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Abstract: Mediation analysis is a useful tool to study the mechanism of how a treatment exerts effects
on the outcome. Classical mediation analysis requires a sequential ignorability assumption to rule
out cross-world reliance of the potential outcome of interest on the counterfactual mediator in order
to identify the natural direct and indirect effects. In recent years, the separable effects framework
has adopted dismissible treatment components to identify the separable direct and indirect effects.
In this article, we compare the sequential ignorability and dismissible treatment components for
longitudinal outcomes and time-to-event outcomes with time-varying confounding and random
censoring. We argue that the dismissible treatment components assumption has advantages in
interpretation and identification over sequential ignorability, whereas these two conditions lead
to identical estimators for the direct and indirect effects. As an illustration, we study the effect
of transplant modalities on overall survival mediated by leukemia relapse in patients undergoing
allogeneic stem cell transplantation. We find that Haplo-SCT reduces the risk of overall mortality
through reducing the risk of relapse, and Haplo-SCT can serve as an alternative to MSDT in allogeneic
stem cell transplantation.

Keywords: dismissible treatment component; identification; mediation; separable effect; sequential
ignorability

MSC: 62N01

1. Introduction

Mediation analysis is a useful tool to detect the causal mechanism in randomized trials
and observational studies [1]. The original version of mediation analysis was introduced
using structural equations. Under the potential outcomes framework, the mediator is
considered as a potential outcome of the initial treatment, whereas the primary outcome is
considered as the potential outcome of both the initial treatment and the mediator [2–4].
The notion of causal mediation analysis stands on a philosophical view that the mediator
can be manipulated. The total effect can be decomposed into a natural direct effect and a
natural indirect effect. Identification of these natural effects typically requires a sequential
ignorability assumption, which is sometimes hard to interpret [5,6]. Sequential ignorability
means that the mediator is as-if-randomized given baseline covariates and treatment.

Due to the fact that the mediator may not be manipulable, the classical mediation
analysis has been criticized by many researchers [7–10]. An interventionist approach named
the separable effects framework decomposes the initial treatment into several components,
and each component exerts an effect on a single event [11–13]. The core identification
assumption in separable effects is the dismissible treatment components. The target es-
timands are usually termed separable direct and indirect effects, which share the same
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identification formula with the natural direct and indirect effects under slightly different
sets of assumptions. The estimands of separable effects can be more interpretable by find-
ing the treatment components. When sequential ignorability (or a dismissible treatment
component) fails, the separable effects still offer a causal explanation, although they may
not be identifiable.

To relax the original sequential ignorability, post-treatment variables are taken into
consideration in the assumption. It is common that there is post-treatment confounding
that affects the mediator and primary outcome [14–16]. The definition of natural direct and
indirect effects should be modified for identification. When it comes to longitudinal studies
or time-to-event studies, the mediation analysis becomes far more complicated [17–19].
The post-treatment variables are time-varying. Following the original idea of mediation
analysis, a post-treatment variable should be considered as a potential outcome of all ma-
nipulable variables measured prior to this variable. Generalizing the sequential ignorability
is tedious work as it involves dealing with these post-treatment variables. The sequential
ignorability assumption is usually deemed unreasonable because the post-treatment vari-
ables may not be manipulable [20]. Even under the separable effects framework, there is
a lack of desirable justification of assumptions, since the treatment components can exert
effects on the primary outcome through time-varying confounding [13,21]. The separation
of causal pathways is determined a priori. It is still worth studying the difference between
the sequential ignorability and separable effects frameworks in identifying, estimating
and interpreting the treatment effect, and how to extend the frameworks to complicated
scenarios.

In this article, we study the mediation analysis for longitudinal outcomes and time-
to-event outcomes. We compare the sequential ignorability assumption in the classical
mediation analysis and the dismissible treatment components in the separable effects
framework. We formally give the assumptions for identification. We argue that the
dismissible treatment components can be more interpretable and enjoy more notation
conciseness than sequential ignorability. A randomized mediator may not be appropriate,
but a treatment component with an isolated effect on a single event may exist in some
scenarios. Furthermore, the dismissible treatment components assumption is weaker than
sequential ignorability because the former allows unmeasured confounding of some special
types. For time-to-event outcomes, even whether sequential ignorability can be formally
expressed is a problem [22].

The remainder of this article is organized as follows: In Section 2, we consider longi-
tudinal outcomes. From the comparison of sequential ignorability and dismissible treat-
ment components, it is easy to see the advantage of dismissible treatment components.
In Section 3, we consider time-to-event outcomes. We only introduce the dismissible treat-
ment components because the sequential ignorability is infeasible both in notation and
interpretation. In Section 4, we apply the framework to a stem cell transplantation study,
where the outcome is of time-to-event and there is a binary time-varying covariate. Finally,
this article ends with a brief conclusion and discussion.

2. Longitudinal Outcomes
2.1. Identifiability by Sequential Ignorability

Suppose that there are a total of K periods of measurements. Let A ∈ {0, 1} be the
treatment, where A = 0 stands for the control (placebo) and A = 1 stands for the active
treatment. Let L0 be the baseline covariate, Lk

M be the time-varying mediator-inducing
confounding, Lk

Y be the time-varying outcome-inducing confounding, Mk be the mediator
and Yk be the outcome at period k (k = 1, . . . , K). We aim to study the direct treatment
effect on the outcome of interest YK measured at the last period and the indirect effect
through time-varying mediators. In fact, at the period k, the time-varying confounding Lk

M,
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Lk
Y, mediator Mk and outcome Yk are potential outcomes of the treatment (aM and aY) and

history (gk
LM

, gk
LY

, gk
M and gk

Y), denoted by

Lk
M(aM, gk

LM
) = Lk

M(aM, l j
M, l j

Y, mj, yj : j = 1, . . . , k − 1), (1)

Lk
Y(aY, gk

LY
) = Lk

Y(aY, l j
M, l j

Y, mj, yj, lk
M : j = 1, . . . , k − 1), (2)

Mk(aM, gk
M) = Mk(aM, l j

M, l j
Y, mj, yj, lk

M, lk
Y : j = 1, . . . , k − 1), (3)

Yk(aY, gk
Y) = Yk(aY, l j

M, l j
Y, mj, yj, lk

M, lk
Y, mk : j = 1, . . . , k − 1), (4)

where l0
M = l0

Y = m0 = y0 = ∅. We do not consider the post-treatment variables as
potential outcomes of baseline covariates because baseline covariates are not manipulable.
For notation convenience, we also define

LK+1
M (aM, gK+1

LM
) = LK+1

Y (aY, gK+1
LY

) = MK+1(aM, gK+1
M ) = YK+1(aY, gK+1

Y ) = ∅.

A significant challenge in conducting mediation analysis for longitudinal outcomes is
that the time-varying mediators and outcomes are interacting with each other. The outcome
Yk at period k can have an effect on the mediator Mk+1 at period k + 1. Therefore, it is
not straightforward to define the natural level of the mediators. A possible approach is to
define the natural level of time-varying confounding, mediators and outcomes iteratively.
At period 1, we set the treatment at aM and obtain a natural level of the mediator-inducing
confounding (possible null) L1

M(aM). Then, we set the treatment at aY and obtain a counter-
factual level of the outcome-inducing confounding (possible null) L1

Y(aY, L1
M(aM)). Next,

we set the treatment at aM again and obtain the counterfactual level of the mediator. Finally,
we set the treatment at aY and obtain the counterfactual level of the outcome. Repeating
this procedure, we can derive the counterfactual levels of the mediator-inducing confound-
ing, outcome-inducing confounding, mediators and outcomes at all periods, denoted by
Lk

M(aM, aY), Lk
Y(aM, aY), Mk(aM, aY) and Yk(aM, aY), respectively, for k = 1, . . . , K. Let

Gk
LM

(aM, aY), Gk
LY
(aM, aY), Gk

M(aM, aY) and Gk
Y(aM, aY) be the history of Lk

M, Lk
Y, Mk and

Yk under such a sequential intervention. The natural direct effect (NDE) and natural
indirect effect (NIE) are defined as

NDE = E{YK(0, 1)− YK(0, 0)}, (5)

NIE = E{YK(1, 1)− YK(0, 1)}. (6)

Let Gk
LM

, Gk
LY

, Gk
M and Gk

Y be the observed history prior to LM, LY, M and Y. We
always assume the stable unit treatment value assumption (SUTVA) that all individuals
are independent with each other and the potential outcomes are well defined. Consis-
tency states that the observed variables are equal to the potential variables under the
observed treatment.

Assumption 1 (Consistency). For k = 1, . . . , K,

Lk
M = Lk

M(A, A), Lk
Y = Lk

Y(A, A), Mk = Mk(A, A), Yk = Yk(A, A),

Gk
LM

= Gk
LM

(A, A), Gk
LY

= Gk
LY
(A, A), Gk

M = Gk
M(A, A), Gk

Y = Gk
Y(A, A).

Identification of the NDE and NIE requires identifying the distribution of the counter-
factual outcomes. To tackle the dependence of cross-world quantities on the history, we
make the ignorability and sequential ignorability assumption as follows:

Assumption 2 (Ignorability for longitudinal outcomes).

A ⊥⊥ (Lk
M(aM, gk

LM
), Lk

Y(aY, gk
LY
), Mk(aM, gk

M), Yk(aY, gk
Y) : k = 1, . . . , K) | L0.
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Assumption 3 (Sequential ignorability for longitudinal outcomes).

Lk
M ⊥⊥ (Lj+1

M (aM, gj+1
LM

), Lj
Y(aY , gj

LY
), Mj(aM, gj

M), Y j(aY , gj
Y) : j = k, . . . , K) | A, L0, Gk

LM
= gk

LM
,

Lk
Y ⊥⊥ (Lj+1

M (aM, gj+1
LM

), Lj+1
Y (aY , gj+1

LY
), Mj(aM, gj

M), Y j(aY , gj
Y) : j = k, . . . , K) | A, L0, Gk

LY
= gk

LY
,

Mk ⊥⊥ (Lj+1
M (aM, gj+1

LM
), Lj

Y(aY , gj
LY
), Mj+1(aM, gj+1

M ), Y j(aY , gj
Y) : j = k, . . . , K) | A, L0, Gk

M = gk
M,

Yk ⊥⊥ (Lj+1
M (aM, gj+1

LM
), Lj

Y(aY , gj
LY
), Mj+1(aM, gj+1

M ), Y j+1(aY , gj+1
Y ) : j = k, . . . , K) | A, L0, Gk

Y = gk
Y ,

where k = 1, . . . , K.

Ignorability simply means that the treatment is independent of all potential variables.
The first independence in the sequential ignorability means that the treatment mechanism
is ignorable given baseline covariates. At the period k, given all the observed variables prior
to Lk

M (or Lk
Y, Mk, Yk) including baseline covariates and observed treatment, the observed

Lk
M (or Lk

Y, Mk, Yk) are independent of all potential variables later than Lk
M (or Lk

Y, Mk, Yk).
Every post-treatment variable is as-if-randomized given the observed variables prior to
the current time. To make the sequential ignorability assumption hold, unmeasured
confounding between any two of Lj1

M, Lj2
Y , Mj3 and Y j4 should be excluded (j1, j2, j3, j4 ∈

{1, . . . , K}). Figure 1 displays a directed acyclic graph (DAG) that satisfies sequential
ignorability. To derive the potential outcome YK(aM, aY), we set Lk

M and Mk at the level
under the treatment aM, and set Lk

Y and Yk at the level under the treatment aY, given the
baseline covariates and history. No unmeasured confounding is allowed on the graph.

A

M 1

Y 1

LM
1

LY
1

M 2

Y 2

LM
2

LY
2

M 3

Y 3

LM
3

LY
3

Figure 1. A direct acyclic graph (DAG) for longitudinal outcomes with 3 periods. Here, A is the
treatment, Lj

M is the mediator-inducing confounding, Lj
Y is the outcome-inducing confounding, Mj

is the mediator and Y j is the outcome at period j. The baseline covariates L0, which can have direct
edges to all variables, are omitted. Red lines depict edges into the mediator, blue lines depict edges
into the mediator-inducing confounding, green lines depict edges into the outcome, and black lines
depict adges into the outcome-inducing confounding. This DAG also satisfies Markovness.

In the presence of censoring, let ∆k
LM

, ∆k
LY

, ∆k
M and ∆k

Y be the censoring indicators for
LM, LY, M and Y, respectively, at period k. The censoring indicator equals 1 if the variable is
observed and 0 if the variable is missing. We assume that the censoring is random given the
observed history, not depending on potential variables. The random censoring assumption
we use here is weaker than the non-informative censoring assumption usually made in
survival analysis literature which assumes the censoring is independent of all potential
variables, as we allow the censoring probability being explained by the time-varying
observed variables.

Assumption 4 (Random censoring for longitudinal outcomes). For k = 1, . . . , K,

∆k
LM

⊥⊥ Lk
M(aM, gk

LM
) | A = aM, L0, Gk

LM
= gk

LM
,

∆k
LY

⊥⊥ Lk
Y(aY, gk

LY
) | A = aY, L0, Gk

LY
= gk

LY
,
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∆k
M ⊥⊥ Mk(aM, gk

M) | A = aM, L0, Gk
M = gk

M,

∆k
Y ⊥⊥ Yk(aY, gk

Y) | A = aY, L0, Gk
Y = gk

Y.

In addition, we assume the positivity. The supports of potential variables should
overlap between hypothetical treatments and the censoring time should be large enough so
that we have information about the variable distributions at every period.

Assumption 5 (Positivity for longitudinal outcomes). The following statements hold:

P(L0 = l0) > 0 ⇒ P(A = a, L0 = l0) > 0,

P(L0 = l0, Gk
LM

(aM, aY) = gk
LM

) > 0 ⇒ P(A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆LM = 1) > 0,

P(L0 = l0, Gk
LY
(aM, aY) = gk

LY
) > 0 ⇒ P(A = aY, L0 = l0, Gk

LY
= gk

LY
, ∆LY = 1) > 0,

P(L0 = l0, Gk
M(aM, aY) = gk

M) > 0 ⇒ P(A = aM, L0 = l0, Gk
M = gk

M, ∆M = 1) > 0,

P(L0 = l0, Gk
Y(aM, aY) = gk

Y) > 0 ⇒ P(A = aY, L0 = l0, Gk
Y = gk

Y, ∆Y = 1) > 0,

for every a, aM, aY ∈ {0, 1}.

Under ignorability, sequential ignorability, consistency and random censoring, we can
show that (see Appendix A)

dP(Lk
M(aM, gk

LM
) = lk

M | L0 = l0, Gk
LM

(aM, aY) = gk
LM

)

= dP(Lk
M = lk

M | A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆k
LM

= 1), (7)

dP(Lk
Y(aY, gk

LY
) = lk

Y | L0 = l0, Gk
LY
(aM, aY) = gk

LY
)

= dP(Lk
Y = lk

Y | A = aY, L0 = l0, Gk
LY

= gk
LY

, ∆k
LY

= 1), (8)

dP(Mk(aM, gk
M) = mk | L0 = l0, Gk

M(aM, aY) = gk
M)

= dP(Mk = mk | A = aM, L0 = l0, Gk
M = gk

Y, ∆k
M = 1), (9)

dP(Yk(aY, gk
Y) = yk | L0 = l0, Gk

Y(aM, aY) = gk
Y)

= dP(Yk = yk | A = aY, L0 = l0, Gk
Y = gk

Y, ∆k
Y = 1). (10)

We take the expectation for YK(aM, aY) over the distribution of all potential variables
using the g-formula [23]. Under positivity, the expectation of the potential outcome of
interest at period K is identified as

E{YK(aM, aY)} =
∫

yK
K

∏
k=1

dP(Lk
M = lk

M | A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆k
LM

= 1)

dP(Lk
Y = lk

Y | A = aY, L0 = l0, Gk
LY

= gk
LY

, ∆k
LY

= 1)

dP(Mk = mk | A = aM, L0 = l0, Gk
M = gk

Y, ∆k
M = 1)

dP(Yk = yk | A = aY, L0 = l0, Gk
Y = gk

Y, ∆k
Y = 1)

dP(L0 = l0). (11)

The integration is conducted over the support of (L0, Lk
M, Lk

Y, Mk, Yk : k = 1, . . . , K).
We summarize the result in the following theorem.

Theorem 1. Under Assumptions 1–5, NDE and NIE are identifiable.

The model involves more predictors with k growing larger. Estimation becomes more
complicated if the measurements have too many periods. For simplicity, we may assume
Markovness (exclusion restriction) that the potential variables at period k only rely on the
preceding variables for at most one period.
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Assumption 6 (Markovness for longitudinal outcomes). For k = 1, . . . , K,

Lk
M(aM, gk

LM
) = Lk

M(aM, lk
M, lk

Y, mk, yk),

Lk
Y(aY, gk

LY
) = Lk

Y(aY, lk
Y, mk, yk, lk

M),

Mk(aM, gk
M) = Mk(aM, mk, yk, lk

M, lk
Y),

Yk(aY, gk
Y) = Yk(aY, yk, lk

M, lk
Y, mk),

in which lk
M, lk

Y, mk and yk are consistent with the history gk
LM

, gk
LY

, gk
M and gk

Y.

Under Assumption 6,

dP(Lk
M(aM, gk

LM
) = lk

M | L0 = l0, Gk
LM

(aM, aM) = gk
LM

)

= dP(Lk
M = lk

M | A = aM, L0 = l0, Lk−1
M = lk−1

M , Lk−1
Y = lk−1

Y , Mk−1 = mk−1, Yk−1 = yk−1),

dP(Lk
Y(aY , gk

LY
) = lk

Y | L0 = l0, Gk
LY
(aY , aY) = gk

LY
)

= dP(Lk
Y = lk

Y | A = aY , L0 = l0, Lk−1
Y = lk−1

Y , Mk−1 = mk−1, Yk−1 = yk−1, Lk
M = lk

M),

dP(Mk(aM, gk
M) = mk | L0 = l0, Gk

M(aM, aM) = gk
M)

= dP(Mk = mk | A = aM, L0 = l0, Mk−1 = mk−1, Yk−1 = yk−1, Lk
M = lk

M, Lk
Y = lk

Y),

dP(Yk(aY , gk
Y) = yk | L0 = l0, Gk

Y(aY , aY) = gk
Y)

= dP(Yk = yk | A = aY , L0 = l0, Yk−1 = yk−1, Lk
M = lk

M, Lk
Y = lk

Y , Mk = mk).

So, we can use a pooled model to estimate these conditional probabilities. Then, the
expectation of potential outcome can be estimated by the g-formula. An alternative to
estimate the target estimand E{YK(aM, aY)} is to employ weighting methods [24].

2.2. Identifiability by Dismissible Treatment Components

The identification by sequential ignorability bears complexity in notations as well as
difficulty in interpretations. An interventionist approach to studying mediation effects
is the separable effects framework [11,13,21]. The initial treatment A is divided into two
components AM and AY, where AM exerts effects on the mediator-inducing confounding
Lk

M and mediators Mk, while AY exerts effects on the outcome-inducing confounding Lk
Y

and outcomes Yk. All post-treatment variables are potential outcomes of AM and AY.
Since we are not to intervene in post-treatment variables, there is no need to express the
post-treatment variables as potential outcomes of their history. In the realized experiment,
A = AM = AY, but in hypothetical or future experiments, we can let AM ̸= AY.

Specifically, we have the potential mediator-inducing confounding Lk
M(aM, aY), the po-

tential outcome-inducing confounding Lk
Y(aM, aY), the potential mediator Mk(aM, aY) and

the potential outcome of interest Yk(aM, aY) at period k. Let L0 be the baseline covari-
ates. Denote the history for the mediator-inducing confounding, outcome-inducing con-
founding, mediator and outcome at period k by Gk

LM
(aM, aY), Gk

LY
(aM, aY), Gk

M(aM, aY)

and Gk
Y(aM, aY), respectively, including all the post-treatment variables prior to this vari-

able under the hypothetical treatment components (aM, aY). Let Lk
M, Lk

Y, Mk and Yk be
the observed mediator-inducing confounding, outcome-inducing confounding, mediator
and outcome at period k. Let Gk

LM
, Gk

LY
, Gk

M and Gk
Y be the observed history at period k.

We assume that the observed variables are equal to the potential counterparts under the
realized treatment.

Assumption 7 (Consistency). For k = 1, . . . , K,

Lk
M = Lk

M(A, A), Lk
Y = Lk

Y(A, A), Mk = Mk(A, A), Yk = Yk(A, A),

Gk
LM

= Gk
LM

(A, A), Gk
LY

= Gk
LY
(A, A), Gk

M = Gk
M(A, A), Gk

Y = Gk
Y(A, A).
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Under the separable effects framework, the natural direct effect (NDE) and natural
indirect effect (NIE) on the outcome of interest at period K are defined as

NDE = E{YK(0, 1)− YK(0, 0)}, (12)

NIE = E{YK(1, 1)− YK(0, 1)}. (13)

In the literature on separable effects, these estimands are also called the separable
direct effect (SDE) and separable indirect effect (SIE).

We assume the treatment mechanism is ignorability (the same role as the first part in
Assumption 3).

Assumption 8 (Ignorability for longitudinal outcomes).

A ⊥⊥ {Lk
M(aM, aY), Lk

Y(aM, aY), Mk(aM, aY), Yk(aM, aY) : k = 1, . . . , K} | L0.

The core assumption for identification is the dismissible treatment components as-
sumption, an alternative to sequential ignorability.

Assumption 9 (Dismissible treatment components for longitudinal outcomes).

dP(Lk
M(aM, aY) = lk

M | L = l0, GLM (aM, aY) = gk
LM

)

= dP(Lk
M(aM, aY) = lk

M | L = l0, GLM (aM, aM) = gk
LM

),

dP(Lk
Y(aM, aY) = lk

Y | L = l0, GLY (aM, aY) = gk
LY
)

= dP(Lk
Y(aM, aY) = lk

Y | L = l0, GLY (aY, aY) = gk
LY
),

dP(Mk(aM, aY) = mk | L = l0, GM(aM, aY) = gk
M)

= dP(Mk(aM, aY) = mk | L = l0, GM(aM, aM) = gk
M),

dP(Yk(aM, aY) = yk | L = l0, GY(aM, aY) = gk
Y)

= dP(Yk(aM, aY) = yk | L = l0, GY(aY, aY) = gk
Y).

The dismissible treatment components assumption implies that the discrete-time
hazards of the mediator-inducing confounding and mediators are irrelevant to AY, while
the discrete-time hazards of the outcome-inducing confounding and outcomes are irrelevant
to AM, given the baseline covariates and history. This assumption bypasses the complicated
derivation of sequential ignorability by using more concise and interpretable notations.
Figure 2 shows the extended DAG for longitudinal outcomes under the separable effects
framework. Even if there is unmeasured confounding between Lj1

M and Lj2
M, or between Lj3

M
and Mj4 , the paths to deliver effects of AY on Mj are blocked by the conditioning on the
history (j1, j2, j3, j4, j ∈ {1, . . . , K}). Similarly, if there is unmeasured confounding between
Lj1

Y and Lj2
Y , or between Lj3

Y and Y j4 , the paths to deliver effects of AM on Y j are blocked by
the conditioning on the history (j1, j2, j3, j4, j ∈ {1, . . . , K}). When such confounding exists,
the sequential ignorability fails but the dismissible treatment components assumption
holds. The dismissible treatment components assumption holds as long as there is no
unmeasured confounding between the sequences of (Lk

M, Mk) and (Lk
Y, Yk), under which

the effects of AM and AY can be isolated. Therefore, the dismissible treatment components
assumption has weaker implications than the sequential ignorability.

Let ∆k
LM

, ∆k
LY

, ∆k
M and ∆k

Y be the censoring indicator of LM, LY, M and Y, respectively,
at period k. In addition to dismissible treatment components, we need random censoring
and positivity.

Assumption 10 (Random censoring for longitudinal outcomes). For k = 1, . . . , K,

∆k
LM

⊥⊥ Lk
M(aM, aM) | A = aM, L0, Gk

LM
= gk

LM
,
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∆k
LY

⊥⊥ Lk
Y(aY, aY) | A = aY, L0, Gk

LY
= gk

LY
,

∆k
M ⊥⊥ Mk(aM, aM) | A = aM, L0, Gk

M = gk
M,

∆k
Y ⊥⊥ Yk(aY, aY) | A = aY, L0, Gk

Y = gk
Y.

Assumption 11 (Positivity for longitudinal outcomes). The following statements hold:

P(L0 = l0) > 0 ⇒ P(A = a, L0 = l0) > 0,

P(L0 = l0, Gk
LM

(aM, aY) = gk
LM

) > 0 ⇒ P(A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆LM = 1) > 0,

P(L0 = l0, Gk
LY
(aM, aY) = gk

LY
) > 0 ⇒ P(A = aY, L0 = l0, Gk

LY
= gk

LY
, ∆LY = 1) > 0,

P(L0 = l0, Gk
M(aM, aY) = gk

M) > 0 ⇒ P(A = aM, L0 = l0, Gk
M = gk

M, ∆M = 1) > 0,

P(L0 = l0, Gk
Y(aM, aY) = gk

Y) > 0 ⇒ P(A = aY, L0 = l0, Gk
Y = gk

Y, ∆Y = 1) > 0,

for every a, aM, aY ∈ {0, 1}.

A

M 1

Y 1

LM
1

LY
1

M 2

Y 2

LM
2

LY
2

M 3

Y 3

LM
3

LY
3

AM

AY

UL1 UM

UL2 UY

Figure 2. An extended direct acyclic graph (eDAG) for longitudinal outcomes with 3 periods.
The treatment A is divided into two components: AM and AY . In addition, Lj

M is the mediator-

inducing confounding, Lj
Y is the outcome-inducing confounding, Mj is the mediator, and Y j is the

outcome at the period j. The baseline covariates L0, which can have direct edges to all variables,
are omitted. Red lines depict edges into the mediator, blue lines depict edges into the mediator-
inducing confounding, green lines depict edges into the outcome, black lines depict edges into the
outcome-inducing confounding, and grey lines depict unmeasured confounding. In the presence of
unmeasured confounding UL1, UL2 , UM and UY , the dismissible treatment components assumption
holds but the sequential ignorability assumption is violated.

Assumptions 10 and 11 have similar meanings to Assumptions 4 and 5. Under ignora-
bility, dismissible treatments components and random censoring, we can show that

dP(Lk
M(aM, aY) = lk

M | L0 = l0, Gk
LM

(aM, aY) = gk
LM

)

= dP(Lk
M = lk

M | A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆k
LM

= 1), (14)

dP(Lk
Y(aM, aY) = lk

Y | L0 = l0, Gk
LY
(aM, aY) = gk

LY
)

= dP(Lk
Y = lk

Y | A = aY, L0 = l0, Gk
LY

= gk
LY

, ∆k
LY

= 1), (15)

dP(Mk(aM, aY) = mk | L0 = l0, Gk
M(aM, aY) = gk

M)

= dP(Mk = mk | A = aM, L0 = l0, Gk
M = gk

Y, ∆k
M = 1), (16)

dP(Yk(aM, aY) = yk | L0 = l0, Gk
Y(aM, aY) = gk

Y)
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= dP(Yk = yk | A = aY, L0 = l0, Gk
Y = gk

Y, ∆k
Y = 1). (17)

by directly utilizing the property of the dismissible treatment components. Then, it is
straightforward to apply the g-formula to identify the expectation of the potential outcome
of interest under positivity:

E{YK(aM, aY)} =
∫

yK
K

∏
k=1

dP(Lk
M = lk

M | A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆k
LM

= 1)

dP(Lk
Y = lk

Y | A = aY, L0 = l0, Gk
LY

= gk
LY

, ∆k
LY

= 1)

dP(Mk = mk | A = aM, L0 = l0, Gk
M = gk

Y, ∆k
M = 1)

dP(Yk = yk | A = aY, L0 = l0, Gk
Y = gk

Y, ∆k
Y = 1)

dP(L0 = l0). (18)

The identification formula under the separable effects framework is identical to that
under sequential ignorability. Although these two frameworks introduce different esti-
mands with different interpretations, the assumptions incorporated have the same goal
to eliminate cross-world quantities. The cross-world reliance is erased by conditioning on
observed history. We summarize the identification results in the following theorem.

Theorem 2. Under Assumptions 7–11, both NIE and NDE are identifiable.

A practically useful assumption is Markovness, which simplifies the conditional prob-
abilities.

Assumption 12 (Markovness for longitudinal outcomes). For k = 1, . . . , K,

dP(Lk
M(aM, aM) = lk

M | L0 = l0, Gk
LM

(aM, aM) = gk
LM

)

= dP(Lk
M(aM, aM) = lk

M | L0 = l0, Lk−1
M (aM, aM) = lk−1

M , Lk−1
Y (aM, aM) = lk−1

Y ,

Mk−1(aM, aM) = mk−1, Yk−1(aM, aM) = yk−1),

dP(Lk
Y(aY, aY) = lk

M | L0 = l0, Gk
LY
(aY, aY) = gk

LY
)

= dP(Lk
Y(aY, aY) = lk

Y | L0 = l0, Lk
M(aY, aY) = lk

M, Lk−1
Y (aY, aY) = lk−1

Y ,

Mk−1(aY, aY) = mk−1, Yk−1(aY, aY) = yk−1),

dP(Mk(aM, aM) = mk | L0 = l0, Gk
M(aM, aM) = gk

M)

= dP(Mk(aM, aM) = mk | L0 = l0, Lk
M(aM, aM) = lk

M, Lk
Y(aM, aM) = lk

Y,

Mk−1(aM, aM) = mk−1, Yk−1(aM, aM) = yk−1),

dP(Yk(aY, aY) = yk | L0 = l0, Gk
Y(aY, aY) = gk

Y)

= dP(Yk(aY, aY) = yk | L0 = l0, Lk
M(aY, aY) = lk

M, Lk
Y(aY, aY) = lk

Y,

Mk(aY, aY) = mk, Yk−1(aY, aY) = yk−1).

Then, we only need to involve the most recent measurements of LM, LY, M and Y as
well as L0 and A in the conditional distribution model. A regression estimator and a weight-
ing estimator for the natural effects under Markovness with competing events has been
proposed [21]. This idea can be generalized to longitudinal mediation analysis by finding
plug-in estimators using the identification formula. Theoretically, we can derive the efficient
influence functions for each term in the identification formula of E{YK(aM, aY)} and then
apply the functional delta method to obtain an efficient estimator for E{YK(aM, aY)} [19,25].
The resulting estimator may enjoy some multiple robustness based on the efficient influence
functions. However, the efficient estimator can be very complicated, involving too many
models. The multiple robustness may not be very meaningful since the regression models
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are often incorrectly specified simultaneously. The variance derived by the asymptotic
form based on efficient influence functions can be unstable. In practice, simple estimators
with sensitivity analysis are desired.

3. Time-to-Event Outcomes

Mediation analysis for time-to-event outcomes is referred to as semi-competing
risks [26,27]. There is an intermediate event (counterpart to the mediator) and a termi-
nal event (counterpart to the outcome). If the terminal event occurs at time t, then the
intermediate event would never occur after t. Semi-competing risks can be understood by
discretion of the continuous time. Let k = 1, . . . , K be a sequence of times, and the statuses
of intermediate event Mk ∈ {0, 1} and terminal event Yk ∈ {0, 1} be measured at each time.
The indicator of status equals 0 if the event has not occurred at time k and 1 if the event
has already occurred at time k. Considering the nature of binary status, the conditional
probabilities of Mk and Yk given the history can be expressed by the hazard using counting
processes, that is, the timewise probability of occurring the event at k given the baseline
and history prior to k.

Formally, we use the notion of counting processes to formalize the mediation analysis
for time-to-event outcomes [22,27]. Suppose there are time-varying intermediate event-
inducing confounding L1(t) and terminal event-inducing confounding L2(t). Let

Ñ1(t; a1, ñ1(·), ñ2(·), l̃1(·), l̃2(·))

be the counting process of the potential intermediate event when the treatment is set at a1,
the intermediate event process prior to t is set at ñ1(s), the terminal event process prior to
t is set at ñ2(s), the intermediate event-inducing confounding process prior to t is set at
l̃1(s) and the terminal event-inducing confounding process prior to t is set at l̃2(s), s < t.
Analogously, let

Ñ2(t; a2, ñ1(·), ñ2(·), l̃1(·), l̃2(·))

be the counting process of the terminal event when the treatment is set at a2, and the pro-
cesses prior to t are set at ñ1(s), ñ2(s), l̃1(s) and l̃2(s), s < t. Let L0 be the baseline covariates,
and the confounding processes of intermediate event-inducing confounding and terminal
event-inducing confounding

L̃1(t; a1, ñ1(·), ñ2(·), l̃1(·), l̃2(·)), L̃2(t; a2, ñ1(·), ñ2(·), l̃1(·), l̃2(·)),

respectively.
Let Ñ1(t), Ñ2(t), L̃1(t) and L̃2(t) be the counting processes of the intermediate event,

terminal event, intermediate event-inducing confounding and terminal event-inducing
confounding in the realized trial at time t ∈ [0, t∗]. We assume consistency if under
the observed treatment A, the observable counting processes are compatible with the
potential processes.

Assumption 13 (Consistency). For t ∈ [0, t∗],

Ñ1(t) = Ñ1(t; A, Ñ1(·), Ñ2(·), L̃1(·), L̃2(·)), Ñ2(t) = Ñ2(t; A, Ñ1(·), Ñ2(·), L̃1(·), L̃2(·)),
L̃1(t) = L̃1(t; A, Ñ1(·), Ñ2(·), L̃1(·), L̃2(·)), L̃2(t) = L̃2(t; A, Ñ1(·), Ñ2(·), L̃1(·), L̃2(·)).

The sequential ignorability assumption and dismissible treatment components as-
sumption can be extended to time-to-event outcomes from discrete times. Sequential
ignorability requires that there is no unmeasured confounding between any two processes
at any two times [22]. This requirement is sometimes too strong, because the processes can
be determined by some underlying features. It is hard to imagine timewise randomiza-
tion for the processes. The dismissible treatment components assumption only requires
that there is no unmeasured confounding between the processes of (Ñ1(·), L̃1(·)) and
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(Ñ2(·), L̃2(·)), which is weaker than sequential ignorability. Therefore, we only formalize
the assumptions under the separable effects framework.

When conducting mediation analysis, we would set the treatment for the intermediate
event-inducing confounding and intermediate event at a1, and set the treatment for the
terminal event-inducing confounding and terminal event at a2. Therefore, we have natural
processes of the intermediate event-inducing confounding, terminal event-inducing con-
founding, intermediate event and terminal event L̃1(t; a1, a2), L̃2(t; a1, a2), Ñ1(t; a1, a2) and
Ñ2(t; a1, a2), respectively. The natural direct effect (NDE) and natural indirect effect (NIE)
are defined by contrasting the counterfactual cumulative incidence of the terminal event:

NDE(t) = P(Ñ2(t; 0, 1) = 1)− P(Ñ2(t; 0, 0) = 1), (19)

NIE(t) = P(Ñ2(t; 1, 1) = 1)− P(Ñ2(t; 0, 1) = 1). (20)

Given the baseline covariates and natural processes, the continuous-time hazards of
the intermediate event and terminal event can be expressed as

dΛ1(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)), dΛ2(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)),

and the transition density of the intermediate event-inducing confounding to l1 and termi-
nal event-inducing confounding to l2 at time t as

dPL1(t, l1; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)), dPL2(t, l2; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)),

respectively. The treatment components A1 and A2 should have separable effects on
(Ñ1(t), L̃1(t)) and (Ñ2(t), L̃2(t)). In other words, given the baseline covariates and pro-
cesses history, all the paths from A1 to (Ñ2(t), L̃2(t)) are blocked, and all the paths from A2
to (Ñ1(t), L̃1(t)) are blocked.

Assumption 14 (Ignorability for continuous time).

A ⊥⊥ {Ñ1(t; a1, ñ1(·), ñ2(·), l̃1(·), l̃2(·)),
Ñ2(t; a2, ñ1(·), ñ2(·), l̃1(·), l̃2(·)),
L̃1(t; a1, ñ1(·), ñ2(·), l̃1(·), l̃2(·)),
L̃2(t; a2, ñ1(·), ñ2(·), l̃1(·), l̃2(·)) : 0 < t ≤ t∗} | L0.

Assumption 15 (Dismissible treatment components for continuous time). For t ∈ [0, t∗],

dΛ1(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dΛ1(t; a1, a1, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)),
dΛ2(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dΛ2(t; a2, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)),

dPL1(t, l1; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dPL1(t, l1; a1, a1, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)),
dPL2(t, l2; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dPL2(t, l2; a2, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)).

If Ñ2(t) = 0, we would not record the observations after t anymore. Since the counting
processes can only jump from 0 to 1, the hazard of an event is only meaningful when the
individual is at risk of this event. We can further simplify the notations,

dΛ1(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dΛ1(t; a1, l0, l̃1(·), l̃2(·)), (21)

dΛ2(t; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dΛ2(t; a2, ñ1(·), l0, l̃1(·), l̃2(·)), (22)

dPL1(t, l1; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dPL1(t, l1; a1, ñ1(·), l0, l̃1(·), l̃2(·)), (23)

dPL2(t, l2; a1, a2, ñ1(·), ñ2(·), l0, l̃1(·), l̃2(·)) = dPL2(t, l2; a2, ñ1(·), l0, l̃1(·), l̃2(·)). (24)

To account for censoring, let ÑC(t) be the censoring process. We assume that the pro-
cesses of intermediate event-inducing confounding, terminal event-inducing confounding,
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intermediate event and terminal event at time t are either observed or censored simultane-
ously. We assume random censoring and positivity.

Assumption 16 (Random censoring for continuous time).

dÑC(t) ⊥⊥ (L̃1(t; a, a), L̃2(t; a, a), Ñ1(t; a, a), Ñ2(t; a, a))

| A = a, L0, ÑC(s) = 0, Ñ1(s), Ñ2(s) = 0, L̃1(s), L̃2(s) : s < t, 0 < t ≤ t∗

Assumption 17 (Positivity for continuous time).

P(L0 = l0) > 0 ⇒ P(A = a, L0 = l0) > 0,

P(L0 = l0, Ñ1(t; a1, a2) = Ñ2(t; a1, a2) = 0, L̃1(t; a1, a2) = l̃1, L̃2(t; a1, a2) = l̃2) > 0

⇒ P(A = a, L0 = l0, Ñ1(t) = Ñ2(t) = ÑC(t) = 0, L̃1(t) = l̃1, L̃2(t) = l̃2) > 0.

Positivity ensures that the at-risk set has positive probability so we have data to
estimate the hazards and transition densities.

Theorem 3. Under Assumptions 13–17, NIE and NDE are identifiable for t ∈ [0, t∗].

The identification formula is complicated but the idea is intuitive. Through product
limits, the counterfactual cumulative incidence can be expressed as product limits of
hazards (or conditional density) of counterfactual variables [28,29]. With the dismissible
treatment assumption within the separable effects framework, the hazards (or conditional
density) are identical to the observed counterparts by substituting the counterfactuals with
the observables. For 0 < t ≤ t∗,

P(Ñ2(t; a1, a2) = 1) =
∫ ∫ t

0
∏

0<s≤u

∫
dPL1 (s, l1; a1, ñ1(s) = 0, l0, l̃1(·), l̃2(·))

dPL2 (s, l2; a2, ñ1(s) = 0, l0, l̃1(·), l̃2(·))
{1 − dΛ1(s; a1, l0, l̃1(·), l̃2(·))}
{1 − dΛ2(s; a2, ñ1(s) = 0, l0, l̃1(·), l̃2(·))}

dΛ2(u; a2, ñ1(s) = 0, l0, l̃1(·), l̃2(·))

+
∫ ∫ t

0

∫ v

0
∏

0<s≤u

∫
dPL1 (s, l1; a1, ñ1(s) = 0, l0, l̃1(·), l̃2(·))

dPL2 (s, l2; a2, ñ1(s) = 0, l0, l̃1(·), l̃2(·))
{1 − dΛ1(s; a1, l0, l̃1(·), l̃2(·))}
{1 − dΛ2(s; a2, ñ1(s) = 0, l0, l̃1(·), l̃2(·))}

dΛ1(u; a1, l0, l̃1(·), l̃2(·))

∏
u<s≤v

∫
dPL1 (s, l1; a1, dñ1(u) = 1, l0, l̃1(·), l̃2(·))

dPL2 (s, l2; a2, dñ1(u) = 1, l0, l̃1(·), l̃2(·))
{1 − dΛ2(s; a2, l0, dñ1(u) = 1, l̃1(·), l̃2(·))}

dΛ2(v; a2, l0, dñ1(u) = 1, l̃1(·), l̃2(·)), (25)

where the inner integration is conducted over the support of (L̃1(s), L̃2(s)) and the outer
integration is conducted over the support of L0. The first term is the incidence of the
terminal event without a history of intermediate event, and the second term is the incidence
of the terminal event with a history of intermediate event. Usually, the time-varying
confounding can only change values at finite time points, so the transition density can be
parameterized as a product of the density of the time to change values and the distribution
function when changing values [28].
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We can additionally assume Markovness to simplify the identification. The hazard
and transition density only depend on the current status rather than the full history given
baseline covariates.

Assumption 18 (Markovness for continuous time). For t ∈ [0, t∗],

dΛ1(t; a1, l0, l̃1(·), l̃2(·)) = dΛ1(t; a1, l0, l̃1(t−), l̃2(t−)),

dΛ2(t; a2, ñ1(·), l0, l̃1(·), l̃2(·)) = dΛ2(t; a2, ñ1(t−), l0, l̃1(t−), l̃2(t−)),

dPL1(t, l1; a1, ñ1(·), l0, l̃1(·), l̃2(·)) = dPL1(t, l1; a1, ñ1(t−), l0, l̃1(t−), l̃2(t−)),

dPL2(t, l2; a2, ñ1(·), l0, l̃1(·), l̃2(·)) = dPL2(t, l2; a2, ñ1(t−), l0, l̃1(t−), l̃2(t−)).

Although Markovness is not necessary for identification, it brings great convenience
for estimation. Under Markovness, we can use typical survival models like the proportional
hazards model with time-varying confounding to estimate the hazards. If Markovness
does not hold, the time origins of the transitions from the intermediate event to the ter-
minal event are not aligned. There would be a biased sampling issue since the censoring
probability is varying with time [30]. More deliberate models are required to obtain a
closed-form estimator without Markovness. An estimator for the counterfactual cumula-
tive incidence using parametric models based on efficient influence functions when there
are no time-varying confounding has been proposed for semi-competing risks, i.e., illness–
death models [31]. Multiple robustness found that the resulting estimator is consistent
if (1) all three transition hazards are correctly specified or (2) the propensity score and
censoring probability are correctly specified, and two of the three transition hazards are
correctly specified. Theoretically, this idea can be generalized to the case with time-varying
confounding under semiparametric models using the functional delta method, but there is
no easy-to-implement estimating procedure if there are too many time-varying covariates
or the time-varying covariates are too complex.

4. Application to Stem Cell Transplantation Data

Allogeneic stem cell transplantation is a widely applied therapy to treat acute lym-
phoblastic leukemia (ALL), including two sorts of transplant modalities: human leukocyte
antigen (HLA)-matched sibling donor transplantation (MSDT) and haploidentical stem cell
transplantation from family (Haplo-SCT). MSDT has long been regarded as the first choice
of transplantation because MSDT leads to lower transplant-related mortality (TRM), also
known as non-relapse mortality (NRM) [32]. Another source of mortality is due to relapse,
known as relapse-related mortality (RRM). In recent years, some benefits of Haplo-SCT
have been noticed in that patients with positive pre-transplantation minimum residual
disease (MRD) undergoing Haplo-SCT have better prognosis in relapse, and hence lower
relapse-related mortality [33]. It is of interest to study how the transplant modalities exert
effects on overall mortality.

A total of n = 303 patients with positive MRD undergoing allogeneic stem cell trans-
plantation were included in our study [22,34]. Among these patients, 65 received MSDT
(A = 1) and 238 received Haplo-SCT (A = 0). The transplantation type is “genetically
randomized” in that there is no specific consideration to prefer Haplo-SCT over MSDT
whenever MSDT is accessible [33]. Therefore, we expect ignorability. Four baseline covari-
ates were considered: age, sex (male, female), diagnosis (T-ALL or B-ALL) and complete
remission status (CR1, CR>1). A time-varying covariate is the occurrence of graft-versus-
host disease (GVHD). These five covariates are risk factors associated with relapse and
mortality indicated in the previous literature. The outcome is of the time-to-event type,
subject to right censoring. The mean follow-up time was 1336 days. The terminal event is
overall mortality, and the intermediate event is relapse. In the MSDT group, 47.7% patients
were observed to encounter relapse and 53.8% mortality. In the Haplo-SCT group, 30.0%
patients were observed to encounter relapse and 36.6% mortality. Summary statistics are
presented in Table 1.
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Table 1. Summary statistics in the data application, stratified by treatment groups. We list the mean
and standard deviation (SD) of baseline covariates in each group. We also list the proportion of certain
observed uncensored events (GVHD, relapse, mortality) and the time to the observed uncensored
event in each group.

Haplo-SCT (A = 1) MSDT (A = 0)

Mean (SD) Mean (SD)

Baseline covariates
Age 26.697 (12.232) 35.000 (13.077)
Sex 0.374 (0.485) 0.415 (0.497)
CR 0.227 (0.420) 0.154 (0.364)

Diagnosis 0.160 (0.367) 0.046 (0.211)

Observed events
GVHD 0.727 (0.446) 0.585 (0.497)

Time to GVHD 141.876 (402.252) 194.368 (178.842)
Relapse 0.290 (0.455) 0.477 (0.503)

Time to relapse 371.667 (406.247) 420.774 (369.805)
Mortality 0.366 (0.483) 0.538 (0.502)

Time to mortality 393.264 (346.752) 528.257 (410.212)

We adopt the separable effects framework to study the mediation effect of transplant
modalities on overall mortality. We can find clinical interpretation for the treatment compo-
nents. Haplo-SCT has fewer matched HLA loci compared with MSDT, so stronger immune
rejection is anticipated. In practice, patients receiving Haplo-SCT should additionally use
antithymocyte globulin (ATG) to facilitate engraftment [35]. Therefore, A2 is the treatment
component that, through delaying immune reconstitution (the combined use of ATG),
increases the risk of transplant-related mortality. Relapse is caused by the presence of
minimum residual disease. The stronger immune rejection with Haplo-SCT kills body
cells but also kills the minimum residual disease cells, which are referred to as the graft-
versus-host and graft-versus-leukemia (GVL) effects, respectively [33]. Therefore, A1 is a
treatment component through GVHD, which increases the risk of GVHD but reduces the
risk of relapse. Let L1(·) be the time-varying GVHD status, affected by A1. Following the
notations in the preceding section, L2(·) is null.

In the presence of time-varying covariates, it is very difficult to apply the g-formula to
obtain a simple regression estimator, because there are too many terms in the identification
formula. Taking advantage of the fact that the occurrence of GVHD is binary, we may as
well consider the GVHD as a state within the multi-state model. In this way, there are a
total of four states, the initial state, the GVHD state, the relapse state and the mortality state,
as shown in Figure 3. The x-axis is the day after transplantation, and the y-axis is on the
scale of cumulative incidence. To avoid bidirectional transition between GVHD and relapse,
we can further divide the GVHD state into an acute GVHD state (after treatment but before
relapse) and a chronic GVHD state (after relapse but before mortality). By modeling the
transition hazards between states, we can derive the cumulative incidence function of the
overall mortality through integrating functions of hazards.

We impose a semiparametric proportional hazards model for the transition rates
with Markovness:

dΛ1(t; a1, l0, l̃1(·)) = dΛ01,a1(t) exp(β′
1,a1

l0 + γ1,a1 l1(t−)), (26)

dΛ2(t; a2, ñ1(·), l0, l̃1(·)) = dΛ02,a2(t) exp(β′
2,a2

l0 + γ2,a2 l1(t−) + η2,a2 ñ1(t−)), (27)

dΛL1(t; a1, ñ1(·), l0, l̃1(·)) = dΛ03,a2(t) exp(β′
3,a1

l0 + γ3,a1 l1(t−) + η3,a1 ñ1(t−)), (28)

where dΛ01,a1(t), dΛ02,a2(t) and dΛ03,a1(t) are unknown baseline hazards. The baseline
hazards can be different across treatment groups. Specially, the hazards of mortality
and GVHD can rely on the status of relapse. The statuses of the intermediate event and
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confounding serve as time-varying covariates in the extended Cox model [36,37]. The cen-
soring probability is also estimated by the semiparametric proportional hazards model.
The unknown parameters in the above models are estimated by nonparametric maximum
likelihood estimation (NPMLE), where the estimated baseline hazards are step functions
with jumps only at observed event times [38]. The estimated parameters are updated by
the Newton–Raphson algorithm and are considered to be converged if the update leads to
changes in values smaller than 0.0001. The estimation procedure is implemented using R
(version 4.4.0) [39].

Initial state Relapse Mortality

GVHD

Figure 3. A multi-state model illustration for the leukemia data. Relapse is the intermediate event
(Ñ1), mortality is the terminal event (Ñ2) and GVHD status is a time-varying covariate taking values
0 or 1 (L̃1). To ease estimation, we regard GVHD as a state. GVHD can transit to relapse and relapse
can transit to GVHD. Within the separable effects framework, the treatment component A2 has an
effect on the hazard of mortality (Ñ2), whereas the treatment component A1 has effects on the hazard
of GVHD (L̃1) and relapse (Ñ1).

Figure 4 shows the estimated counterfactual cumulative incidences of overall mor-
tality in the left panel. The 95% confidence intervals are obtained by bootstrap with
200 resamplings. The red line represents the cumulative incidence of mortality when re-
ceiving MSDT, and the cyan line represents the cumulative incidence of mortality when
receiving Haplo-SCT. We can see that the mortality rate is higher for MSDT in MRD-positive
patients, indicating a stronger graft-versus-leukemia effect for Haplo-SCT. In a hypothetical
world, suppose that the delayed immune reconstitution is set at the level for Haplo-SCT
A1 = 0, and the GVHD/GVL is set at the level for MSDT A2 = 1. Then, the blue line
represents the cumulative incidence of mortality in this hypothetical world. The right
panel of Figure 4 shows the natural direct effect (NDE) and natural indirect effect (NIE).
The natural indirect effect is significantly positive, indicating that Haplo-SCT reduces the
risk of overall mortality through reducing the risk of relapse. The natural direct effect is
insignificant, which means that the usage of ATG to delay immune reconstitution does not
have a high impact on mortality.
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Figure 4. The counterfactual cumulative incidence functions and the natural direct/indirect effects.
The dashed lines represent the 95% bootstrap confidence intervals.



Mathematics 2024, 12, 2332 16 of 20

A sensitivity analysis can be conducted by assuming that chronic GVHD is a terminal
event-inducing confounding, or assuming that both acute GVHD and chronic GVHD are
terminal event-inducing confoundings. Fortunately, the estimated cumulative incidences
and treatment effects are similar to those in Figure 4. This strengthens our conclusion.
The empirical findings provide guidance on allogeneic stem cell transplantation. Since
Haplo-SCT is more accessible than MSDT, we argue the Haplo-SCT is a reasonable alterna-
tive to MSDT. Although Haplo-SCT may lead to slightly higher non-relapse mortality, it is
promising that practitioners pay special attention to patients receiving Haplo-SCT in order
to reduce relapse-related mortality. The overall mortality can be significantly reduced due
to the strong graft-versus-leukemia effect of Haplo-SCT.

5. Conclusions

The estimand in mediation analysis involves cross-world quantities. In this article,
we studied two assumptions for mediation analysis, namely, sequential ignorability and
dismissible treatment components. The former is conventional in mediation analysis and
can be understood from the view of sequential randomization. The latter comes from the
separable effects framework. The dismissible treatment components condition is weaker
than sequential ignorability because the former allows some types of unmeasured con-
founding. The dismissible treatment components can be tested in future experiments if
the treatment components are known. It is easier to interpret the dismissible treatment
components assumption than sequential ignorability. Even if the dismissible treatment
components assumption is violated, the estimands of natural direct and indirect effects are
still meaningful, although not identifiable. Nowadays, in medical studies, the separable
effects framework is becoming more and more popular. For time-to-event outcomes, the ad-
vantage of the separable effects framework is significant due to its notational simplicity
and interpretability.

Through the application of real data on allogeneic stem cell transplantation, we show
the usefulness of the separable effects framework. A post-treatment time-varying covariate,
GVHD, is considered to modify the treatment effect. We find that Haplo-SCT reduces
the risk of overall mortality through reducing the risk of relapse. Haplo-SCT has the
potential to serve as an alternative to MSDT. In this real-data example, we have explicit
interpretation for the separable effects. Conclusions drawn from the separable effects
framework can inform new clinical knowledge, and also inspire biological research on the
micro-foundation of treatment components.

6. Discussion

The separable effects framework has some limitations. The dismissible treatment
components assumption is not testable in real-world trials. In the presence of time-varying
confounding, it is essential to discuss with subject experts to determine whether the time-
varying confounding is intermediate event-inducing or terminal event-inducing. If the
classification of time-varying confounding is ambiguous, sensitivity analysis is encouraged.
The sequential ignorability framework can be more useful in this case. We can find a certain
type of natural direct effect or path-specific effect that is identifiable, and this partial effect
may be of scientific interest [15,16].

Although the identifiability of the natural direct and indirect effects is proven, estima-
tion remains challenging. The regression estimator using g-formula is not only complicated
but also subject to model mis-specification. It is still worth studying how to derive more ef-
ficient estimators relying on weaker model assumptions. Since the estimation of cumulative
incidence is recursive, slight model mis-specification may lead to a huge estimation bias
at large time points. Modeling multiple and multi-valued time-varying covariates can be
extremely difficult, so existing studies only focused on simple time-varying covariates [28].
In the application, the time-varying covariate is binary, so we take advantage of multi-state
models to derive the cumulative incidence. It is questionable whether desirable statistical
properties can be maintained in the presence of complex time-varying covariates.
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There are a few future research directions. First, the asymptotic property of the es-
timators is complicated in longitudinal studies by applying the g-formula. Theoretically,
the asymptotic property can be established based on the influence function. However,
the influence function is too tedious to derive and there is no efficient algorithms to im-
plement the g-formula in longitudinal studies with too many periods. Second, mediation
analysis requires that the treatment lasts from the beginning to end without noncompliance.
In longitudinal studies and time-to-event studies, patients may switch to other treatments
at some time [19,40]. A new problem is how to define the estimand and formalize identifica-
tion assumptions. Third, in the separable effects framework, it is possible to decompose the
initial treatment into more components. Maybe there is a separable treatment component
that influences time-varying covariates. Third, the direct outcome event following the treat-
ment and the indirect outcome event following the intermediate event may be contributed
by different treatment components. Therefore, the total effect should be decomposed
into more than two natural effects [29]. Furthermore, there can be multiple mediators or
intermediate events. It is worth studying the decomposition, identification and estimation
with more complex treatment–mediator–outcome structures [41–43].

Another type of mediation estimand is the randomized interventional effects [40,44,45].
In general cases, the randomized interventional effects are distinct from the natural effects
(or separable effects). The randomized interventional effects randomly draw post-treatment
mediators and confoundings from the observed distribution associated with a given treat-
ment policy. Weaker assumptions are required to identify the treatment effects. The identifi-
cation assumptions can be understood from the view of nonparametric structural equation
models for the data generating process of the time-varying treatments, confoundings, me-
diators and outcomes. It is not necessary to separate the post-treatment confounding into
several components associated with treatment components for identification. Sequential
doubly robust estimation can be used to estimate the treatment effects [46,47]. The idea
of randomized interventional effects has the potential to be generalized to time-to-event
outcomes [48].
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Appendix A. Proof of Theorem 1

We only prove for Yk(aY, gk
Y). In the following proof, we use the caption A1 (Assump-

tion 1), A2 (Assumption 2), . . . in each line to illustrate which assumption is used to derive
the equation. Other proofs are similar.

P(Yk(aY, gk
Y) = yk | L0 = l0, Gk

Y(aM, aY) = gk
Y)

= P(Yk(aY, gk
Y) = yk | L0 = l0, L1

M(aM) = l1
M, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · )

https://github.com/naiiife/multistate
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= P(Yk(aY, gk
Y) = yk | A = aM, L0 = l0, L1

M(aM) = l1
M, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · ) (A2)

= P(Yk(aY, gk
Y) = yk | A = aM, L0 = l0, L1

M = l1
M, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · ) (A1)

= P(Yk(aY, gk
Y) = yk | A = aM, L0 = l0, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · ) (A3)

= P(Yk(aY, gk
Y) = yk | A = aY, L0 = l0, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · ) (A2)

= P(Yk(aY, gk
Y) = yk | A = aY, L0 = l0, L1

M = l1
M, L1

Y(aY, l1
LY
) = l1

Y, M1(aM, g1
M) = m1, · · · ) (A3)

= P(Yk(aY, gk
Y) = yk | A = aY, L0 = l0, L1

M = l1
M, L1

Y = l1
Y, M1(aM, g1

M) = m1, · · · ) (A1)

= · · · (Repeating A3, A2, A3, A1)

= P(Yk(aY, gk
Y) = yk | A = aM, L0 = l0, L1

M = l1
M, L1

Y = l1
Y, M1 = m1, · · · , Mk = mk) (A1)

= P(Yk(aY, gk
Y) = yk | A = aM, L0 = l0) (A3)

= P(Yk(aY, gk
Y) = yk | A = aY, L0 = l0) (A2)

= P(Yk(aY, gk
Y) = yk | A = aY, L0 = l0, L1

M = l1
M, L1

Y = l1
Y, M1 = m1, · · · , Mk = mk) (A3)

= P(Yk = yk | A = aY, L0 = l0, L1
M = l1

M, L1
Y = l1

Y, M1 = m1, · · · , Mk = mk) (A1)

= P(Yk = yk | A = aY, L0 = l0, L1
M = l1

M, L1
Y = l1

Y, M1 = m1, · · · , Mk = mk, ∆k
Y = 1) (A4).

Positivity (A5) ensures that the conditional probability is well defined. Finally, by the
g-formula, we obtain the identification expression for E{YK(aY, gM

Y )} = E{YK(aM, aY)}:

E{YK(aM, aY)} =
∫

yK
K

∏
k=1

dP(Lk
M(aM, gk

LM
) = lk

M)dP(Lk
Y(aY, gk

LY
) = lk

Y)

dP(Mk(aM, gk
M) = mk)dP(Yk(aY, gk

Y) = yk)dP(L0 = l0)

=
∫

yK
K

∏
k=1

dP(Lk
M = lk

M | A = aM, L0 = l0, Gk
LM

= gk
LM

, ∆k
LM

= 1)

dP(Lk
Y = lk

Y | A = aY, L0 = l0, Gk
LY

= gk
LY

, ∆k
LY

= 1)

dP(Mk = mk | A = aM, L0 = l0, Gk
M = gk

Y, ∆k
M = 1)

dP(Yk = yk | A = aY, L0 = l0, Gk
Y = gk

Y, ∆k
Y = 1)

dP(L0 = l0).
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