium indicates changes in the slope of the yield curve and the

default premium indicates changes between corporate and government bonds

(i.e., the credit risk). The term premium can be interpreted as an indicator for

unexpected changes in the return of long-term government bonds; the default

premium can be interpreted as shifts in the probability of default. Motivated by

the high amount of debt, changes in the yield curve might affect the returns of

infrastructure companies that are more leveraged than other companies. Also,

the term premium compensates investors for “exposure to discount-rate shocks

that affect all long-term securities” (Fama and French (1989)), which seems
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very relevant for long-term infrastructure assets.6

According to Ang, Bekaert, and Wei (2008), an “inflation risk premium that

increases with maturity fully accounts for the generally upward sloping nominal

term structure.” Hence, changes in the term structure might also be the result

of shocks in the inflation risk premium. Term structure might then be a good

approximation for the hedging abilities of infrastructure toward an inflation

effect or at least be highly correlated with inflation. The inflation aspect of

infrastructure is examined by Rödel and Rothballer (2012), who, based on a

set of global infrastructure stocks, find that infrastructure is not able to hedge

against inflation. In contrast, Bird, Liem, and Thorp (2012) find some evidence

that the utility industry is able to hedge inflation, while the telecommunication

industry (represented by the UBS Infrastructure Index) cannot.

Furthermore, the default premium might shed some light on the return

profile of infrastructure firms during distressed times. We expect that there is a

positive link between the default premium and stock returns, since increasing

default probability increases the risk for investors. This might be especially

pronounced for infrastructure firms, which typically use a lot of debt and, hence,

are more affected by credit risk.

3 Data and summary statistics

3.1 Data selection

Two of the major issues researchers face when analyzing infrastructure invest-

ments are the sparse data availability and the question of which infrastructure

investment vehicle to analyze. We choose to analyze listed infrastructure because

it has the most reliable dataset, which is crucial for our factor construction.

Also, the long time frame allows us to show the risk and return profile of

6Sweeney and Warga (1986) regress the stock returns of 21 industry portfolios against
the market and a series of simple changes in long-term interest rates. They find that it is
only the stocks of electric utilities and the banking, finance, and real estate industry that are
consistently sensitive to interest rates over the period 1960 to 1979. O’Neal (1998) confirms
these results for electric utility firms.
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infrastructure investments in the long run. Further, unlike equity infrastructure

indices, we neither determine a specific liquidity level nor a certain market

capitalization for our dataset. This means we are able to analyze the entire

scope of infrastructure stocks without limitations.

Our definition of infrastructure follows that of Rothballer and Kaserer (2012)

and thus comprises the utility, communication, and transportation industries.7

Also in line with Rothballer and Kaserer (2012), we consider only companies that

act as network operators and have either their own physical infrastructure or a

concession to use physical infrastructure. Thus, contractors (e.g., construction

firms) and other service providers (e.g., maintenance services) who depend on

operators are excluded from this definition.

Our dataset includes all U.S. infrastructure stocks with SIC and GIC codes

related to utilities, telecommunication, and transportation available on the

CRSP and in the COMPUSTAT database.8 Our analysis starts in January

1983 and ends in December 2011, yielding 348 monthly observations. The

restrictive element in our dataset is the availability of large-scale quarterly data

in COMPUSTAT, which we need for calculating a rolling standard deviation

for the cash flow volatility factor.

To identify companies that own or operate physical infrastructure assets we

apply a textual analysis of business descriptions from various sources (Thom-

son Worldscope (WC06092), SEC filings (10-K, 10-Q, S-1 filings), Bloomberg

company overviews, and corporate websites). The actual company names are

deleted in the textual analysis to avoid a precipitant assignment of companies

that contain words such as “Energy” or “Utilities” in their trade name and

which could occur in the same sentence as further textual conditions. As a

result, this method is able to differentiate between companies (theoretically)

generating stable cash flows through their physical assets and companies that

are contractors or service providers. Furthermore, we include only those firms

7Although infrastructure can also comprise social infrastructure (e.g., schools, hospitals,
and prisons), we do not include these types of “companies” in our dataset due to scarce data
availability and the predominantly nonprofit focus of social infrastructure.

8Our selection of SIC and GIC codes is based on Rothballer and Kaserer (2012).
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with ordinary common equity listed on the NYSE, AMEX, or NASDAQ. Hence,

ADRs, REITs, and units of beneficial interest are excluded. We also exclude all

stocks that do not have at least 24 months of consecutive return data and we do

not consider firms with negative book values. All accounting data are retrieved

from COMPUSTAT. The book common equity is calculated as the book value

of stockholders’ equity plus deferred taxes and investment tax credits subtracted

from the book value of preferred stocks. After the complete screening process

the initial dataset is reduced from 1040 stocks to 396 stocks.

3.2 Construction of explanatory variables

We construct a mimicking portfolio for cash flow volatility based on quarterly

observations over a rolling three-year period. To be included in the calculation,

a company must have at least eight non-missing values within that estima-

tion window (Huang (2009)). We calculate the rolling standard deviation on

standardized cash flow volatility and define cash flow as income before extraordi-

nary items (COMPUSTAT item ibq) plus depreciation and amortization (item

dpq) plus the quarterly change in working capital (item wcapq[t ] - wcapq[t-3

months]).9

Using quarterly, as compared to annual, data enables us to increase the

number of observations and improves the calculation of the standard deviation.

To analyze ex post returns based on the past historical cash flow volatility and

to make sure that accounting information from quarterly reports is known prior

to stock market development, we match three-month lagged accounting data

(i.e., the previous fiscal quarter) with stock returns. Hence, we assume that it

takes about three months until quarterly accounting data are available to the

public. This method is identical to that employed by Huang (2009). Having

calculated the standard deviation of cash flows from t to t-36 months divided

by sales in t we then rank each company according to the ratio of cash flow

volatility and sales (CF/sales).10 We create breakpoints for the bottom 30% (low

9Both deferred taxes and preferred taxes are largely missing in the quarterly dataset,
which is why we do not include these items in the determination of cash flows (see Huang
(2009)).

10Since we construct portfolios based on the ranking of cash flow volatility, we do not
consider it necessary to winsorize cash flows.
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CF/sales), middle 40% (medium CF/sales), and top 30% (high CF/sales) based

on infrastructure firms listed on the NYSE, following Fama and French’s (1993)

approach to defining breakpoints.11 In each month we assign all stocks to those

three CF/sales groups based on the ranked values of CF/sales. Furthermore,

we create six portfolios in each month based on the intersection between low

CF/sales, middle CF/sales, and high CF/sales, as well as small and big market

capitalization.12 For each portfolio value-weighted returns are calculated. The

mimicking portfolio is then the difference between the average return of the

two high CF/sales portfolios and the average return of the two low CF/sales

portfolios. Hence, our cash flow volatility factor indicates whether there is a

premium being paid to investors if cash flows vary extensively over time.

The investment factor (INV) is calculated as the difference between a return

portfolio of low investment growth and high investment growth. Investment

growth (INVESTG) is defined as the absolute annual change in property, plant,

and equipment (PPE) and inventory from the fiscal year ending in t-2 to fiscal

year ending in t-1 divided by total assets of year t-2. Formally, investment

growth is defined as:

INV ESTGt =
(PPEt−1 + inventoryt−1)− (PPEt−2 + inventoryt−2)

book value of total assetst−2
. (7)

PPE is indicated as annual item PPEGT in COMPUSTAT, inventories as item

INVT, and total assets as item AT. This investment factor is identical to the

factor proposed by Chen, Novy-Marx, and Zhang (2011). Furthermore, we

construct a high minus low leverage factor (LEV) based on the debt-to-equity

ratio (DER) defined as (see Bhandari (1988)):

DERt =
bookvalue of total assetst−1 − book value of common equityt−1

market value of common equityt−1

.

(8)

11Fama and French (1993) argue that the market value of NASDAQ and AMEX stocks
is in general much smaller, which is why NYSE breakpoints guarantee a certain amount of
market capitalization in each portfolio.

12We control for size in construction of the cash flow volatility factor because Minton and
Schrand (1999) show that small firms tend to be more cash flow volatile.
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In June of year t we sort all stocks according to their DER based on NYSE

breakpoints. Stocks with low debt-to-equity ratios are in the bottom 30%

and stocks with high debt-to-equity ratios in the top 30%. We also include

two portfolios for small and large stocks. From the intersection of the DER

and size portfolios we calculate value-weighted returns from July in year t

to June of year t+1. We rebalance each portfolio in June of year t+1. The

difference between the average return of the two high DER portfolios and the

average return of the two low DER portfolios establishes our leverage factor LEV.

The definitions of the TERM and DEF factors are identical to those in Fama

and French (1993). TERM is constructed as the monthly difference between

long-term bond returns of the U.S. government and the one-month T-bill rate

(retrieved from CRSP). The DEF factor is calculated as the spread between the

return on a long-term corporate bond index (i.e., Barclays U.S. Aggregate Long-

Term Corporate Bond Index BAA) and the return on the long-term government

bond index.13 Finally, we include RM-Rf, SMB, HML, and MOM (in line

with Fama and French (1993) and Carhart (1997)). Data for these factors can

be downloaded from Kenneth French’s website (http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html). The remaining data

are taken from CRSP, COMPUSTAT, and Thomson Reuters Datastream.

3.3 Summary statistics

Panel A of Table 3 presents summary statistics for a value-weighted infrastruc-

ture (VWI) index in excess of the risk-free rate based on the entire sample

and summary statistics for nine double-sorted excess return portfolios by size

and book-to-market ratio. To account for the critique by Lewellen, Nagel, and

13In a similar vein, we constructed a regulatory risk factor as the return spread between a
utility bond index and an overall industrial bond index. However, the use of a utility bond
index is merely a weak approximation for infrastructure regulation in general. Furthermore,
it can be questioned whether such an approximation sufficiently addresses regulatory risk.
Regression results including such a factor in our model were insignificant and are available
upon request.



I Infrastructure Investments 19

Shanken (2010) on asset pricing tests in general,14 we also include three market-

beta portfolios (from low to high beta exposure based on a 36-month rolling

window), three momentum portfolios (from low to high short-term momentum,

based on a stock’s past 12-month performance), and three industry portfolios,

i.e., a value-weighted portfolio of transportation stocks, a value-weighted portfo-

lio of telecommunication stocks, and a value-weighted portfolio of utility stocks.

Panel B presents summary statistics for all 13 factors we use as explanatory

variables in the different models.

Comparing the VWI index with the market return (RM − Rf ), reveals

that infrastructure stocks on average offer a slightly lower return with a lower

standard deviation. The portfolio returns of infrastructure stocks on average

decrease with increasing market equity, while portfolio returns climb with

increasing book-to-market equity. This is in line with previous findings showing

higher returns for small and value stocks (see, e.g., Fama and French (1993);

Bauman, Conover, and Miller (1998)). It is, however, also a first indication that

large infrastructure firms do not necessarily exploit their monopolistic structure

because large infrastructure firms do not outperform smaller ones.15

14A central point of criticism by Lewellen, Nagel, and Shanken (2010) is that asset pricing
tests are limited to size and book-to-market portfolios whilst other portfolio sortings are
ignored. They suggest to expand the set of test portfolios by including portfolios based on
industry classification, beta or other characteristics which we rigorously follow (see Lewellen,
Nagel, and Shanken (2010), p. 182).

15We also analyzed the correlation of independent factors. The correlation between
HML and LEV is significant and positive (0.41), which is a meaningful finding since both
ratios include the book value of equity in the nominator and the market value of equity
in the denominator. However, the value of 0.41 also shows that there are substantial
differences between the two factors so that HML will not absorb the explanatory power of
LEV (multicollinearity is rejected). Moreover, we find a significant negative correlation (-0.53)
between TERM and DEF that seems slightly higher than in previous studies. Peterson and
Hsieh (1997), for example, find a correlation of -0.43 for the period 1976 – 1992. None of the
correlations are extensive enough to cause multicollinearity issues.
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4 Empirical results

4.1 Main results from time series regressions

We now turn to a detailed analysis using 18 portfolios sorted by different char-

acteristics in order to better understand the pricing errors in an infrastructure

context and to account for the possibility that some characteristic portfolios

are more difficult to price than others (Lewellen, Nagel, and Shanken (2010)).

The majority of market betas in Table 4 are smaller than one except for the

telecommunication industry and less surprisingly for high beta exposed infras-

tructure stocks, confirming the results of Rothballer and Kaserer (2012) that

infrastructure overall poses low market risk.

Table 4: Standard CAPM factor loadings from time series regressions

Variables Small Med.
Size

Big Beta Mom. Indus.

βM Low 0.76*** 0.71*** 0.85*** 0.18*** 0.84*** 0.99***

(0.08) (0.05) (0.06) (0.05) (0.09) (0.07)

Mid 0.45*** 0.47*** 0.43*** 0.50*** 0.50*** 1.10***

(0.04) (0.06) (0.07) (0.06) (0.04) (0.06)

High 0.60*** 0.55*** 0.54*** 1.17*** 0.68*** 0.48***

(0.05) (0.06) (0.08) (0.04) (0.05) (0.05)

α Low 0.16 0.16 -0.01 0.57*** -0.27 0.66**

(0.17) (0.15) (0.20) (0.19) (0.23) (0.30)

Mid 0.56*** 0.40* 0.37* 0.31* 0.21 -0.17

(0.15) (0.21) (0.21) (0.19) (0.17) (0.22)

High 0.53** 0.56*** 0.29 -0.23 0.37** 0.29

(0.22) (0.19) (0.25) (0.17) (0.15) (0.19)

Adj.R2 Low 46.9% 51.3% 55.1% 4.8% 49.9% 45.8%

Mid 34.1% 28.0% 19.9% 31.7% 38.2% 67.5%

High 37.5% 35.3% 27.9% 78.3% 52.8% 30.5%

GRS test statistic = 2.414*** p(GRS) = 0.001

This table reports factor loadings on the market factor (RM-Rf) for 18 test portfolios. The
intercepts (α) of each portfolio are reported in the middle of the table. The sample period
is January 1983 to December 2011 (348 monthly observations). The GRS test statistics and
the adjusted R2 values from each time series are reported at the end of the table. Standard
errors are reported in parentheses and are computed using the Newey-West (1987) correction
for heteroscedasticity and serial correlation with lags of five. The test portfolios are nine
double-sorted size and book-to-market ratio portfolios from small to big and from low to high,
respectively (column ‘Small’ to ‘Big’); three low to high market beta portfolios (column ‘Beta’);
three low to high momentum portfolios (column ‘Mom.’), and three industry portfolios (column
‘Indus.’), where the top portfolio is a value-weighted index of transportation stocks, the portfolio
in the middle is a value-weighted index of telecommunication stocks, and the bottom portfolio
is a value-weighted index of utility stocks. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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The low R-square also suggests high idiosyncratic risk. The least well ex-

plained variations of returns occur at medium book-to-market ratio stocks and

low beta stocks, where only 19.9% and 4.8%, respectively, of the variation in

infrastructure stocks are explained. Most importantly, the GRS test statistic

strongly rejects the null that the intercepts of the portfolios are jointly zero,

which indicates that additional factors are necessary to price infrastructure firms.

For the Fama/French model (see Table 5) we see a strong increase in the

explanatory power across all 18 portfolios, especially for the large, medium

book-to-market ratio portfolio where the R-square almost doubles (from 19.9%

to 39.5%), and the low beta portfolio where the R-square increases from 4.8%

to 25.6%. However, 6 out 18 portfolios still show significant intercepts and

formally the GRS test statistic rejects the null hypothesis that the intercepts

are jointly zero. This suggests that the Fama/French model is not sufficiently

able to price infrastructure investments.16

Regarding the infrastructure six-factor model, Table 6 reveals almost iden-

tical values in the adjusted R-square compared to the Fama/French model.

Still, a parsimonious version of a six-factor is not able to explain the abnormal

returns in some of the infrastructure portfolios. Formally, the GRS test statistic

again rejects the null that the intercepts are jointly different from zero at a

5% significance level. Before we turn to the full version of the nine-factor

infrastructure model, we first control for the extended Fung/Hsieh eight-factor

model usually employed for hedge funds (see Table 7). The three characteristic

hedge fund factors, i.e., the trend-following factors (PTFSBD, PTFSCOM, and

PTFSFX) show no or very limited covariance with infrastructure returns. Also,

liquidity covaries mildly with infrastructure returns. Overall, the eight-factor

model by Fung and Hsieh (2004), and extended by Sadka (2010), is rejected by

the GRS test statistic at the 10% significance level.

Looking at the infrastructure nine-factor model in Table 8, the inclusion of

additional factors improves the explanatory power in excess of the Fama/French

16The Carhart four-factor model (i.e., adding the momentum factor to the Fama/French
model) is also rejected by the GRS test statistic at the 10% level with a test statistic of 1.506
and a p-value of 0.08.
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model up to 21.7 percentage points in case of the low beta portfolio (from 25.6%

to 47.3%). Most importantly, however, is that the nine-factor infrastructure

model is not rejected by the GRS test statistic, indicating that the model is well

specified and able to explain abnormal returns in infrastructure returns. The

additional power that the model is able to add in some portfolios emphasizes

the need to consider additional factors in the case of infrastructure stocks so as

to capture their specific characteristics. Regarding the individual factors, we

find a significant and positive size premium for the smallest companies and a

negative one for larger firms, showing that the SMB factor is a good proxy for

size and confirming the size effect in infrastructure firms.

Moreover, we document a positive leverage exposure in all but the growth

(i.e., low book-to-market) and low momentum portfolios. Given that infras-

tructure firms in the growth portfolios have a reduced risk of being distressed

(Daniel and Titman (1997)), one might conclude that investors do not receive

a leverage premium for such companies. We also find a negative relationship

between returns and INV in the case of low book-to-market portfolios. This

contradicts the results found by Chen, Novy-Marx, and Zhang (2011) and

Ammann, Odoni, and Oesch (2012) with respect to overall stocks in the U.S.

and European markets. First, their results indicate a positive relation between

the investment factor and the variation of stock returns. Second, the invest-

ment factor should enhance the explanatory power of the return variation for

all portfolios. One explanation for the negative factor loading in our model

could be that infrastructure companies with low book-to-market ratios (i.e.,

infrastructure firms with more growth opportunities than other infrastructure

firms) are considered as sustainable firms that are willing to invest and for

which investors are willing to pay higher prices today.17

The factor loadings for the interest rate factors, TERM and DEF, remain

positive and significant for the majority of portfolios, corroborating the idea

that infrastructure firms are sensitive to changes in interest rates. Possibly this

17Note that the INV factor is constructed as low investments minus high investments. Thus
a negative coefficient means that companies making investments receive a positive premium
from investors.
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is a consequence of the high leverage in combination with the long duration of

investments by infrastructure firms. However, there is no clear evidence of larger

companies being more interest rate sensitive than smaller ones, as O’Neal (1998)

found to be the case for electric utility companies. Finally, we observe that cash

flow volatility has a negative and significant effect in 11 of the 18 portfolios.

To some extent this corroborates the finding that infrastructure firms with

stable cash flows are able to generate higher returns. Overall, our findings show

that a nine-factor model is able to sufficiently explain the significant intercept

values of infrastructure returns, and thus the abnormal returns of infrastructure

investments. While the CAPM, the Fama/French three-factor, the Carhart

four-factor, the infrastructure six-factor, and the Fung/Hsieh eight-factor models

are rejected based on the joint significance of the intercepts, the nine-factor

infrastructure model is able to explain these intercepts. On average, we can

also subsume that utility stocks provide the lowest market exposure, whereas

telecommunication stocks have medium and transport stocks the largest market

exposure. Utility stocks also show the highest leverage, term structure, and

default risk exposure. Telecommunication stocks are less exposed to book-to-

market and leverage risk compared to the utility or telecommunication industry.

Transportation stocks show on average the largest book-to-market risk exposure

but the lowest term structure risk exposure. This indicates that, on average,

the different infrastructure ”sub-industries” share similar risk exposures but in

many cases with different direction of signs.



4.2 Hansen-Jagannathan distance

Going beyond the question of whether an asset pricing model can reduce the

pricing errors in absolute terms, Kan and Robotti (2009) point out that an

important aspect of asset pricing is to compare the performance of competing

models. In other words, is an asset pricing model able to significantly reduce

the pricing errors relative to another asset pricing model? We thus implement

the comparison test of the Hansen-Jagannathan (HJ) distance as suggested

by Kan and Robotti (2009).18 Technically, the HJ-distance is the distance

between the true stochastic discount factor (SDF) and the implied SDF, but

the HJ-distance can also be interpreted as the maximum pricing error of a

portfolio of test assets that has a unit second moment (Hansen and Jagannathan

(1997)). Thus, the HJ-distance is similar to our time-series analyses but from a

different angle, that is, from an SDF approach, where pricing errors are based

on sample moments and derived using GMM. While the HJ-distance allows

testing whether or not an asset pricing model is rejected in absolute terms,

Kan and Robotti’s (2009) HJ-distance comparison allows testing whether two

asset pricing models have the same HJ-distance and are thus equivalent or

not. The model structure can be non-nested, nested, or overlapping. Since the

market factor is an element in all models under consideration, the CAPM is a

nested model for all other models. The Fama/French model is an overlapping

model with the six-factor infrastructure model and the Fung/Hsieh eight-factor

model. The nine-factor infrastructure model nests the CAPM, Fama/French,

Carhart-model, and six-factor infrastructure models. Before we compare the

HJ-distances, we analyze the HJ-distance for each model separately. Table 9

summarizes the HJ-distances and tests whether they are equal to zero.

18We would like to thank Raymond Kan for making the test code available to us.
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Table 9: Summary of HJ-Distances

(1) (2) (3) (4) (5) (6) (7)

Model Null CAPM FF-3 Carhart-
4

Infra-6 Fung/Hsieh-
8

Infra-9

δ̂ 0.382 0.359 0.312 0.277 0.236 0.345 0.200

p(δ = 0) 0.000 0.001 0.025 0.107 0.518 0.089 0.506

se(δ̂) 0.057 0.056 0.057 0.057 0.072 0.106 0.067

2.5% CI(δ) 0.288 0.265 0.220 0.187 0.135 0.187 0.108

97.5% CI(δ) 0.517 0.486 0.447 0.411 0.424 0.584 0.379

J-test 44.70 35.30 30.12 23.18 13.82 17.23 9.80

p(J-test = 0) 0.000 0.006 0.011 0.057 0.312 0.069 0.367

This table presents the HJ-distances (δ̂) for each asset pricing model and their respective p-

value (p(δ = 0)). se(δ̂) is the standard error of the HJ-distance. CI(δ) is the 95% confidence
interval for δ. The J-test is the overidentifying test of Hansen (1982) and its respective p-value
(p(J − test = 0)). The test assets are the 18 infrastructure portfolios. Bold test statistics and
p-values indicate a test statistic above a p-value of 10%.

If a model correctly prices the test assets, the HJ-distance should not be

rejected. As can be seen in Table 9 (bold figures), the HJ-distances for the six-

and nine-factor infrastructure model are far from being rejected. The Carhart-

model is not rejected either, based on the HJ-distance. However, Hansen’s

(1982) overidentification restrictions (i.e., the J-test) are valid only for the

infrastructure models, suggesting that the two infrastructure models are doing

a better job at reducing the pricing errors.

When we compare the equality of squared HJ-distance for each model (see

Table 10), results for the six-factor infrastructure model corroborate its superior

performance compared to all other models except the Fung/Hsieh model and

the nine-factor infrastructure model. Since the six-factor model (which does

not directly include a size or value risk factor) outperforms the Fama/French

model, we can assume that the underlying (macroeconomic) risk drivers which

are proxied by SMB and HML are also captured to some extent by the six-factor

model. However, the fact that the six-factor infrastructure model does not

outperform the Fung/Hsieh model can be largely attributed to its shorter sample

period given that the Fung/Hsieh model is not outperforming the null model.19

In contrast, the null of identical HJ-distances for the nine-factor infrastructure

19The null model only includes a constant, i.e., a vector of ones, but no time-varying
factors as the other models.
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model cannot be rejected except for the null model and the CAPM.

Table 10: Testing equality of squared HJ-Distances

(1) (2) (3) (4) (5) (6)

Model CAPM FF-3 Carhart-
4

Infra-6 Fung/Hsieh-
8

Infra-9

Null 0.018** 0.049*** 0.069*** 0.090** 0.042 0.106**

(0.029) (0.008) (0.006) (0.039) (0.999) (0.044)

CAPM 0.031** 0.052*** 0.073* 0.036 0.089*

(0.016) (0.009) (0.053) (0.999) (0.059)

FF-3 0.020* 0.041* 0.003 0.057

(0.055) (0.059) (0.948) (0.166)

Carhart-4 0.021* -0.024 0.037

(0.059) (0.622) (0.272)

Infra-6 -0.026 0.016

(0.576) (0.410)

Fung/Hsieh-8 0.045

(0.315)

This table compares the squared HJ-distances (δ̂) of the different factor models according to
Kan and Robotti (2009). The test assets are the 18 infrastructure portfolios. We report the

difference between the HJ-distances of the models in row i and column j, δ̂i − δ̂j , and the

respective p-value in parentheses for the test H0 : δ̂i
2
= δ̂j

2

This might be due to the few degrees of freedom for the nine-factor model

in a test setting with 18 portfolios (see Choi, Kim, and Kim (2013)), especially

given that the parsimonious six-factor model, without the other three factors

(SMB, HML, and MOM) does exceptionally well compared to the other models.

4.3 Further tests

To investigate the role of infrastructure-specific risk factors and further vali-

date the results from the time series regressions we conduct four other tests.

These tests include subperiod analyses, the effect of industry concentration on

infrastructure returns, the defensive characteristics (i.e., downside protection)

of infrastructure investments and whether infrastructure serves as an inflation

hedge. The last two aspects are not included in the main models, because

previous studies (Bird, Liem, and Thorp (2012); Rödel and Rothballer (2012))

showed that infrastructure firms neither consistently hedges inflation nor offers

defensive characteristics. Our extensive dataset and our infrastructure-specific

factor models help to refine previous results and investigate the abilities of
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infrastructure investments in more detail.

4.3.1 Analysis of defensive characteristics

Based on our asset class factor model from Equation (5) and a squared market

factor as in Treynor and Mazuy (1966), we also analyze the defensive character-

istics of our nine size and book-to-market portfolios against market movements.

The assumption is that certain portfolios with higher book-to-market ratios

or larger market capitalization perform differently during economic downturns.

Thus, our work goes beyond the previous analysis of Bird, Liem, and Thorp

(2012), who analyze the U.S. and Australian markets, but cannot differentiate

their indices by size or book-to-market characteristics. Figure 1 illustrates the

predicted infrastructure returns from Equation (5), with the squared market

excess return on the vertical axis and the market excess return on the hori-

zontal axis. A convex relation (demonstrated by the solid red line) between

predicted infrastructure returns and market excess returns would indicate that

an increasingly severe market plunge has a decreasingly severe effect on the

infrastructure firms.

Figure 1 shows that all but one of the nine portfolios experience a concave, or

(almost) linear relation between predicted infrastructure returns and the market

excess return. Only portfolio 3/2 (i.e., the large market capitalization/medium

book-to-market ratio portfolio) shows a significant convex relation between

infrastructure and market returns. This result seems odd, given that all other

large size portfolios have linear or concave relations, as do the medium book-

to-market ratio portfolios. The low fit for portfolio 3/2 (an adjusted R-square

of 50.5%) suggests that there are other and as yet unknown factors that, if

they could be discovered and integrated into the model, might result in a more

consistent picture of the defensive nature of infrastructure returns. Overall, our

results confirm the findings of Bird, Liem, and Thorp (2012) that infrastructure

firms do not behave defensively during economic downturns.20

20We also use a dummy variable for up and down markets (1 for up and 0 for down) to
control for the defensive characteristics. Results are virtually identical and show no significant
effects on the dummy variable.
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4.3.2 Analysis of inflation hedge

We further investigate the assumption that infrastructure is a potential hedge

against inflation. This popular assumption among practitioners has been rejected

by Rödel and Rothballer (2012) and is only weakly confirmed by Bird, Liem,

and Thorp (2012) for utility stocks. To shed more light on these mixed results,

we control for an inflation hedge ability of infrastructure firms in our model

by including the total return of Treasury Inflation Protected Securities (TIPS)

minus the risk-free rate. Our dataset allows us to differentiate both between

industry sectors, size and book-to-market ratio, respectively. However, the

TIPS return series only begins in February 1997 and hence covers less than

half our entire sample period. We use the total return series of the Barclays

US TIPS index, which aggregates all maturities to investigate the inflation

hedging abilities of infrastructure returns. Subtracting the risk-free return from

monthly TIPS series results in an excess return series for our inflation factor

(INFL). In contrast to the Consumer Price Index (CPI), TIPS are tradable

and, thus, represent investment returns, allowing us to directly determine the

risk premium of inflation which is 0.35% per month. Given the close relation

between inflation, term structure, default probability (i.e., they are all based on

interest rates), we first note that the inflation factor, INFL, is highly correlated

with the TERM factor (ρ = 0.5). As mentioned above (see section 2.4) this

result is in line with Ang, Bekaert, and Wei (2008) who point out the relation

between term structure and inflation. Regressing INFL on all other previously

introduced dependent variables reveals that INFL is also highly dependent on

the default factor, DEF, and to some extent on CFVOLA.
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Figure 1: Evidence of defensive abilities by size and book-to-market port-
folios

This figure illustrates the predicted infrastructure returns from Equation (5), with the
squared market excess return on the vertical axis and the market excess return on the
horizontal axis. A convex relation (demonstrated by the solid red line) between predicted
infrastructure returns and market excess returns would indicate that an increasingly severe
market plunge has a decreasingly severe effect on the infrastructure firms. Portfolio returns
are sorted by market capitalization (size) and book-to-market ratio.
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Equation (9) shows coefficient estimates with t-statistics in parentheses

using Newey-West (1987) corrected standard errors with lags of three:

INFL = 0.18

(1.54)

− 0.01

(−0.29)

(RM-Rf)− 0.03

(−1.19)

SMB+ 0.06

(1.33)

HML+ 0.01

(0.40)

MOM− 0.07

(−1.44)

LEV+

0.12

(1.96)

CFVOLA− 0.56

(1.23)

INV + 0.32

(6.49)

TERM+ 0.21

(2.01)

DEF.

(9)

The adjusted R-square of this regression is 35.9%. Based on this regression,

we construct an orthogonalized inflation factor as the sum of the intercept and

the residuals to eliminate multicollinearity issues. This factor can be interpreted

as a zero-investment portfolio that is uncorrelated with all other factors. Table

11 shows the regression estimates for the inflation factor.
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Table 11: Inflation hedge abilities of infrastructure firms

Panel A: Orthogonalized inflation factor and value-weighted infrastructure index

(1) (2) (3) (4) (5) (6)

Variables CAPM FF-3 Carhart-4 Infra-6 Fung/Hsieh-8 Infra-9

βINFL⊥ 0.09 0.09 0.09 0.09 0.06 0.09

(0.12) (0.12) (0.12) (0.11) (0.11) (0.10)

α 0.05 0.07 0.04 0.00 -0.06 0.01

(0.20) (0.19) (0.19) (0.18) (0.18) (0.18)

Monthly obs. 179 179 179 179 179 179

Adj.R2 68.0% 68.9% 69.0% 73.6% 70.9% 74.1%

Panel B: Orthogonalized inflation factor and infrastructure returns

Variables Small Med. Size Big Beta Mom. Indus.

βINFL⊥ Low 0.57** -0.01 0.04 0.19 0.06 0.24

(0.26) (0.16) (0.22) (0.16) (0.25) (0.30)

Mid 0.42** 0.21 0.17 0.01 0.06 -0.11

(0.17) (0.15) (0.18) (0.16) (0.15) (0.18)

High 0.05 0.14 0.31 0.23 0.29** 0.32**

(0.25) (0.18) (0.36) (0.15) (0.13) (0.16)

Adj.R2 Low 55.6% 55.6% 62.8% 43.5% 63.7% 49.4%

Mid 59.3% 58.4% 56.6% 56.1% 49.6% 73.3%

High 54.9% 43.6% 40.8% 79.7% 69.2% 53.9%

This table reports regression results for the inflation factor. The inflation factor (INFL) is
the orthogonalized excess return of the TIPS return series over the 1-month T-bill rate. Panel
A shows regression results for the value-weighted infrastructure index as dependent variable.
Panel B shows factor loadings of INFL extracted from infrastructure nine-factor model regres-
sions where the dependent variables are portfolio excess returns sorted by different characteris-
tics explained above. Adjusted R2s are also reported for these regressions. The sample period
in Panel A and B is February 1997 to December 2011 (179 monthly observations). Standard
errors are reported in parentheses and are computed using the Newey-West (1987) correction
for heteroscedasticity and serial correlation. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

Panel A of Table 11 runs different model specifications with the VWI index as

dependent variable. Inflation is not significant in any of the model specifications,

corroborating the results of Rödel and Rothballer (2012). Panel B demonstrates

that infrastructure can hedge inflation in case of smaller growth firms, utility

firms, and high momentum infrastructure firms. The majority of portfolios,

however, does not hedge against inflation. A possible explanation why smaller

growth firms are able to protect against inflation, at least to some extent, is

their ability to adjust price changes faster than their larger and more complex

competitors. Also their local focus could prevent them from confrontations
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with larger competitors in several areas at the same time, which would make

them more vulnerable to pricing competitions despite the regulatory framework.

Overall our results confirm the results of Rödel and Rothballer (2012) and Bird,

Liem, and Thorp (2012) that infrastructure firms do not guarantee inflation

protection. Only minor evidence suggests that utility firms and smaller growth

firms are able to hedge inflation to some extent.

4.3.3 Analysis of subperiods

We divide the data into three equal subperiods of 116 months each. Table 12

reports the regression results for the three different subperiods between January

1983 and December 2011. The infrastructure six-factor model documents a

significant improvement in explanatory power for all three periods compared

to the Fama/French three-factor model. The biggest difference between the

two models occurs in the most recent period where the infrastructure six-factor

model explains 64.2 percentage points more in the time series variation of

infrastructure returns than the Fama/French three-factor model. The smallest

difference occurs during the time span of 1992 to 2002 where the adjusted

R-square increases by 28.3 percentage points. The Fama/French factors, the

momentum factor and the constructed infrastructure factors do not explain the

variation during all time periods which suggests that infrastructure returns are

not exposed to the same risk factors at all times, but are subject to time-varying

risk components (e.g., the size factor is more relevant during distressed times

than during economically stable times).

We also check for the model’s performance during recession periods. This is

especially important due to the fact that infrastructure investments should be

resilient against strong market downturns during recessions. Thus, the following

analysis can also be considered complementary to the analysis of defensive

characteristics but with a stronger focus on severely negative market conditions.

For that purpose, we include three recession dummies for three recession peri-

ods between 1983 and 2011. The first recession dummy (Dummy(Recession1))

covers the period from July 1990 to March 1991. The second recession dummy

(Dummy(Recession2)) covers the period from March 2001 to November 2001,

and the third recession dummy (Dummy(Recession3)) covers the period from
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December 2007 to September 2009. Table 13 reports the results and shows

that factor loadings are virtually identical to the loadings presented in Table

12. Interestingly, the coefficients on the first and last recession dummies are

insignificant, suggesting that infrastructure returns might have some resilience

during recession periods.

Table 13: Recession periods

(1) (2) (3) (4)

Variables 1983/1-2011/12 1983/1-1992/8 1992/9-2002/4 2002/5-2011/12

βM 0.73*** 0.72*** 0.78*** 0.83***

(0.03) (0.04) (0.07) (0.05)

βSMB -0.14*** -0.23*** 0.00 -0.24***

(0.04) (0.09) (0.07) (0.08)

βHML 0.02 0.23** 0.15* -0.15**

(0.05) (0.10) (0.08) (0.07)

βMOM 0.05 0.14*** 0.03 0.07*

(0.03) (0.05) (0.05) (0.04)

βLEV 0.20*** 0.27*** 0.02 0.34***

(0.06) (0.09) (0.08) (0.07)

βCFV OLA -0.17*** -0.17* -0.27** -0.13

(0.06) (0.10) (0.11) (0.10)

βINV -0.05 -0.10 -0.01 -0.01

(0.06) (0.09) (0.12) (0.08)

βTERM 0.17*** 0.12 0.09 0.16***

(0.04) (0.08) (0.10) (0.05)

βDEF 0.28*** -0.08 0.15 0.29***

(0.08) (0.17) (0.23) (0.08)

Dummy(Recession1) -0.80 -0.74

(0.74) (0.50)

Dummy(Recession2) -2.05** -1.56**

(0.88) (0.72)

Dummy(Recession3) -0.76 -0.73

(0.54) (0.58)

α 0.06 0.01 -0.10 0.09

(0.11) (0.18) (0.25) (0.19)

Monthly obs. 348 116 116 116

Adj.R2 74.1% 80.1% 66.4% 81.7%

This table reports factor loadings from time series regressions for the infrastructure nine-factor
model including dummy variables for three recession periods. The first recession dummy
(Dummy(Recession1)) covers the period from July 1990 to March 1991. The second reces-
sion dummy (Dummy(Recession2)) covers the period from March 2001 to November 2001 and
the third recession dummy (Dummy(Recession3)) covers the period from December 2007 to
September 2009. The adjusted R2 values from each time series are reported at the end of the
table. Standard errors are reported in parentheses and are computed using the Newey-West
(1987) correction for heteroscedasticity and serial correlation. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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4.3.4 Industry concentration and infrastructure returns

Another important aspect of infrastructure investments is their monopolistic

behavior as a result of their market structure. How does industry concentration

affect the returns of infrastructure stocks?21 To measure industry concentration

in our sample, we follow Hou and Robinson (2006) and calculate the Herfindahl-

Hirschman Index (HHI) for each three-digit SIC code and sort each stock into

quintiles based on their HHI value for each year.22 HHI is defined as the sum of

squared company sales in each industry. Following Hou and Robinson (2006),

we average each HHI over a period of three years to avoid potential data errors

in the industry classification. Hou and Robinson (2006) find that firms in more

concentrated industries earn lower returns. They argue that high barriers to

entry or those that engage in less innovation result in lower expected returns.

The infrastructure sector, with its large upfront investments, can be considered

as a sector of high barriers and, thus, we might expect lower returns the more

concentrated the industry.

Table 14 confirms the results of Hou and Robinson (2006) for infrastructure

stocks showing a monotonic pattern from high to low returns from quintile 1

(lowest concentration, i.e. most competitive) to quintile 5 (highest concentration,

i.e. least competitive). In addition, we are able to take a closer look at the

monopolistic behavior of infrastructure stocks. Infrastructure industries with

more oligopolistic market structures earn on average 1.44% p.a. less than

more competitive industries, while their Sharpe ratios are more than twice as

high as those of industries with more competitive market structures. Thus,

infrastructure investments are most beneficial for investors in concentrated

industries from a risk-return perspective.

21We would like to thank an anonymous referee for this valuable comment.
22Note that Hou and Robinson (2006) exclude regulated industries from their sample

which, in contrast, are the core industries of our sample. Our results thus complement the
results of Hou and Robinson (2006).
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Table 14: Infrastructure returns sorted by industry concentration

1 2 3 4 5

Raw Return 1.03 1.01 1.00 0.94 0.91

Std. dev. 11.43 5.77 5.93 4.86 4.17

Min -40.93 -18.25 -22.01 -17.63 -13.25

Max 46.30 21.51 18.34 17.02 14.52

Sharpe ratio (monthly) 0.06 0.11 0.11 0.12 0.13

This table summarizes average returns of infrastructure returns sorted by industry concentra-
tion (i.e. the Herfindahl-Hirschman Index). Portfolio 1 presents raw returns, standard deviation,
minimum returns, maximum returns, and the monthly Sharpe ratio (based on excess returns)
for the quintile of infrastructure stocks with the lowest industry concentration. Portfolio 5
presents the same statistics for the quintile of infrastructure stocks with the highest industry
concentration.

To analyze this issue in greater detail, we run our nine-factor model on all

five excess return quintiles sorted by HHI. Table 15 reports the results. First, we

observe that none of the alphas are significantly different from zero. Second, we

see that the nine factor model captures much of the time-series variation in the

most concentrated infrastructure industries. It should be highlighted that the

two most concentrated industries (quintiles 4 and 5) load significantly negative

on the size factor SMB while the two least concentrated industries (quintiles 1

and 2) load significantly positive on SMB. This implies that the few companies

in the most concentrated industries are also large infrastructure companies.

Moreover, the most concentrated industries have the lowest market exposure

and thus are most suitable for risk mitigation against market movements.
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Table 15: Time series regressions and industry concentration

Variables 1 2 3 4 5

βM 0.91*** 0.87*** 0.99*** 0.76*** 0.66***

(0.16) (0.06) (0.06) (0.05) (0.05)

βSMB 0.69*** 0.20** 0.03 -0.20*** -0.14*

(0.19) (0.09) (0.07) (0.07) (0.08)

βHML -0.98*** 0.02 0.45*** -0.10 0.18**

(0.20) (0.11) (0.14) (0.08) (0.07)

βMOM -0.38*** 0.03 0.01 -0.00 0.08

(0.15) (0.05) (0.06) (0.07) (0.05)

βLEV -0.15 0.01 -0.19** 0.02 0.48***

(0.22) (0.09) (0.09) (0.10) (0.07)

βCFV OLA -0.44 -0.28** -0.03 0.07 -0.37***

(0.31) (0.12) (0.12) (0.08) (0.10)

βINV -0.52* -0.14 -0.26* -0.01 -0.17**

(0.29) (0.09) (0.14) (0.10) (0.08)

βTERM 0.05 0.00 -0.11* 0.15** 0.20***

(0.18) (0.08) (0.06) (0.07) (0.06)

βDEF 0.04 -0.05 -0.09 0.37** 0.18

(0.33) (0.16) (0.15) (0.16) (0.14)

α 0.75 0.15 0.08 0.11 -0.13

(0.50) (0.24) (0.20) (0.18) (0.15)

Monthly obs. 348 348 348 348 348

Adj.R2 38.9% 45.4% 55.6% 62.5% 56.7%

This table reports factor loadings from time series regressions for the infrastructure nine-factor
model. The dependent variable in each column is the excess return of infrastructure stocks
sorted by industry concentration (i.e. the Herfindahl-Hirschman Index). Column 1 presents
regression results for the quintile of infrastructure stocks with the lowest industry concentration.
Column 5 presents regression results for the quintile of infrastructure stocks with the highest
industry concentration. The adjusted R2 values from each time series are reported at the end of
the table. Standard errors are reported in parentheses and are computed using the Newey-West
(1987) correction for heteroscedasticity and serial correlation. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

5 Conclusion

This paper identifies the common risk factors that are priced in infrastructure

companies and constructs an asset class factor model. Established pricing mod-

els are tested, i.e., the single-factor CAPM, the Fama/French three-factor model,

the Carhart four-factor model, and the Fung/Hsieh eight-factor model. We

create a six-factor model and a nine-factor model, both of which are superior in

explaining the variation in infrastructure returns compared to the Fama/French

three-factor model, the Carhart four-factor model or the Fung/Hsieh eight-

factor model. The six-factor model consists of the market excess return and five
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additional factors: cash flow volatility, leverage, an investment factor, a term

premium, and a default premium. The nine-factor model augments the Carhart

four-factor model with the aforementioned five additional factors.

The infrastructure nine-factor model is the only model in the time-series

analysis that explains all abnormal returns, i.e., the intercepts from time-series

regressions are jointly different from zero. Furthermore, we show that the

six-factor and nine-factor infrastructure models are the only ones not being

rejected by the HJ-distances and Hansen’s (1982) J-test. Finally, Kan and

Robotti’s (2009) HJ-distance comparison test suggests that the infrastructure

six-factor model performs better than the CAPM, the Fama/French three-factor

model, and the Carhart four-factor model.

Table 16 summarizes the results from all regressions and robustness tests

for each factor. The findings for the market beta (RM-Rf) are in line with ex-

isting literature, thus confirming that low market betas are mostly attributable

to utility stocks, whereas non-utility stocks within the infrastructure sector

tend to be more affected by market movements (see Bird, Liem, and Thorp

(2012); Rothballer and Kaserer (2012)). CFVOLA is also significant and loads

negatively, which is in accordance with the results for stocks in general (see

Huang (2009)) but in contrast to Bitsch (2012), who finds that investors value

cash flow volatility at a premium. The findings with respect to MOM, LEV,

INV, TERM, and DEF in terms of infrastructure investments have not yet been

analyzed in the literature. Here we find that infrastructure firms are highly

sensitive to interest rate changes regarding changes in the term structure. We

also find an additional premium for high financial leverage that is economically

significant. This emphasizes the need for infrastructure investments to consider

leverage as an additional risk factor, since the HML factor alone is not sufficient

to capture the return variation with respect to leverage.23 Furthermore, we

find that more oligopolistic infrastructure industries earn on average 1.44%

23Furthermore, we showed that infrastructure investments, in general, neither offer an
inflation hedge nor are able to protect against downside risk, but have some resistance during
recession periods. Only for utility firms an inflation hedge can be documented which confirms
results for other countries and time periods (see Bird, Liem, and Thorp (2012); Rödel and
Rothballer (2012)).
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p.a. less than more competitive industries, while their Sharpe ratios are more

than twice as high as those of industries with with more competitive market

structures. Thus, infrastructure investments are most beneficial for investors in

concentrated industries from a risk-return perspective.

Our results are useful for investors and policymakers interested in determin-

ing adequate costs of capital, measuring and evaluating infrastructure returns,

and understanding the special characteristics of infrastructure investments such

as diversification benefits and return volatility. Since factor loadings present

the correlation structure between returns and the underlying risk factors, the

factor exposures also indicate strategies for minimum variance hedging, for

the replication of infrastructure returns, or, in general, for optimizing asset

allocation.

On average, we can also subsume that utility stocks provide the lowest mar-

ket exposure, whereas telecommunication stocks have medium and transport

stocks have the largest market exposure. Utility stocks also show the highest

leverage, term structure, and default risk exposure. Telecommunication stocks

are less exposed to book-to-market and leverage risk compared to the utility or

telecommunication industry. Transportation stocks show on average the largest

book-to-market risk exposure but the lowest term structure risk exposure. Over-

all, this indicates that, on average, the different infrastructure “sub-industries”

share similar risk exposures but with different direction of signs.

Future research might further investigate the risk exposure of unlisted

infrastructure projects. Despite a vast set of significant risk factors in our

model, unlisted infrastructure might react differently to our risk factors. Also,

it could be very interesting to see how our infrastructure six- and nine-factor

models perform in other countries, specifically with other regulatory regimes.

The question of whether cash flow stability in less stable countries leads to

expropriation, as indicated by Sawant (2010), is still unanswered. Similarly,

political (i.e., corruption, expropriation) and regulatory risk factors and their

effects on infrastructure returns could be further analyzed.
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Table 16: Summary of results and comparison with existing literature

Variables Hypothesis Our results (on
average)

Comparison with existing litera-
ture

RM-Rf Positive relation
between the market
and infrastructure
returns

Significantly
positive and low
(i.e., below 1)

In line with the result of Roth-
baller and Kaserer (2012). Util-
ity stocks have low market be-
tas whereas non-utility stocks
within the infrastructure sector
have higher betas.

SMB Negative relation
between size effect
and infrastructure
returns.

Significantly
negative

Not in line with Bird, Liem, and
Thorp (2012), who find no signif-
icant effect.

HML Positive relation
between value effect
and infrastructure
returns.

Significant Not in line with Bird, Liem, and
Thorp (2012), who find a signifi-
cantly positive effect.

Momentum
(MOM)

Positive relation be-
tween past returns
and infrastructure
returns.

Significantly
positive

Not yet analyzed in an infrastruc-
ture context.

Cash flow
volatility
(CFVOLA)

Negative relation
between cash flow
volatility and infras-
tructure returns.

Significantly
negative

In line with Huang (2009), but
not in line with Bitsch (2012),
who finds a positive relation be-
tween cash flow volatility and a
fund’s value.

Leverage (LEV) Positive relation
between leverage
and infrastructure
returns.

Significantly
positive

Not yet analyzed in an infrastruc-
ture context.

Investment
growth (INV)

Positive relation
between investment
growth and infras-
tructure returns.

Significantly
negative rela-
tion between
INV and re-
turns of growth
companies

Not in line with Chen, Novy-
Marx, and Zhang (2011), who
find a positive relation for stocks
in general.

Term premium
(TERM)

Positive relation be-
tween term struc-
ture and infrastruc-
ture returns.

Significantly
positive

Not yet analyzed for infrastruc-
ture investments but in line with
O’Neal (1998), who analyzes elec-
tric utility companies.

Default pre-
mium (DEF)

Positive relation
between default
premium and infras-
tructure returns.

Significantly
positive

Not yet analyzed for infrastruc-
ture investments but in line with
O’Neal (1998), who analyzes elec-
tric utility companies.
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Part II

Insurance Asset Pricing is
Different

SEMIR BEN AMMAR, MARTIN ELING, and ANDREAS MILIDONIS

Abstract

Property/liability insurers are important financial institutions exposed to natural
and man-made disasters. We first conduct a comprehensive asset pricing exercise
for the U.S. property/liability insurance universe using monthly data from 1988-
2013. We find that state-of-the-art models such as the Fama and French (2015)
five-factor model cannot fully explain the abnormal returns of property/liability
insurance stocks. Hence, we propose an insurance-specific five-factor asset
pricing model which is able to explain these return anomalies. Priced factors
include the book-to-market ratio, short-term reversal, illiquidity, and cashflow
volatility, which are primarily tied to exogenous events affecting insurance
supply and demand such as catastrophes.
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1 Introduction

Asset pricing models are expected to explain cross-sectional variation in stock re-

turns. However, most asset pricing papers exclude insurance companies, banks,

and other financial institutions from cross-sectional asset pricing tests (see,

e.g., Brennan, Chordia, and Subrahmanyam (1998); Fama and French (2008);

Hou, Xue, Zhang (2015)).1 The exclusion of financial sector stock returns

has typically gone largely unnoticed in the asset pricing literature; however,

economically significant benefits could be associated with studying and investing

in such stocks. Investors looking for portfolio diversification opportunities might

benefit from investing in insurance stocks if their returns are exposed to distinct

risks and thus are not perfectly correlated with the rest of the economy.

In this paper we argue that the insurance sector is different in terms of

such risk characteristics and deserves an asset pricing model of its own. The

motivation to study the insurance industry in isolation is threefold. First, even

though state-of-the-art asset pricing models such as the Fama and French (2015)

five-factor model or the Hou, Xue, Zhang (2015) four-factor model perform

very well in a portfolio setting for the entire universe of stocks (often excluding

financial firms), it is unclear how far this holds for the insurance sector. Second,

by definition the insurance sector is different than other sectors (including

banks) because of a few reasons: (a) it is exposed to risks largely uncorrelated

with financial risk, such as catastrophe risk; (b) much of its business is based on

reputational capital and (reimbursement) promises (see e.g. Milidonis (2013))

and (c) it faces a rather unique but homogeneous regulatory oversight. These

reasons justify testing the hypothesis of whether known return anomalies that

apply to non-insurance stocks would also apply on the insurance sector. The

third motivating aspect results from the prior two: can we propose an insurance-

specific asset pricing model that addresses the uniqueness of the publicly-traded

insurance sector, which provides a lower correlation with the rest of the market

(Ibragimov, Jaffee, and Walden (2009))?

1The reason for excluding financial firms is their high leverage, their “accounting treatment
of revenues and profits [which] is significantly different than that in other sectors” (Opler and
Titman (1994)), and the regulated nature of financial firms (Fama and French (2000)).
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The focus of our analysis is the U.S. property/liability (p/l) insurance sector

which contributes more than 3% to the U.S. GDP.2 Moreover, it provides a

risk pooling and risk management mechanism for individuals and institutions

which cannot otherwise offload their risks and thus enables other economic

activity. The insurers’ investment portfolio, which includes collected insurance

premiums on outstanding insurance contracts, offers an important source of

capital to the economy. Recently, insurance risks have also been securitized

(e.g. via cat bonds), thus providing a new market of financial instruments called

insurance-linked securities.

In spite of the important economic role for both p/l insurance stocks and

insurance-linked securities, the underlying risk exposure has not been subject

to a great deal of debate in the academic literature. For example, although

the analysis of the cross-sectional risk exposure is the heart of modern asset

pricing (see, e.g., Garlappi and Yan (2011); Brennan et al. (2012); Eisfeldt and

Papanikolaou (2013)), there is very little literature addressing the insurance

context.3

Our paper closes this gap by analyzing the cross-section of expected p/l

insurance stock returns. We propose a new insurance-specific asset pricing

model that takes into account the unique characteristics (anomalies) of the

insurance industry. We compare its performance to the performance of six

existing asset pricing models using the universe of the 127 U.S. p/l insurance

stocks on a monthly basis over the time period from 1988 to 2013. We sort

insurance stocks on 22 well-known and potential anomalies from the finance

and insurance literature and test our model to the six competing models by

running time-series regressions, Fama–MacBeth (1973) regressions, and testing

the equality of the Hansen-Jagannathan distance (Kan and Robotti (2009)).

We also contribute to the discussion on interest rate exposure, leverage,

size, and other firm characteristics discussed in the literature, which so far

2https://research.stlouisfed.org/fred2/series/DDDI10USA156NWDB
3An exception is Barber and Lyon (1997), who sort portfolios of financial firms, to some

extent analyzing the cross-section of insurance stocks, although no formal tests are conducted
in their paper.
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has focused on the time-series relation (see, e.g., Brewer et al. (2007); Carson,

Elyasiani, and Mansur (2008)). Moreover, this study can be considered as an

out-of-sample test on the accuracy of asset pricing models in general. One

central critique in asset pricing is the data snooping bias (Lo and MacKinlay

(1990)) through portfolio formation, which is why Lewellen, Nagel, and Shanken

(2010) emphasize the use of different test assets. All assets should be priced by

one stochastic discount factor and insurance stocks might be one of the most

challenging test assets, since their risk exposure is theoretically different from

other stocks due to the above mentioned reasons.4

The central findings of this paper are that the existing asset pricing models

fall short of explaining a large proportion of the cross-sectional variation of in-

surance stock returns, while the proposed insurance-specific asset pricing model

significantly improves the explanation of the insurance-specific cross-sectional

variation. Our results on insurance companies thus complement those of Viale,

Kolari, and Fraser (2009) on banks. Specifically, the most significant pricing

factors for p/l insurance stocks are the book-to-market (B/M) ratio, short-

term reversal, illiquidity, and cashflow volatility. The book-to-market effect

is related to the default likelihood (Vassalou and Xing (2004)) and illiquidity

is attributable to small insurance stocks with low trading volume and high

bid–ask spreads. The short-term reversal anomaly holds against a battery of

robustness tests and earns up to 25% p.a., corroborating the findings of Hameed

and Mian (2015) for intra-industry reversals. The cashflow volatility anomaly

is related to the reinsurance cycle: insurers with high cashflow volatility in

the past, experience a higher deterioration of their returns than low cashflow

volatility insurers during catastrophic events. However, high cashflow volatility

insurers quickly recover after the event, possibly due to an overreaction during

the catastrophic event, or a potential increase in insurance demand in the

immediate aftermath of a high-impact event such as a natural disaster.

The remainder of this paper is organized as follows. Section 2 gives a brief

4Thus, to some extent, our study is also similar in nature to Ang, Shtauber, and Tetlock
(2013), who investigate the pricing of OTC traded stocks as a special case of test assets. In
contrast to the listed market, they find that the OTC liquidity premium is significantly larger,
whereas the momentum premium is significantly lower.
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literature review. Section 3 describes the anomalies and highlights the bench-

mark model. Section 4 provides a description of the data and the methodology.

Section 5 shows the empirical results. Section 6 looks at stock returns and

catastrophe risk. Section 7 checks for robustness, and Section 8 concludes.

2 Literature review

Cummins and Harrington (1988) test the CAPM on p/l insurance stocks and

find that it is correctly specified during the period 1980–1983, but inconsistent

in earlier periods. Barber and Lyon (1997) analyze the cross-section of financial

firms for the time period July 1973 to December 1994 and find that size and B/M

patterns also exist in financial firms. Although their study sorts all insurance

stocks by size and book-to-market ratio, they do not explicitly discuss insurance

stocks and do not provide further statistics or asset pricing tests to analyze the

cross-sectional relationship.

More recent related research on insurance analyzes cost of equity estimation

(Cummins and Phillips (2005); Wen et al. (2008)) and the time series character-

istics of insurance stocks (Brewer et al. (2007); Carson, Elyasiani, and Mansur

(2008)).5 Cummins and Phillips (2005) investigate the cost of equity for p/l

insurers using the CAPM and the Fama–French (1993) three-factor model. They

find that the cost of capital estimates of Fama and French’s (1993) three-factor

model are significantly higher than those of the CAPM. The authors explicitly

note that they do not intend to “study asset pricing anomalies or to develop

and test a multi-factor asset pricing model,” but rather to estimate “divisional

costs of capital by line for property-liability insurers” (Cummins and Phillips

(2005), p. 449).

Wen et al. (2008) evaluate a model by Rubinstein (1976) and Leland

5Note that significant coefficients in a time-series regression can only be an initial indicator
of risk. For example, the market factor is highly correlated with stock returns and yet does
not capture risk in the sense that a higher exposure leads to higher returns. Rather, the
market factor can be seen as a level factor capturing the grand mean. Including the market
factor thus makes sense even if it does not capture the cross-section of stock returns (Ferson,
Sarkissian, and Simin (1999)).



II Insurance Asset Pricing 57

(1999), which captures the skewness and kurtosis in the market beta. They

run panel regressions of the absolute difference between basic CAPM betas and

Rubinstein–Leland (1976, 1999) model betas (as dependent variable) against

firm-level characteristics. They find that the absolute difference is significantly

influenced by firm size, degree of leverage, and skewness. Although their paper

does not employ traditional asset pricing tests, it is a good starting point

for asset pricing in the insurance industry as they report abnormal returns

using single-sorted portfolios based on size, skewness, degree of normality, and

subperiods.6

More literature exists on the time-series correlation between factors and

insurance stock returns. Brewer et al. (2007) address the interest rate sensitivity

of life insurers and find that their returns are negatively correlated with changes

in interest rates. Carson, Elyasiani, and Mansur (2008) investigate the market

risk, interest rate risk, and interdependencies across insurance industries within

a Generalized Autoregressive Conditional Heteroscedasticity (GARCH) time-

series framework and find greater market exposure in life and health insurers

compared to p/l insurers. They also find that interest rate sensitivity is negative

and greatest for life insurers, while interdependencies in returns are strongest

between p/l and health insurers.7

Regarding the bank literature, Viale, Kolari, and Fraser (2009) analyze the

cross-section of bank stocks in general. Using size and B/M sorted portfolios

as test assets, they find that the market excess return and shocks to the slope

of the yield curve explain the cross-section of expected bank stock returns. In

contrast to the portfolio sorting results of Barber and Lyon (1997), they find

no evidence of SMB or HML being priced in bank stock returns. Gandhi and

Lustig (2015) specifically analyze commercial banks and show that the size

anomaly in U.S. commercial bank stocks differs from the overall equity market,

6Cummins and Lamm-Tennant (1994) derive a factor model that accounts for both
financial and insurance leverage. They stress contradictory results on insurance leverage,
referring to Fairley (1979) and Cummins and Harrington (1985), and show that the two
leverage factors have a significant positive impact on the insurers’ equity CAPM betas.

7Interestingly, none of them or any other study analyzed liquidity risk or momentum
patterns, two topics that have received wide attention in the finance literature over the last
years.
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since large banks are “too big to fail,” and thus such banks earn significantly

lower returns than smaller banks.

3 Benchmark model and potential anomalies

Our main benchmark model in the empirical part is the Fama–French (2015)

five-factor model, which performs well in capturing stock return anomalies and

has the same number of factors as our insurance-specific five-factor model. We

decide to use Fama and French’s (2015) five-factor model as they include finan-

cial firms in their factor construction, while on the other hand the competing

model of Hou, Xue, and Zhang (2015) explicitly excludes financial firms. The

central hypothesis (H0) throughout the paper is thus that the Fama and French

(2015) model is the correctly specified model to explain the cross-section of

insurance stock returns.

Furthermore, we hypothesize that the most popular anomalies in the (non-

financial, U.S.) equity market are either not present in insurance stocks or

different in magnitude and/or direction compared to other industries for the

following reasons. First, financial institutions tend to be excluded from as-

set pricing tests. Second, p/l insurers are exposed to large losses through

catastrophes that can exceed their capital sources (Cummins, Doherty, and Lo

(2002)). These losses from natural disasters (which do not need to be large in

magnitude) expose insurance stock returns to risks that the rest of the market

does not experience, or if they do, they typically transfer this risk exposure to

the insurance sector (Ibragimov, Jaffee, and Walden (2009)).

Due to these aspects, we argue that insurers are different than the rest of

the equity market, either because some risk factors are not priced at all in the

insurance sector, or these risk factors are priced at a different magnitude, or

because the insurance sector is priced by a different set of factors than the general

equity market. Specifically, we consider 22 well-known and potential anomalies

from the finance and insurance literature (see e.g. Hou, Xue, and Zhang (2015)

or Cummins and Lamm-Tennant (1994)) which might exist in insurance stocks
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and which can be summarized in the following 12 broad categories8:

1. Market risk: We expect that the market beta itself is not priced as a

risk factor identical to the findings of broad-based studies (Fama and

French (1992)) and previous findings by Cummins and Harrington (1988)

on p/l insurers for earlier periods but downside and upside beta might be

important in the cross-section of insurance stock returns (Ang, Chen, and

Xing (2006)).

2. B/M ratio: Insurers with high B/M ratios might earn higher returns.

However, under the premise of the B/M ratio approximating some type

of distress risk (Chen and Zhang (1998)) and given that p/l insurers are

exposed to non-market-related externalities (catastrophes), the B/M ratio

of insurers might have a different time-series pattern.

3. Size (market capitalization): Larger insurers might earn lower returns as

they might have a more diversified insurance portfolio and thus a lower

risk exposure. Possibly, larger insurers are considered “too big to fail”

and thus earn lower returns as a result of this guarantee (see Gandhi and

Lustig (2015)).

4. Past returns (momentum, prior month return, reversal): Past “winning”

insurers should outperform past “losing” insurers (Jegadeesh and Titman

(1993)). We also test whether previous-month returns (i.e., short-term

reversal) predict the cross-sectional behavior (Jegadeesh (1990); Hameed

and Mian (2015)) and whether a long-term reversal (De Bondt and Thaler

(1987)) exists when insurers are sorted by their returns over the past 36

months.

5. Liquidity (market-wide liquidity): The 2008 financial crisis has illustrated

the importance of liquidity for financial institutions (Brunnermeier and

Pedersen (2009)). We thus test whether liquidity as defined by Pàstor

and Stambaugh (2003) has a cross-sectional impact on insurers’ stock

returns. Specifically, we hypothesize that a stronger exposure to the

market illiquidity of insurance stocks requires a risk premium and thus

higher returns.

8For a detailed description of the anomalies and the portfolio formation, see Appendix B.



II Insurance Asset Pricing 60

6. Leverage (total, insurance, financial, broker/dealer): Total, insurance, and

financial leverage relate to default risk (Bhandari (1988); Cummins and

Lamm-Tennant (1994)). Broker/dealer leverage relates to the fact that

insurers might be exposed to the leverage adjustments of sophisticated

market participants (i.e., broker/dealers) whose leverage “is a good em-

pirical proxy for the marginal value of wealth” (Adrian, Etula, and Muir

(2014)).

7. Interest rates (term structure and default risk): Large investments in

bonds suggest that changes in interest rates have an impact on the cross-

section of insurance stocks. An asset allocation towards long-term bonds

and corporate bonds (instead of government bonds) should result in higher

returns (Carson, Elyasiani, and Mansur (2008)).

8. Volatility (cashflow volatility, idiosyncratic risk): Both cashflow volatility

(Huang (2009)) and idiosyncratic risk (with respect to the Fama–French

(1993) three-factor model, Ang et al. (2006)) result in lower returns

the larger the respective exposure. The volatility measures relate to the

fact that information uncertainty creates negative future returns. With

insurance stocks being exposed to uncertainty about claims payments

to policyholders, the relationship between information uncertainty and

cross-sectional patterns might be of great interest.

9. Distribution (co-skewness, co-kurtosis, downside risk, upside risk): Distri-

bution-linked variables could be related to the heavy tails of insurance

claims and thus have predictive power on returns. We consider co-skewness

(Harvey and Siddique (2000)), co-kurtosis (Fang and Lai (1997); Dittmar

(2002)), and downside (upside) movements with the market (Ang, Chen,

and Xing (2006)).

10. Investments: Similar to the interest rate exposure, we argue that histori-

cally higher investment income should lead to higher future investment

income (Badrinath and Wahal (2002)) and relate the investment cashflow

to the cross-sectional return behavior.

11. Asset growth: Stocks with previously high asset growth show on average

lower returns compared to low asset growth firms (Cooper, Gulen, and
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Schill (2008)). One explanation is that investors overextrapolate past

gains to growth. We test whether a similar negative relation between asset

growth and expected returns exists for insurance stocks. Asset growth

is also used by both Fama and French (2015) and Hou, Xue, and Zhang

(2015) as a proxy for investment activity.

12. Profitability: Both Fama and French (2015) and Hou, Xue, and Zhang

(2015) consider profitability as a key variable to define the discount rate

meaning that a firm with higher expected profitability given a certain

asset base should earn higher returns than a low profitability firm.

4 Data and methodology

Two approaches are commonly used in the asset pricing literature to analyze

the cross-section of returns. The first is to examine portfolios of returns sorted

by different characteristics in order to identify monotonic return patterns that

cannot be explained by standard asset pricing models. The second approach

is to run Fama–MacBeth (1973) regressions of portfolios or individual stocks

within different model frameworks. After sorting insurance stocks in portfolios

to identify return patterns, we also run Fama–MacBeth (1973) regressions on

both individual stocks and single-sorted portfolios.

4.1 Asset pricing models

Asset pricing models impose a linear relationship between expected returns and

beta, which is why asset pricing models are in general known as beta-pricing

models.9 To test this relationship, we run the Fama–MacBeth (1973) two-

pass regression methodology. The general setting of the first-pass time-series

regression for each stock i = 1,..,N, with K factors is defined as:

Ri,t−Rf,t=αi+

K∑
k=1

βi,kfk,t+εi,t, (1)

9Depending on the number of factors (K), this is also known as a K-factor beta-pricing
model (see Kan, Robotti, and Shanken (2013)).
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where Ri,t−Rf,t is the excess return of stock i over the risk-free rate, βi,k is the

sensitivity of stock i to factor k, and fk,t is the realization of factor k at time t.

The idiosyncratic return of stock i at time t is denoted by εi,t.

The second-pass cross-sectional regressions of the Fama–Macbeth (1973)

method use the beta estimates from time-series regressions as independent

variables and estimates at each time period t in the following regression:

Ri,t−Rf,t = zt +

K∑
k=1

λk,tβ̂k,i,t + αi.t, (2)

where z is the zero-beta rate with expected mean of zero, λk is the risk premium

of factor k, β̂k,i is the beta estimate from a time-series regression, and αi are

the residuals (i.e., pricing errors) of each stock i in the cross-section.

We test six models from the finance literature and later derive an empirically

driven model for insurance stocks, which is the seventh model to be tested.

The first model we test is the CAPM, which is the only model tested in

the insurance literature so far (Cummins and Harrington (1988)). The cross-

sectional specification for the CAPM is:

E (Re)=z + λMKTβi,MKT , (3)

where E (Re) is the expected excess return of insurance stock i and MKT refers

to the excess return of the stock market index.

The second model is the empirically motivated Fama–French (1993) three-

factor model and extends the CAPM by a size (SMB) and a value (HML) factor,

with the cross-sectional model being:

E (Re)=z + λMKTβi,MKT + λSMBβi,SMB + λHMLβi,HML, (4)

where SMB is a zero-investment portfolio between stocks of small and large

market capitalizations, and HML is a zero-investment portfolio between stocks

with high and low B/M ratios.

The third model extends the Fama–French (1993) three-factor model with a
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momentum factor following Carhart (1997):

E (Re)=z+λMKTβi,MKT+λSMBβi,SMB+λHMLβi,HML+λMOMβi,MOM , (5)

where MOM is a zero-investment portfolio that is calculated as the spread

between returns of stocks with positive returns and those with negative returns

over the months t–12 to t–2.

The fourth model is the five-factor model by Petkova (2006), which is set in

an ICAPM framework. Petkova (2006) uses innovations in the term spread, the

default spread, the aggregate dividend yield of the S&P 500, and the 1-month

T-Bill rate. The cross-sectional relation is:

E (Re) = z + λMKTβi,MKT + λûdivβi,ûdiv + λûTERMβi,ûTERM (6)

+ λûDEF βi,ûDEF + λûRF βi,ûRF ,

where ûdiv refers to innovations in the dividend yield of the stock market,

ûTERM are innovations in TERM, where TERM is identical to the previous def-

inition, ûDEF are innovations in DEF, and ûRF are innovations in the 1-month

T-Bill (RF ). Identical to Petkova (2006) and Kan, Robotti, and Shanken (2013),

we extract innovations from a first-order vector autoregressive (VAR(1)) system

comprising seven state variables, which are MKT, SMB, HML, TERM, DEF,

DIV, and RF. We follow Petkova (2006) and first demean the state variables in

the VAR(1) system and then orthogonalize the innovations of the state variables

to the excess market factor for interpretational reasons.

In a fifth model we look at the Hou, Xue, and Zhang (2015) four-factor

model which includes the market excess return, the SMB factor, an investment

factor (IA), and a profitability factor (ROE). The investment factor is a long

portfolio in low investment stocks and a short portfolio in high investment

stocks. Investment is defined as the annual change in total assets divided

by one-year-lagged total assets. The profitability factor is defined as a long

portfolio in stocks with high profitability (i.e., high return on equity) and a short

portfolio in stocks with low profitability (i.e., low return on equity). Profitability
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is defined as net income before extraordinary items divided by book equity:

E (Re)=z + λMKTβi,MKT + λSMBβi,SMB + λIAβi,IA + λROEβi,ROE . (7)

The sixth model is the Fama and French’s (2015) five-factor model, is very

similar to Hou, Xue, and Zhang’s (2015) four-factor model except for keeping

the HML factor and a slightly different factor construction. It extends the

Fama and French (1993) three-factor model by an RMW and a CMA factor.

The RMW factor is defined as the difference between a strong and a weak

profitability return portfolio and CMA is defined as the difference between

stocks of low and high investment activity in terms of total assets:

E (Re) = z + λMKTβi,MKT + λSMBβi,SMB + λHMLβi,HML (8)

+ λRMWβi,RMW + λCMAβi,CMA.

The insurance-specific model that we propose, takes into account the unique

features of insurance stocks, which stem primarily from their exposure to

extraordinary risks that are uncorrelated with returns from the rest of the

market, such as catastrophe risk. Henceforth we refer to this model as the

insurance five-factor (INS-5) model. The INS-5 model’s five factors are: (a)

the excess market return (MKTRF); (b) a zero-investment portfolio sorted by

B/M ratio (BMF); (c) a zero-investment portfolio sorted by prior month return;

(d) a zero-investment portfolio sorted by liquidity exposure (LQF); and (e) a

zero-investment portfolio sorted by cashflow volatility (CFVF). Formally, the

cross-sectional relation of this insurance-specific five factor model (INS-5) is

described as:

E (Re) = z + λMKTβi,MKT + λBMFβi,BMF + λPRETFβi,PRETF (9)

+ λLQFβi,LQF + λCFV Fβi,CFV F .

More details on the derivation and economic interpretation of the factors

are discussed below.
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4.2 Data

Our sample consists of all traded U.S. p/l insurers with SIC code 6331.10 We

only include U.S. common stocks (excluding ADR and units of beneficiary

interest) and exclude stocks with negative book values. We further delete stocks

with unreported book equity in year t-1. To be included in our dataset, stocks

must also have at least 36 months of consecutive return data. Our data spans

a period of more than 25 years (July 1988 to December 2013).11 Appendix A

reports the number of stocks per year in our sample.

Stock return data and accounting information are retrieved from CRSP and

COMPUSTAT, respectively. The Fama–French (2015) factors, the 1-month

T-Bill yield, and the momentum factor are downloaded from Kenneth French’s

website. Data on Hou, Xue, and Zhang’s (2015) factors are available from the

authors of the paper.12 The dividend yield on the S&P 500 is downloaded from

Robert Shiller’s website (http://aida.wss.yale.edu/~shiller/data.htm).

Data on the broker/dealer leverage factor comes from Tyler Muir’s website (http:

//faculty.som.yale.edu/tylermuir/data.html). The liquidity factor from

innovations is retrieved from Robert Stambaugh’s website (http://finance.

wharton.upenn.edu/~stambaugh/liq_data_1962_2012.txt) The term spread,

its changes, and innovations are constructed from the spread between 10-year

Treasury and 1-year Treasury constant maturity rates. The default spread, its

changes, and innovations are constructed from Moody’s seasoned Baa corporate

bond yield and the 10-year Treasury rate. All interest yields are retrieved from

the FRED R© database of the Federal Reserve Bank of St. Louis.

10We use the SIC code classification based on COMPUSTAT, as this classification is more
accurate to the actual industry classification (Kahle and Walkling (1996)).

11Asset pricing studies should span at least 20 years (see Cochrane (2005), p. 287) to
draw any conclusions. Also, insurance stocks before 1987 drastically reduce both in absolute
numbers (i.e., while there are 61 p/l insurers in 1987, there are only 41 in 1986 and the
number continues to decrease further back in time) and in the availability of accounting data.

12We would like to thank Lu Zhang for providing us the data.
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5 Empirical evidence

We first present results of single-sorted portfolios (Section 5.1), followed by time

series and cross-sectional regression analyses of insurance stocks (Sections 5.2

to 5.6). We also provide economic interpretations of our results (Section 5.7).

5.1 Stock return anomalies

Following the finance literature that analyzes the cross-section of stock returns

(e.g., Vassalou and Xing (2004); Cooper, Gulen, and Schill (2008)) we first sort

portfolios by characteristics of insurance stocks to evaluate their return pattern.

This allows us also to compare their pattern with the non-financial sector and

to evaluate insurance-specific characteristics.13 We sort insurance stocks based

on 22 characteristics introduced in Section 3 (see also Appendix B for a detailed

description of the variables and the portfolio formation).14

We follow Barber and Lyon (1997) in using equally weighted portfolios to

avoid giving too much weight to a few large insurers in our small sample, which

would thus bias the actual return pattern (illustrating idiosyncratic instead of

systemic risk). Between 1988 and 2013 AIG and Travelers together constituted

on average more than 38 percent of the entire p/l market capitalization in our

sample. Furthermore, equally weighted returns are more in line with Fama–

MacBeth (1973) regressions, which equally weight each stock. Table 1 presents

average monthly returns of characteristic-sorted portfolios for p/l insurers.

Following Fama and French (1993) in their factor construction and Fama

and French (2008) in focusing on the most extreme return portfolios, we break

insurance stocks into three groups based on the breakpoints for the bottom

13Sorting portfolios and analyzing the mean returns of these portfolios give an idea of
inherent return premiums, which is why the spread between portfolios sorted by high and low
exposures to a characteristic are often considered as risk factors. Another advantage of the
portfolio formation is that they do not require linearity assumptions in contrast to regression
analyses. However, the disadvantage of portfolio sorting “are that confounding effects can
obfuscate return premiums based on univariate sorts” (Ang, Shtauber, and Tetlock (2013))
leading to ambiguous inferences.

14All portfolio returns are sorted by their past characteristics to avoid a look-ahead bias.
All information is known at the date of portfolio formation and thus the portfolios are tradable.
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20% (low), middle 60% (mid), and top 20% (high) of the ranked values of each

characteristic.15 The CAPM alphas, FF-3 alphas, the HXZ-4 alphas, and the

FF-5 alphas in Panel A of Table 1 are the abnormal returns from a spread

portfolio between the high and low sorted return portfolios. A significant spread

indicates that the return difference cannot be explained by the respective factor

model. Panel B of Table 1 reports the alpha values of the FF-5 factor model and

shows which insurance stock portfolio is most difficult to price for the model.

First, we see that against the theoretical prediction of the CAPM, p/l insur-

ance stocks sorted by CAPM beta do not result in higher returns the higher

the beta exposure. This is not surprising, as the CAPM has also been rejected

for p/l insurers and non-financial firms in the past (Cummins and Harrington

(1988); Fama and French (1992)). Furthermore, we do not find a significant

size effect, although the monotonic pattern of higher returns for small insurers

and low returns for large insurers is identical to non-financial firms (Fama and

French (1993)).16 Only the HXZ-4 model suggests a size anomaly as it is not

able to capture this effect. Possibly the investment and profitability factors

exaggerate the size anomaly resulting in a significant intercept. This result

does not hold in other model specifications including the Fama and French

(2015) five-factor model. We do, however, find a significant effect in all model

specifications for the B/M ratio. The monthly return spread between low B/M

and high B/M returns is 0.83%.

The fact that the CAPM (Table 1, Panel A) cannot explain the return

difference between low and high B/M portfolios is not surprising; it is why Fama

and French (1993) developed the HML factor to explain this return variation.

But interestingly, the FF-3 and the FF-5 factor models, which explicitly include

this B/M-related factor, are not able to capture the return difference in B/M

portfolios. Especially, those insurers with high B/M ratio are a challenge to the

FF-5 factor model (Table 1, Panel B). This suggests that the B/M ratio for p/l

stocks has a different pricing cycle or simply a different meaning than the B/M

ratio in non-insurance stocks.

15In later robustness tests (Section 7), we also look at ten return portfolios.
16We also used total assets instead of market capitalization and did not find a significant

size effect either.
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We also find that the past month return is a strong predictor for the following

month return. Specifically, a positive return in the previous month results in a

negative return in the following month and vice versa. The spread is significant,

with an average return of 2.14% per month. Direction and size of the variable

are similar to Jegadeesh (1990), who reports a monthly return of 2.49%. In

further robustness tests we confirm that this effect is not attributable to small

insurers, market microstructure, or specific time periods. One explanation for

this effect pertains to liquidity provisions by market makers and institutional

investors who are forced to sell their shares during volatile times (Hameed

and Mian (2015)). Note also that momentum-sorted portfolios do not create a

significant spread, which is distinct from the finance literature. Moreover, we

observe a strong return pattern based on past cashflow volatility. The monthly

return spread is 0.84%. The result that lower cashflow volatility leads to higher

returns is in line with Huang (2009), who also finds a negative relation between

returns and cashflow volatility. Another important aspect is that low and

medium portfolios share the same return, but it is the portfolio with the highest

cashflow volatility that drops significantly in its risk compensation and leads to

a significant spread. The abnormal return spread from cashflow volatility can

be explained neither by the FF-5 nor the HXZ-4 model. Portfolios sorted by

insurance leverage, total leverage, and liquidity result in a monotonic pattern

and a significant return spread. However, this spread difference can be explained

by the CAPM.

5.2 Fama–Macbeth (1973) regression with individual stock

returns

Having analyzed univariate portfolio sorts, we now turn to the cross-sectional

regressions to validate these results and to see whether other model specifications

can explain them. We first run univariate Fama–Macbeth (1973) regressions

on the insurance stock returns for each independent variable. Table 2 shows

the results and confirms that B/M, prior month return, and cashflow volatility

are significantly priced. We also find that liquidity is priced in the cross-section

(but not insurance or total leverage). In contrast to our portfolio sorting, we

now also find that beta exposure from changes in the term structure and beta
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exposure from changes in the default premium are priced cross-sectionally.

Following univariate Fama–MacBeth (1973) regressions, we further investi-

gate the different pricing components in a multivariate framework to analyze the

variables’ unique pricing ability. Table 3 shows the results from Fama–Macbeth

(1973) regressions with several robustness tests of all significant variables from

univariate regressions.

These results are robust to variations in the sample’s market capitalization,

trading volume, and relative bid–ask spread, except for liquidity, which becomes

insignificant if we exclude the fifth percentile of smallest stocks (in terms of

market capitalization), followed by the exclusion of the fifth percentile of least

traded insurance stocks (in terms of dollar trading volume), and stocks above the

95th percentile with the highest relative bid–ask spread. We again confirm that

B/M, prior month return, cashflow volatility, and liquidity remain significant

in a multivariate framework, corroborating the fact that these variables are

indeed priced in the cross-section of insurance stocks. It should be noted that

liquidity becomes insignificant in our last and most demanding robustness test

where we exclude 15% percent of our total sample size (Table 3, Model V),

suggesting that the liquidity anomaly is attributable to small, less frequently

traded insurance stocks with high bid–ask spreads.
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Table 3: Fama–MacBeth (1973) regressions with individual stock returns
(multivariate)

(I) (II) (III) (IV) (V)

B/M 0.48** 0.51** 0.61*** 0.42* 0.54**

[2.16] [2.12] [2.65] [1.71] [2.23]

RETt−1 -8.37*** -8.21*** -8.36*** -7.63*** -8.18***

[-5.48] [-5.39] [-5.34] [-5.08] [-5.32]

β LIQ 0.81* 0.78* 0.88* 0.80* 0.66

[1.91] [1.71] [1.97] [1.93] [1.62]

CF-VOLA -3.83** -3.73** -3.72** -3.57** -3.44**

[-2.35] [-2.37] [-2.20] [-2.27] [-2.27]

βΔTERM -2.10 -1.70 -1.15 -0.84 1.83

[-0.44] [-0.34] [-0.24] [-0.17] [0.39]

βΔDEF -6.17 -6.56 -4.69 -4.56 -1.62

[-1.41] [-1.44] [-1.10] [-1.04] [-0.40]

Const. (z) 0.37 0.39 0.34 0.50 0.52

[1.12] [1.15] [1.03] [1.50] [1.56]

Obs. 15,365 14,871 14,793 14,861 13,832

Avg. R2 0.23 0.22 0.23 0.22 0.22

Sample ex-
cludes:

<5th pctile.
market cap.

<5th pctile.
trading vol.

>95th pc-
tile. rel.
bid–ask
spread

<5th pctile.
market cap.
/<5th pc-
tile. trading
vol./>95th

pctile. rel.
bid–ask
spread

Model (I) includes all significant variables from univariate sorts and regressions. Model (II)

excludes all firm months with market capitalization below the sample’s 5th percentile. Model
(III) excludes all firm months with trading volume below the sample’s 5th percentile. Model

(IV) excludes all firm months with relative bid–ask spreads above the sample’s 95th percentile.
Model (V) sequentially excludes all firm months with market capitalization below the sample’s

5th percentile, all firm months with trading volume below the sample’s 5th percentile, and all
firm months with relative bid–ask spreads above the sample’s 95th percentile. Dependent vari-
ables are winsorized at the 1st and 99th percentile. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

5.3 Principal component analysis and risk factors

Our results imply that the B/M ratio, prior month return, cashflow volatility,

and liquidity are priced in insurance stock returns. We now investigate whether

these four characteristics represent systematic risk and can therefore be matched

by covariances with risk factors (see Vassalou and Xing (2004); Gandhi and

Lustig (2015)). In general, a linear factor model predicts average returns on a

cross-section of returns related to risk premiums that are exposed to risk factors.
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According to Ross (1976) and his arbitrage pricing theory (APT), these factors

should capture the common variation in asset returns. To follow this intuition,

we sort each insurance stock into five quintiles according to each significant

characteristic found above. We then run four principal component analyses (for

each of the four characteristics) on each of the five return portfolios, following

Lustig, Roussanov, and Verdelhan (2011) and Gandhi and Lustig (2015).

Table 4 shows the loadings of the first and second principal components

on our characteristic-sorted portfolios. The first principal component explains

between 68.59% and 71.52% of the return variance in insurance stocks. Since the

loadings on the first principal components are all of similar size and direction,

an interpretation as level factor, such as the market factor, is comprehensible.

The second principal components, in contrast, load from negative to positive

(and vice versa) on the different characteristics and explain between 8.77%

and 13.40% of the return variance. Thus, the second principal components on

each characteristic-sorted portfolio can be interpreted as slope factors because

of their increase (decrease) in loadings. We follow Lustig, Roussanov, and

Verdelhan (2011) in interpreting the first component as level factor and the

second component as slope factor. Since no other principal components exhibit

a similar increasing (decreasing) pattern to the second principal components,

they are most likely to explain the cross-section of insurance stock returns

as candidate risk factor. Motivated by the principal component analyses and

following Lustig, Roussanov, and Verdelhan (2011) as well as Gandhi and

Lustig (2015), we construct four risk factors from returns of the second principal

component.



II Insurance Asset Pricing 74

Table 4: Principal components

Panel A: First principal component

Portfolio B/M RETt−1 βLIQ CFVOLA

1 (Low) 0.45 0.41 0.44 0.47

2 0.47 0.45 0.46 0.47

3 0.47 0.46 0.45 0.47

4 0.45 0.47 0.46 0.46

5 (High) 0.40 0.44 0.43 0.35

% Variance 68.59 71.52 71.62 69.00

Panel B: Second principal component

Portfolio B/M RETt−1 βLIQ CFVOLA

1 (Low) -0.46 0.88 -0.06 -0.31

2 -0.29 -0.11 -0.37 -0.24

3 0.15 -0.06 -0.28 -0.10

4 -0.13 -0.23 -0.11 -0.03

5 (High) 0.82 -0.40 0.88 0.91

% Variance 11.68 9.61 8.77 13.40

This table reports the principal component coefficients of the relevant characteristic-sorted
portfolios on B/M ratio (B/M), prior month return (RETt−1), Liquidity (βLIQ), and
cashflow volatility (CFVOLA). In the last row of each panel the share of the total variance
explained by each principal component in percent is reported. The sample period is July
1988 to December 2013.

To emphasize the most extreme portfolios, we go three quarters long in the

portfolio with the highest characteristic (i.e., portfolio 5) and one quarter long

in the portfolio with the second highest characteristic (i.e., portfolio 4). To

have a zero-investment portfolio we also go three quarters short in the portfolio

with the lowest characteristic (i.e., portfolio 1) and one quarter short in the

portfolio with the second lowest characteristic (i.e., portfolio 4).17 Formally,

17The results are robust in the construction of the factors as long as the top and bottom
portfolios outweigh the portfolios in the middle. Results are available upon request from the
authors. Lustig, Roussanov, and Verdelhan (2011) only use the most extreme portfolios to
construct their portfolios. In contrast, our approach of combining the sorted portfolios is
more in line with that of Fama and French (1993), who combine four out of six portfolios to
construct their HML factor and six out of six to construct their SMB factor.
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each excess-return portfolio is constructed as:

Fi,t =
3

4
∗ (portfolio5i,t − portfolio1i,t

)
+

1

4
∗ (portfolio4i,t − portfolio2i,t

)
.

(10)

That is, for each characteristic-sorted portfolio (i.e., B/M, RETt−1, CFVOLA,

βLIQ) a risk factor (denoted with i) is constructed. We denominate the factors

BMF, PRETF, CFVF, and LQF.

On the one hand, the first principal component (PC1), which is a level

factor, suggests that it follows the market. The correlation of the excess market

return with each of the first principal components shows a correlation factor

of 0.63 and 0.64 (see Appendix C). On the other hand, our constructed risk

factors based on the four characteristics show a significant correlation with the

second principal components (PC2) between 0.75 and 0.97.18 We also want to

highlight that the risk factor constructed from the B/M ratio (BMF) should be

theoretically related to Fama and French’s (1993) HML factor to some extent.

However, HML and the B/M ratio appear to have different meanings. Both

factors are uncorrelated with a correlation coefficient of 0.02.

5.4 Fama–Macbeth (1973) regression with portfolios us-

ing risk factors

Having constructed the insurance-specific risk factors, we now turn to cross-

sectional regressions following Fama and MacBeth (1973) to analyze whether

there is a linear relationship between the covariance of our factors and the

average insurance stock returns. On the left-hand side, we use the excess

returns on the 20 portfolios sorted by B/M, RETt−1, CFVOLA, and βLIQ

(four characteristics times five portfolios), as these portfolios provide the most

variation in average returns. On the right-hand side we use the different asset

pricing models described in Section 4.1 including the insurance-specific INS-5

model with the excess market return (MKTRF), a zero-investment portfolio

sorted by B/M ratio (BMF), a zero-investment portfolio sorted by prior month

return, a zero-investment portfolio sorted by liquidity exposure (LQF), and a

18Lustig, Roussanov, and Verdelhan (2011) show a similar correlation for their currency
risk factor and the second principal component of 0.94.
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zero-investment portfolio sorted by cashflow volatility (CFVF). Table 5 reports

the Fama–MacBeth (1973) regressions for all seven models.

Table 5: Fama–Macbeth (1973) regression with portfolios and risk factors

(I) (II) (III) (IV) (V) (VI) (VII)

CAPM FF-3 Carhart-4 Petkova-5 HXZ-4 FF-5 INS-5

βMKTRF 1.02 1.65* 2.43** 1.46* 4.35 2.30 2.76***

[1.18] [1.66] [2.29] [1.80] [5.06] [2.53] [2.82]

βBMF 0.60**

[2.36]

βPRETF -1.68***

[-7.15]

βLQF 0.38*

[1.80]

βCFV F -0.62**

[-2.08]

βSMB 0.33 0.71 2.52*** 0.95**

[0.63] [1.28] [4.81] [1.98]

βHML -0.90 0.88 -0.75

[-1.30] [1.24] [-1.06]

βMOM 3.24***

[3.85]

βRMW 0.57

[0.90]

βCMA -0.65

[-1.41]

βIA -1.00**

[-2.37]

βROE 1.81***

[3.69]

βûTERM 0.37***

[4.58]

βûDEF -0.28***

[-4.14]

βûdiv 0.02

[1.02]

βûRF 0.03***

[2.84]

Const. (z) 0.30 0.23 -1.42 0.24 -2.38 -0.49 -0.52

[0.69] [0.46] [-0.88] [0.02] [-1.37] [-0.67] [-0.89]

Avg. R2 0.46 0.48 0.50 0.52 0.53 0.53 0.58

Column (I) describes the CAPM, column (II) the Fama–French (1993) three-factor model, col-
umn (III) the Carhart (1997) four-factor model, column (IV) the Petkova (2006) five-factor
model, column (V) the Hou, Xue, Zhang (2015) four-factor model, column (VI) the Fama
and French (2015) five-factor model, and column (VII) the INS-5 model. Standard errors are
Shanken (1992) corrected.

We see that the market factor is insignificant in the CAPM, but becomes
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significant and positive in most of the other specifications, suggesting that the

CAPM requires some type of conditioning, which then results in a significant

pricing of the market factor. Interestingly, HML is insignificant and does

not imply a linear relationship with our test assets. We do, however, find a

significant relationship between Fama and French’s (1993) size factor, Carhart’s

(1997) momentum factor and our test assets. Similarly, the Petkova (2006)

five-factor model indicates four significant factors. How differently the models

perform in the cross-section is visually illustrated in Figure 1. The y-axis

shows the historical average excess return of each of the 20 portfolios, while

the x-axis provides the predicted excess return from each model on the 20

portfolios. Graphs A, B, C, D, E, and F show the actual excess returns and the

predicted return by the CAPM, Fama and French’s (1993) three-factor model,

Petkova’s (2006) five-factor model, Hou, Xue, and Zhang’s (2015) four factor

model, Fama and French’s (2015) five-factor model and the insurance-specific

5-factor model, respectively. Each graph also provides the adjusted R-square

from a single cross-sectional regression.19 Neither the CAPM nor the Fama

and French (1993) three-factor models nor the Fama and French (2015) five

factor model is doing well in predicting the portfolio return. The Petkova

(2006) five-factor model, however, is doing better compared to the Fama and

French (1993) three-factor model with a cross-sectional, adjusted R-square of

16.99%. From the comprehensive factor models, the Hou, Xue, and Zhang

(2015) is doing much better than Fama and French’s (2015) five-factor model

with a cross-sectional R-square of 36.74%. However, the INS-5 model is doing

an excellent job in capturing the cross-sectional variation with an adjusted

R-square of 94.88%, supporting the fact that the INS-5 model is well specified.

Note that we also compute the Hansen-Jagannathan distance to compare the

different models later on in this paper.

19The R-square values in the Fama–MacBeth (1973) regressions are average R-squares
from 306 monthly cross-sectional regressions. As noted by Kan, Robotti, and Shanken (2013),
a single cross-sectional R-square as presented in Figure 1 is preferable to compare different
models.
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Figure 1: Actual vs. predicted returns
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5.5 Time-series regressions with portfolios using risk fac-

tors

The following time-series regressions give further insight into the covariances and

pricing errors from different asset pricing models. Table 6 shows factor loadings,

intercept values, and the GRS-test statistic from time-series regressions on the

Fama and French (2015) factors with 4x5 characteristic-sorted excess portfolios.

Although SMB, HML, and RMW load significantly on the different portfolios,

the loadings do not show a monotonic pattern, which would indicate a higher

beta exposure followed by higher average returns. The fact that the Fama

and French (2015) five-factor model cannot capture the cross-sectional return

variation of the test assets is also reflected in the intercept, with 4 out of 20

intercepts being highly significant. This is formally confirmed by the GRS-test

statistic, which is rejected at the 1% significance level.

In contrast, the INS-5 model is formally not rejected by the GRS-test

statistic, although seven out of the twenty portfolios have weakly significant

intercepts (Table 7). More importantly, the factor loadings on the different

portfolios show in all cases a monotonic increase/decrease for each portfolio,

which should capture the cross-sectional variation. For example, the BMF factor

loads significantly negatively (i.e., -0.54) on the lowest B/M portfolios and then

continuously increases in factor loadings up to a significant 0.66 in the highest

B/M portfolio. Because of this pattern in covariances, cross-sectional patterns

in returns can be captured.20 Here, the Fama and French (2015) five-factor

model would do much better if the short-term reversal (RETt−1) anomaly in

insurance stocks was not as dominant as it is.

20The factor loadings, intercept values, and GRS-test statistic for the CAPM and the
Carhart (1997) model are also rejected. We do not report time-series regressions on the
Petkova (2006) model because the factors are not returns and thus no interpretation of the
intercepts is possible.
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Table 6: Time series regression – FF-5 factor model

Low 2 Medium 3 High

MKTRF 0.67*** 0.82*** 0.63*** 0.60*** 0.69*** Book-to-market portfolios

[8.43] [8.58] [9.29] [9.53] [8.51]

0.86*** 0.64*** 0.64*** 0.60*** 0.69*** RETt−1 portfolios

[11.81] [10.09] [8.78] [8.43] [8.66]

0.65*** 0.63*** 0.61*** 0.71*** 0.84*** Liquidity portfolios

[9.64] [8.82] [8.39] [9.59] [13.02]

0.61*** 0.66*** 0.67*** 0.65*** 0.85*** Cashflow volatility portfolios

[7.58] [8.00] [9.33] [10.50] [10.33]

SMB -0.38*** -0.26*** -0.03 -0.05 -0.04 Book-to-market portfolios

[-4.07] [-3.19] [-0.31] [-0.57] [-0.31]

-0.25** -0.15* -0.15* -0.13* -0.13 RETt−1 portfolios

[-2.54] [-1.77] [-1.83] [-1.96] [-1.30]

-0.15* -0.07 -0.23** -0.27*** -0.14* Liquidity portfolios

[-1.70] [-1.05] [-2.18] [-3.10] [-1.92]

-0.21*** -0.25*** -0.18** 0.08 -0.20 Cashflow volatility portfolios

[-2.60] [-2.75] [-2.39] [0.93] [-1.46]

HML 0.13 0.38** 0.34*** 0.39*** 0.46*** Book-to-market portfolios

[1.10] [2.32] [3.43] [4.63] [2.71]

0.50*** 0.27*** 0.19** 0.37*** 0.37*** RETt−1 portfolios

[3.70] [2.61] [2.23] [4.07] [2.63]

0.23** 0.32*** 0.32*** 0.36*** 0.59*** Liquidity portfolios

[2.00] [3.09] [3.26] [3.89] [3.72]

0.24** 0.22** 0.43*** 0.28*** 0.60*** Cashflow volatility portfolios

[2.44] [1.99] [4.68] [2.87] [2.60]

RMW 0.38*** 0.49*** 0.31** 0.31*** -0.01 Book-to-market portfolios

[4.13] [4.55] [2.46] [2.70] [-0.06]

0.30* 0.31*** 0.39*** 0.31*** 0.19 RETt−1 portfolios

[1.82] [3.19] [4.05] [2.96] [1.39]

0.32*** 0.38*** 0.30** 0.35*** 0.23 Liquidity portfolios

[2.96] [3.89] [2.38] [2.99] [1.53]

0.42*** 0.32*** 0.25** 0.40*** 0.05 Cashflow volatility portfolios

[4.11] [2.96] [2.40] [3.67] [0.23]

CMA 0.15 0.01 -0.01 0.05 0.09 Book-to-market portfolios

[0.77] [0.08] [-0.06] [0.37] [0.41]

-0.04 0.05 0.15 0.04 0.24 RETt−1 portfolios

[-0.20] [0.41] [1.40] [0.28] [1.22]

0.28** 0.05 -0.07 0.19 0.04 Liquidity portfolios

[2.00] [0.36] [-0.41] [1.32] [0.23]

0.02 0.27 -0.03 0.04 -0.08 Cashflow volatility portfolios

[0.17] [1.49] [-0.20] [0.26] [-0.38]

α -0.16 -0.15 0.05 -0.04 0.68*** Book-to-market portfolios

[-0.68] [-0.77] [0.28] [-0.21] [2.64]

1.06*** 0.27 0.07 -0.17 -0.97*** RETt−1 portfolios

[4.67] [1.38] [0.42] [-0.89] [-3.88]

-0.11 0.05 -0.03 0.17 0.22 Liquidity portfolios

[-0.52] [0.27] [-0.19] [0.95] [0.93]

0.22 0.17 0.13 0.23 -0.73** Cashflow volatility portfolios

[1.17] [0.88] [0.64] [1.09] [-2.27]

GRS-test statistic = 3.95***, p-value=0.00

This table presents time-series regressions on excess returns of insurance stocks sorted by B/M, prior month
return, liquidity, and cashflow volatility The sample period is July 1988 to December 2013. T-statistics in brack-
ets are Newey–West (1987) corrected with lags of five. The GRS-test statistic tests the null that all intercepts
are jointly zero. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 7: Time series regression – INS-5 model

Low 2 Medium 3 High

MKTRF 0.46*** 0.57*** 0.50*** 0.44*** 0.51*** Book-to-market portfolios

[7.02] [6.18] [7.98] [7.00] [6.84]

0.53*** 0.49*** 0.47*** 0.44*** 0.55*** RETt−1 portfolios

[7.14] [7.12] [7.07] [6.06] [7.74]

0.50*** 0.51*** 0.42*** 0.47*** 0.52*** Liquidity portfolios

[7.13] [7.28] [5.46] [6.32] [7.46]

0.47*** 0.48*** 0.51*** 0.53*** 0.46*** Cashflow volatility portfolios

[6.74] [6.98] [6.50] [7.83] [6.38]

BMF -0.54*** -0.42*** -0.02 -0.02 0.66*** Book-to-market portfolios

[-6.62] [-3.47] [-0.41] [-0.38] [7.40]

-0.09 -0.12 -0.04 -0.13* -0.09 RETt−1 portfolios

[-1.00] [-1.36] [-0.61] [-1.82] [-0.99]

-0.10 -0.10 -0.09 -0.04 -0.12 Liquidity portfolios

[-1.00] [-1.63] [-1.22] [-0.48] [-1.28]

-0.13* -0.16* -0.03 -0.01 -0.18** Cashflow volatility portfolios

[-1.94] [-1.93] [-0.36] [-0.18] [-2.27]

PRETF -0.07 0.04 0.10 -0.04 -0.04 Book-to-market portfolios

[-0.74] [0.46] [1.18] [-0.59] [-0.42]

-0.68*** -0.11 -0.01 0.16* 0.56*** RETt−1 portfolios

[-7.66] [-1.29] [-0.07] [1.92] [6.60]

-0.03 -0.02 -0.00 -0.05 -0.02 Liquidity portfolios

[-0.34] [-0.34] [-0.01] [-0.58] [-0.23]

-0.02 -0.00 -0.02 0.04 -0.03 Cashflow volatility portfolios

[-0.23] [-0.03] [-0.19] [0.61] [-0.34]

LQF 0.02 0.05 -0.03 0.03 0.03 Book-to-market portfolios

[0.27] [0.54] [-0.37] [0.30] [0.34]

0.07 -0.05 0.02 0.03 0.04 RETt−1 portfolios

[0.81] [-0.60] [0.30] [0.32] [0.53]

-0.51*** -0.19** 0.04 0.19* 0.70*** Liquidity portfolios

[-5.02] [-2.43] [0.53] [1.92] [7.27]

0.03 0.03 0.04 -0.02 0.05 Cashflow volatility portfolios

[0.38] [0.34] [0.54] [-0.28] [0.51]

CFVF -0.01 0.10 0.01 -0.01 0.03 Book-to-market portfolios

[-0.20] [1.03] [0.07] [-0.11] [0.39]

0.13 -0.08 -0.12** 0.02 0.09 RETt−1 portfolios

[1.53] [-1.41] [-2.25] [0.36] [1.28]

0.12* -0.05 -0.02 -0.15** 0.15** Liquidity portfolios

[1.75] [-0.81] [-0.22] [-2.23] [2.27]

-0.28*** -0.16*** -0.10 0.02 1.00*** Cashflow volatility portfolios

[-3.92] [-2.67] [-1.59] [0.35] [12.78]

a 0.35 0.66* 0.54* 0.23 0.49 Book-to-market portfolios

[1.16] [1.90] [1.70] [0.87] [1.56]

0.43 0.42 0.36 0.50* 0.41 RETt−1 portfolios

[1.55] [1.43] [1.27] [1.69] [1.53]

0.52* 0.43 0.28 0.37 0.54* Liquidity portfolios

[1.92] [1.39] [0.89] [1.17] [1.96]

0.38 0.52* 0.33 0.65** 0.34 Cashflow volatility portfolios

[1.37] [1.77] [0.99] [2.26] [1.16]

GRS-test statistic = 0.677, p-value=0.848

This table presents time-series regressions on excess returns of insurance stocks sorted by B/M, prior month
return, liquidity, and cashflow volatility. The sample period is July 1988 to December 2013. T-statistics
in brackets are Newey–West (1987) corrected with lags of five. The GRS test statistic tests the null that
all intercepts are jointly zero. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.
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5.6 Comparing Hansen-Jagannathan distances

Based on the time-series and cross-sectional evidence, we are interested in

whether the INS-5 factor model is also statistically outperforming the other

models. First, we report the Hansen-Jagannathan (HJ) distance for each model

and whether it is statistically different from zero (Table 8). All but the INS-5

model are rejected.

Table 8: Hansen-Jagannathan distance

Null CAPM FF3 PETK-
5

HXZ-4 FF-5 INS-5

δ̂ 0.606 0.559 0.558 0.507 0.472 0.538 0.173

p(δ = 0) 0.000 0.000 0.000 0.001 0.014 0.000 0.972

Std. Err. 0.059 0.059 0.061 0.075 0.071 0.066 0.069

2.5% CI(δ) 0.503 0.457 0.454 0.383 0.352 0.424 0.085

97.5% CI(δ) 0.737 0.693 0.696 0.681 0.631 0.685 0.356

Max. Error 12.2 11.2 11.2 10.2 9.5 10.8 3.5

J -test 82.57 76.80 63.98 45.96 35.70 35.53 6.47

p(J -test) 0.000 0.000 0.000 0.000 0.003 0.002 0.971

This table shows the HJ distance for the Null (i.e., a constant), the CAPM, the Fama–
French (FF-3) model, the Petkova model (PETK-5), the famand the p/l insurance model.
The models are estimated using excess returns on the 20 portfolios sorted by B/M ratio,
prior month return, liquidity, cashflow volatility, and the gross return on the 1-month
T-bill return. d̂ is the HJ distance. p(d = 0) is the p-value for the test H0: d = 0. CI( d)
is the 95% confidence interval for d. J -test is the Hansen optimal GMM specification test
statistic and p(J -test) its associated p-value of Hansen’s J -test.

To compare the different models statistically, we follow Kan and Robotti

(2009) and analyze the difference in the squared HJ distance. From the conven-

tional models from the finance literature, Petkova’s (2006) five-factor model is

again outperforming the Fama–French (1993) three-factor model, as we could

already see in the graphs in Section 5.4. Again, though, we also see that the

INS-5 model is significantly outperforming all other models at the 1% level (Ta-

ble 9). Furthermore, we confirm our observation from the single cross-sectional

regression where the Hou, Xue, and Zhang (2015) four-factor model outperforms

the Fama and French (2015) five-factor model.
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Table 9: Tests of equality of squared Hansen-Jagannathan distances

CAPM FF3 PETK5 HXZ FF-5 INS-5

Null 0.055*** 0.056*** 0.110*** 0.144*** 0.078*** 0.337***

(0.002) (0.007) (0.008) (0.003) (0.010) (0.000)

CAPM 0.001 0.056* 0.089** 0.023 0.283***

(0.897) (0.079) (0.017) (0.278) (0.000)

FF3 0.055*** 0.089*** 0.022* 0.282***

(0.002) (0.000) (0.087) (0.000)

PETK-5 0.034 -0.033* 0.227***

(0.346) (0.0078) (0.000)

HXZ-4 -0.066*** 0.193***

(0.000) (0.0002)

FF-5 0.259***

(0.000)

This table compares the squared HJ distances (d̂) of the different factor models according
to Kan and Robotti (2009). The test assets are the 20 excess return portfolios sorted by
B/M ratio, prior month return, liquidity, and cashflow volatility. We report the difference

between the HJ distances of the models in row i and column j, d̂i − d̂j , and the respective

p-value in parentheses for the test H0 : d̂2i = d̂2j .

5.7 Interpretation of results

A central question is what the four factors are proxying for. Table 3 already

showed that – in line with the general finance literature – liquidity is directly

linked to trading volume, size, and bid–ask spreads, since liquidity is becoming

insignificant if the most extreme observations related to these three conditions

are excluded. In the next three sections we show that 1) high and low exposures

to cashflow volatility are directly linked to the Rate-on-Line index and the

reinsurance cycle; 2) short-term reversals are linked to liquidity provisions by

market makers due to market volatility; and 3) the book-to-market ratio is a

proxy for default risk.

Cashflow volatility and the reinsurance cycle Doherty and Kang (1988)

and Cummins and Weiss (2009) emphasize that the (re-)insurance business is

subject to periods of “soft” and “hard” markets. During soft markets, insurers

can obtain sufficient reinsurance coverage while paying low premiums. During

hard markets, however, insurers have to pay higher premiums and coverage
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supply is limited (Cummins and Weiss (2009)). Cummins and Weiss (2009) also

note that reinsurance prices “tend to spike following large loss events.” The

theoretical literature on the reinsurance cycle highlights that this pattern is

the result of risk aversion and capital depletion following large losses. The risk

aversion of the insurer (i.e., the investors and policyholders of the insurer) is a

function of its capital structure (Froot and Stein (1998)). The more capital is

held by the insurer, the lower the insurance price, due to the inverse relationship

between capital and risk aversion. Also insurers are even more risk averse if

insurance risk can affect the company’s solvency (Froot (2007)). Within this

model framework, Froot (2007) predicts that (re)insurance prices increase due

to large loss shocks that reduce the company’s capital. We hypothesize that the

reinsurance cycle is related to cashflow volatility. Insurers with higher cashflow

volatility in the past experience a stronger decrease in returns (compared to

insurers with low cashflow volatility) if insurance prices increase after catas-

trophic events. That is, investors withdraw capital from high cashflow volatility

insurers when insolvency might become an issue, as noted by Froot (2007).

To help us interpret the meaning of p/l insurance companies being exposed to

high and low cashflow volatility in the past, we employ quarterly changes in the

Lane Financial LLC synthetic Rate-on-Line index as a measure for catastrophe

insurance pricing. The index is a proxy for the reinsurance cycle because it

measures how reinsurance prices change over time in relation to the coverage

they provide.21 The index uses secondary market quotes for all outstanding

insurance-linked security (ILS) and industry loss warranty (ILW) premiums and

is published by the Thomson Reuters ILS Community. Specifically, the index

represents the ratio of the ILS and ILW premiums divided by the reinsurance

limit that each instrument covers. We run quarterly time-series regressions with

the return spread between insurers exposed to low and high cashflow volatility

as the dependent variable (Columns 1 and 2), and the separate excess return of

low (Columns 3 and 4) and high cashflow volatility insurers (Columns 5 and

21See Braun (2015) for using the index as a proxy for the reinsurance cycle. We would like
to thank Alexander Braun for making the data available to us. For further details about the
index, see Braun (2015).
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6).22 Control variables are the five factors of Fama and French (1993). Results

in Table 10 indicate that the spread is indeed highly correlated with the Rate-

on-Line index. A closer look at the cashflow-volatility return series in Columns

5 and 6 reveals that this effect is mostly attributable to the returns of the high

cashflow volatility insurers. This corroborates the idea that price increases as a

result of catastrophic events lead to decreasing returns in insurance stocks that

have experienced strong variations in their cashflows in the past. Insurers with

low cashflow volatility in the past are, however, not affected by catastrophic

turbulence.

Table 10: Cashflow volatility and Rate-on-Line index

(1) (2) (3) (4) (5) (6)

CFVOLA 1-
5 (Spread)

CFVOLA 1-
5 (Spread)

CFVOLA
1 (Low)

CFVOLA
1 (Low)

CFVOLA
5 (High)

CFVOLA
5 (High)

ΔRate-on-Line 0.24*** 0.21** -0.04 0.05 -0.28* -0.15**

[2.92] [2.36] [-0.38] [0.85] [-1.93] [-2.30]

MKTRF -0.03 0.59*** 0.62**

[-0.09] [3.27] [2.56]

SMB 0.30 -0.10 -0.40

[0.60] [-0.43] [-0.90]

HML -0.51 0.19 0.70**

[-1.43] [1.23] [2.37]

RMW 0.82* 0.37 -0.45

[1.80] [1.46] [-0.90]

CMA 0.03 0.24 0.20

[0.09] [1.45] [0.61]

a 1.66 1.11 2.42** 0.11 0.76 -1.00

[0.99] [0.79] [2.43] [0.13] [0.38] [-0.77]

Adj. R2 0.03 0.07 -0.01 0.47 0.03 0.37

Obs. 66 66 66 66 66 66

This table presents time-series regressions on return spreads of insurance stocks sorted by
historical cashflow volatility in Columns 1 and 2 (low minus high cashflow volatility) and excess
returns on insurance stocks with low historical cashflow volatility (Columns 3 and 4) and high
cashflow volatility (Columns 5 and 6). The sample period is April 1997 to December 2013. T-
statistics in brackets are Newey–West (1987) corrected with lags of four. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

Figure 2 illustrates the low minus high cashflow volatility return spread

(solid line), the changes in the Rate-on-Line index (dashed line) and the twelve

highest insured losses in the U.S. during the period 1997 to 2013 (shaded

22Because changes to the synthetic Rate-on-Line index are first available in April 1997,
the time-series regression starts in the second quarter of 1997.
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areas). We see that spikes in the cashflow volatility spread coincide with the

Rate-on-Line index and catastrophic events, including the 9/11 attacks and

Hurricane Katrina. This graphically demonstrates the empirical results of Table

10. Furthermore, following each catastrophic event it appears that the cashflow

volatility (low minus high) spread sharply drops during the event period. One

interpretation is that high cashflow volatility insurers receive new capital from

equity investors, driving up equity prices of these insurers as soon as estimates

for a catastrophic event can be better assessed. This would imply that investors

in general overreact to catastrophic news and sell their investment until new

information about the losses of high cashflow volatile insurers is available.

Figure 2: Cashflow volatility and reinsurance cycle

The solid line (MA CF-Vola spread) in this figure illustrates the three quarter moving
average of the time series of the low (20th percentile) minus high (20th percentile)
characteristic-sorted stock returns. The dashed line (MA ΔROL) illustrates the three
quarter moving average of the time series of the changes in the Rate-on-Line index.
Moving averages are in percent. The gray-shaded bars represent severe man-made and
natural catastrophes based on insured losses.

One development that might suggest that the spread in cashflow volatility

is not necessarily disentangled from the overall economy can be seen during the

financial crisis. Investors seem to have withdrawn a significant amount from high
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cashflow volatility insurers, not only because of Hurricane Ike making landfall

on September 7, 2008 and being recorded as the fourth largest catastrophe in

the U.S. (in terms of insured losses), but possibly also because of the financial

crisis with the bankruptcy of Lehman Brothers on September 15, 2008 during

the same period, resulting in a significant spike during 2008 and exceeding the

cashflow changes during Hurricanes Katrina, Rita, and Wilma.

Short-term reversal and liquidity provisions To interpret the short-term

reversal effect, we first control for several aspects mentioned in the literature

with regard to unconditional short-term reversal. First, Cheng et al. (2014)

find that the one month reversal strategy in the overall stock market becomes

insignificant in the post-2000 period. Second, several papers mention a strong

January effect in the reversal strategy due to tax loss selling (see George and

Hwang (2004); Hameed and Mian (2015)). Third, we control for stocks below

a price of $5 due to the effects of market microstructure (see Hameed and

Mian (2015)). Table 11 shows the results for the different settings with the

return spread between high minus low prior-month return insurers as dependent

variable and the Fama and French (2015) factors as controls. Since all control

variables are excess returns, we can interpret the constant as the abnormal

return from the high minus low return spread. In all cases the constant remains

highly significant, a result which is in line with the results for intra-industry

reversal by Hameed and Mian (2015). However, we acknowledge that there is

a minor decrease in the reversal strategy for the post-2000 period and also a

minor decrease compared to the results for stock prices above $5 (see Table 1,

Panel A, Column RETt−1). The largest decrease in the return strategy is due

to the January effect, corroborating the results of George and Hwang (2004).23

23The combination of excluding stocks below a price of $5, the months of January, and
dates before the year 2000 still results in a significant spread of -1.86% per month and a
t-statistic of -4.15.
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Table 11: Pre- and post-2000 period, January effect, and market mi-
crostructure

07/1988–
12/1999

01/2000–
12/2013

Excluding Jan-
uary effect

Excluding
stocks below $5

High minus low
prior-month
return rever-
sal portfolio
(RETt−1)

High minus low
prior-month
return rever-
sal portfolio
(RETt−1)

High minus low
prior-month
return rever-
sal portfolio
(RETt−1)

High minus low
prior-month
return rever-
sal portfolio
(RETt−1)

MKTRF -0.34*** -0.14 -0.11 -0.24***

[-3.99] [-0.90] [-1.11] [-3.36]

SMB 0.18 0.10 0.08 0.10

[1.00] [0.52] [0.63] [0.81]

HML -0.00 -0.12 -0.19 -0.17

[-0.00] [-0.44] [-0.96] [-1.05]

RMW 0.36 -0.22 -0.12 -0.32*

[1.36] [-0.60] [-0.58] [-1.82]

CMA -0.12 0.37 0.40 0.20

[-0.39] [1.21] [1.51] [1.32]

α -2.36*** -2.13*** -1.96*** -1.91*** -1.75*** -1.72*** -2.01*** -1.73***

[-5.90] [-5.41] [-4.80] [-3.84] [-5.61] [-5.02] [-6.88] [-5.96]

Adj. R2 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.06

Obs. 138 138 168 168 281 281 306 306

This table presents time-series regressions on return spreads of insurance stocks sorted
by prior-month returns (high minus low prior-month return). The sample period is July
1988 to December 2013 (306 observations). Columns 1 and 2 separate the dataset into
periods before (138 observations) and after (168 observations) the year 2000. Column 3
excludes the months of January (281 observations), and Column 4 excludes stocks with
prices below $5. T-statistics in brackets are Newey–West (1987) corrected with lags of five.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Hameed and Mian (2015) also find that short-term reversal is pervasive

within industries and attribute this fact to order imbalances and non-information

shocks. Similar to Nagel (2012), they also find that the reversals are more

intense after market declines and periods of high volatility as a result of funding

constraints. The argument is that market makers can pledge securities as

collateral in return for funding. Market declines and increasing volatility reduce

the value of the collateral and require higher margins. Consequently, liquidity

providers are more risk averse to making markets during financial distress. Such

distress then increases the expected return for liquidity suppliers (Brunnermeier

and Pedersen (2009)).

To control for the effect of funding constraints, we follow Hameed and Mian
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(2015) and include the historical volatility (measured as the sum of squared

five-minute returns within the month), a dummy variable for market declines

(DOWN, taking the value of one if the past three-month return on the CRSP

equal-weighted market return is negative and zero otherwise). We also include

the difference between the implied and realized volatilities (VIX-VOL) being

interpreted as a risk aversion index (Bollerslev, Gibson, and Zhou (2011)).24

Moreover, we include a catastrophe risk premium derived from catastrophe

bonds under the assumption that liquidity providers are not only concerned

by margin calls due to market volatility, but also by reduced market values

of insurance stocks due to larger losses from catastrophic events.25 Identical

to Hameed and Mian (2015), we lag these variables by two months to ensure

that market conditions are known one month prior to the formation period of

the reversal strategy. As control variables (controlst) we include the January

effect, defined as a dummy variable taking the value of one in January and

zero otherwise, a dummy variable for the pre-decimalization period when the

tick size changed to decimals in April 2001. As in Hameed and Mian (2015)

we include the Fama–French (1993) three factors (MKTRF, SMB, and HML)

and Pàstor–Stambaugh (2003) traded liquidity factor (PS LIQ) as additional

control variables (Ft):

RLoser−Winner
t = α+ βV OLV OLAt−2 + βDOWNDOWN t−2 (11)

+ β(V IX−V OLA)(V IXt−2 − V OLAt−2)

+ βCATRiskCATRiskt−2 + c′controlst + β′Ft + εt.

Results are presented in Table 12 and show that historical volatility is a sig-

nificant driver of short-term reversal returns, although the economic impact

for p/l insurance stocks appears to be smaller than for intra-industry reversals

in general (see Hameed and Mian (2015)). The catastrophe risk premium is

insignificant, suggesting that short-term reversals are not driven by overreac-

24We would like to thank Hao Zhou for making the historical
volatility and the volatility risk premium available on his website at
https://sites.google.com/site/haozhouspersonalhomepage/.

25We thank Alexander Braun for making the quarterly catastrophe bond index available.
Since the focus here is on the volatility variables (available on a monthly basis), we interpolate
the quarterly catastrophe bond index to have monthly risk premiums.
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tions of market participants (i.e., market makers, institutional investors) with

respect to (uncorrelated) catastrophes, but only by liquidity provisions in the

market. Again, both the pre-decimalization period and the January effect have

a significant impact on short-term reversals.

Book-to-market ratio and default probability To interpret the book-

to-market ratio, we show that some of the information in the book-to-market

ratio is default related. Vassalou and Xing (2004) show that the size and

book-to-market effect are related using default likelihood indicators (DLI) from

equity returns based on Merton’s (1974) option pricing model.26 We sort p/l

insurance stocks by high and low exposure to DLI (calculated from the balance

sheet information of each insurer) to proxy for the default risk in insurance

stocks on an aggregate level. The spread is denoted as HL-DLI. As another

control variable that might have an effect on the book-to-market ratio we include

the return spread from high and low loss ratios in insurance stocks. The loss

ratio is defined as incurred losses to written premiums during a fiscal year.27

Additional controls are the Fama–French (2015) factors. We run time-series

regressions to link default probability with the book-to-market ratio. Table

13 shows that HL-DLI is significant at the 5% level in all model settings as is

RMW. Apparently there is negative relation between high profitability and high

book-to-market ratios. In line with Vassalou and Xing (2004), SMB as another

driver of default risk is also weakly significant. The loss ratio, however, does

not contribute as an indicator of default risk in this context.

26For a detailed description of the construction of DLI, see Vassalou and Xing (2004).
27We sort each stock in July of year t based on loss ratio ending in the fiscal year t-1,

similar to the construction of the HML factor. We include this variable since high losses
ratios could result in an increased default risk.
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Table 13: Book-to-market ratio and distance-to-default

(1) (2) (3) (4)

HL-DLI -0.11** -0.10** -0.10** -0.10**

[-2.22] [-2.31] [-2.24] [-2.23]

MKTRF 0.05 0.05 0.04

[0.56] [0.50] [0.45]

SMB 0.29* 0.30* 0.31*

[1.78] [1.80] [1.83]

HML 0.28 0.30 0.28

[1.27] [1.29] [1.18]

RMW -0.40** -0.40** -0.39**

[-2.28] [-2.21] [-2.14]

CMA 0.00 -0.01 -0.00

[0.02] [-0.02] [-0.01]

LossRatio 0.01 0.01

[0.13] [0.15]

Financial Crisis -1.67

[-1.53]

α 0.76** 0.76** 0.79** 0.86**

[2.55] [2.48] [2.40] [2.51]

Adj. R2 0.03 0.10 0.10 0.10

Obs. 297 297 273 273

This table presents time-series regressions on return spreads of insurance stocks sorted
by their default likelihood indicators (high minus low default likelihood indicator). The
sample period is July 1990 to March 2013. T-statistics in brackets are Newey–West (1987)
corrected with lags of five. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

6 Insurance stock returns and catastrophe risk

Ben Ammar (2016) shows that catastrophe risk is inherent in option prices of

p/l insurance stocks. Specifically, he detects catastrophe risk in the steepness

of the implied volatility smile of put options written on p/l insurance stocks in

comparison to non-financials. If catastrophe risk is not only observable in option

prices but also priced in stock returns, sorting stocks based on catastrophe risk

should result in higher returns for p/l stocks with higher exposure.28

28We would like to thank Manuel Ammann for this helpful comment.
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Three limitations need to be highlighted with regard to the sample and

measuring catastrophe risk. First, option prices from OptionMetrics start in

January 1996. Thus, our sample is eight years shorter than the previous analyses.

Second, not all p/l insurers with listed stock returns have options written on

their stocks. Thus, our sample is also reduced in the number of cross-sectional

observations. The total number of stocks having options is 53, which is below

the sample size of 67 stocks in Ben Ammar (2016). The reason for that is

the more stringent data selection described in Section 4.2. such as stocks

having 36 months of consecutive return data. Third, without a control group

and controls for firm specific factors such as leverage, the implied volatility

smile is rather a measure of tail risk in general (Kelly and Jiang (2014)), than

insurance-specific catastrophe risk. To overcome the last shortcoming we use

the aggregate catastrophe risk measure (i.e., the coefficient from cross-sectional

Fama-MacBeth (1973) regressions) over time, identified and provided by Ben

Ammar (2016), and run rolling regression over the past 36 months on the excess

returns of p/l insurance stocks. Furthermore, we match all p/l insurance stocks

with their corresponding average monthly implied volatility smiles. We define

the beta exposure on the aggregate measure as catastrophe risk, whereas the

“pure” steepness of the implied volatility is defined as tail risk.

As Ben Ammar (2016) we define the steepness of the implied volatility smile

as the difference between the implied volatility of a put option with a delta

of -0.2 and a delta of -0.8. All options have a constant maturity of 30 days.

Regarding tail risk, each stock is then sorted into quintiles based on the past

month’s steepness of the implied volatility smile. Regarding catastrophe risk,

each stock is sorted into quintiles based on the beta exposure on aggregate

catastrophe risk over the past 36 months. We report the returns for the 20%

(low), middle 60% (mid), and top 20% (high) breakpoints of the ranked values.

Table 14 presents the sorting results.
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Table 14: Sorted portfolios on catastrophe risk and tail risk

Catastrophe risk Tail risk

Low 1.29 1.15

Mid 0.92 0.97

High 0.58 0.50

Spread (3-1) -0.71 -0.65*

[-1.60] [-1.67]

Obs. 180 215

This table presents sorted return portfolios based on catastrophe risk and tail risk. The
spread is the return difference between the portfolio with the highest and the lowest
exposure on catastrophe and tail risk. The sample period for catastrophe risk-sorted
portfolios is February 1996 to December 2013. The sample period for tail risk-sorted
portfolios is January 1999 to December 2013. T-statistics in brackets are Newey–West
(1987) corrected with lags of four. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.

We see that both measures create the same monotonic pattern with almost

identical spread sizes. However, only the tail risk spread is subject to a weakly

statistically significant difference at the 10%-level. In contrast to what we

expect, though, stocks with steeper implied volatility smiles earn lower returns

than stocks with a flatter implied volatility smiles. A possible explanation could

be that investors are not charging a sufficient risk premium for tail risk which

should reflect both economic downturns and catastrophic events. This result

is again different from the overall finance literature which shows that tail risk

earns a positive premium (Kelly and Jiang (2014)). The question that remains

to be answered is whether the factor models can explain the weakly significant

spread caused by tail risk. We thus run the INS-5 model, the FF-5 model, and

the HXZ-4 model on the return spread. Table 15 presents the results.
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Table 15: Time-series regressions on tail risk-sorted portfolios

(1) (2) (3)

MKTRF 0.26** 0.21 0.33**

[2.45] [1.24] [2.20]

BMF -0.23*

[-1.77]

PRETF -0.00

[-0.02]

LQF -0.14

[-1.11]

CFVF -0.04

[-0.42]

SMB -0.13 -0.05

[-0.91] [-0.35]

IA -0.05

[-0.28]

ROE -0.04

[-0.22]

HML -0.25

[-1.29]

RMW 0.45**

[2.05]

CMA 0.12

[0.50]

α -0.69 -0.75 -1.07**

[-1.59] [-1.64] [-2.40]

Adj. R2 0.08 0.03 0.05

Obs. 215 215 215

This table presents coefficients from time series regressions based on the INS-5 model,
the HXZ-4 model, and the FF-5 model, respectively. The dependent variable is the
return spread between stocks with high and low tail risk exposure. The sample period
for tail risk-sorted portfolios is February 1996 to December 2013. T-statistics in brackets
are Newey–West (1987) corrected with lags of four. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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First, we observe that the intercept of the INS-5 model is insignificant and

smaller than the intercepts calculated by the HXZ-4 and the FF-5 model. In fact,

the FF-5 model is again overestimating the intercept and showing a significant

t-statistic at the 5%-level. The second observation is that, aside from the market

factor, the weakly significant BMF factor is responsible for capturing some of the

tail risk exposure. This would be partly in line with the theoretical relationship

between tail risk, distressed firms, and the book-to-market ratio (Vassalou and

Xing (2004)). Overall, evidence for priced tail risk and catastrophe risk in

p/l stock returns is weak to non-existent. In addition, the weakly statistical

evidence appears to be captured by the INS-5 model.

7 Robustness

In the following robustness tests we run Fama–MacBeth (1973) regressions, and

time-series regressions using size- and B/M-sorted portfolios.

7.1 Size and B/M portfolios

A potential point of critique to our approach so far is that most asset pricing

tests intend to explain the cross-section of size and B/M-sorted portfolios (Fama

and French (1993)). Although there is a B/M ratio anomaly in insurance stock

returns (that is not related to the B/M anomaly of the rest of the economy), we

did not find a size anomaly when we compared insurance stock returns in the

lowest 20th and in the highest 80th percentiles. Three explanations could be

possible. First, there is indeed no size anomaly in insurance stocks and never

has been. Second, there was a size anomaly that has disappeared, which is also

suggested by some studies for equities in the non-financial sector (Hirshleifer

(2001); Schwert (2003)). Third, the size anomaly is “hidden” in the most

extreme-sorted stocks in the insurance sector. The last explanation is for us

difficult to test, since the low number of insurance stocks in our sample increases

the measurement error in each portfolio the fewer insurance stocks it contains.

Nevertheless, a natural question to ask is thus how the Fama–French (2015)

five-factor model copes with insurance stocks sorted on these two characteristics,

and how the INS-5 model deals with size and B/M portfolios. At the cost of
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estimation precision, we create ten size and ten B/M portfolios. This means that

on the one hand betas from time-series regressions are estimated with larger

errors. On the other hand, a larger cross-section is available, which enhances

the estimation in each monthly cross-section.

When we simply sort insurance stocks into ten size portfolios (Panel A of

Table 16), we find indeed that the smallest stocks provide a large and statistically

significant increase in return, from 0.71% in the second smallest to 1.87% in

the smallest portfolio. This supports the idea that only the smallest stocks in

the insurance sector are exposed to a size anomaly.

Similarly, the B/M anomaly is driven by the most extreme portfolios when

sorted by B/M (Panel B of Table 16). However, the changes between the

extreme and next to extreme portfolios are not as severe as in the size anomaly.

To further investigate the size and B/M characteristics, we run time-series and

cross-sectional regressions on all portfolios in the following sections.

7.2 Fama–MacBeth (1973) regressions with B/M and size

portfolios

We first run Fama–MacBeth (1973) regressions, as in Section 5.4. However, this

time the dependent variables are ten size- and ten B/M-sorted insurance stock

portfolios. Here, we indeed find a weakly significant coefficient on the SMB

factor as can be seen in Table 17, supporting the idea that there is some size

exposure in the most extreme portfolios.

When we visually compare the ten size- and ten B/M-sorted portfolios

(Figure 3), we also see that the overall fit using the INS-5 model is superior to

the Fama–French (2015) five-factor model. The Fama–French (2015) five-factor

model has an adjusted R-square of 20.41% (Graph E) versus an adjusted R-

square of 43.92% in the INS-5 model (Graph F). The Hou, Xue, and Zhang (2015)

four-factor model (Graph D) is doing again surprisingly good in explaining the

cross-section of size and B/M sorted insurance stock returns with an adjusted

R-square of 42.09% and thus almost as good as the INS-5 model.
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Figure 3: Actual vs. predicted returns
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7.3 Time-series regressions

When we run time-series regressions on the ten size-sorted portfolios, we find

that the difference between the most extreme portfolios is still not explained by

the Fama–French (2015) five-factor model, despite the inclusion of the SMB

factor due to the significant intercept value (Panel A of Table 18). The reason

behind that is an insignificant SMB loading in the smallest insurance stocks,

which should load significantly positive to capture the variation. In contrast,

the SMB factor is able to capture the variation in the largest stocks, as can be

seen in the increasing factor loadings from portfolio 8 to portfolio “large” in

Panel A of Table 18.

When we run the INS-5 five-factor model (which does not have an explicit

size factor such as SMB), we see that the intercept is only weakly significant

(Panel B of Table 18), which still suggests that even the INS-5 factor model

is challenged by the smallest insurers. It appears, though, that BMF captures

most of the size anomaly by loading significantly positive on the smallest insur-

ance stocks with a coefficient of 0.40 (suggesting that they also have high B/M

ratios) and then continues to load significantly negative on the largest insurance

stocks with a coefficient of -0.63 (suggesting that they also have low B/M ratios).

For the ten B/M-sorted portfolios, the results corroborate that the Fama–

French (2015) five-factor model is not able to capture even the variation in

portfolios for which it was in part designed, leaving a significant intercept

between the most extreme B/M-sorted portfolios (Panel A of Table 19). In

contrast, the INS-5 model captures the significant intercept between the most

extreme portfolios (Panel B of Table 19).

8 Conclusion

The insurance industry is different compared to the non-financial sector primar-

ily because it is exposed to a set of risks that are typically less correlated with

financial risk. Hence insurance stock returns offer opportunities for investors

aiming to diversify their portfolios. To properly price insurance stocks, we
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conduct an asset pricing exercise using the state-of-the art asset pricing models

(such as the Fama and French (2015) or Hou, Xue, and Zhang (2015)). We

find that these models fall short of explaining a large part of the cross-sectional

variation in p/l insurance stock returns. This is an important finding, because

it indicates that insurance practitioners who use CAPM and the FamaFrench

(1993) three-factor model as industry standards (e.g., to price insurance policies)

are not taking all necessary risk factors into account.

To address this deficiency in the literature, we propose the insurance-specific

five-factor (INS-5) model which uses the book-to-market ratio, short-term rever-

sal, illiquidity, and cashflow volatility factors in addition to the excess market

return. We find that these factors offer a significant marginal explanation of the

cross-section variation in p/l insurance stocks. The INS-5 model provides more

accurate cost-of-capital estimates than existing asset pricing models. We provide

an economic interpretation for each risk factor which are default likelihood,

liquidity provisions by market makers, size, market microstructure (i.e., trading

volume and bid-ask spreads) and the reinsurance cycle. The risk factors thus

represent a combination of general risk factors and insurance-specific factors.

Our discussion provides new insights into the ongoing discussion on the pricing

determinants of insurance products and on the correct determination of costs

of capital in the insurance sector.29 The results also reflect anecdotal evidence

on underwriting cycles often discussed in the p/l insurance sector and provide a

robust empirical foundation for these stylized facts.

Our paper also provides an avenue for future research in the insurance

sector. For example, a comparison of cost-of-capital estimates from our model

with existing industry practices might yield useful insights as to which p/l

insurance products are underpriced or overpriced. Also our findings are limited

29A correct asset pricing model and thus accurate cost of equity is crucial for fairly priced
insurance products. Capital costs are of great importance in the insurance industry in some
capital-intensive lines of insurance business, where capital costs can constitute the bulk of
the premium (Zanjani (2002)). Standard asset pricing ignores the fact that policyholders,
unlike in any other industry, depend on the solvability of the insurer if claims have to be paid
(Doherty and Tinic (1981); Zanjani (2002)). Thus, it is very likely that the cost of capital
and therefore the return for shareholders deviates from what standard asset pricing models
would predict.
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to the U.S. sector, so that their generalizability to other countries needs to be

tested. Another useful extension might be an analysis of the life and health

insurance sector. Although this paper emphasizes the high relevance of cross-

sectional relationships, which – in contrast to the overall finance literature –

are underrepresented in the insurance literature, further research also might

analyze the variations of insurance stocks and factors in a time-series context,

for instance for the purpose of risk management.
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A Firm data

Table A: Firm data

Year Property/Casualty
(SIC code 6331)

Year Property/Casualty
(SIC code 6331)

1987 61 2001 55

1988 66 2002 54

1989 67 2003 56

1990 71 2004 58

1991 77 2005 61

1992 81 2006 64

1993 94 2007 59

1994 90 2008 54

1995 89 2009 53

1996 89 2010 48

1997 78 2011 47

1998 74 2012 44

1999 65 2013 43

2000 61

This table shows the number of companies in the p/l insurance sector. Columns 1 and 3
report the year for which insurer information is available. Columns 2 and 4 report the
number of p/l insurers (SIC code 6331) per year.
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B Stock characteristics

Table B: Analyzed characteristics

β / β−/ β+ Regular CAPM / downside / upside betas are measured as the co-movement
of daily excess returns with the market excess return over the past 250 trading
days. At the end of each month t stock returns are sorted based on the beta
value measured over past 250 trading days until the end of month t-1. Portfolios
are rebalanced monthly.

Size Size is measured as the market capitalization of a stock. Market capitalization
is measured at the end of June of year t and defined as price times shares
outstanding. Based on the market capitalization measured in June of year t
equal-weighted portfolios are created from July of year t until June of year t+1.
Portfolios are rebalanced yearly.

B/M Book-to-market equity is the ratio of the book value of equity to the market
value of equity, both being measured in December of year t-1. Book equity is
book equity per share plus investment tax credit if available. Market equity
is defined as price times shares outstanding. In July of year t we sort stocks
based on the book-to-market ratio measured in December of year t-1. Equal
weighted return portfolios are then calculated from July of year t until June of
year t+1. Portfolios are yearly rebalanced.

MOM Momentum is the cumulative monthly stock return from month t-12 to t-2.
The t-1 month return is skipped to avoid the previous month return anomaly.
Based on the prior 11-month return from t-12 to t-2 equal weighted return
portfolios are created. Portfolios are rebalanced monthly.

RETt−1 Short-term reversal is defined as the stock’s raw return in month t-1. As in
Jegadeesh (1990) we sort stocks in month t based on the previous month return
and calculate equal-weighted portfolios. Portfolios are rebalanced monthly.

βLIQ Liquidity beta is measured as the co-movement with Pstor and Stambaugh’s
(2003) innovations in market-wide liquidity. The liquidity beta is measured as
post-ranking beta using monthly data in a rolling window from t-36 to t-1.
Portfolio returns are then calculated in t based on the beta exposure over the
previous 36-months from t-36 to t-1. Portfolios are rebalanced monthly.

REV Long-term reversal is defined as the cumulative monthly stock return from
montht-36 to t-13. Based on the prior 24-month return from t-36 to t-13 equal
weighted return portfolios are created. Portfolios are rebalanced monthly.

ID-VOLA As in Ang et al. (2006) we calculate the standard deviation of the residuals
from time-series regressions of the excess stock return on the Fama and French
(1993) three factors. We use daily returns to run the time-series rergession in
each month and require at least 15 daily returns per month. Equal-weighted
portfolios in month t are then sorted based on the idiosyncratic volatility in
month t-1. Portfolios are rebalanced each month.

CF-VOLA Cashflow volatility is defined as the standard deviation over the previous eight
quarterly cashflow figures and cashflow itself is defined as the sum of income
before extraordinary items, depreciation, and amortization. Cashflows are addi-
tionally standardized by quarterly sales figures (Huang 2009). Following Huang
(2009) stocks are then sorted in month t based on the calculated cashflow volatil-
ity lagged by three months. Portfolios are quarterly rebalanced.

CO-
SKEW

Co-skewness is defined as the coefficient on the squared market factor from
a time-series regression of daily excess returns on the market factor and the
squared market factor over the past 250 trading days. At the end of each
month t stock returns are sorted based on the coefficient measured over past
250 trading days until the end of month t-1. Portfolios are rebalanced monthly.
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CO-KURT Co-kurtosis is defined as the coefficient on the cubic market factor from a time-
series regression of daily excess returns on the market factor, the squared market
factor, and the cubic market factor over the past 250 trading days. At the end
of each month t stock returns are sorted based on the coefficient measured over
past 250 trading days until the end of month t-1. Portfolios are rebalanced
monthly.

OP Following Fama and French (2015) we measure (operating) profitability at the
end of year t-1 as annual revenues minus cost of goods sold, interest expense,
and selling, general, and administrative expenses. All items are then divided
by the book equity at the end of year t-1. Based on the profitability figure in
year t-1 equal weighted return portfolios are then calculated from July of year
t until June of year t+1. Portfolios are yearly rebalanced.

Asset
Growth

Asset growth is defined as the change in total assets from December in calendar
year t-2 to December in calendar year t-1divided by total assets in year t-2
(Cooper, Gulen, and Schill 2008). Based on the asset growth figure in year t-1
equal weighted return portfolios are then calculated from July of year t until
June of year t+1. Portfolios are yearly rebalanced.

βΔTERM βΔTERM is defined as the beta exposure over the past 36 months. ΔTERM
is the change in yields between the 10-year constant maturity yield and 1-year
constant maturity yield downloaded from the Federal Reserve Economic Data
(FRED). βΔTERM is measured as the co-movement of excess returns with
ΔTERM . βΔTERM is measured as post-ranking beta using monthly data in a
rolling window from t-36 to t-1. Portfolio returns are then calculated in t based
on the beta exposure over the previous 36-months from t-36 to t-1. Portfolios
are rebalanced monthly.

βΔDEF βΔDEF is defined as the beta exposure over the past 36 months. ΔDEF is
the change in yields between the 10-year constant maturity yield and 1-year
constant maturity yield downloaded from the Federal Reserve Economic Data
(FRED). βΔDEF is measured as the co-movement of excess returns with ΔDEF.
βΔDEF is measured as post-ranking beta using monthly data in a rolling win-
dow from t-36 to t-1. Portfolio returns are then calculated in t based on the
beta exposure over the previous 36-month from t-36 to t-1. Portfolios are re-
balanced monthly.

INVEST Investment performance is defined as the cashflows from investment activ-
ity (COMPUSTAT item: IVNCF) standardized by total insurance premiums
(COMPUSTAT item: IPTI).

βB/DLEV βB/DLEV is defined as the beta exposure over the past 36 months (i.e., 12
quarters). B/D LEV is the broker/dealer leverage factor downloaded from Tyler
Muir’s website. βB/DLEV is measured as the co-movement of excess returns
with B/D LEV . βB/DLEV is measured as post-ranking beta using quarterly
data in a rolling window from month t-36 to t-1. Portfolio returns are then
calculated in t based on the beta exposure over the previous 36-months from
t-36 to t-1. Portfolios are quarterly rebalanced.

INS/LEV Insurance leverage is defined as other liabilities (COMPUSTAT item: LO) di-
vided by market equity, both being measured in December of year t-1. In July
of year t we sort stocks based on insurance leverage from t-1. Equal weighted
return portfolios are then calculated from July of year t until June of year t+1.
Portfolios are yearly rebalanced.

FIN/LEV Financial leverage is defined as the sum of current debt (COMPUSTAT item:
DLC) and non-current debt (COMPUSTAT item: DLTT) divided by market
equity, both being measured in December of year t-1. In July of year t we sort
stocks based on financial leverage from t-1. Equal weighted return portfolios
are then calculated from July of year t until June of year t+1. Portfolios are
yearly rebalanced.

Total LEV Total leverage is defined as the difference between total assets and book equity,
all divided by market equity and measured in December of year t-1. In July
of year t we sort stocks based on total leverage from t-1. Equal weighted
return portfolios are then calculated from July of year t until June of year t+1.
Portfolios are yearly rebalanced.
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C Principal components

Table C: Correlation of principal components with common factors

Panel A: Correlation of excess market return with first principal components
(level factor)

PC1
(B/M)

PC1
(RETt−1)

PC1
(LIQ)

PC1
(CFVOLA)

MKTRF 0.64

MKTRF 0.64

MKTRF 0.63

MKTRF 0.63

Panel B: Correlation of risk factors with second principal components (slope
factor)

PC2
(B/M)

PC2
(RETt−1)

PC2
(LIQ)

PC2
(CFVOLA)

BMF 0.95

PRETF -0.93

LQF 0.75

CFVF 0.97

Panel A of this table shows the correlation between the excess market return and the
first principal components, where each first principal component is derived from five
characteristic-sorted portfolios (i.e., B/M, RETt−1, LIQ, and CFVOLA). Panel B reports
the correlation of each constructed factor according to equation (8) and their second
principal components, respectively.



III Options and Catastrophe Risk 117

Part III

Pricing of Catastrophe Risk
and the Implied Volatility Smile

SEMIR BEN AMMAR

Abstract

Property-casualty (P&C) insurers are exposed to rare but severe natural disas-
ters. This paper analyzes the relation between catastrophe risk and the implied
volatility smile of insurance stock options. We find that the slope is significantly
steeper compared to non-financials and other financial institutions. We show
that this effect has increased over time, suggesting a higher risk compensation
for natural catastrophes. We are also able to link the insurance-specific tail
risk component derived from options with the risk spread from the catastrophe
bond market, which specifically securitizes tail risk events. Our results thus
provide an accurate, high-frequency calculation for catastrophe risk linking the
traditional derivatives market with insurance-linked securities (ILS).

Keywords: Implied volatility · Options · Catastrophe risk · Tail risk · Natural
disasters
JEL Classification: G12 · G13 · G14 · G22
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“The hurricane does not know the rate that was charged for the hurricane

policy, so it’s not going to respond to how much you charge. And if you charge

an inadequate premium, you will get creamed over time.”

-Warren Buffett-

June 9th 2014, Las Vegas

1 Introduction

Options allow us to evaluate the expectation of market participants regarding

extreme events (Backus, Chernov, and Martin (2011)). Since property-casualty

(P&C) insurance companies are exposed to natural and man-made catastrophes,

options written on P&C insurance stocks should exhibit a catastrophe risk

premium in the tail of their density function. This risk premium should be

in excess of the tail risk in stock prices induced by market events, given that

P&C insurance companies are also exposed to the overall economic develop-

ment and thus the same market events. This paper analyzes the slope of the

implied volatility, i.e., the absolute difference between out-of-the-money (OTM)

and in-the-money (ITM) put options, as a measure of tail risk to identify a

catastrophe risk premium. The idea behind this approach is that OTM options

provide more effective protection against rare events than ITM options (Kelly,

Pástor, and Veronesi (2015)).

There are at least three motivating aspects in analyzing tail risk specifically

using options on P&C insurance stocks to identify inherent catastrophe risk.1

First of all, catastrophes can cause great damage to specific regions. Risk-averse

households are interested in offloading such risks but face high insurance premi-

ums for this type of risk (see Froot (2001) and Zanjani (2002)). Any insight into

catastrophe risk can thus further enhance our understanding of risk-adequate

compensation for this type of risk. Second, some market participants specifically

1We define catastrophe risk as a specific and independent component of the overall tail
risk to which companies are exposed. Thus, catastrophe risk is one of many potential sources
of distress to a firm (here the P&C insurer). We follow Froot’s (2001) definition of catastrophe
risk itself, which relates to all events linked to natural hazard (e.g., hurricanes, earthquakes,
wind and ice storms, floods, etc.) causing financial losses.
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securitize part of their tail risk (i.e., catastrophe risk) in financial markets

by means of insurance-linked securities (ILS).2 This allows us to verify our

results for catastrophe risk in another market and establish a link between the

two. Third, P&C insurers use risk mitigation techniques to reduce tail risk

exposure, especially excess-of-loss reinsurance. This provides an opportunity to

test whether the implied volatility slope reflects differences in the amount of

risk mitigation.

No previous studies on options written on insurance stocks exist. However,

the finance literature focuses on two aspects closely related to ours. First,

the determinants of the implied volatility smile are important to explain the

anomaly of the implied volatility smile itself (Dennis and Mayhew (2002);

Bollen and Whaley (2004)). Second, the relation between the implied volatility

smile and tail risk has recently gained much attention with regard to financial

guarantees (Kelly, Lustig, and Nieuwerburgh (2015)) and political uncertainty

(Kelly, Pástor, and Veronesi (2015)). Our paper adds an important perspective

to the discussion between tail risk and the implied volatility smile by linking

catastrophe risk with the steepness of the implied volatility smile.

The contribution of this paper is fourfold. First, we derive an option pricing

model unique to P&C insurers which accounts for catastrophe risk and uses

the derivatives market for accurate pricing of catastrophe risk. Due to the

limited understanding of catastrophe risk in combination with pricing, new

methods to comprehend this risk in greater detail can reduce market imperfec-

tions. Second, fair pricing for catastrophe reinsurance can affect the capital

requirements for catastrophe risk and thus reduce the cost of capital (Zanjani

(2002)). Third, we further enhance the reasoning with regard to the implied

volatility smile. That is, we address why there is an implied volatility smile and

2The banking sector has also begun to apply a similar technique using contingent convert-
ible (coco) bonds in the wake of the financial crisis. However, catastrophe bonds have already
attracted investors at the end of the 1990s and, more importantly, catastrophe risk is (in
general) uncorrelated with the market (Froot et al. (1995) and Zanjani (2002)), whereas coco
bonds are most likely to be triggered when the rest of the economy suffers a simultaneous
downturn. Thus, from an investor’s perspective, the identification of catastrophe risk can
be interesting for diversification purposes. In our research design, this means we have an
independent component of tail risk.
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why it is shaped the way it is (Dennis and Mayhew (2002)). Fourth, we create

a link between the traditional derivatives market and ILS. From an investor’s

perspective, this link might be an indicator for potential arbitrage opportu-

nities if expectations on catastrophe risk in the two markets significantly diverge.

The first finding of this paper is the identification of a catastrophe risk pre-

mium in the implied volatility smile. The implied volatility of OTM put options

written on P&C insurers is 120 basis points higher than OTM put options on

matched non-financials with identical historical volatility. The second finding

is a strong correlation between the extracted catastrophe risk premium from

option markets and the risk spreads from catastrophe bonds with expected loss

and default risk being significant drivers of this result. The third finding is

that catastrophe risk in derivatives has increased over time, that is, the implied

volatility smile became steeper over time in comparison to options written on

the rest of the market. The fourth finding is a steepening implied volatility

smile around hurricane events on the day of the landfall and the days following.

This suggests that market participants are more likely to protect themselves

against natural catastrophes the more information about such an event arrives.

The remainder of this paper is organized as follows. Section 2 gives a brief

literature review. Section 3 derives the option pricing model for P&C insurers

and the corresponding hypotheses. Section 4 provides a description of the

methodology and Section 5 a description of the data. Section 6 shows the

empirical results. Section 7 checks for robustness and Section 8 concludes.

2 Literature

No previous studies on insurance options exist, yet there are two strands of

literature relevant to this paper. The first one deals with the general findings

from the finance literature regarding the determinants of the implied volatility

smile and its relation to tail risk. The second strand of literature refers to the
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findings on insurance-specific catastrophe risk.3

Regarding the determinants of the implied volatility slope, Dennis and

Mayhew (2002) identify several factors including beta, size, trading volume, the

slope of the market index, and the volatility environment. Effects regarding

the leverage effect are ambiguous, however. While Toft and Prucyk (1997) find

that highly leveraged firms have steeper slopes than less leveraged firms, Dennis

and Mayhew (2002) find no robust effect regarding leverage. As highlighted

by Dennis and Mayhew (2002), leverage is unlikely to be a driving factor of

the implied volatility smile, because currency options that cannot be subject to

the leverage hypothesis also display an implied volatility smile. Also, Bakshi,

Kapadia, and Madan (2003) find that index volatility smiles have a steeper

slope than individual stock option smiles. Again, they empirically show that the

volatility smile is not the result of the leverage effect, as assumed by Toft and

Prucyk (1997). Bollen and Whaley (2004) find that the volatility smile is the

result of demand pressure from public order flow. That is, the more investors

ask for OTM put options on indices and OTM call options on individual stocks,

the more expensive they get. Furthermore, Kelly, Lustig, and Nieuwerburgh

(2015) identify cheaper prices for OTM put options on a financial sector index

during the financial crisis than the sum of its individual constituents. This

means that the financial sector received a government guarantee against the tail

risk of plummeting stock prices and default. Another study by Kelly, Pástor,

and Veronesi (2015) indicates that options in weak economies or politically

uncertain countries are more valuable and contain a risk premium to protect

against the tail risk of political events. Table 1 summarizes the determinants

and other special risk characteristics affecting the slope of the implied volatility

and classifies this paper in the literature.

3From a broader perspective, this paper is also related to the real effects of risk management
on financial instruments, most notably Pérez-González and Yun (2013) who analyze weather
derivatives as a risk mitigation instrument for energy companies.
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Table 1: Factors affecting the implied volatility smile

Factors Effect on implied volatility smile Source

All options
Beta Steeper for stocks with larger betas. Dennis and

Mayhew (2002)

Size (market cap) Steeper for large firms. Dennis and
Mayhew (2002)

Volume More positive for stocks with higher
trading volume.

Dennis and
Mayhew (2002)

Net Buying Pressure Steeper for options which have a
higher demand in contrast to those
with lower demand.

Bollen and
Whaley (2004)

Leverage Ambiguous results: Toft and
Prucyk (1997) find that highly
leveraged firms have steeper slopes
than less leveraged firms. Dennis
and Mayhew (2002) find no robust
effect regarding leverage.

Toft and
Prucyk (1997);
Dennis and
Mayhew (2002)

Market Index Steeper for individual options when
market index options have steeper
slope.

Dennis and
Mayhew (2002)

Volatility Environ-
ment

Steeper during times of high volatil-
ity.

Dennis and
Mayhew (2002)

Structure (Index vs.
individual stock op-
tions)

Index volatility smiles have steeper
slope than individual stock option
smiles.

Bakshi, Kapa-
dia, and Madan
(2003)

Specific options
Financial Guarantees OTM put options on a financial

sector index were cheaper during
the financial crisis than the sum of
its individual constituents, demon-
strating an implicit insurance in the
financial sector against default.

Kelly, Lustig,
Nieuwerburgh
(2015)

Political Risk Options in weak economies and
politically uncertain countries are
more valuable, including protection
against tail risk.

Kelly, Pástor,
and Veronesi
(2015)

Catastrophe Risk OTM put options of property-
casualty insurers contain a
risk premium for catastrophic
events in excess of the market-
wide tail risk.

This paper
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Regarding the second strand of literature (insurance-specific catastrophe

findings), Thomann (2013) analyzes the relation between natural catastrophes,

the 9/11 terrorist attacks, and the volatility of insurance stocks. He finds that

natural catastrophes increase the volatility of insurance stocks but reduce the

correlation of insurance stocks with the market. Blau, Ness, and Wade (2008);

Ewing, Hein, and Kruse (2006); and Lamb (1995, 1998) find that insurer stock

prices start declining in the week before landfall of a potential catastrophe

in the cases of Hurricanes Katrina, Floyd, and Andrew. Interestingly, Blau,

Ness, and Wade (2008) do not find significant short-selling activity prior to

Katrina’s landfall but during three trading days after the landfall. From a

general perspective, researchers observe that investors are crash-averse and thus

receive a premium in returns or insure themselves through OTM index options

(see Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (2000), and Garleanu,

Pedersen, and Poteshman (2009)).

Froot (2001) investigates the importance of fair pricing of catastrophe risk

and the reduction of market imperfections and shows that high catastrophe risk

premiums can be attributed to supply restrictions, capital market imperfections,

and the market power exerted by traditional reinsurers. Furthermore, Zanjani

(2002) shows that capital costs have a significant effect on catastrophe insurance

markets because of high marginal capital requirements. Depending on the pricing

of catastrophe insurance, these capital costs can be reduced if catastrophe risk

is priced accurately.

3 Model framework and hypotheses

The main idea explored throughout this paper is that catastrophe risk is priced

in OTM stock options. Catastrophe risk has to be compensated in addition to

the tail risk of the overall economy and can occur either as man-made catas-

trophes or natural catastrophes. A candidate to investigate the relationship

between catastrophe risk and the implied volatility function are options written

on P&C insurance stocks, which insure the economy against large losses as a

result of natural or man-made catastrophes. To answer the question about

catastrophe risk being priced in stock options, we approach the issue from three



III Options and Catastrophe Risk 124

different angles.

First, if catastrophe risk is an additional pricing component in deep OTM

options of P&C insurers, then their slope should be steeper than for options

on all other stocks. We thus compare the implied volatility function of options

written on P&C insurers with the implied volatility function of options written

on non-financial stocks.4 Second, if investors and market makers anticipate

catastrophes during the development of hurricanes and tropical storms and

want to be insured against large losses after landfall, the difference between

the slope of P&C insurance options and non-financials options should increase.

Hence, we expect tail risk to increase at the arrival of new information on

catastrophes. Third, if options on insurance stocks indeed capture the risk of

natural disasters, their slope should be highly correlated with the catastrophe

risk premium, which can be observed in catastrophe bonds. Thus, options of

P&C stocks can be a high frequency, risk-neutral proxy for catastrophe risk.5

To formalize our assumptions and to provide us with more insight about the

effects of catastrophe risk, we derive an option pricing model which accounts

for an independent catastrophe risk component. For that purpose we adapt

the jump-diffusion model by Martzoukos and Trigeorgis (2002). In contrast

4We exclude all financial stocks from the control group for several reasons. One reason is
the potential ties between the banking and insurance sector, such as bancassurance, which
diffuse catastrophe risk throughout the financial system. Another reason, and closely related
to the previous one, is the spillover effects identified between financial institutions, especially
during volatile times (Adams, Füss, and Gropp (2014)). The last point involves effects on
options written on financial institutions. Kelly, Lustig, and Nieuwerburgh (2015) document a
government guarantee in OTM index options written on large financial institutions which
could bias our results. Note, however, that if this government guarantee exists in individual
options in a similar fashion, it would in fact decrease the implied volatility in OTM options
and result in even larger discrepancies in the implied volatility slope between P&C insurers
and all other stocks. In robustness tests we also include all other financial institutions to
account for such potential effects (see Section 7.1).

5Since, in general, catastrophe bonds exclude man-made disasters (i.e., terrorism attacks
or oil spills) but insurance companies write insurance for such occasions, the correlation
between the slope from options on insurance stocks and the premium inherent in catastrophe
bonds should not fully coincide. Furthermore, the recent entrance of large institutional
investors (i.e. pension funds) in the catastrophe bond market resulted in decreasing yields for
such instruments. Thus, a question that remains to be asked is whether catastrophe bonds
still adequately compensate for the risk investors are bearing. Our approach might therefore
be a method to indicate prices of catastrophe bonds in the absence of man-made disasters.
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to Martzoukos and Trigeorgis (2002), we extend the model for financial and

catastrophic shocks, provide economic intuition on the model, and further

investigate the model’s reaction along moneyness.6 For the non-financials stock

and its single exposure to economic jump events, the model collapses to the

jump-diffusion model by Merton (1976). We start with a stock, V , from the

non-financial sector, which follows the continuous-time stochastic process:

dV

V
= μdt+ σdW (V ) + kecondqecon, (1)

where μ is the drift of the underlying and σ is the volatility. dW (V ) is an

increment to a standard Brownian motion, and kecon is the jump size caused

by an economic shock, i.e., an exogenous shock, affecting the entire economy.

dqecon counts the number of economically related jumps with intensity λecon of

a Poisson process.

Another stock, S, from the P&C insurance industry follows the continuous-

time stochastic process:

dS

S
= μdt+ σdW (S) + kecondqecon + kcatdqcat (2)

We assume that the P&C insurance stock follows the same process as the

non-financials stock with identical drift and volatility except for an indepen-

dent Brownian motion, dW (S), and an additional jump component, kcatdqcat.

Specifically, the P&C stock is both affected by economic shocks such as the

non-financials stock and additionally exposed to jumps caused by catastrophic

events with jump size kcat and the jump counter dqcat with intensity λcat of

a Poisson process. Note that the two Poisson processes related to economic

events and catastrophic events are independent from each other. Furthermore,

the risk neutral drift is defined as r − δ∗, where r is the riskless rate and δ∗ is

6From a theoretical perspective, the model we propose, applies to all catastrophic events –
both man-made and natural. Within the category of natural catastrophes, the model is both
suitable for events that “announce” themselves, such as hurricanes, and for sudden events,
such as earthquakes. The reason for the suitability is the instantaneous adaptability of all
parameters at the arrival of new information. From an empirical perspective, however, the
model (more precisely, the difference between models) might be challenged by the fact that
both P&C insurance stocks and all other stocks react evenhandedly to man-made disasters (i.e.,
terrorist attacks). Also empirically difficult to prove is the model’s prediction for earthquakes,
as there has not been a substantial earthquake in the U.S. during the sample period.
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defined, in the case of a P&C stock, as:

δ∗ ≡ δ + λeconk̄econ + λcatk̄cat. (3)

As such, δ∗ accounts for the dividend yield, δ, and the jump effects,

λeconk̄econ and λcatk̄cat, caused by economic and catastrophic events. For

the non-financials stock, the risk-neutral drift obviously excludes the jump

component related to catastrophic events. In integral form, the P&C insurance

stock is thus defined as:

ln[S(T )]− ln[S(0)] =

∫ T

0

[r − δ∗ − 0.5σ2] dt+

∫ T

0

σdW (S)(t)+

necon∑
q=1

ln(1 + kecon,q) +

ncat∑
q=1

ln(1 + kcat,q),

(4)

with necon indicating the number of economic jump events and ncat indicating

the number of catastrophic jump events. Again, the model assumes that the

term
ncat∑
q=1

ln(1 + kcat,q) is only present in P&C insurance stocks but not in

non-financials stocks. We also assume that the jump size of an economic shock,

1 + kecon, and a catastrophic event, 1 + kcat, are log-normally distributed with:

ln(1 + kecon) ∼ N(γecon − 0.5σ2
econ, σ

2
econ) (5)

and

ln(1 + kcat) ∼ N(γcat − 0.5σ2
cat, σ

2
cat) (6)

where N(., .) denotes the normal density function with mean γecon−0.5σ2
econ

for economically related events and γcat − 0.5σ2
cat for catastrophically related

events. The variance of the jump size is defined as σ2
econ and σ2

cat, respectively.

The expected value of the economic jump size is

E[kecon] ≡ k̄econ = exp(γecon)− 1, (7)

and the expected value of the catastrophic jump size is

E[kcat] ≡ k̄cat = exp(γcat)− 1. (8)
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For the model development, it is important to highlight the difference

between the jump size means of economic and catastrophic events. While

economic shocks can be positive or negative with potentially equal probability

(e.g., higher or lower than expected economic growth, central bank interventions,

new technologies, economic crises, bailouts, etc.), catastrophic events are on

average negative, with either a negative impact (i.e., catastrophe occurs) or

no impact (i.e., catastrophe does not occur) but theoretically not a positive

impact. In other words, a P&C insurer has already collected all premiums at

the beginning of the year. These funds can only decrease in value through the

occurrence of catastrophic events. Hence, there is no upside but only a downside

to the earnings.7 Under this assumption, the expected jump size of catastrophic

shocks should be more negative than the expected jump size of economic shocks

(i.e., γcat < γecon). We can then define the value of a European put option on a

P&C insurance stock as:

FPut(S,X, T, σ, δ, r, λi, γi, σi) = e−rT
∞∑

necon=0

∞∑
ncat=0

{P (necon, ncat)×

E[(X − ST )
+|(necon, ncat)jumps]}

(9)

where X is the strike price of the put option and P (necon, ncat) describes

the joint probabilities of economic and catastrophic shocks on a P&C insurer.

Because the probabilities for catastrophic and economic jumps are assumed to

be independent, this term is defined as:

P = (necon, ncat) =
e(−λecon−λcat)T (λeconT )

necon(λcatT )
ncat

necon!ncat!
(10)

Based on Martzoukos and Trigeorgis (2002) and the Black-Scholes model,

we can derive the risk-neutral expectation E[(X − ST )
+|(necon, ncat)jumps]

of a put option written on a P&C insurance stock which is subject to jumps

7We acknowledge that this is a simplified perspective, given that other factors play an
important role, too, such as reinsurance cover or the safety loadings in insurance prices.
However, on average, this assumption should hold if insurance prices are fair.



III Options and Catastrophe Risk 128

caused by the overall economy and by catastrophic events, as follows:

E[(X − ST )
+|(necon, ncat)jumps] = XN(−d2n)−

Se[(r−δ∗)T+(neconγecon)+(ncatγcat)]N(−d1n)

(11)

where d1n is defined as:

d1n ≡
ln(S/X) + (r − δ∗)T + (neconγecon) + (ncatγcat) + 0.5σ2T + 0.5neconσ

2
econ + 0.5ncatσ

2
cat√

σ2T + neconσ2
econ + ncatσ2

cat

,

(12)

and d2n is defined as:

d2n ≡ d1n −
√

σ2T + neconσ2
econ + ncatσ2

cat (13)

Having defined the model, we can calibrate it and use it to guide the

empirical analyses. Because no previous empirical analysis on options written

on insurance stocks exists, we do not have a strong prior on the effect of

catastrophes on these instruments. However, as mentioned before, we reckon

that the mean jump size for catastrophes is more negative than for economic

shocks. Aside from reasonable values for the non-financials stock which follows

the calibration by Martzoukos and Trigeorgis (2002), our only condition is that

γcat < γecon. For simplicity, we assume identical standard deviations of the

jumps, i.e. (σcat = σecon). The following Table 2 summarizes our calibration

values.
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Table 2: Option model calibration

P&C insurance stock Non-financials stock

S = 100 V = 100

σ = 0.20 σ = 0.20

r = 0.02 r = 0.02

δ = 0.03 δ = 0.03

T = 0.083 T = 0.083

γecon = -0.02 γecon = -0.02

σecon = 0.50 σecon = 0.50

λecon = 1.00 λecon = 1.00

γcat = -0.10

σcat = 0.50

λcat = 1.00

This table presents the parameters used to calibrate the model for a represen-
tative option written on a P&C insurance stock and a representative option
written on a stock from the non-financial sector. Both instruments share the
same parameters and values, except for the additional catastrophe-related
parameters used in the P&C insurance stock.

As OptionMetrics reports implied volatilities on a grid of delta (Δ) values

between -0.2 and -0.8, we report the model results on exactly the same grid to

facilitate comparisons.8 We compute put option prices based on the model and

accordingly extract Black-Scholes implied volatilities and delta values.9 Figure

1 shows the results from our model calibration.10

8As noted by Kelly, Pástor, and Veronesi (2015), delta is also a better measure for
moneyness, as it reflects the probability of an option contract to expire in the money by
considering maturity, volatility, and the risk-free rate.

9We use a cubic function to fit the implied volatilities on the delta grid between -0.2 and
-0.8.

10Appendix A also illustrates model sensitivities for other calibrations of the catastrophe-
related parameters.
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Figure 1: Modeled implied volatility smiles (P&C insurers vs. non-
financial firms)

This figure illustrates the modeled implied volatilities (IV) of one-month-to-
expiration put options written on P&C insurance stocks (black line marked
by squares) and non-financials stocks (red dotted line marked by crosses)
along moneyness. Moneyness is expressed in delta values on the x-axis. The
P&C insurance stock is calibrated with S = 100, σ = 0.20, r = 0.02, δ =
0.03, T = 0.083, γecon = -0.02, σecon = 0.50, λecon = 1.00, γcat = -0.10, σcat

= 0.50, and λcat = 1.00. The non-financials stock is calibrated with V =
100, σ = 0.20, r = 0.02, δ = 0.03, T = 0.083, γecon = -0.02, σecon = 0.50,
and λecon = 1.00.

Our first observation is that insurance put options are more expensive at

all moneyness categories (delta values). Our second observation, which ad-

dresses the main idea of this paper, is the steeper slope of insurance put options

compared to non-financials put options as a result of the additional negative

catastrophe jump probability. The third observation we make in our model

is that a negative increase in the mean jump size increases the steepness of
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the slope. This effect is more pronounced the less uncertainty about the jump

prevails, σcat, and the more negative the jump size is. Motivated by the model’s

response to catastrophic events, we formulate our hypotheses.

Hypothesis 1: The implied volatility slope of put options written on P&C

insurers is on average steeper than the slope of put options written on non-

financials.

Because it is unknown when and where a catastrophe will occur, an addi-

tional tail risk component related to catastrophe risk should result in a steeper

implied volatility smile, which is the result of higher implied volatilities of OTM

put options and lower ITM implied volatilities with the jump size, γcat, and

the jump uncertainty, σcat, driving this effect.

Hypothesis 2: The implied volatility slope of put options written on P&C

insurers is related to the risk premium from the catastrophe bond market.

If the tail risk component is indeed related to losses caused by catastrophes,

the steepness of the implied volatility smile should follow the price development

of the catastrophe bond market because this market provides a price orientation

for actively traded catastrophe risk. If the no-arbitrage condition holds, both

markets should share a common time-series variation.

Hypothesis 3: In comparison to the slope of put options written on non-

financials, the implied volatility slope of put options written on P&C insurers is

steeper after a catastrophic event compared to before the event.

Because uncertainty about the jump, σcat, reduces in terms of whether and

where an event occurs, and estimations about the jump size, γcat, increase in the

case of realized catastrophes, the slope of the implied volatility should become

even steeper after an event.

4 Methodology

We analyze the difference between OTM and ITM put options. That is, our

main focus is the difference in levels of the implied volatility smile. As mentioned

above, the main idea is that OTM options provide a more effective protection
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against rare events than ITM options (Kelly, Pástor, and Veronesi, 2015). Our

slope measure follows Kelly, Pástor, and Veronesi (2015) where the slope of the

implied volatility function of firm i at time t is the difference in implied volatilities

between OTM puts, IV olaOTMP
i,t , and ITM puts, IV olaITMP

i,t . Formally, the

slope is defined as:

SLOPEi,t = IV olaOTMP
i,t − IV olaITMP

i,t (14)

where IV olaOTMP
i,t corresponds to the implied volatility of an OTM put

option with a fixed delta of -0.20 and a constant time to maturity of 30 days.

IV olaITMP
i,t corresponds to the implied volatility of an ITM put option with a

fixed delta of -0.80 and a constant time to maturity of 30 days.11 As noted by

Bollerslev and Todorov (2011), short-maturity OTM options are worthless unless

a big jump occurs before expiration, making them particularly interesting in the

context of catastrophe risk. In univariate tests, we first analyze whether the slope

of the implied volatility of options on insurance stocks is in fact steeper than

the rest of the market, as we hypothesize. We do so by comparing the implied

volatility slope of P&C insurers and non-financial firms at the end of each month.

Identical to Yan (2011), we start out using end-of-month observations in

the implied volatilities to guarantee homogeneity between all options while

finding a matching historical volatility in the control group (i.e., options on

non-financials).12 We then turn to weekly cross-sectional Fama-MacBeth (1973)

regression as in Dennis and Mayhew (2002) to control for other variables that

might influence a steeper slope in insurance stocks. Formally, the cross-sectional

Fama-MacBeth (1973) regression is defined as:

11We use these parameters because the implied volatility grid provided by OptionMetrics
is bounded by delta values between -0.20 and -0.80. Thus, we use the most extreme delta
values available to approximate the most efficient and the least efficient way to protect against
rare events.

12For further details, see Section 6.1.



III Options and Catastrophe Risk 133

SLOPEi,t = αi,t + INSURANCEi,t + IV ATM i,t + LEV ERAGEi,t + SIZEi,t

+BETAi,t + V OLUMEi,t + CALLPUTOIi,t

+ SLOPEi,t−1 + εi,t

(15)

where INSURANCEi,t is the variable of interest and defined as a dummy

variable taking the value of one if the slope refers to a P&C insurer and zero if

it refers to a non-financials stock. If P&C insurers indeed bear a risk premium

for natural catastrophes (and man-made disasters) compared to the rest of

the market, this variable should be significantly positive, meaning that the

difference between OTM and ITM put options is larger for P&C insurers.

Following Dennis and Mayhew (2002), the first control variable is IV ATMi,t

which is the contemporaneous weekly average of at-the-money (ATM) implied

volatilities of company i at week t. We use a delta of -0.50 for an option to be

ATM. If the overall level influences the slope in the cross-section, it is necessary

to control for an effect which could limit the upper bound of OTM options. We

also include LEV ERAGEi,t as a control variable. We divide the book value of

total assets by the market value of equity and take the natural logarithm of the

ratio to define LEV ERAGEi,t (Kelly, Lustig, and Nieuwerburgh (2015)). We

use total assets from the last fiscal year lagged by four months and contempora-

neous market equity at time t. This variable might be particularly important,

because P&C insurers are characterized by high leverage values. Black (1976)

and Toft and Prucyk (1997) argue that leverage mechanically results in higher

volatilities because, as the equity value of a levered company decreases, the

leverage ratio has to increase, and thus the volatility of that company has to

increase. However, results about leverage in the implied volatility context are

ambiguous. For example, there are significantly steep slopes for unlevered firms

and also currency options that are not exposed to leverage ratios (Dennis and

Mayhew (2002)).

The third control variable is SIZEi,t, measured as the contemporaneous

natural logarithm of market equity of stock i at time t. It could be the case
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that smaller companies tend to be more risky (Banz (1981)) and might be

more susceptible to default risk (Vassalou and Xing (2004)). Furthermore, we

check for the systematic risk, BETAi,t, of each stock, assuming that higher risk

exposure should result in steeper slopes. The rolling market beta is calculated

by regressing daily excess returns of stock i against CRSP’s value-weighted

market return in excess of the risk-free rate over the past 200 days. Another

control variable is V OLUMEi,t which is defined as the logarithm of average

daily trading volume over week t. We include this variable as a proxy for

liquidity (Dennis and Mayhew (2002)). More trading activity in the underlying

stock implies a higher demand for options including hedges against downside

movements in stock prices. The control variable CALLPUTOIi,t captures the

trading pressure between calls and puts which could explain higher prices due

to higher demand for either one of them (Dennis and Mayhew (2002); Bollen

and Whaley (2004)). We determine the total open interest over the entire week

for calls and puts and then divide this number by the difference between total

open interest in calls and total open interest in puts over the entire week. This

measure is bound between -1 and +1. A negative value indicates larger interest

for put options, and a positive value indicates larger interest for call options. To

capture any persistence and residual explanatory power in the implied volatility

slope, we include the implied volatility slope lagged by one week, SLOPEi,t−1.

In addition to the cross-sectional Fama-MacBeth (1973) regressions, we run

pooled time-series cross-sectional regressions with clustered standard errors by

firm and week to account for market-wide factors, the unbalanced panel, and

the firm and time dependency (Petersen (2009)). It is well-known that volatility

appears in clusters, with certain time periods being more volatile than others

(Maheu and McCurdy (2004)). Thus, if some stocks are more prone to changes

in volatility clustering or changes in overall market volatility than others, the

slope of implied volatility could also be affected. The pooled time-series cross-

sectional regression can therefore capture the time series variation in the slope

of the implied volatilities and is formally defined as:
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SLOPEi,t = αi,t + INSURANCEi,t + IV ATM i,t + LEV ERAGEi,t

+ SIZEi,t +BETAi,t + V OLUMEi,t + CALLPUTOIi,t

+ SLOPE500i,t + IV ATM500i,t + SLOPEi,t−1 + εi,t.

(16)

To capture the market-wide effects, we include both the slope of the S&P500

Index (SLOPE500i,t) and the overall level of the market volatility proxied by

the implied volatility of ATM options of the S&P500 Index (IV ATM500i,t).

5 Data

We retrieve daily data on all put options from the standardized volatility sur-

face provided by OptionMetrics between January 1996 and December 2013.

The complete sample consists of 67 U.S. P&C insurers and 5596 companies

from the non-financial sector.13 OptionMetrics’ volatility surface calculates an

interpolated implied volatility surface using a kernel smoothing algorithm for

puts and calls with different strikes and maturities. The resulting standardized

grid includes delta values in steps of 0.05 from -0.20 (i.e. OTM put option)

to -0.80 (i.e. ITM put options). Binomial trees are used to first compute

the underlying implied volatilities, allowing for early exercise and considering

expected dividends to be paid until the maturity of the options. Note that a

standardized option is only documented in OptionMetrics’ volatility surface if

there are sufficient underlying option data on each day to accurately determine

an interpolated implied volatility. The advantage of using the standardized

volatility surface is that we do not have to proceed with ranges of diverging

maturity or strike prices, which could ultimately introduce a measurement bias.

To analyze catastrophe risk, we differentiate between P&C insurers with

SIC code 6331 and all other options that are not financial stocks (i.e. excluding

options with SIC codes between 6000 and 6999).14 Using short-dated options

13A complete list of all 67 P&C insurers can be found in Appendix B.
14We focus on P&C insurers identified by the SIC code to avoid any selection bias and

also because investors might not be able to differentiate how much exposure the underlying
insurer has towards catastrophe risk. This argument is based on the opacity of insurance
markets and the well-protected underwriting exposure (Cummins and Weiss (2009)).
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with 30 days to maturity has two advantages. First, they are the most liquidly

traded ones in contrast to options with longer maturities (Driessen, Maenhout,

and Vilkov (2009)). Second, a natural disaster is temporarily restricted. That

is, an earthquake takes only a few minutes, and a hurricane in general takes no

more than two to three weeks from initial development until landfall. Thus, the

actual cost after a disaster can be roughly estimated after such an event. Conse-

quently, investors would want to be insured for the time period in which actual

costs are estimated to avoid the greatest uncertainty about claim payments.15

We only use individual equity options and exclude index options (i.e., the

OptionMetrics index flag equals 0). Accounting data to calculate leverage

figures are retrieved from COMPUSTAT. Daily trading information regarding

volume, size, and returns are from CRSP. Data on open interest and the implied

volatility of the S&P500 are gathered from OptionMetrics. Another analysis

in this paper refers to the link between the implied volatility slope and catas-

trophe risk. Since there is in fact a market for catastrophe risk in the form of

catastrophe bonds, we can actually relate the slope of the implied volatility to

actual catastrophe risk. For that purpose, we use the quarterly data of cat bond

spreads from Braun (2016).16 If both measures are related to each other, they

should be highly correlated. This would not only provide evidence of what the

slope is in fact measuring but also establish accurate pricing for catastrophe risk.

Table 3 summarizes the dependent and independent variables in terms of

mean, standard deviation, and the number of firm-week observations. Panel

A reports these variables for the treatment group of P&C insurers and Panel

B for the control group of stocks in the non-financials sector. Panel C reports

market-wide explanatory variables based on the S&P500.

15Overall, this intuition is contrary to a financial crisis, which includes contagion effects
and risks that can take several months or even years to be discovered.

16The term “spread” relates to the yield from primary markets at initial issuance of the
catastrophe bond in excess of the risk free rate. We would like to thank Alexander Braun for
making the data available to us.
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Table 3: Descriptive statistics

Panel A: P&C insurers Panel B: Non-Financials

Variable Mean Std. Dev. Obs. Mean Std. Dev. Obs.

SLOPEi,t 0.058 0.116 28,290 0.034 0.111 1,947,873

IV ATMi,t 0.338 0.179 28,290 0.518 0.268 1,947,873

LEV ERAGEi,t 1.355 0.742 27,887 -0.141 1.197 1,760,953

SIZEi,t 9.538 1.527 27,868 7.673 1.653 1,760,307

BETAi,t 0.872 0.331 27,829 1.160 0.592 1,837,527

V OLUMEi,t 1,273,109 6,435,054 28,290 1,472,984 4,421,952 1,894,309

CALLPUTOIi,t 0.242 0.419 28,290 0.279 0.361 1,947,873

Panel C: Market (S&P 500)

Variable Mean Std. Dev. Obs.

SLOPE500t 0.065 0.032 936

IV ATM500t 0.195 0.076 936

This table presents the mean, standard deviation (Std. Dev.), and the number of firm-week
observations of the dependent variable (SLOPEi,t) and the explanatory variables. Panel A
reports these variables for property-casualty insurers. Panel B reports these variables for the
control group of stocks in the non-financials sector. Panel C reports market-wide explanatory
variables based on the S&P500. The sample period starts in the first week of January 1996 and
ends in the last week of December 2013.

6 Empirical analysis

The empirical analysis starts with univariate tests (Section 6.1), followed by

Fama-MacBeth (1973) regressions (Section 6.2) and panel (pooled cross-sectional

time-series) regressions (Section 6.3) and then establishes the link between the

implied volatility slope and the catastrophe risk market (Section 6.4). The last

analysis addresses the reaction of the implied volatility around catastrophic

events (Section 6.5).

6.1 Implied volatility of P&C insurers and non-financials

To adequately compare the implied volatility of P&C insurers with the rest

of the market in univariate tests we use a matching procedure based on the

realized volatility of a stock. This procedure guarantees both a fair compari-
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son of the slope and of the levels of the implied volatility at each value of delta.17

Specifically, the implied volatility measures the future volatility market

participants expect for a stock. Assuming there are two stocks with the same

realized volatility in time t, one could expect that their future volatility is

identical, too, unless market participants expect the future volatility of one

stock to be higher than the rest of the market due to additional risk components.

Here, we expect that investors add an additional risk component in (deep) OTM

put options of P&C insurers due to catastrophe risk, a risk component which

should not appear in non-financials with identical realized volatility. Using data

on realized volatility over the past 365 days from OptionMetrics, we match the

implied volatility of insurance stocks with the implied volatility of non-financials

stocks.18 At the end of each month, we match each P&C insurance stock with

a portfolio of all available non-financial stocks of identical realized volatility.19

Panel A of Table 4 shows the mean of the implied volatilities (and the

standard deviation) of puts on P&C insurers stocks at different values of delta.

Panel B shows the mean of the implied volatilities (and the standard deviation)

of puts on non-financials stocks at different values of delta.20 Table 5 tests the

equality of the implied volatilities between P&C insurers and non-financials. As

expected, the deep OTM insurance stock options are significantly higher (i.e.,

an implied volatility of 0.407) than those of deep OTM non-financials options.

The matching procedure appears to be well specified as ATM options at a delta

value of -0.50 for both categories are virtually identical (0.337 vs. 0.337 with a

17Note that the matching procedure is not necessary for our key analysis regarding the
slope that we propose, which is overall steeper for P&C insurers compared to non-financial
firms. However, the overall level of OTM, ATM, and ITM implied volatilities of non-financials
is higher. In the following regression analysis, we are only interested in the slope and do
not compare implied volatilities at different delta values. Thus, we include all P&C insurers
and non-financial firms without any matching procedure in the regression analysis. Similar
matching procedures in the context of stock splits are used by Shaik (1989).

18We use 365-days historic volatility to avoid seasonal effects that might affect shorter
volatility measures.

19Since there are more non-financial stocks than P&C insurer stocks, we average the
implied volatility from non-financials options to avoid any selection bias.

20Note that six realized volatility observations from P&C insurers could not be matched
with identical realized volatility from non-financials. For the sake of completeness, we report
all implied volatilities of P&C insurers. If we exclude the six observations, results are virtually
unchanged. Furthermore, the following regression analysis uses the entire universe of P&C
insurers and non-financials.
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t-statistic for the difference of -0.10).

In contrast, deep ITM put options for non-financials have significantly higher

implied volatilities than P&C insurers. This suggests that investors and market

makers are indeed more worried about severe declines in P&C stock prices for

which they want to be insured against but not about smaller movement where

deep ITM options can be useful.21 This relation between delta and implied

volatilities is also illustrated in Figure 2.

We can see that the shape of the implied volatility smile of P&C insurers

from actual data follows closely the shape described by the option pricing model

and also exhibits a steeper slope than non-financials.22 However, the shape and

level of the implied volatility smile of non-financials is much closer and steeper

to the P&C insurers. An explanation for such a pattern is that non-financials

are exposed to other tail risk components which are, however, not as extreme

as catastrophes for P&C insurers.23 This would explain the similar level in

implied volatilities of put options written on P&C insurers and non-financials

and at the same time account for the steeper slope of non-financials.

With the discovery of a significantly positive difference between P&C insur-

ers and non-financials in OTM put options but none between ATM put options

and a significantly negative one between ITM put options, the question remains

whether this difference also results in a statistically significant slope difference

between the two groups. We compute the slope as defined in Section 4 for both

P&C insurers and non-financials. Table 6 shows that the parametric and the

non-parametric difference between both slopes is highly significant, meaning

21We also run non-parametric tests presented in Table 5 using the Wilcoxon–Mann–Whitney
rank-sum test. In this setting, median implied volatilities of P&C insurers are not higher than
the implied volatilities of non-financials. However, the median difference becomes smaller the
more out-of-the-money the option gets. There might be several reasons for that including
stronger effects in the post-Katrina period and peak events (i.e., hurricanes) which further
increase the slope during specific time periods. These reasons explain to some extent the
discrepancy between the mean and the median difference in implied volatilities.

22Although we are interested in the shape of the implied volatility, it should be mentioned
that the levels are overestimated by the model which is mainly attributable to an extensive
λcat and σcat, and thus represent a calibration issue.

23Each company could be exposed to an industry-specific tail risk component. For example,
a pharmaceutical could be sued for a flawed drug, or an automotive company could be forced
to recall their vehicles because of defective brakes.
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Figure 2: Implied volatility smiles of traded put options (property-
casualty insurers vs. non-financial firms)

This figure illustrates the implied volatilities of one-month-to-expiration put options of
property-casualty insurance stocks (black line marked by squares) and non-financials stocks
(red dotted line marked by crosses) derived from traded put options along moneyness.
Moneyness is expressed in delta values on the x-axis. The matched sample consists of
non-financial stocks and property-casualty insurance stocks based on 365-day realized
volatility. Realized and implied volatilities are retrieved from OptionMetrics. The sample
period is January 1996 to December 2013.
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Table 6: Univariate comparison of the slope of the implied volatilities
(property-casualty insurers vs. non-financial firms)

P&C insurers Non-financials Unpaired two-sided t-test Wilcoxon test

Mean Median

IV OLAOTMP
i,t 0.407 0.396

IV OLAITMP
i,t 0.347 0.358

SLOPEi,t 0.060 0.038 0.022*** 0.004***

[9.50] [7.11]

Obs. 6546 6546

This table reports the mean of implied volatilities of out-of-the-money (OTM) and in-the-
money (ITM) put options written on property-casualty insurers and non-financial firms.
The slope of property-casualty insurers and non-financials is defined as the difference
between OTM (delta = -0.20) and ITM (delta = -0.80) put options. The table also
compares the means between the slopes of property-casualty insurers and non-financials
using an unpaired two-sided t-test as well as their medians based on the Wilcoxon–Mann–
Whitney rank-sum test. Time to expiration of the individual equity options is one month.
Implied volatilities of the non-financial comparison group are matched with implied
volatilities of property-casualty insurers based on 365 days of realized volatility. The
average realized volatility for all stocks over the entire sample is 0.323. Realized and
implied volatilities are retrieved from OptionMetrics. The sample period is January 1996
to December 2013. T -statistics and z-statistics are reported in brackets, respectively. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

that investors expect a higher probability of tail risk for P&C insurers, although

historical volatility would not imply such a difference.

Beyond the time-series averages of the implied-volatilities for P&C insurers

and non-financials, it might be of interest how the two groups develop over time.

We thus graph the slope of the implied volatility for both categories separately

in Figure 3. An interesting observation we make here is that the slope of P&C

insurers was identical and even slightly below the slope of non-financials during

the time until Hurricane Katrina in 2005.

Since Hurricane Katrina, however, it appears that P&C insurers were mostly

above the slope of non-financials, suggesting that a change in perception among

market participants occurred regarding large losses insurers are exposed to.
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Figure 3: Slope of the implied volatility smile of P&C insurers and non-
financials over time

This figure illustrates the slope of the implied volatility smile from options written on
property-casualty insurers (black solid line) and non-financials (red dotted line) over
time, with identical 365-days historical volatility. The sample period is January 1996 to
December 2013.
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6.2 Fama-Macbeth (1973) regressions

We now turn to the multivariate analysis of the slope, including all equity

options on P&C insurers and non-financials. Table 7 reports the results of

the cross-sectional regression analysis with the slope (as defined in Section

4) as the dependent variable. When we only include the dummy variable

INSURANCEi,t in our regression (Column I), we find similar results for the

difference in slopes as in Table 6, both in terms of economic and statistical

significance. Note that the dependent variable includes all slopes of P&C insurers

and non-financials. Column II includes the control variables presented in Section

4. The economic and statistical difference of INSURANCEi,t remains highly

significant at the 1%-level. We also include the previous week implied volatility

slope (Column III) to capture any omitted factors. The implied volatility slope

of the previous week is highly significant, which suggests that the slope is very

persistent and thus predicable over time (see An et al. (2014)). The variable

INSURANCEi,t, though, remains statistically and economically significant at

the 1%-level.

Overall, the results show that fundamental and option-related data cannot

explain the steeper slope of options written on P&C insurers. Rather, they are

specifically exposed to extreme catastrophe events which investors and market

markers acknowledge with higher OTM put option prices (and lower ITM put

option prices) compared to options on non-financials.

6.3 Panel regression

While the Fama-MacBeth (1973) regressions indicate significant relationships

between the slope insurance-specific catastrophe risk, they do not allow us

to check time-dependent effects. Specifically, volatility in general is found to

cluster. That is, some periods in time show stronger volatility patterns, while

other periods are less volatile. If some options are more prone to changes in

volatility clustering or changes in overall market volatility compared to others,

the slope of implied volatility could also be affected. The pooled time-series

cross-sectional regression can therefore capture the time series variation in the

slope of the implied volatilities. Table 8 shows the results of the panel regression.

Again, INSURANCEi,t is highly significant in all settings. Indeed, the level



III Options and Catastrophe Risk 146

Table 7: Fama-MacBeth (1973) regressions

(I) (II) (III)

INSURANCEi,t 0.016*** 0.015*** 0.005***

[7.47] [6.59] [6.37]

IV ATMi,t -0.043*** -0.031**

[-10.03] [-2.44]

LEV ERAGEi,t -0.003*** -0.004

[-2.95] [-1.25]

SIZEi,t -0.001 -0.002

[-0.99] [-1.35]

BETAi,t 0.007*** 0.002**

[6.68] [2.04]

V OLUMEi,t -0.000 0.000

[-1.10] [0.97]

CALLPUTOIi,t -0.001 0.000

[-0.64] [0.45]

SLOPEi,t−1 0.649***

[50.03]

Intercept 0.032*** 0.053*** 0.037**

[15.11] [6.48] [2.29]

Avg. R2 0.00 0.04 0.46

Weeks 936 928 928

Obs. 1,976,163 1,736,945 1,733,939

This table reports Fama-MacBeth (1973) regressions with the slope of the implied volatility
smile as dependent variable. The sample period is January 1996 to December 2013. T -
statistics are reported in brackets and corrected for Newey-West (1987) autocorrelation
with lags of 7. Avg. R2 is the time-series average R-square from each weekly cross-sectional
regression. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.
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of the market volatility proxied by the implied volatility of ATM S&P500 Index

put option captures some of the time-series variation of the slope of the implied

volatility. The slope of S&P500 Index put options, however, is insignificant and

appears to have no impact on the slope of individual equity options as soon as

the past slope of the individual stock is included in the regression setting.

6.4 Linking catastrophe risk with the implied volatility

slope

As a result of an active primary market for catastrophe risk and ex-post fig-

ures for insured (and uninsured) losses caused by catastrophic events, we can

further investigate how the implied volatility slope of P&C insurers is related

to the catastrophe market after controlling for all firm-specific parameters.

For that purpose, we extract the slope coefficient on INSURANCEi,t from

cross-sectional Fama-MacBeth (1973) regressions. Because insurance losses are

only available on a yearly basis, we calculate in a first run the 12-month rolling

mean of the extracted slope coefficient on INSURANCEi,t.

When we illustrate the data on total losses, available from Swiss Re, against

the rolling coefficient we observe a matching effect between the two time series

(Figure 4). Several observations must be highlighted. First, the graph not

only shows insured but also uninsured losses, which might suggest that market

participants anticipate the full losses correctly but cannot predict how much

of the losses are indeed insured.24 Second, the data shows worldwide losses.

Given the strong interconnectedness between insurers - especially reinsurers -

around the globe, it is not far-fetched to assume that market participants react

to catastrophic news from the entire world, such as the Tohoku earthquake in

Japan in 2011 (which caused the Fukushima incident). The third point we want

to highlight is that the slope coefficient does not react to man-made disasters,

specifically the 9/11 Terrorist Attacks. Because such an event has an impact on

the entire economy, P&C insurers do not react in isolation despite an increase

24Anecdotal evidence supports this idea. During Hurricane Sandy, cat bonds issued by
Chubb Corporation were oversold under the impression that these cat bonds would be triggered
given the strong underwriting of Chubb in flood insurance. However, these predictions were not
met, and prices heavily recovered (http://www.artemis.bm/blog/2012/11/12/catastrophe-
bond-prices-recover-some-sandy-losses-last-week/).
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Table 8: Panel regression with cross-sectional and time-series clustered
standard errors

(I) (II) (III) (IV)

INSURANCEi,t 0.024*** 0.023*** 0.023*** 0.008***

[5.56] [5.05] [5.13] [4.98]

IV ATMi,t -0.026*** -0.046*** -0.016***

[-6.25] [-11.18] [-9.16]

LEV ERAGEi,t -0.000 -0.001 -0.000*

[-0.32] [-1.60] [-1.88]

SIZEi,t -0.001 -0.002*** -0.001***

[-1.46] [-4.04] [-3.05]

BETAi,t 0.009*** 0.012*** 0.004***

[10.01] [13.94] [10.62]

V OLUMEi,t -0.000 -0.000 -0.000

[-0.40] [-0.12] [-1.52]

CALLPUTOIi,t -0.008*** -0.007*** -0.002***

[-6.00] [-5.86] [-4.52]

SLOPE500i,t -0.197*** -0.032

[-4.73] [-1.21]

IV ATM500i,t 0.179*** 0.051***

[9.77] [4.31]

SLOPEi,t−1 0.664***

[122.02]

Intercept 0.034*** 0.045*** 0.038*** 0.012***

[38.23] [8.91] [7.39] [4.91]

R2 0.00 0.01 0.01 0.45

Weeks 936 928 928 928

Firms 5,609 4,912 4,912 4,908

Obs. 1,976,163 1,736,945 1,736,945 1,733,939

This table reports panel regressions with clustered standard errors by firm and week
(Petersen (2009)) with the slope of implied volatility as the dependent variable. The
sample period is January 1996 to December 2013. T -statistics are reported in brackets. *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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in the implied volatility slope during that time. The last point to address is the

discrepancy between the coefficient and the insurance losses in the year 2000.

One explanation is that winterstorm Lothar occurred between December 25

and December 27, 1999, and thus total losses were assigned to that year. If

these losses were more appropriately assigned to year 2000, both figures would

align much better.

Figure 4: Total losses and the slope coefficient

This figure illustrates the 12-month rolling mean of the slope coefficient on
INSURANCEi,t (black solid line) extracted from weekly cross-sectional regressions
(i.e., Fama-MacBeth (1973) regression) with all control variables described under Formula
(24). At the end of each year, global total losses from man-made (red bar), natural (green
bar), and uninsured (blue bar) catastrophes are indicated. The graph also highlights
the most severe catastrophes during that year. Data on insured and uninsured losses
are retrieved from the sigma world insurance database provided by Swiss Re Economic
Research & Consulting.

Despite this first indication of the implied volatility smile being connected to

catastrophe risk, hard evidence is still missing. We thus turn to the catastrophe

bond market. Data for catastrophe bond spreads is available on a quarterly

basis. This time we start by showing the quarterly means of the slope coefficient
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on INSURANCEi,t against the quarterly mean spread of catastrophe bonds

at issuance. Figure 5 illustrates the time series.

Figure 5: Catastrophe bond spreads and the slope coefficient

This figure illustrates the quarterly means of the slope coefficient on INSURANCEi,t

(black solid line) against the quarterly mean spread of catastrophe bonds at issuance over
the risk free rate (red dotted line). The spread is expressed in basis points. To compare
both time-series, the slope coefficient is multiplied by 100,000.

We find a 49.4% correlation between catastrophe bond spreads and our mean

coefficient. Despite this high correlation, it is not a perfect correlation. Two

main possible reasons for this come to mind. First, our implied volatility mea-

sure does not contain pricing components which, in contrast, can be observed

in the cat bond market. This is particularly pronounced in the graph for the

period after Hurricane Katrina in which the implied volatility smile reacts to

Katrina itself, but only marginally to increasing prices during the 2006 period

with record-high prices. A second reason could be that the securitization of

catastrophe risk is not representative for the entire U.S. P&C insurance industry.
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To address the first point, we run time-series regressions in a multivariate

setting. We start with an univariate regression in which the quarterly mean

spread of catastrophe bonds at issuance, CATt, is the dependent variable. Braun

(2016) identified the pricing components of cat bonds in the primary market

(i.e., the yields at issuance) and thus we can decompose CATt in its individual

risk drivers. Three parameters are important for our aggregate catastrophe risk

measure. First, the expected loss, ELt, which refers to the losses predicted by

models for a specific tranche of cat bonds and, second, the default spread from

bond markets. Specifically, we use the Bank of America Merrill Lynch U.S.

High Yield BB Option-Adjusted Spread, BBSPRt, which is defined as the yield

index for the BB-rated bonds over the Treasury rate. The third parameter is the

rate-on-line index, ROLXt, which addresses the price dynamics of reinsurance

contracts. This price dynamic is known as the reinsurance cycle and a well-

known phenomenon for increasing reinsurance prices after catastrophes to make

up for the incurred losses. This pricing component is in fact not directly related

to immediate tail risk and thus should be the least relevant pricing component

with respect to the implied volatility smile. Table 9 presents the results.
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Table 9: Implied volatility slope and ILS

(I) (II) (III)

CATt 1.636*** 1.476***

[3.18] [3.01]

ELt 3.131***

[3.17]

BBSPRt 1.514***

[2.92]

ROLXt 3.287

[0.54]

orthCATt 0.521

[0.77]

SLOPE500t 7.943

[1.61]

Intercept -619.091** -1,033.053*** -820.772

[-2.05] [-3.29] [-1.47]

Adj. R2 0.23 0.29 0.29

Obs. 67 67 67

This table reports time series regressions of quarterly means of the slope coefficient on
Insurancei,t as dependent variable and cat bond related variables as explanatory variables.
As an additional control, the slope of the S&P500 is also included (SLOPE500t). CATt

is the quarterly mean yield spread of catastrophe bonds at issuance over the risk free
rate. ELt is the average expected loss of all catastrophe bond tranches. BBSPRt is the
yield of the BofA Merrill Lynch US High Yield BB Option-Adjusted Spread. ROLXt is
the Lane Financial LLC Synthetic Rate on Line Index. orthCATt is the orthogonalized
catastrophe bond yield spread on ELt, BBSPRt, and ROLXt. T -statistics are reported
in brackets and corrected for Newey-West (1987) autocorrelation with lags of 3. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Column (I) corroborates the high correlation result and what we have already

seen in Figure 5 - that the spread of catastrophe bonds at issuance, CATt,

is significantly related to the slope coefficient on INSURANCEi,t and thus

the implied volatility smile. Column (II) runs a control regression with the

implied volatility slope of the S&P500 as independent variable, SLOPE500t,

to ensure that the results are not driven by other market factors. Column

(III) then decomposes CATt in its individual risk factors, ELt, BBSPRt, and

ROLXt. All remaining pricing components are included in the orthogonalized
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cat bond spread, orthCATt, on the three risk factors. As expected, ELt is

the most important driver of the implied volatility smile of P&C insurers,

showing clear evidence that the implied volatility slope is indeed related to

natural catastrophe risk. Furthermore, we see that price dynamics, i.e., the

reinsurance cycle, ROLXt, have no impact on the implied volatility smile. This

is what we expected, given a missing urgency of potential default due to price

dynamics. The most challenging result, though, is the highly significant BB

Option-Adjusted Spread, BBSPRt. Up to this point, we assumed that our

difference-in-difference approach (i.e., P&C insurers vs. non-financials) would

extract the financial distress component if both groups react identically to

economic stress. The fact that the spread is significant, though, shows that the

implied volatility of P&C insurers has a remaining reaction towards economic

shocks and that our approach did not fully disentangle catastrophe risk from

economic distress. Overall, our results show that the implied volatility slope is

indeed related to catastrophe risk.

6.5 Event study

Having analyzed catastrophe risk in a multivariate framework, we now conduct

an event study to control for the reaction of the implied volatility slope around 12

natural catastrophes in the United States between January 1996 and December

2013.25 For that purpose, we identify the costliest natural catastrophes related

to hurricanes and storms in the United States during that period.26 Specifically,

we investigate 11 hurricanes and one tropical storm listed in Appendix C, sorted

by first appearance and differentiated by peril, first appearance, landfall, end

date, geographic region, type of event, insured loss as documented, and the

25We choose these 12 events based on Swiss Re’s 2014 Sigma Report which identifies
40 of the costliest catastrophic events between 1970 and 2013 (http://media.swissre.com/
documents/sigma1_2014_en.pdf). Over our sample period 12 natural catastrophes occurred
in the U.S. (excluding Hurricane Ike).

26Note that the analysis based on the largest catastrophes in the U.S. ex-post needs to be
interpreted cautiously, because a look-ahead bias is introduced by considering catastrophes of
which the final costs to insurance companies is known sometime after the event.
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ranking of the loss.27 The question is whether the steeper slope of insurers

is simply higher (due to other unknown factors) or whether the slope shows

some reaction around the peak event of a catastrophe. If investors anticipate

catastrophes or expect losses to insurance companies after the peak of the event

to be extremely high, the implied volatility slope might be significantly larger

for P&C insurers than options on non-financials.

Although it can take several months or even years until claims by policyhold-

ers are settled, first rough estimates of the damages are reported within the first

two weeks after the event. We calculate the daily difference in slopes between

P&C insurers and non-financials (difference-in-differences) around a natural

catastrophic event. The time frame is 14 business days before and 14 days after

landfall, where landfall is defined as day zero. In case of multiple landfalls,

the first landfall is assigned as day zero. If landfall occurs on a weekend or

a holiday, we use the following trading day as the day of landfall. Results

on the difference-in-differences between the implied volatility smile of P&C

insurers and non-financials are visualized for each day in Figure 6. We see that

the slope difference is constantly above zero during the event period, but we

also see that the slope difference peaks the first time nine business days before

landfall. This is somewhat surprising, as it is well in advance before the average

first appearance in our sample (ca. 5 days; see Appendix C). An explanation

could be the hurricane seasons of 2004 and 2005, during which 7 out of 12

hurricanes occurred in close sequence. Thus, effects from the previous hurricane

are possibly confounding the period before the next hurricane.

27There were no earthquakes in the U.S. during our sample period, and we exclude
Hurricane Ike from our event study, because it occurred at around the same time as the peak
of the financial crisis and the collapse of Lehman brothers. We include the only tropical storm
Allison because of the large insured losses it incurred. We also exclude the 9/11 terrorist
attacks as they not only financially affected insurers but also the entire economy.
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Figure 6: Event study

This figure shows the difference in slopes between P&C insurers and non-financials
(difference-in-difference) around a natural catastrophic event. The time frame is 14
business days before and 14 business days after landfall. Landfall occurs on day zero. In
case of multiple landfalls, the first landfall is used as day zero. If multiple events occur
during a short period of time and the slope difference would be categorized both as pre-
and post event, we only account for it once in the pre-event period but not again in the
post-event period.

We then ask the question whether the post-event slope is higher than the

pre-event slope. As we already accounted for the slope of the control group,

we conduct a parametric t-test and non-parametric Wilcoxon rank-sum test

between the two slopes. Table 11 reports the test results and the slope difference

before and after the event. Both the parametric and non-parametric test show

a significantly steeper slope after the event, again, emphasizing the fact that

the slope reacts to natural catastrophes.28

28Note that the average pre- and post-slopes in the graph do not fully align with the
numbers in Table 11, because there are events with more observations (i.e., options) than
others and consequently have more weight, whereas the graph averages all observations on a
specific day.
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Table 10: Pre- and post-event comparison of the difference-in-differences
slope

Pre-Slope Post-Slope Unpaired two-sided t-test Wilcoxon test

SLOPEi,t 0.017 0.032 0.015*** 0.003***

[3.76] [3.00]

Obs. 4097 3422

This table compares the time period in the difference in slopes between P&C insurers
and non-financials (difference-in-differences) 14 business days before and 14 business days
after a hurricane landfall. All hurricanes in the United States between 1996 and 2013 are
considered (Hurricane Ike is excluded, as it occurs around the same time as the Lehman
collapse). An unpaired two-sided t-test is used to test the means before and after the
event period. The median difference is reported and the non-parametric Wilcoxon–Mann–
Whitney rank-sum test is applied. T -statistics and z-statistics are reported in brackets,
respectively. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

7 Robustness tests

This section runs several robustness tests with respect to the sample and

time period. The first robustness test refers to controlling for other financial

institutions as a test group. The second test separates between primary insurers,

reinsurers, and the use of reinsurance coverage. The third test addresses the

seasonality of catastrophes (i.e. hurricane season vs. non-hurricane season)

whether the effect is constant over time and whether the financial crisis had an

impact on the slope effect.

7.1 Other financial institutions and systemic relevance

In the previous sections we focused on options written on stocks from the

non-financial sector as a control group. We argued that options written on

stocks from the financial sector might create some confounding effects, such

as systemic risk exposure, which become prevalent in extreme scenarios, or

government guarantees or a diffusion of catastrophe risk through stakes in P&C

insurers (e.g., bancassurance).

In this section, we want to address this issue by including other financial

companies and comparing them with P&C insurers. For that purpose we select
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all put options in OptionMetrics with SIC codes between 6000 and 6999, except,

of course P&C insurers (SIC code 6331), which comprise our experimental

group. We run the same regressions as before. Note that our sample size is

strongly reduced when running regressions with LEV ERAGEi,t and SIZEi,t

due to the lower availability of accounting information for financial institutions

in COMPUSTAT. We thus run our regressions both with and without these

two variables. Results for the variable of interest INSURANCEi,t, however,

remain robust in all specifications. Furthermore, we include a dummy variable

being one for all systemically important financial institutions (SIFI) except for

AIG.29 AIG is the only company which is both a SIFI and a P&C insurer. It

might be that our results are driven by AIG and that the slope of AIG is steeper

than for the rest of the P&C insurers. We thus look at AIG separately and

include a dummy variable, AIGi,t, being one if the company is AIG and zero

otherwise. The SIFIi,t dummy variable ought to capture any effect in their

implied volatility smile. On the one hand, government guarantees could reduce

the steepness of the slope, which is what Kelly, Lustig, and Nieuwerburgh (2015)

observe in index options. Since we are looking at individual options of financial

institutions, this effect might also exist in a reduced form, but it could also

be that the connectivity of the financial sector and associated spillover effects

translate in steeper slopes of the implied volatility. Results are reported in

Table 11.

We see that the economic size of the coefficient on INSURANCEi,t has

decreased by approximately half compared to the previous regressions with non-

financials as the control group, suggesting that some of our concerns regarding

other financial institutions might be true. To our surprise though, AIG is not a

driving force of our results at all. Quite the contrary, AIGi,t shows a highly

significant negative coefficient, meaning that AIG’s implied volalitity smile is

much flatter than the implied volatility smile of other P&C insurers. SIFIs,

in general, also do not confound our results. Although not being statistically

significant under all specifications the overall direction of the SIFIi,t dummy

29A complete list of SIFIs can be found in Appendix D. Information on systemi-
cally important banks and insurers is retrieved from the Financial Stability Board (www.
fsb.org/wp-content/uploads/r_141106b.pdf and www.fsb.org/wp-content/uploads/FSB-

communication-G-SIIs-Final-version.pdf). Our selection of SIFIs refers to those iden-
tified by November 2014.
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variable is negative, meaning a flatter slope as well. Overall, results are robust

against this additional control group.

7.2 Reinsurers, insurance losses, and tail risk mitigation

One of the typical features of insurers is assuming risk, not only from policyhold-

ers but also from other insurers which is termed reinsurance.30 The question is

then, whether insurers ceding more of their (tail) risk to reinsurers have a less

steep implied volatility slope than those which purchase less reinsurance. In

addition, those considered as reinsurers might have a steeper implied volatility

slope because they sell reinsurance. Technically, excess-of-loss reinsurance, a

non-proportional reinsurance type, is the reinsurance type we are interested in,

as it caps the losses in the tail of the loss distribution. However, the datasource

(ORBIS) we use to determine the reinsurance coverage does not differentiate

between the two reinsurance types which is a limitation of this investigation.

The following sample only consists of reinsurers and primary insurers but does

not employ a control group as in the previous sections (i.e., non-financials).31

The dummy variable REINSURERi,t takes on the value of one if the insurer

at hand is a reinsurer and zero if it is a primary insurer. Following Cummins

and Phillips (2005), our definition of a reinsurer is based on the North American

Industry Classification System (NAICS) code 524130 for property/casualty

reinsurance. Because of tax reasons, and higher investment flexibility, most of

the reinsurers in our sample are headquartered on the Bermudas. Our sample

consists of 10 Bermuda-based, 2 U.S.-based, 1 Swiss-based, 1 Luxembourg-

based, and 1 Cayman Islands-based reinsurers (P&C insurers marked by (R) in

Appendix B). These 15 reinsurers are a subsample of the 67 P&C insurers.

To further investigate tail risk mitigation techniques, we retrieve data on

30There are two main categories of reinsurance: proportional and non-proportional. Pro-
portional means that both the primary insurer and the reinsurer share a predefined ratio of
the incurred losses. In contrast, non-proportional requires the primary insurer to cover all
losses up to a predefined threshold. When that threshold is exceeded, the reinsurer jumps in
and covers the following losses up to a maximum.

31Because non-financials do not purchase reinsurance coverage and we do not know whether,
how much, and what type of primary insurance policies they buy.
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reinsurance coverage for each insurer at each year from the ORBIS database.

Reinsurance coverage (REINSCOV ERi,t) is defined as (1− net premiums
premiums written ).

The difference between gross premiums and net premiums is the absolute amount

of reinsurance which an insurer purchases. We then run the same regressions

described in Section 4 with the implied volatility slope on the left-hand side, but

in a reduced sample of primary insurers and reinsurers. In addition, we include

an interaction term between being a reinsurer and the value of reinsurance

coverage. As before, we control for all other firm- and market-specific variables.

We run both Fama-MacBeth (1973) regressions and panel regressions with

clustered standard errors by firm and week (Petersen (2009)). Table 12 presents

the results.

Results regarding the reinsurer and primary insurer sample are not as dis-

tinct as the ones we observe for P&C insurers against non-financials and other

financial institutions in previous sections. The Fama-MacBeth (1973) regres-

sions in Column (I), (II), and (III) show that the implied volatility slope is less

steep for reinsurers compared to primary insurers and that reinsurance coverage

increases the steepness of the slope. Both results appear counterintuitive at

first unless investors believe that buying reinsurance is a signal for being more

at risk and thus in need for more protection. In contrast, a reinsurer only bears

losses up to a certain limit which could be an explanation why investors believe

catastrophe risk is limited, too.

Although these results are statistically significant based on Fama-MacBeth

(1973) regressions, they cannot be confirmed using pooled regressions with

clustered standard errors by firm and week. As Petersen (2009) shows, standard

errors under Fama-MacBeth (1973) regressions are biased downwards if there

is a firm effect present. Because we are now analyzing the same industry (i.e.,

P&C insurers) the presence of a common firm effect is comprehensible. Overall,

this suggests that investors do not or are not able to distinguish between the

risk profile of reinsurers and primary insurers and the respective reinsurance

coverage they purchase.
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7.3 Seasonality, subperiods, and the financial crisis

In the event study, we have seen that the implied volatility slope is affected by

hurricanes and significantly larger after the event with an additional reaction

approximately ten days before the event. This might suggest that the implied

volatility slope is steeper during the hurricane season and lower during the

non-hurricane season. However, assuming that insurers are constantly exposed

to catastrophes which are difficult to predict and not even seasonal, e.g., an

earthquake, a man-made disaster, or an off-season hurricane / natural event,

then the slope should be larger throughout the year. According to the National

Hurricane Center, the U.S. hurricane season in the Atlantic starts June 1st

and ends November 30th, whereas the Eastern Pacific hurricane season already

starts May 15th but also ends November 30th. To control for potential seasonal

effects in implied volatilities of P&C insurers due to hurricanes, we create a

dummy variable, HURSEASONi,t, being one during the overlapping Eastern

Pacific and Atlantic hurricance months of May to November and zero during the

months of December to April. The interaction term between INSURANCEi,t

and HURSEASONi,t should then be significant and positive if there is indeed

a seasonal effect in P&C options. Table 13 reports the multivariate results.32

32We only report pooled regressions because HURSEASONi,t is a time dummy.
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Table 13: Seasonality

(I) (II) (III) (IV)

INSURANCEi,t 0.024*** 0.022*** 0.023*** 0.007***

[4.93] [4.48] [4.55] [4.17]

HURSEASONi,t -0.001 -0.001 -0.002 -0.001

[-0.34] [-0.51] [-1.12] [-0.99]

INSURANCEi,t ×HURSEASONi,t 0.001 0.001 0.001 0.001

[0.50] [0.44] [0.43] [0.95]

Controls NO YES YES YES

R2 0.00 0.01 0.01 0.45

Weeks 936 928 928 928

Firms 5,609 4,912 4,912 4,908

Obs. 1,976,163 1,736,945 1,736,945 1,733,939

This table reports panel regressions with clustered standard errors by firm and week
(Petersen (2009)). HURSEASONi,t is a dummy variable taking the value of one for
the Atlantic hurricane season June to November and zero for the months December to
May. INSURANCEi,t ×HURSEASONi,t is an interaction term between the dummy
variable INSURANCEi,t and HURSEASONi,t. The sample period is January 1996 to
December 2013. T -statistics are reported in brackets. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Column (I) does not include any control variables. The interaction term

INSURANCEi,t ×HURSEASONi,t shows no significance. When controlling

for the same variables as in Section 6.3, this result remains robust. Overall we

do not find a seasonal effect in implied volatilities. That is, the implied volatility

is not steeper during the hurricance season, which suggests that derivatives on

P&C insurers are constantly more expensive than their non-financials counter-

parts throughout the year.

Having addressed the seasonal aspect within the years, we now address

changes in the implied volatility over the sample period. With Hurricane

Katrina being the costliest and most devastating hurricane in U.S. history, we

separate our sample in two equally long subperiods of nine years, where 1996

until 2004 is the pre-Katrina subperiod and 2005 until 2013 is the post-Katrina

subperiod. Possibly the attitude towards natural catastrophes changed after

that among investors, speculators, and market makers. We run Fama-MacBeth

(1973) regressions and pooled regressions as in the previous sections on the two

subsamples. Results are shown in Table 14 and show that the slope of P&C
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insurers indeed changed compared to non-financials in the post-Katrina period.

Specifically in univariate pooled and Fama-MacBeth (1973) regressions, the

slope is both statistically and economically much smaller compared to the post-

Katrina period. When we control for the firm and market-specific variables we

even observe an insignificant effect on the variable of interest, INSURANCEi,t.

One explanation could be that, similar to the market crash of 1987 introducing

the implied volatility smile, Hurricane Katrina could have had a similar effect

in creating an additional risk awareness (or “additional” smile) on top of the

implied volatility smile. A second explanation might be the overall increase of

natural disasters in the post 2005 years and thus a steeper slope.

The last potential reason we can think of is related to the financial crisis

of 2008, which simply might be driving the result of a steeper slope. To

control for this effect, we include a dummy variable for the financial crisis,

FinCrisisi,t, which takes on the value of one for the time between February

2008 and July 2009, which is the time frame of the financial crisis according to

the National Bureau of Economic Research (NBER) based Recession Indicators

for the United States and zero else. Moreover, we include an interaction term

between INSURANCEi,t and FinCrisisi,t to check for a higher steepness of

P&C insurers during the financial crisis. We run the regression only on the

post-Katrina period (2005-2013) to ensure that our results apply to the “steep”

period.33 Results on the regressions are presented in Table 15. We find that

the interaction term is insignificant in both specifications. This suggests that

the steeper slope of P&C insurers is not driven by the financial crisis.

33Again, because the dummy variable for the financial crisis is a time dummy we only
report pooled regressions with clustered standard errors by firm and week.
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Table 15: Panel regression (Post Katrina) controlling for financial crisis

(I) (II) (III) (IV)

INSURANCEt 0.033*** 0.031*** 0.012*** 0.011***

[5.77] [4.39] [5.87] [4.50]

FinCrisist 0.010*** 0.010*** 0.003 0.003

[3.46] [3.40] [1.10] [1.07]

INSURANCEt × FinCrisist 0.013 0.004

[1.22] [0.99]

Intercept 0.036*** 0.036*** 0.020*** 0.020***

[32.4] [32.75] [5.44] [5.45]

Controls NO NO YES YES

R2 0.00 0.00 0.43 0.43

Weeks 468 468 468 468

Firms 4,434 4,434 3,994 3,994

Obs. 1,138,569 1,138,569 1,041,418 1,041,418

This table reports panel regressions with clustered standard errors by firms and week
(Petersen (2009)) with the slope of implied volatility as dependent variable. The sample
period covers the post-Katrina period (2005 - 2013). FinCrisist is a dummy variable
taking the one for the months between February 2008 and July 2009. INSURANCEt ×
FinCrisist is an interaction term between the two dummy variables. T -statistics are
reported in brackets. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

8 Conclusion

This paper analyzes the implied volatility slope of P&C insurers. With P&C

insurers being exposed to natural and man-made disasters and OTM put options

protecting against tail risk, we argue that the exposure towards catastrophe

risk should be identifiable in the implied volatility smile. P&C insurers are

particularly convenient for analyzing the relation between tail risk and option

prices, because of their specific exposure to extreme events (i.e., natural disas-

ters), their use of risk mitigation techniques against tail risk (i.e., reinsurance),

and the securitization of catastrophe risk.

Our findings support this idea, both with financials and non-financials as

control groups. We also confirm that the implied volatility slope of P&C insurers
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is related to risk premiums from the cat bond market with a correlation of

49.4%. The main drivers in the tail risk of the implied volatility slope are

expected losses from natural catastrophes and the default spread (i.e., BB-

rated option-adjusted yield over the treasury yield). Pricing dynamics such

as the reinsurance cycle, however, do not affect the implied volatility smile.

Furthermore, we find that the slope is in fact steeper on the day and after the

days following a hurricane event supporting the idea that the slope reacts to

potentially large losses of natural catastrophes. Lastly, we show that the effect

of a steeper slope has increased over time, possibly because of an increasing

number of natural disasters in recent times.

Further insights into catastrophe risk can have real effects on the pricing

of catastrophe-related insurance prices. Among other things, the slope can

be used as a guidance tool for the primary market how market participants

evaluate the probability and compensation for catastrophe risk on average. A

specific advantage of our method is the daily (high-frequency) determination of

catastrophe risk using traditional option markets.

Future research might analyze how catastrophe risk deploys in other tail

risk-oriented financial instruments, such as Credit Default Spreads (CDS). We

established a link between put options and catastrophe bonds, but it might

be of interest to emphasize how the different tail-risk-oriented instruments,

i.e., put options, CDS, and catastrophe bonds interact with each other and

whether arbitrage opportunities exist between them. In general, it can be

asked how catastrophe risk can be financially exploited. The replication of

(zero-beta) investments using put options on P&C insurers could be an efficient

way for investors to earn uncorrelated returns with the market by being exposed

towards catastrophe risk. The essence of this investment opportunity would

be similar to a catastrophe bond but unlike catastrophe bonds which are

only available to qualified investors, put options can be accessed by a wider

public. The question here would be, though, whether transaction costs can be

overcome. Going beyond the natural catastrophe risk aspect in option prices, it

would be interesting to investigate the implied volatility smile of life insurers

and their potential tail risk due to pandemics, longevity risk, or mortality
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risk. Lastly, future research might investigate the assumption of independence

between natural catastrophes and economic downturns. Both our model and

our empirical research design throughout the paper assume a clear separation

between the two factors, allowing us to identify a difference-in-differences effect

caused by catastrophes. However, if catastrophes exceed a critical mass, the

effect between natural catastrophes and economic downturns might become

indistinguishable because the natural catastrophe affects the real economy.

A model which accounts for this downside correlation might thus be more

appropriate.
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A Model sensitivity

Figure A: Modeled implied volatility smiles (P&C insurers)

This figure illustrates the modeled implied volatilities of one-month-to-expiration put
options written on P&C insurance stocks for different catastrophe-related parameters.
The “Base scenario” is identical to the main calibration for a P&C insurance stock in
Section 3 (black line marked by downward pointing squares). The second scenario “Higher
jump uncertainty” changes, ceteris paribus, the value of σcat to 0.55. The third scenario
“Higher jump size” changes, ceteris paribus, the value of γcat to -0.12. The fourth scenario
“Higher jump frequency” changes, ceteris paribus, the value of λcat to 1.20.
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B Property/casualty insurers with options

Table B: P&C insurers

Company name CUSIP Company name CUSIP

20TH CENTURY INDUSTRIES 90130N10 KEMPER CORP DE 48840110

ACE LTD (R) H0023R10 LOEWS CORP 54042410

ALLEGHANY CORP DE 01717510 MAIDEN HOLDNGS LTD (R) G5753U11

ALLIED WORLD ASSUR CO HLDGS
AG

H0153110 MARKEL CORP 57053510

ALLSTATE CORP 02000210 MEADOWBROOK INSURANCE
GROUP INC

58319P10

ALTERRA CAPITAL HOLDINGS
LTD

G0229R10 MERCURY GENERAL CORP NEW 58940010

AMERICAN FINANCIAL GROUP
INC NEW

02593210 MONTPELIER RES HOLDINGS LTD
(R)

G6218510

AMERICAN INTERNATIONAL
GROUP INC

02687478 MUTUAL RISK MANAGEMENT
LTD

62835110

AMERISAFE INC 03071H10 NAVIGATORS GROUP INC 63890410

AMTRUST FINANCIAL SERVICES
INC

03235930 ODYSSEY RE HOLDINGS CORP 67612W10

ARCH CAPITAL GROUP LTD NEW
(R)

G0450A10 OHIO CASUALTY CORP 67724010

ASPEN INSURANCE HOLDINGS
LTD (R)

G0538410 ONEBEACON INSURANCE GROUP
LTD

G6774210

ASSURANT INC (R) 04621X10 PHILADELPHIA CONSOLIDATED
HLG CO

71752810

AXIS CAPITAL HOLDINGS LTD (R) G0692U10 PLATINUM UNDERWRITERS
HLDGS LTD (R)

G7127P10

BERKLEY W R CORP 08442310 PROASSURANCE CORP 74267C10

BERKSHIRE HATHAWAY INC DEL 08467070 PROGRESSIVE CORP OH 74331510

C N A FINANCIAL CORP 12611710 R L I CORP 74960710

CHUBB CORP 17123210 RELIANCE GROUP HOLDINGS INC 75946410

CINCINNATI FINANCIAL CORP 17206210 RENAISSANCERE HOLDINGS LTD
(R)

G7496G10

COMMERCE GROUP INC MASS 20064110 SAFECO CORP 78642910

EMPLOYERS HOLDINGS INC 29221810 SAFETY INSURANCE GROUP INC 78648T10

ENDURANCE SPECIALTY HOLD-
INGS LTD (R)

G3039710 SEABRIGHT HOLDINGS INC 81165610

EVEREST RE GROUP LTD (R) G3223R10 SELECTIVE INSURANCE GROUP
INC

81630010

FIRST MERCURY FINANCIAL
CORP

32084110 STATE AUTO FINANCIAL CORP 85570710

FLAGSTONE REINSURANCE
HLDGS SA (R)

L3466T10 TOWER GROUP INTERNATIONAL
LTD

G8988C10

FRONTIER INSURANCE GROUP
INC

35908110 TRANSATLANTIC HOLDINGS INC
(R)

89352110

GLOBAL INDEMNITY PLC G3931910 TRAVELERS COMPANIES INC 89417E10

GREENLIGHT CAPITAL RE LTD
(R)

G4095J10 TRAVELERS PPTY CASUALTY
CORP NEW

89420G10

H C C INSURANCE HOLDINGS INC 40413210 TRAVELERS PPTY CASUALTY
CORP NEW

89420G40

HANOVER INSURANCE GROUP
INC

41086710 UNITED FIRE GROUP INC 91034010

HARTFORD FINANCIAL SVCS GRP
INC

41651510 UNIVERSAL INSURANCE HOLD-
INGS INC

91359V10

HILLTOP HOLDINGS INC 43274810 VALIDUS HOLDINGS LTD (R) G9319H10

HORACE MANN EDUCATORS
CORP NEW

44032710 ZENITH NATIONAL INSURANCE
CORP

98939010

INFINITY PROPERTY & CASU-
ALTY COR

45665Q10

Property/casualty insurers marked by (R) are also reinsurers according to the North American Industry Clas-
sification System.
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C Natural catastrophes in the U.S. (1996–2013)

Table C: Catastrophic events in the U.S. (1996–2013)

Peril First ap-
pearance
(start
date)

Landfall
/ Peak

End date Geographic
region of
catastro-
phe

Event Insured
loss (in-
dexed to
2013 in
$M)

Rank
(loss)

Hurricane Georges 9/15/1998 9/21/1998 9/29/1998 LA, MS, AL,
FL

Floods 5,240 14

Hurricane Floyd 9/7/1999 9/14/1999 9/16/1999 NC, SC, VA,
MD, PA,
NY, NJ, DE,
RI, CT, MA,
NH, VT

Heavy
rain,
floods

4,100 18

Tropical storm Al-
lison

6/5/2001 6/5/2001 6/17/2001 TX, LA, MS,
FL, VA, PA

Floods 4,925 15

Hurricane Charley 8/9/2004 8/13/2004 8/14/2004 FL, SC, NC Storm
surge

10,313 9

Hurricane Frances 8/25/2004 9/2/2004 9/9/2004 FL, SC, NC Storm
surge,
floods

6,593 12

Hurricane Ivan 9/2/2004 9/16/2004 9/21/2004 AL, FL, GA,
MS, LA,
SC, NC, VA,
WV, MD,
TN, KY,
OH, DE, NJ,
PA, NY

Damage
to oil rigs,
storm
surge,
floods

17,218 5

Hurricane Jeanne 9/13/2004 9/14/2004 9/29/2004 FL, GA, SC,
NC, VA,
MD, DE,
NJ, PA, NY

Floods,
landslides

4,872 16

Hurricane Katrina 8/23/2005 8/25/2005 8/30/2005 FL, LA, MS,
AL, TN, KY,
IN, OH, GA.

Storm
surge,
levee
failure,
damage to
oil rigs

80,373 1

Hurricane Rita 9/18/2005 9/24/2005 9/26/2005 FL, AL, MS,
LA, AR, TX

Floods,
damage to
oil rigs

12,510 7

Hurricane Wilma 10/15/2005 10/21/2005 10/26/2005 FL Floods 15,570 6

Hurricane Ike 9/1/2008 9/7/2008 9/15/2008 TX, LA,
AR, TN,
IL, IN, KY,
MO, OH,
MI, PA.

Floods,
offshore
damage

22,751 4

Hurricane Irene 8/21/2011 8/22/2011 8/30/2011 NC, VA,
MD, NJ,
NY, CT, RI,
MA, VT

Extensive
flooding

6 274 13

Hurricane Sandy 10/21/2012 10/24/2012 10/31/2012 MD, DE,
NJ, NY, CT,
MA, RI

Storm
surge

36,890 2

Notes: Data on the events is retrieved from Swiss Re’s 2014 Sigma Report. Events are presented in chronological
order. Hurricane Ike is written in Italics and is not included in the event study due to the close proximity to
the financial crisis. Data about appearance, landfall, and end date are from the National Hurricane Center
(NHC) using the HURDAT2 dataset.
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D Systemically important financial institutions

(SIFI)

Table D: Systemically important financial institutions (SIFI)

Company name CUSIP

Banks

BANCO SANTANDER S A 05964H10

BANK OF AMERICA CORP 06050510

BANK OF NEW YORK MELLON CORP 06405810

BARCLAYS PLC 06738E20

CITIGROUP INC 17296742

CREDIT SUISSE GROUP 22540110

GOLDMAN SACHS GROUP INC 38141G10

H S B C HOLDINGS PLC 40428040

I N G GROEP N V 45683710

JPMORGAN CHASE & CO 46625H10

LLOYDS BANKING GROUP PLC 53943910

MITSUBISHI UFJ FINANCIAL GP INC 60682210

MIZUHO FINANCIAL GROUP INC 60687Y10

MORGAN STANLEY DEAN WITTER & CO 61744644

ROYAL BANK SCOTLAND GROUP PLC 78009768

STATE STREET CORP 85747710

SUMITOMO MITSUI FINANCIAL GP INC 86562M20

WELLS FARGO & CO NEW 94974610

DEUTSCHE BANK A G D1819089

U B S AG H8923133

Life insurers

AEGON N V 00792410

METLIFE INC 59156R10

PRUDENTIAL FINANCIAL INC 74432010

PRUDENTIAL PLC 74435K20

P&C insurers

AMERICAN INTERNATIONAL GROUP INC 02687478
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Part IV

Asset Pricing and Extreme Event
Risk: Common Factors in ILS

Funds

SEMIR BEN AMMAR, ALEXANDER BRAUN, and MARTIN ELING

Abstract

Often classified as hedge funds, the returns of collective investment vehicles that
focus on catastrophe (cat) bonds and other insurance-linked securities (ILS)
behave unlike those of any other asset class. Therefore, traditional asset pricing
models, such as the five-factor approach of Fama and French (1993) and the
seven-factor approach of Fung and Hsieh (2004), are not suitable for these funds.
We set up a comprehensive database, run an empirical performance analysis,
and introduce three new factor models based on publicly-available indices, which
decently explain the time-series and cross-sectional return characteristics of ILS
funds. Our results indicate that the latter have historically exhibited a superior
risk-adjusted performance. Despite a strong overall fit of the factor models, we
are left with significant positive alphas for about one quarter of the funds in our
sample. Those are either attributable to manager skill, luck, or beta exposures
associated with non-cat-bond ILS.

Key words: Insurance-Linked Securities · Investment Funds · Factor Model ·
Catastophe Bonds

JEL Classification: G12 · G22 · G23

This paper has been presented at the 2016 meeting of the Western Risk and Insurance

Association.
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1 Introduction

Over the last two decades, a new asset class called insurance-linked securities

(ILS) has emerged. Its dominant representative is the catastrophe (cat) bond,

a financial instrument which pays regular coupons unless a disaster occurs

during the contract term, leading to full or partial loss of principal. Cat bonds

have been developed by (re)insurance companies as a hedge against extreme

event exposure in their property risk portfolios. They typically cover natural

perils such as windstorms and earthquakes in different regions around the world

and may be triggered either through insurance losses or physical parameter

measurements in excess of a threshold.1 The market for cat bonds has witnessed

substantial growth rates in the recent past. Its popularity among investors is

based on attractive rates of return that are largely uncorrelated with other

asset classes (see Figure 1). However, direct investments in cat bonds and

other ILS requires a lot of specific expertise (see, e.g., Braun et al., 2013). An

alternative way to gain exposure is given by open-end funds. Although the

latter are sometimes still lumped together with mutual funds or hedge funds in

the fixed income space, their returns exhibit a unique behavior.2

Consequently, traditional factor models are not suitable to analyze the

behavior of dedicated ILS funds. Existing empirical research, however, mainly

focuses on explaining the risk spread of the underlying cat bonds themselves

(see, e.g., Galeotti et al., 2013; Braun, 2016; Gürtler et al., 2016) as well as their

risk implications (see Hagendorff et al., 2013, 2014). A specific factor model

for the returns of diversified ILS portfolios has not been suggested yet. Given

the abundance of the asset pricing literature, this is quite astonishing. In the

wake of the pioneering work of Sharpe (1964, 1992) and Fama and French (1992,

1993), several authors began to employ factor models for style analysis and

performance measurement purposes. Blake et al. (1993), e.g., apply the idea of

an asset class factor model as coined by Sharpe (1992) to bond mutual funds.

1A detailed explanation of the structural features of cat bonds can be found in Braun
(2016).

2A distinct characteristic of hedge funds is their ability to employ sophisticated strategies
(e.g., short selling, leverage, and derivatives). Yet, the majority of hedge funds trades in
traditional asset classes such as equities and fixed income. ILS funds, in contrast, distinguish
themselves by focusing on the entirely new market of investable insurance risk.
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Figure 1: Catastrophe bonds and other asset classes
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This figure illustrates the development of catastrophe bonds and other asset classes
from January 2002 to December 2015. The figures have been estimated based on the
following indices: Swiss Re Global Cat Bond Performance Index (cat bonds), S&P 500
Performance Index (equities), Barclays’ Investment Grade Total Return Corporate Bond
Index (corporate bonds), HFRI Fund Weighted Total Return Composite Index (hedge
funds). Behind each asset class, we have included the return correlations (ρ) with the
Swiss Re Global Cat Bond Performance Index.

Furthermore, Fung and Hsieh (1997) extend the original setup to account for

dynamic trading strategies of hedge fund managers. Carhart (1997) adds a

momentum factor to the classical three-factor model of Fama and French (1992)

and analyzes the persistence of equity mutual fund returns. Based on their

earlier insights, Fung and Hsieh (2004) develop a comprehensive risk-factor

approach to explain the returns of diversified hedge fund portfolios. More

recently, Sadka (2010) added a liquidity risk factor for hedge funds, Chen et al.

(2010) control for several sources of nonlinearity in bond mutual fund returns to

evaluate managers’ timing ability, and Ammann et al. (2010) develop a model

that accounts for the particularities of convertible bond funds.

Regardless of the attractive historical performance and the substantial di-

versification potential offered by ILS funds, little is known about their return

drivers to date. The paper at hand aims at filling this gap. Our contribution is
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threefold. First, we analyze the asset class’ risk-return profile for the period from

January 2002 to December 2015 relative to corporate bonds and hedge funds.

For this purpose, we set up a dataset that almost covers the entire universe

of existing and terminated ILS funds. Second, we demonstrate the inability

of traditional factor models to explain both the time-series and cross-sectional

return characteristics of ILS funds. Subsequently, we introduce three new factor

models to address this issue: a single-index, a fixed-income-oriented four-factor,

and a perils-based three-factor approach. Third, we draw on these factor models

to determine whether certain funds were able to outperform their peers on a

risk-adjusted basis in the past.

Our findings indicate that ILS funds exhibited a superior historical per-

formance based on the Sharpe Ratio, the Sortino Ratio, the Excess Return

on VaR, and the Calmar Ratio. In addition, they delivered positive returns

in approximately 90% of all analyzed months compared to 66% during the

same period for hedge funds and 70% for corporate bonds. The three and

four-factor models which we propose are found to explain the time series of

ILS fund returns with adjusted R-squareds of around 70% which can be further

increased to 80% when controlling for a single extreme outlier caused by the

impact of Hurricane Katrina on the relatively small fund market in August 2005.

Finally, despite the good fit of the factor models, we are left with significant

positive alphas for one quarter of all funds in the cross-section. These are either

attributable to manager skill, luck, or exotic beta exposures originating from

ILS other than cat bonds. Owing to the rapidly increasing size of the ILS

market, the aforementioned empirical evidence should provide valuable insights

for style analysis, risk management, performance measurement, and portfolio

optimization.

The remainder of this paper is organized as follows. In Section 2, we describe

the (classical and new) factor models that form the center of our analysis. A

description of our data both for the ILS funds and the risk factors is provided

in Section 3. The empirical results are presented in Section 4, including the

historical performance of ILS funds, time-series regressions, and an assessment of

the models’ ability to explain the cross-section of expected returns. In Section 5,
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we test the robustness of our results for various subperiods and alternative ILS

portfolios. Our conclusions are presented in Section 6.

2 Factor models

2.1 Traditional factor models

First of all, we run a simple asset class factor model in the spirit of Sharpe

(1992). As indicated by their name, such models can be employed to reveal a

fund’s passive exposure to various asset classes. We include an equity market

index, a treasury bond index, a municipal bond index, a corporate bond index,

a mortgage-backed securities index, a convertible bond index, a real estate

index, a hedge fund index, and a commodities index. To avoid collinearity

issues that may arise due to the correlations of the fixed income indices, we test

the full model as well as three submodels with different factor combinations.

Subsequently, we run the Carhart (1997) four-factor model, which adds an

equity momentum factor (MOM) to the classical setup of Fama and French

(1993). Finally, we focus on specific fixed income and hedge fund factor models

that have been proposed in the literature, since ILS funds are often classified

into either one of these two asset categories. Fama and French (1993) as well

as Blake et al. (1993) include bond-specific factors. The former extend their

three-factor equity model by a government bond index (TERM) and a corporate

bond index (DEF), while the latter rely on TERM as well as a high yield bond

index (HYield) and a mortgage-backed securities index (Mortgage). From the

hedge fund literature, we adopt the seven-factor approach of Fung and Hsieh

(2004). This model comprises four of the five factors suggested by Fama and

French (1993) plus three trend-following factors for bonds (PTFSBD), exchange

rates (PTFSFX), and commodities (PTFSCOM). In contrast to Fung and Hsieh

(2004), we measure TERM and DEF in excess returns instead of yields.3 All

factors are measured as monthly returns in excess of the one-month T-Bill rate.

3This has been suggested by Sadka (2010) and ensures that alpha can be interpreted as
an excess return as well.
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2.2 New ILS-specific factor models

We begin with a single-factor approach in the spirit of the capital asset pricing

model (CAPM), which will be termed the CAT-CAPM. The only factor in this

model is an index of all outstanding USD and EUR-denominated catastrophe

bonds, independent of ratings, reference perils, and trigger types. If ILS funds

exclusively pursue a by-and-hold strategy in a diversified cat bond portfolio, this

model should be well-suited to explain their excess returns over time. Formally,

the CAT-CAPM is defined as:

Re
p,t = α+ βp,1CATMKTt + εt, (1)

where CATMKTt and Re
p,t denote the returns on the cat bond market factor

and the ILS fund, respectively, both in excess of the 1-Month T-Bill rate.

In addition, we propose a ratings model, which is constructed as follows:

Re
p,t = α+ βp,1CATMKOt + βp,2BBCATt + εt. (2)

with BBCATt being the return on an index of BB-rated cat bonds in excess of

the 1-Month T-Bill rate and CATMKOt representing the excess return of the

market factor CATMKTt, orthogonalized on BBCATt. In orthogonalizing the

market factor, we follow Fama and French (1993), who suggest this proceeding

if the additional factor shares a large degree of variance with the market factor.

This is particularly relevant in the case of cat bonds, because the vast majority

of them is issued with a BB rating (see, e.g., Braun, 2016). The rotated market

factor thus captures the return variation of all outstanding cat bonds that

exhibit a non-BB rating.

BBCATt can be further unfolded into different fixed income risk drivers.

More specifically, BBCATt should include a term component (i.e., a treasury

index minus the risk free rate), a default risk component (i.e., a BB-rated

corporate bond index minus a treasury index), as well as a potential insurance

risk component (i.e., a BB-rated catastrophe bond index minus a BB-rated
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corporate bond index). Formally, this spread model can be expressed as:

Re
p,t = α+ βp,1CATMKO1t + βp,2TERM3Yt + βp,3DEFCORt

+ βp,4DEFCATt + εt,
(3)

where CATMKO1t is the excess return of the market factor orthogonalized on

TERM3Yt, DEFCORt, and DEFCATt. The maturity of cat bonds typically

ranges between one and three years (see, e.g., Braun, 2016). Accordingly,

TERM3Yt is the return on treasury bonds with a maturity between one and

three years in excess of the risk-free rate. DEFCORt is the return on corporate

bonds with a maturity of one to three years in excess of the return on treasuries

with a maturity between one and three years. Finally, DEFCATt is the return

on cat bonds in excess of the return on corporate bonds with maturity between

one and three years. This factor is particularly interesting, since the existence

of a return premium above comparably-rated corporate debt has regularly been

conjectured among industry practitioners (see, e.g., RMS, 2012). Anecdotal

evidence for this notion dates back to the early days of the ILS market when

it was termed the novelty or esoteric risk premium (see, e.g., Bantwal and

Kunreuther, 2000). More recently, however, empirical research showed that

the yield spreads of cat bonds did not exceed those of corporate bonds at all

times (see, e.g., Partner Re, 2015; Braun, 2016). This is in line with theoretical

reasoning: in the absence of arbitrage, instruments with the same rating and

maturity should not offer different returns. Hence, by testing whether the factor

DEFCATt is priced, it is possible to shed light on the question whether a

premium for the esoteric nature of catastrophe risk (still) exists.

Finally, we introduce a three-factor perils model of the form

Re
p,t = α+ βp,1CATMKO2t + βp,2USHUt + βp,3USEQt + εt, (4)

where CATMKO2t is the excess return of the market factor orthogonalized

on USHUt and USEQt. USHUt is a single-peril U.S. hurricane bond index in

excess of the 1-Month T-Bill rate and USEQt is a single-peril U.S. earthquake

bond index in excess of the 1-Month T-Bill rate. Orthogonalizing the market

factor on these two factors yields a new variable, which captures variation
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in the market returns that relates to all remaining cat bonds, i.e. U.S. and

non-U.S. multi-peril as well as non-U.S. single-peril bonds.4 This model should

be suitable for style analysis, i.e., it can reveal in which specific types of cat

bonds an ILS fund invests.

3 Data

3.1 ILS funds

Our first contribution is a comprehensive dataset, which we composed by iden-

tifying all live and terminated ILS funds reported on Bloomberg, industry

websites, such as the Artemis Deal Directory or www.insurancelinked.com, press

releases, and the Morningstar CISDM database. For each fund, we retrieved

monthly net-of-fee total return data from Bloomberg. In addition, we collected

information about the current assets under management (AuM), expense ratios,

front and back loadings, performance fees, top ten holdings, and cash holdings.

In case this information was unavailable on Bloomberg, we searched for it

through various internet sources. As several funds do not report return data

to Bloomberg, we also obtained return data under confidentiality agreements

directly from the funds.5 We controlled for any duplicate funds listed under a

different name and, whenever available, used the institutional share class quoted

in U.S. Dollars. We were able to identify a total of 55 funds with return data

starting in January 2001 and ending in December 2015.

Table 1 shows the funds’ characteristics on an aggregate level (“All Funds”)

as well as separately for the Bloomberg categories “Alternative” and “Fixed

Income.” ILS funds in the categories “Equity”, “Mixed Allocation”, “Specialty”,

4It would certainly be insightful to add a U.S. multi-peril cat bond index to the model.
In this case, the cat risk in a fund’s portfolio could be identified even more precisely and
the orthogonalized market factor would simply capture all non-U.S. perils. Unfortunately,
however, data for such an index is not publicly available.

5It should be noted that Fermat Capital, which has USD 4.7 bn of AuM and is thus one
of the largest dedicated ILS funds in existence, refrained from providing return information.
Furthermore, there are no fund of funds in our sample.
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as well as those without any classification have been subsumed under “Other”.6

A special category for ILS does not exist. Hence, a fund being classified as

“Fixed Income” and being invested in government bonds would be in the same

category as an ILS fund being classified as “Fixed Income.” Although this is a

very broad categorization, it allows for a certain aggregation and enables us to

check, whether the categorization has an actual effect on the risk-return profile

of the funds. However, as stressed by Fung and Hsieh (1997), what the funds

say they do is not necessarily what they actually do. Hence, the true investment

style can only be assessed by means of factor models that explain the fund re-

turns. Interestingly, the super-ordinate category by Bloomberg and the CISDM

database for several ILS funds is hedge funds. The largest part of ILS funds,

however, falls within the super-ordinate category of “open-ended mutual fund”.

Thus, we decided to use Bloomberg’s mutual fund categorization in the following.

In addition, we report fund characteristics for surviving funds and acquired

or dissolved funds (i.e., “Live” or “Dead”). Based on the latest reported AuM

of surviving funds, the total size of the ILS fund market is USD 21.80 billion,

which compares to an outstanding catastrophe-bond market volume of USD

25.96 billion at the end of 2015 as reported by the Artemis Deal Directory.

Under the assumption that ILS funds only invest in catastrophe bonds, this

would imply that our sample covers approximately 83.98% of the total market

volume for catastrophe bonds. Swiss Re (2013) estimated that 61% of the

outstanding cat bond volume is held by dedicated funds. Hence, in combination

with 22.98% of assets under management in other ILS instruments our sample

of funds should convey a relatively complete picture of the market. Table 1

shows that dead funds on average exhibited slightly higher expense ratios and

load fees than surviving funds.7 However, surviving funds charged a higher

variable compensation (i.e., a higher performance fee of 7.33 % p.a. for surviving

funds compared to 5.45 % p.a. for dead funds) suggesting that they tend to

rely on a better performance to earn the bulk of their fees. However, the only

6The classification “Equity” could be chosen by a fund because there are not only bonds
but also equity shares in certain ILS instruments (e.g., in so-called sidecars), which are
accessed first in case of a trigger event.

7Note that fees could have decreased over time such that they now appear different for
dead than for live funds.
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statistically significant difference between live and dead funds can be found

in their maximum load fees. On average, an ILS fund is approximately six

years old, illustrating that this fast-growing part of the investment industry

is still in its early phase.8 Dead funds, in contrast, tend to discontinue their

business after 3 1
2 years. Furthermore, surviving funds seem to exhibit a larger

concentration on their top ten holdings securities (i.e., 39.99% vs. 33.67%) and

hold a lower amount of cash.

3.2 Potential biases in ILS funds data

When working with mutual and hedge fund data, one needs to be aware of several

reporting biases, which we cannot fully exclude for ILS funds as well. These in-

clude survivorship bias, backfilling bias, self-selection bias, and managed returns

(see, e.g., Carhart et al., 2002; Fung and Hsieh, 2000). As Bloomberg does not

delete the returns of defunct or acquired returns, survivorship bias in the return

statistics is less of an issue for us. Because new (and defunct) funds receive quite

some attention within the ILS community, news reports are useful in keeping

track of all funds. Given the manageable ILS market size we are convinced to

have covered almost the entire universe of live and dead funds. Nevertheless,

we cannot rule out the possibility that some minor funds, which failed and

never reported their returns to any data provider, are not included in our sample.

Backfilling bias occurs, when funds join a database after an incubation pe-

riod. Those with a good track record may decide to disclose their past returns,

whereas bad performing funds have an incentive to refrain from backfilling

information. As a consequence, performance figures may be upward biased.

Because we know the vast majority of ILS funds and were able to obtain returns

for all of them but one, we are convinced that backfilling bias is not a major

issue in our empirical analysis.

Furthermore, self-selection bias might cause an upward bias in our perfor-

mance analysis. When we identified the funds, we checked various sources to

determine whether a major exposure to ILS exists (see Section 3.1). However,

8The average age of high yield bond funds between 1991 and 2010 was about 15 years
(see Fang et al., 2014).
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if a fund never states the intention to invest in ILS, yet does so, it would not be

included in our sample. Apart from that, ILS funds in less-regulated domiciles

may decide to refrain from disclosing return data to the public. Two aspects

mitigate this kind of bias. First, it will only be large if non-reporting funds

substantially underperform their reporting counterparts. Second, a fund which

does not state to invest in ILS, will find it difficult to attract ILS investors.

Thus, self selection bias should be negligible.

Another source of bias are managed returns. Because of a hedge-fund like

fee structure and the relative illiquidity of the underlying assets, some ILS

funds might be inclined to inflate or smooth their returns (see Getmansky et al.,

2004; Agarwal et al., 2011). Yet, many ILS funds pursue a buy-and-hold rather

than an active management approach. Comparing the return history of ILS

funds and cat bonds, we see that the latter have a higher mean percentage of

positive returns (93.23% for cat bonds and 89.29% for ILS funds). In addition,

we observe only one large drawdown in the returns after Hurricane Katrina.

Finally, we do not find the characteristic December spike generated by hedge

fund managers to boost fees (see Agarwal et al., 2011). Accordingly, it is safe

to state that managed returns are currently not major concern for ILS funds.

3.3 Factors and indices

The catastrophe bond market factor is the Swiss Re Global Catastrophe Bond

Index [Bloomberg ticker: SRGLTRR], which tracks the aggregate performance

of all USD and EUR denominated catastrophe bonds capturing all ratings,

perils, and triggers. For the perils model, we also include the Swiss Re U.S.

Wind Catastrophe Bond Index [Bloomberg ticker: SRUSWTRR], tracking

the total return on all single-peril U.S. wind catastrophe bonds and the Aon

Benfield Securities U.S. Earthquake Catastrophe Bond Index [Bloomberg ticker:

AONCUSEQ], tracking the total return on all single-peril U.S. earthquake

catastrophe bonds. For the ratings model, we use the Swiss Re BB-rated

Catastrophe Bond Index [Bloomberg ticker: SRBBTRR], which tracks the total

return on all outstanding cat bonds with a BB rating by S&P or Fitch (or

the Moody’s equivalent Ba). As described above, for the spread model, we
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further unfold the BB cat bond index into three separate components. First, for

TERM3Y, we calculate the difference between Barclays 1-3 years U.S. Treasury

Total Return Index [Datastream mnemonic: LHG13US] and the 1-Month T-Bill

rate. Second, DEFCOR is calculated as the difference between Barclays 1-3

years U.S. High Yield (Moody’s BA) Total Return Index [Datastream mnemonic:

LHHY13B] and the Barclays 1-3 years U.S. Treasury Total Return Index. Third,

DEFCAT is the difference between the Swiss Re BB-rated Catastrophe Bond

Index [Bloomberg ticker: SRBBTRR] and the Barclays 1-3 years U.S. High

Yield (Moody’s BA) Total Return Index. Table 2 summarizes the statistical

properties of the factors for the time period between January 2002 and December

2015.

The average monthly return of DEFCAT (0.05) is not significantly different

from zero. Therefore, an additional return premium for the nontraditional na-

ture of the insurance risk does not seem to be present. Nevertheless, DEFCAT

exhibits certain peaks over time, implying that it may have been priced in the

past. All other factors exhibit statistically significant positive means. Compar-

ing TERM3Y and DEFCOR, we notice that the default risk premium (0.30) is

three times as large as the term premium (0.10). The ratings model summarizes

all three elements (TERM3Y, DEFCOR, and DEFCAT) in the average monthly

return of BBCAT (0.45). The remaining contribution in the spread model equals

0.18 and comes from CATMKO1, which captures general market volatility as

well as any other risk drivers. Turning to the perils model, we notice that both

U.S. hurricane and U.S. earthquake exposures are associated with much higher

risk premiums than other perils (CATMKO2). This is consistent with earlier

empirical evidence for an excess spread on transactions that cover so-called peak

territories such as the U.S., which are abundant in the cat bond market (see, e.g.,

Braun, 2016).9 Table 3 shows the correlation for the new factors and highlights

the need to orthogonalize the catastrophe bond market factor (CATMKT) not

only for interpretative reasons but also for statistical reasons due to the rela-

tively high correlations between CATMKT, USHU, and BBCAT. It also shows

that multicollinearity is not an issue for the suggested factor model specifications.

9Transactions for nonpeak territories, in contrast, are a relatively rare and sought-after
means for the diversification of ILS portfolios. Accordingly, they pay significantly lower
spreads (see, e.g., Braun, 2016).
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Table 3: Correlation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) CATMKT 1.00

(2) BBCAT 0.96 1.00

(3) CATMKO1 0.28 0.00 1.00

(4) TERM3Y 0.04 0.08 0.00 1.00

(5) DEFCOR 0.23 0.19 0.00 –0.44 1.00

(6) DEFCAT 0.24 0.29 0.00 0.28 –0.86 1.00

(7) CATMKO2 0.64 0.65 0.09 0.08 0.08 0.22 1.00

(8) USHU 0.76 0.69 0.32 0.00 0.19 0.15 0.00 1.00

(9) USEQ 0.38 0.39 –0.01 –0.05 0.28 –0.09 0.00 0.34 1.00

This table shows the correlation of the new factors for ILS funds. All factors are excess
returns. The time period of the data is from January 2002 to December 2015.

The Fama and French (1993) factors SMB, HML, and the Carhart (1997)

momentum factor (MOM) have been downloaded from Kenneth French’s data

library. The excess market index MKTRF is the total return of the MSCI

WORLD minus the risk free rate. Furthermore, we obtained the hedge fund

factors PTFSBD, PTFSFX, and PTFSCOM from the website of David Hsieh.

Convertible is the total return of Merrill Lynch’s All Convertible Index [Datas-

tream mnemonic: MLCVXA0]. The Fama and French (1993) TERM and

DEF factors are calculated as the difference between the total return of the

Barclays U.S. Long-Term Government Bond Index [Datastream mnemonic:

LHGOVLG] and the risk-free rate as well as the difference between the total

return of the Barclays U.S. Long-Term Corporate Bond Index [Datastream

mnemonic: LHCCRLG] and the Long-Term Government Bond Index, respec-

tively. Municipal is the total return of the Barclays Municipal Bond Index

[Datastream mnemonic: LHMUNIC] minus the risk-free rate. Mortgage is the

total return of the Barclays U.S. Mortgage-Backed Securities Index [Datastream

mnemonic: LHMNBCK] minus the risk-free rate. Treasury is the total return of

the Barclays U.S. Treasuries Index [Datastream mnemonic: LHUSTRY] minus

the risk-free rate. HYield is the total return of the Barclays Global High Yield

Index [Datastream mnemonic: LHMGHYD] minus the risk-free rate. Corporate

is the total return of the Barclays U.S. Corporate Bond Index [Datastream

mnemonic: LHCCORP] minus the risk-free rate. Real estate is the total return

of the S&P Case/Shiller Composite-20 Home Price Index [Bloomberg ticker:
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SPCS20 Index] minus the risk-free rate. Hedge fund is the total return of the

HFRI Fund Weighted Composite Index [Bloomberg ticker: HFRIFWI Index]

minus the risk-free rate. Commodity is the return of the S&P Goldman Sachs

Commodities Index [Bloomberg ticker: SPGSCITR Index] minus the risk-free

rate.

4 Empirical results

In a first step, we present the risk and return characteristics of the ILS funds in

our sample and compare them to hedge funds and corporate bonds. Subsequently,

we run time-series regressions to estimate the traditional factor pricing models

and the new ILS models. Finally, we address the ability of the new approaches

to explain the cross section of ILS fund returns.

4.1 Performance attribution of ILS funds

To measure the performance of ILS funds on an aggregate level, we construct

equally weighted indices for all funds, live and dead funds, as well as for each

Bloomberg category. Table 4, which summarizes the return characteristics of

these indices, also includes the corresponding figures for a hedge fund and a

corporate bond benchmark. Note that to obtain a more comprehensive pic-

ture of the risk-return characteristics, it is common to consider the maximum

available time period for each fund (see, e.g., Chen et al., 2010). Over the

last 15 years, ILS funds have earned an average annual return of 5.64% and

exhibited a p.a. volatility of 2.26%. The lowest return (–3.46%) occurred in the

aftermath of the Tohoku earthquake off the coast of Japan in March 2011. In

addition, we observe a slightly lower return earned by dead ILS funds as well as

by those Bloomberg categories that are perceived as less risky, such as “Fixed

Income.” The return difference between live and dead funds is significant at the

10%-level. The corporate bond index yielded an average annual return of 7.51%

p.a., but its volatility of 8.20% p.a. was more than three times as high as for

ILS funds. It also exhibits a considerably more negative minimum return of

–15.13%. Finally, hedge funds, as which some ILS funds are classified, achieved a

similar average annual return of 5.41%. However, they did so at the expense of
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a much higher volatility (5.98%) and a more negative minimum return (–6.84%).

Table 5 displays additional risk characteristics of the equally-weighted ILS

fund indices as well as the hedge fund and corporate bond benchmarks. We

show these measures because ILS and particularly cat bonds may exhibit rare

but very severe negative returns. Hence, the classical volatility is less suited for

this asset class. Examining the semi-standard deviation (1.49%) and the 99.5

percent value-at-risk (1.05%), however, we again observe a much lower result

compared to corporate bonds or hedge funds. Even the maximum drawdown

from peak to trough merely amounts to 6.98%. Consequently, common financial

performance measures such as the Sharpe Ratio, the Sortino Ratio, the Excess

Return on VaR, and the Calmar Ratio, look much more favorable for ILS

funds than for other asset classes. Clearly, these results raise suspicion. The

reason for such an odd risk profile is an empirical rather than a theoretical

one. Cat bonds securitize extreme-event insurance risk, i.e., natural disasters

with reccurrence periods of 100, 200, 500 or even 1000 years (see, e.g., Smolka,

2006). Against this background, even a performance history of 15 years, which

covers the entire period during which the ILS market existed, is very short. In

fact, the substantial drawdowns that are to be expected following a real mega

event are much larger than anything that has been observed to date. This is a

crucial aspect when analyzing the performance of ILS and a major reason for

the fact that many industry professionals construct their portfolios based on

forward-looking risk analyses by specialized modelling firms such as RMS, AIR,

and EQECAT. Hence, historical performance figures as shown in this section

should generally be interpreted with utmost caution.

4.2 Time-series regressions

Traditional factor models

Table 6 shows the coefficients for four asset class factor models in the sense of

Sharpe (1992). To account for the high correlation between the different fixed

income indices, we ran a full model as well as three variations with different

factor combinations. The dependent variable is the aggregated ILS fund index

in excess of the one-month T-Bill rate. All factors are excess returns as well.
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Our first observation is the extremely low adjusted R-squared of not more

than 2%. Furthermore, we notice alpha of at least 0.30% per month. The

full model does not result in any significant coefficients, whereas the three

variations show some weak exposure towards the equity market (MKTRF),

hedge funds, and convertible bonds. Table 7 shows the results for the traditional

risk factor models of Fama and French (1993), Blake et al. (1993), Carhart

(1997), and Fung and Hsieh (1997). Once more, we find some mostly weak sta-

tistical significances, although the adjusted R-squared does not exceed 3% and

alpha remains at the same level as in the case of the asset class models in Table 6.

Table 6: Asset class factor models

(1) (2) (3) (4)

MSCI -0.01 0.01

(0.01) (0.01)

TREASURY -0.01 -0.00 0.03

(0.05) (0.03) (0.04)

MUNICIPAL 0.04 0.06 0.05

(0.03) (0.04) (0.03)

CORPORATE -0.00 0.04 0.03 0.01

(0.04) (0.04) (0.03) (0.04)

MORTGAGE 0.11 0.09

(0.10) (0.07)

CONVERTIBLE 0.04 0.03**

(0.03) (0.02)

REAL ESTATE 0.01 -0.00 0.01 0.00

(0.05) (0.05) (0.05) (0.05)

HEDGE FUND 0.02 0.06*

(0.06) (0.03)

COMMODITY -0.00 -0.00 -0.01 -0.00

(0.01) (0.01) (0.01) (0.01)

Constant (alpha) 0.30*** 0.32*** 0.30*** 0.32***

(0.08) (0.08) (0.08) (0.08)

Adj. R2 0.01 0.02 0.02 0.02

Obs. 168 168 168 168

This table shows the coefficients of asset class factors on the excess return of the ILS fund index
over the one-month T-Bill rate. The asset class factors are all monthly excess returns. Standard
errors in parentheses are Newey-West (1987) corrected with lags of four. The analysis starts in
January 2002 and ends in December 2015. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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Table 7: Risk factor models

(1) (2) (3) (4)

MKTRF 0.01 0.02* 0.01

(0.01) (0.01) (0.01)

SMB -0.00 -0.00 0.00

(0.02) (0.02) (0.02)

HML 0.01 0.01

(0.02) (0.02)

TERM 0.03* -0.00 0.03*

(0.02) (0.02) (0.02)

DEF 0.03** 0.03*

(0.02) (0.02)

HYIELD 0.04***

(0.01)

MORTGAGE 0.12

(0.10)

MOM -0.01

(0.01)

PTFSBD 0.00

(0.00)

PTFSFX -0.00

(0.00)

PTFSCOM 0.00

(0.00)

Constant (alpha) 0.34*** 0.31*** 0.35*** 0.34***

(0.08) (0.08) (0.07) (0.07)

Adj. R2 0.01 0.03 0.00 0.00

Obs. 168 168 168 168

This table shows the coefficients of risk factors from established factor models on the
excess return of the ILS fund index over the one-month T-Bill rate. The risk factors are all
monthly excess returns. Standard errors in parentheses are Newey-West (1987) corrected
with lags of four. The analysis starts in January 2002 and ends in December 2015. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

To control for statistical artifacts, we test the significant factors from Ta-

bles 6 and 7 in combination with the cat bond market factor CATMKT. The

results of this analysis are shown in Table 8. Now the adjusted R-squared jumps

to 67% and, apart from CATMKT, the coefficients of all independent variables,

including the constant (alpha), become insignificant. We may thus conclude
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that traditional factor models are not suited to explain the time series of ILS

fund returns.10

Table 8: Control regressions

(1) (2) (3) (4) (5) (6) (7)

CATMKT 0.69*** 0.70*** 0.70*** 0.70*** 0.70*** 0.71*** 0.71***

(0.09) (0.09) (0.09) (0.09) (0.09) (0.09) (0.09)

MKTRF -0.00

(0.01)

TERM -0.00

(0.01)

DEF -0.01

(0.01)

HYIELD -0.01

(0.01)

CONVERTIBLE -0.01

(0.01)

Hedge Fund -0.02

(0.02)

Constant (alpha) -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Adj. R2 0.67 0.67 0.67 0.67 0.67 0.67 0.67

Obs. 168 168 168 168 168 168 168

This table shows the coefficients of asset class factors and risk factors from established
factor models on the excess return of the ILS fund index over the one-month T-Bill rate.
The asset class factors and risk factors are all monthly excess returns. Standard errors
in parentheses are Newey-West (1987) corrected with lags of four. The analysis starts in
January 2002 and ends in December 2015. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

New ILS-specific factor models

Having demonstrated the failure of the traditional approaches, we now test our

new ILS-specific factor models. Column (1) in Table 9 shows the CAT-CAPM.

We observe a highly significant coefficient for CATMKT (market beta), an

insignificant intercept, and an adjusted R-squared of 0.67. One reason for

10We again address the issue of a potential exposure towards other asset classes on an
individual fund basis in Section 4.4.
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the market beta of 0.69 is that the diversified basket of cat bonds held by

the funds in our equally-weighted index may differ from the market portfolio.

In addition, the funds may also invest in ILS other than cat bonds, such as

collateralized reinsurance, industry loss warranties (ILWs), or extreme-mortality

securitizations.11 Column (2) contains the results for the spread model. We find

significant coefficients for all four factors, paired with an insignificant intercept

and an R-squared of 0.69. Particularly TERM3Y, DEFCOR, and DEFCAT

seem to have a impact on the time series. Therefore, ILS fund returns seem

to be mainly driven by the variation of fixed-income risk premiums. Moreover,

the results for the perils model are displayed in Column (3). This model is asso-

ciated with an adjusted R-squared of 69%. The high coefficient for CATMKO2

indicates that multi-peril cat bonds explain the lion’s share of the return time

series, whereas single-peril U.S. hurricane and particularly earthquake bonds

are associated with weaker effects. This is in line with Braun (2016), who

finds that the majority of historical primary market issuances were multi-peril

cat bonds. Finally, it should be noted that a combination of the perils model

and the spread model does not improve the fit to the time series, since their

respective factors are largely buried in CATMKT and thus simply provide a

different breakdown of the same variance.

The residuals of the aforementioned regressions in Figure 2 reveal an inter-

esting fact. Overall, the models capture the time-series variation quite well.

The only exception is the August 2005 return, which was heavily influenced

by Hurricane Katrina. For some reason, neither the single-peril U.S. hurricane

factor (USHU) nor the orthogonalized cat bond market (CATMKO2) seem to

capture this effect. Hence, we need to take a closer look at the underlying data.

According to information from AON Benfield, a total of 67 transactions were out-

standing in August 2005. One of them, the indemnity-triggerd multi-peril bond

KAMP Re covering U.S. hurricanes and earthquakes, was the first cat bond that

ever defaulted due to a natural disaster (see Artemis Deal Directory). KAMP

Re generated a return of –5% in August 2005. Due to its multi-peril status,

however, this was not reflected by USHU. Similarly, the overall market index did

11On the individual fund level (see next section) we will observe many funds with CAT-
CAPM betas equal to one, suggesting that their portfolio composition closely resembles the
cat bond market portfolio.
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not react, because the bond’s portfolio weight amounted to no more than 13%.

Nevertheless, we observe a clear reaction of our ILS fund index. This is due to

the fact that the latter comprises merely 14 constituents in August 2005, five of

which exhibit a negative return of at least 3.8%. Evidently, these funds must

have exhibited a much higher exposure to KAMP Re than the market portfolio.12

Table 9: New ILS-specific factor models

(1) (2) (3) (4) (5) (6)

CATMKT 0.69*** 0.68***

(0.09) (0.09)

CATMKO1 0.28* 0.27

(0.15) (0.16)

TERM3Y 0.64*** 0.66***

(0.07) (0.08)

DEFCOR 0.59*** 0.58***

(0.07) (0.06)

DEFCAT 0.59*** 0.58***

(0.07) (0.06)

CATMKO2 0.87*** 0.85***

(0.13) (0.12)

USHU 0.33*** 0.33***

(0.03) (0.03)

USEQ 0.07** 0.07**

(0.03) (0.03)

KATRINA -2.74*** -2.76*** -2.70***

(0.06) (0.05) (0.06)

Constant (alpha) -0.02 0.04 0.02 0.01 0.06 0.04

(0.08) (0.05) (0.05) (0.07) (0.04) (0.04)

Adj. R2 0.67 0.69 0.69 0.78 0.80 0.80

Obs. 168 168 168 168 168 168

This table shows the coefficients of the new risk factors on the excess return of the ILS
fund index over the one-month T-Bill rate. The asset class factors and risk factors are
all monthly excess returns. Standard errors in parentheses are Newey and West (1987)
corrected with lags of four. The analysis starts in January 2002 and ends in December 2015.
*, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

12According to AON Benfield, KAMP Re suffered from an extreme negative return (-78%)
in September 2005. Despite its low weight in the market portfolio, this effect is large enough
to be captured by CATMKT, CATMKO1, and CATMKO2. Consequently, the corresponding
residual in Figure 2 is much smaller.
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To account for this issue, we augment the three models by the dummy

variable Katrina, which equals one in August 2005 and zero otherwise. In doing

so, we are able to increase the adjusted R-squareds for the time series by more

than 10 percentage points. The coefficient for Katrina is highly significant and

implies an extraordinary negative return of approximately 2.7% in August 2005.

Figure 2: Residuals
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This figure illustrates residuals of CAT-CAPM, the spread model, and the perils model on
the excess return of the ILS fund index over the one-month T-Bill rate. The downward
spike in the residuals occurs in August 2005. The analysis starts in January 2002 and
ends in December 2015. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels,

4.3 The cross section of expected excess returns

We now draw on our new factor models to explain differences in the cross section

of expected excess returns generated by ILS funds. Before addressing each fund

individually, we examine the Bloomberg categories using the (augmented) perils

model as a benchmark. Table 10 shows the respective results. We estimate a

negative and significant abnormal return (alpha) for the “Fixed Income” ILS

funds, implying that the constituents of this category have underperformed the

benchmark during the time period under consideration. In contrast to that,

insignificant alphas can be documented for the categories “Alternative” and

“Other.” The category “Other” additionally exhibits a lower adjusted R-squared.

This hints at the possibility that funds in this category might also invest in other

asset classes apart from ILS. To test this hypothesis, one would need to run a
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style analysis on the individual funds, using the full asset class factor model

shown in Table 6. Another explanation could be holdings in non-cat-bond ILS

such as extreme mortality bonds, which cannot be captured by our risk factors

and for which there are no return indices. In contrast to that, the significantly

negative alphas for defunct funds reported in the last column of Table 10 suggest

underperformance to be the main reason due to which they dropped out of the

market.

Next, we turn to the fund level. In the following, the dummy variable

Katrina will no longer be included in the models, since it merely captures a

single outlier in the time series and is therefore irrelevant for the cross section

of expected excess returns. We follow Fung and Hsieh (2004) as well as Chen

et al. (2010) and only include funds that have at least 24 months of consecutive

return data. As a consequence, our sample reduces from 57 to 50 funds.13

Table 11 contains the percentage of positive significant (+), negative signifi-

cant (–), and insignificant (0) alphas estimated by the CAT-CAPM. The model

is not able to explain the positive abnormal returns of 30.00% of the ILS funds in

the sample. At the same time, only 6.00% of all ILS funds underperformed the

CAT-CAPM benchmark. The corresponding figures for the spread model are

shown in Table 12. Surprisingly, it results in a higher percentage of significantly

positive alphas (34.00%) and a lower fraction of negative alphas (2.00%) than

the CAT-CAPM. Despite its better fit to the time series, it is thus a much less

challenging benchmark for ILS funds.

13Using funds with at least 36 months of consecutive return data would substantially
reduce our sample to 38 funds but the key findings remain unchanged. In contrast, using
funds with at least 12 months of consecutive return data increases the number of funds to 56
at the cost of estimation precision, yet, the cross-sectional findings are almost identical.
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Table 11: Time series regressions of individual funds on CAT-CAPM

(1) (2) (3) (4) (5) (6)

Fund category Current status

All Funds Alternative Fixed Income Other Live Dead

Alpha distr.

+ 30.00% 35.29% 7.69% 40.00% 37.50% 0.00%

0 64.00% 58.82% 76.92% 60.00% 56.50% 90.00%

− 6.00% 5.88% 15.38% 0.00% 5.00% 10.00%

No. of funds 50 17 13 20 40 10

This table shows the distribution of alphas (i.e., the constant) coefficients of the CAT-
CAPM on excess returns of individual ILS funds. To be included in the individual fund
regression a fund must have at least 24 months of consecutive return data. Alphas are
considered significantly positive (+) or negative (−) if they are significant at the 10%-level.
Alphas are considered insignificant (0) if they are significant above the 10%-level. The
number of funds in each category is reported in the last row of the table. The time period
for each individual fund ranges between January 2002 and December 2015.

Table 12: Time series regressions of individual funds on spread model

(1) (2) (3) (4) (5) (6)

Fund category Current status

All Funds Alternative Fixed Income Other Live Dead

Alpha distr.

+ 34.00% 29.41% 7.69% 55.00% 40.00% 10.00%

0 64.00% 70.59% 84.62% 45.00% 57.50% 90.00%

− 2.00% 0.00% 7.69% 0.00% 2.50% 0.00%

No. of funds 50 17 13 20 40 10

This table shows the distribution of alphas (i.e., the constant) coefficients of the spread
model on excess returns of individual ILS funds. To be included in the individual fund
regression a fund must have at least 24 months of consecutive return data. Alphas are
considered significantly positive (+) or negative (−) if they are significant at the 10%-level.
Alphas are considered insignificant (0) if they are significant above the 10%-level. The
number of funds in each category is reported in the last row of the table. The time period
for each individual fund ranges between January 2002 and December 2015.



IV ILS Funds 205

Table 13: Time series regressions of individual funds on perils model

(1) (2) (3) (4) (5) (6)

Fund category Current status

All Funds Alternative Fixed Income Other Live Dead

Alpha distr.

+ 28.00% 29.41% 7.69% 25.00% 35.00% 0.00%

0 46.00% 41.18% 30.77% 75.00% 45.00% 50.00%

− 26.00% 29.41% 61.54% 0.00% 20.00% 50.00%

No. of funds 50 17 13 20 40 10

This table shows the distribution of alphas (i.e., the constant) coefficients of the perils
model on excess returns of individual ILS funds. To be included in the individual fund
regression a fund must have at least 24 months of consecutive return data. Alphas are
considered significantly positive (+) or negative (−) if they are significant at the 10%-level.
Alphas are considered insignificant (0) if they are significant above the 10%-level. The
number of funds in each category is reported in the last row of the table. The time period
for each individual fund ranges between January 2002 and December 2015.

Figure 3: CAT-CAPM beta representation
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This figure illustrates the actual mean excess returns of 50 ILS funds against their beta
estimated by the CAT-CAPM. Black circles indicate insignificant alpha values. Red
upward pointing triangles indicate significant positive alphas at the 10%-level. Magenta
downward pointing triangles indicate significant negative alphas at the 10%-level. The
percentage of insignificant, significantly positive, and significantly negative alphas are
documented in the legend.

Finally, we focus on the results for the perils model as reported in Table 13.

Now, the number of funds with significantly negative intercepts rises substan-

tially to 26.00%, implying that a lot more of the managers than suggested by
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Tables 11 and 12 were in fact unable to earn back their fees. Another 46.00%

of the funds exhibit an insignificant alpha. Hence, the perils model seems to be

the most strict benchmark of the three. Nevertheless, it still leaves the positive

expected excess returns of 28.00% of the ILS funds unexplained. This raises

the question whether approximately one quarter of all funds were indeed able

to outperform the market for cat bonds or whether their alphas stem from

other (traditional or exotic) risk exposures that are not captured by our ILS-

specific factor models. We will further deal with this question in the next section.

For the time being, however, we continue with a visual inspection of the

cross-sectional results. In Figure 3, we have plotted the actual mean excess

returns of the ILS funds against their cat bond market betas estimated by

means of the CAT-CAPM. This graph tells us that if ILS funds only invest

in a diversified basket of cat bonds, their returns should increase with beta,

that is, there should be a linear relationship between fund beta and return.14

Most of the funds have a beta between 0.10 and 1.00 meaning that ca. 10%

to 100% of their assets are invested in cat bonds. Six funds, however, have a

beta larger than 1.00 meaning that there are funds who use leverage to increase

their exposure towards cat bonds or overweigh lower, i.e. riskier, cat bond

layers relative to the market portfolio. Interestingly though, their returns are

not larger than those of their peers with lower betas. Moreover, all funds with

significantly positive alphas (based on the CAT-CAPM ) have a beta exposure

below 0.85. Again, this is an indication for manager skill, luck, or additional

holdings of non-cat-bond ILS or other asset classes.

Figure 4 illustrates the cross-sectional results by plotting the actual mean

excess returns against the mean excess return predicted by each of the three

ILS-specific factor models. In the absence of significant abnormal excess returns,

all funds should concentrate along the dotted 45-degree line. Yet, both for the

CAT-CAPM and the spread model, several funds that lie substantially below

the 45-degree line exhibit insignificant alphas. Only the perils model seems

to be sufficiently well-suited to identify both significantly positive or negative

14The fact that not all funds in our sample operate(d) during the same time period can
impair the linear relationship.
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alphas of ILS funds. Overall, we conclude that about one quarter of all ILS

funds exhibits expected excess returns that cannot be explained by any of the

three factor models.

Figure 4: Predicting the cross-section of ILS funds
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This figure illustrates the actual mean excess returns of 50 ILS funds and their predicted
mean excess returns by the CAT-CAPM (upper left), the spread model (upper right),
and the perils model (bottom), respectively. Black circles indicate insignificant alpha
values. Red upward pointing triangles indicate significant positive alphas at the 10%-level.
Magenta downward pointing triangles indicate significant negative alphas at the 10%-level.
The legend on top of each graph highlights the percentage of insignificant, significantly
positive, and significantly negative alphas predicted by the respective model.
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4.4 Alpha explanations

In this section, we want to further investigate whether the 28% of ILS funds that

outperformed our perils model are in fact skilled fund managers. If a handful of

funds invest in traditional asset classes, we would measure an outperformance,

since the perils model does not control for such an exposure. In Tables 6 and 7,

we found some weak exposure to the equity market and bond markets. Thus, we

integrate the high yield bond index HY IELDt into the perils model. Because

the latter exhibits a relatively high correlation to stock markets, we orthogonalize

MKTRFt on HY IELDt and label the resulting rotated equity market factor

as RMOt. The augmented perils model is then defined as:

Re
p,t = α + βp,1CATMKO2t + βp,2USHUt + βp,3USEQt + βp,4RMOt

+ βp,5HY IELDt + εt,
(5)

As shown in Table 14, the positive abnormal returns for 13 of the 14 funds

identified in the previous section remain statistically significant. Consequently,

beta exposures to traditional asset classes are not the source of alpha that the

perils model revealed in ILS funds.

Table 14: Perils model, equities, corporate bonds and ILS funds with pos-
itive alpha

(1) (2) (3) (4) (5) (6) (7)

Alpha 0.46*** 0.40** 0.44** 0.43*** 0.25*** 0.52*** 0.37***

(0.07) (0.16) (0.20) (0.08) (0.05) (0.09) (0.05)

Adj. R2 0.34 0.34 0.00 0.04 0.44 0.40 0.66

# of obs. 121 115 94 92 91 55 55

(8) (9) (10) (11) (12) (13) (14)

Alpha 0.15** 0.30*** 0.26*** 0.10 0.38*** 0.34** 0.41***

(0.06) (0.03) (0.05) (0.09) (0.13) (0.14) (0.10)

Adj. R2 0.24 0.63 0.66 0.71 0.83 0.77 0.07

# of obs. 54 52 48 36 34 34 24

This table shows the intercept (i.e., alpha) of 14 funds from running time-series regressions
of excess fund returns against the augmented perils model in equation (5). The 14 funds
were identified based on having positive abnormal returns under the perils model. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Another explanation could be certain fund characteristics. On the one hand,

larger funds might have more resources to make informed investment decisions

and earn higher returns. On the other hand, they might suffer from diseconomies

of scale and thus earn lower returns. Data on this question, however, is very

limited. Because we only have access to two variables which are measured for

almost all funds, we are left with fund size, measured as the natural logarithm

of assets under management (AuM), and fund age, measured as the natural

logarithm of years that the fund is (was) active, as regressors.15 We run a

single cross-sectional regression of each fund’s alpha (based on the perils model)

against its fund size and fund age. The respective results can be found in Table

15.

Table 15: Alpha, fund size, and fund age

(1) (2) (3)

ln(AuM) 0.07*** 0.08***

(0.03) (0.03)

ln(Age) -0.01 -0.10

(0.07) (0.06)

Constant -0.33** 0.05 -0.22

(0.14) (0.12) (0.15)

Obs. 48 50 48

Adj. R2 0.15 0.01 0.20

This table shows the coefficients on the natural logarithm of assets under management,
ln(AuM), and the natural logarithm of fund age measured in years, ln(Age), from a single
cross-sectional regression against each fund’s alpha. Two out 50 funds do not have any
AuM information. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

In contrast to Chen et al. (2004), who show that fund size erodes the

performance of mutual funds, we find a significant and positive relationship

between fund size and abnormal returns. The positive relationship between fund

size and performance is also in contrast to the evidence found in hedge funds

(see, e.g., Ammann and Moerth, 2005). However, it is important to highlight

that our analysis is limited to a single cross-sectional regression based on the

15Two out 50 funds do not have any AuM information and are thus excluded from
regressions involving fund size.



IV ILS Funds 210

latest available data. Nevertheless, one relevant take-away upholds. Small

funds and funds which have performed badly – and thus became smaller – are

correctly identified as “underperformers” by our perils model. Subsequently,

these underperformers might not be able to attract new fund inflows from

investors. Figure 5, in which we have plotted alphas against fund size, reveals

another important aspect. Funds exceeding USD 680 million in AuM are not

necessarily outperformers on average. Rather, the positive relationship between

fund size and returns is much more blurred and is not as clear as below that size

frontier. This suggests that there might be an optimal size for ILS funds, which

balances economies of scale and the supply of ILS investment opportunities.

Figure 5: Alpha and fund size
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This figure illustrates the abnormal returns (alpha) from the perils model of 48 ILS funds
against their respective fund size (two funds do not have AuM information). Fund size on
the x-axis is the natural logarithm of assets under management (AuM) in USD millions.
Black circles indicate insignificant alpha values. The solid black line shows the estimation
slope of alpha against fund size based on funds not exceeding USD 680mn in AuM. The
dotted black line indicates a break in the functional relationship between alpha and fund
size at USD 680mn. Red upward pointing triangles indicate significant positive alphas at
the 10%-level. Magenta downward pointing triangles indicate significant negative alphas
at the 10%-level.
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5 Robustness

5.1 Subperiods

To assess the robustness of our results over time, we separate the overall sample

(January 2002 until December 2015) into four equally long subperiods and run

the perils model against the excess return of the aggregate ILS fund index. We

also include the Katrina dummy variable during the period July 2005 until

December 2008. Table 16 shows the respective results.

Table 16: Subperiods

(1) (2) (3) (4)

01/2002–06/2005 07/2005–12/2008 01/2009–06/2012 07/2012–12/2015

CATMKO2 0.88*** 0.97*** 0.91*** 0.24***

(0.11) (0.16) (0.03) (0.06)

USHU 0.41*** 0.37*** 0.27*** 0.40***

(0.06) (0.08) (0.05) (0.03)

USEQ 0.10 0.05 0.25*** -0.00

(0.17) (0.03) (0.08) (0.09)

KATRINA -2.63***

(0.08)

Constant 0.00 -0.02 -0.06 0.18***

(0.10) (0.07) (0.07) (0.03)

Adj. R2 0.50 0.83 0.89 0.83

Obs. 42 42 42 42

This table shows the coefficients of the perils model over different time periods. The
dependent variable is the excess return of the ILS fund index over the one-month T-Bill
rate. Column (1) - (4) show the results for time periods January 2002 until June 2005, July
2005 until December 2008, January 2009 until June 2012, and July 2012 until December
2015, respectively. We model is augmented by the Katrina dummy during the period July
2005 until December 2008. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

Our first finding is that the perils model performs very well over the last three

subperiods with adjusted R-squareds between 83% and 89%. The orthogonalized

cat bond market factor (CATMKO2) as well as the single-peril hurricane factor

(USHU) are highly significant at all times, meaning that the majority of funds

is constantly invested in multi-peril risks and single-peril U.S. hurricane risk.
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However, the single-peril earthquake factor (USEQ) is only significant in the

time period January 2009 to June 2012. This could be due to the fact that many

funds gain earthquake risk exposure through multiperil bonds. The second

finding is a much lower explanatory power of 50% in the first subperiod. A likely

reason is that only few ILS funds existed in those early days of the industry.

Hence, portfolio compositions that differ from the market indices have a stronger

impact. The last finding is the significant alpha in the most recent subperiod

with an unexplained monthly return of 0.18%. This subperiod is characterized

by the largest number of funds. A potential explanation for the significant

abnormal return might be found in the advent of several non-cat-bond segments

of the ILS market.

5.2 Out-of-sample tests

To avoid in-sample overfitting, we are now interested how well our augmented

perils model and spread model perform on the excess returns (over the one-

month T-Bill rate) of other indices related to the securitization of natural

catastrophes. The first index is the Eurekahedge index which also tracks the

aggregate performance of ILS funds. Hence, we expect that our model should

perform as good as on our proprietary aggregate ILS fund index. The second

index is the Mercury investible Catastrophe Risk Index, also known as MiCRIX,

which tracks the performance of a diversified portfolio of peak peril industry

loss warranties (ILWs). Both indices start in January 2006. In contrast to

cat bonds, ILWs are uncollateralized and unfunded double-trigger contracts,

whose main trigger relies on an insurance industry loss index.16 The results

reported in Table 17 indicate that, as expected, the Eurekahedge index can be

well described by either model with adjusted R-squareds of 77% for the perils

model and 75% for the spread model. In contrast, ILWs represented by the

MiCRIX can be less explained by the ILS fund models with adjusted R-squareds

of 58% and 57%, respectively. This suggests that the pricing of cat bonds has

some effect on ILWs, yet other effects are at play. One explanation could be

that insurance companies focus on other regions or have a lower exposure than

cat bonds.

16For a detailed discussion of ILWs and catastrophe swaps, refer to Braun (2011).
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Table 17: Out-of-sample indices

(1) (2) (3) (4)

Eurekahedge Eurekahedge MiCRIX MiCRIX

CATMKO1 0.32 0.55

(0.24) (1.13)

TERM3Y 0.62*** 1.92***

(0.12) (0.51)

DEFCOR 0.54*** 1.65***

(0.10) (0.40)

DEFCAT 0.55*** 1.91***

(0.11) (0.44)

CATMKO2 0.81*** 3.01***

(0.18) (0.78)

USHU 0.27*** 0.89***

(0.03) (0.17)

USEQ 0.18*** -0.02

(0.02) (0.23)

Constant 0.05 0.08 -0.31 -0.24

(0.05) (0.06) (0.27) (0.38)

Adj. R2 0.77 0.75 0.58 0.57

Obs. 120 120 120 120

This table shows the coefficients of the perils model augmented by the hurricane option
factor and the spread model augmented by the hurricane option factor. The dependent
variable in Column (1) and (2) is the excess return of the Eurekahedge catastrophe bond
fund index over the one-month T-Bill rate. The dependent variable in Column (3) and (4)
is the excess return of the Mercury investible Catastrophe Risk Index (MiCRIX) over the
one-month T-Bill rate. Standard errors in parentheses are Newey-West (1987) corrected
with lags of four. The indices start in January 2006 and end in December 2015. *, **,
and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

6 Conclusion

A better understanding of catastrophe funds is crucial for investors to make

sophisticated investment decisions. This can be proven to be difficult due to the

limited information by some of the ILS funds. Using the first comprehensive

dataset on ILS funds, this paper tried to understand the performance features

of cat bonds funds in comparison to other asset classes and to understand the

key performance drivers of this innovative asset class.
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We show that ILS funds are the highest performing asset class based on

a battery of risk measures including the Sharpe Ratio, the Sortino Ratio, the

Excess Return on VaR, or the Calmar Ratio. ILS funds are also consistently

delivering positive returns on an aggregate basis in ca. 90% of all analyzed

months compared to 67% during the same period for hedge funds. We also

show that single-peril hurricane, single-peril earthquake and multi-peril risks

are driving the performance for ca. three quarters of all ILS funds. Vice versa,

one quarter of all ILS funds is able to consistently generate significant alphas,

even under the new model setting. Our findings may help to promote a better

understanding of the main return drivers of ILS funds. Hence, they should be

relevant to fund managers and investors alike. We hope to contribute to the

transparency of cat bond funds in order to support the further growth of this

segment in the capital market.

Despite the empirical findings of outperformance, several limitations with

regard to ILS funds need to be highlighted. Although, we rigorously combed

through the entire fund universe to identify live and dead ILS funds, reporting

biases such as survivorship, backfilling, managed returns, and self-selection

cannot be fully excluded. We believe, however, that by the construction of our

database these biases have no big magnitude, if any.

Beyond the data limitation, limitations on the ILS investment opportunity

need to be addressed. First and foremost, the fact that ILS funds invest in (the

non-occurence of) extreme events means that such events can result in large

losses in cat bonds and subsequently in ILS funds. If a fund is not optimally

diversified the risk of total loss must be considered as a reality. Second, despite

having seen large extreme events such as Hurricane Katrina and the Tohoku

earthquake, it remains an open question how an extreme catastrophic event

looks like, how large the losses by such an event would be, and what the final

effect on ILS funds would be.

The most challenging aspect for future research would be to identify ILS

other than cat bonds and how such instruments drive the performance of ILS
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funds. Furthermore, more research is needed to better understand whether fund

managers with superior risk-adjusted performance are simply lucky or actually

skilled in making investment decisions.
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