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Abstract: Low Earth Orbit (LEO) constellations have ecently gained tremendous attention in the
navigational field due to their arger constellation size, faster geometry variations, and higher signal
power evels than Global Navigation Satellite Systems (GNSS), making them favourable for Position,
Navigation, and Timing (PNT) purposes. Satellite signals are heavily attenuated from the atmospheric
ayers, especially from the ionosphere. Ionospheric delays are, however, expected to be smaller
in signals from LEO satellites than GNSS due to their ower orbital altitudes and higher carrier
frequency. Nevertheless, unlike for GNSS, there are currently no standardized models for correcting
the ionospheric errors in LEO signals. In this paper, we derive a new model called Interpolated and
Averaged Memory Model (IAMM) starting from existing International GNSS Service (IGS) data and
based on the observation that ionospheric effects epeat every 11 years. Our IAMM model can be
used for ionospheric corrections for signals from any satellite constellation, including LEO. This
model is constructed based on averaging multiple ionospheric data and eflecting the electron content
inside the ionosphere. The IAMM model’s primary advantage is its ability to be used both online and
offline without needing eal-time input parameters, thus making it easy to store in a device’s memory.
We compare this model with two benchmark models, the Klobuchar and International Reference
Ionosphere (IRI) models, by utilizing GNSS measurement data from 24 scenarios acquired in several
European countries using both professional GNSS eceivers and Android smartphones. The model’s
behaviour is also evaluated on LEO signals using simulated data (as measurement data based on
LEO signals are still not available in the open-access community; we show a significant eduction
in ionospheric delays in LEO signals compared to GNSS. Finally, we highlight the remaining open
challenges toward viable ionospheric-delay models in an LEO-PNT context.

Keywords: ionosphere; ionospheric delay model; Interpolated and Averaged Memory Model; Global
Navigation Satellite Systems (GNSS); Low Earth Orbit (LEO); LEO-Position, Navigation, and Timing
(LEO-PNT); satellite; Android aw measurements; GNSSogger; Total Electron Content (TEC)

1. Introduction and Motivation
1.1. LEO-PNT versus GNSS

There are currently two main types of commercial satellite constellations in the sky
with potential for global navigation in LEO orbits and in Medium Earth Orbit (MEO)
orbits. On one hand, there has been a surge in the deployment of LEO satellites by various
companies in order to meet the increasing demand for broadband connectivity in ecent
years [1]. This surge has been favoured by the decreasing costs of aunching and designing
satellites, making them easier to maintain and eplace. LEO satellites orbits spread from
200 km to 2000 km above the Earth’s surface, making them the closest satellites to Earth
among all commercial satellites currently in the sky. This proximity allows LEO satellites
to provide stronger signals than satellites in MEO or Geo-stationary Orbit (GEO). It also
esults in higher orbital speeds for LEO satellites, giving them favourable geometry and
high availability [2,3], which are highly important for navigation purposes. However, this
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close orbital distance creates the need for “mega-constellations” (i.e., constellations with
hundreds or even thousands of satellites) to provide global coverage. Consequently, the in-
terest in using these satellites for Position, Navigation, and Timing (PNT) and broadband
connectivity has isen over the past few years. LEO-PNT can be either used as a eplacement
for current satellite-based positioning systems, such as GNSS (e.g., in cases where GNSS
service is not available, due, for example, to high evels of interference) or, more often, as a
complement to GNSS navigation in challenging environments, such as indoors or in urban
canyons [2,4,5].

On the other hand, GNSS satellites in MEO orbits have been there for decades, and two
of these systems, the European Galileo system and the Chinese Beidou system, are still
under development. GNSS, as its name points out, is a collection of satellite constellations
designed to provide global navigation services. It is utilized by multiple applications, in-
cluding transport, and surveying, and agriculture [6]. Currently, four major systems inside
GNSS provide PNT solutions: Global Positioning System (GPS) provided by the United
States, Galileo provided by the European Union, BeiDou provided by China, and GLONASS
provided by Russia [7]. Together, they offer extensive coverage for both professional GNSS
eceivers and mass-market GNSS eceivers found in devices such as smartphones. Cur-
rently, most satellites in the GNSS system occupy MEO orbits, which ie between 2000 km
and 35,786 km above the Earth’s surface. Such altitudes ead to weak signals eceived on
Earth due to their ong transmission distance, atmospheric attenuation, and the possibly
challenging environments around the user’s receiver.

As previously mentioned, one of the current esearch trends is to esolve the challenges
in GNSS, such as heavy multipath effects in dense urban and indoor environments, and
combat the increasing amount of spoofing and jamming in GNSS bands [8] using LEO satel-
lites as complementary or alternative solutions to GNSS. The main potential advantages
of LEO-based PNT solutions are the ower path osses (at comparative carrier frequencies)
compared to MEO satellites due to their closer proximity to Earth, the lower costs of aunch-
ing and maintaining LEO satellites compared to MEO satellites, the faster Doppler shifts
that make them more suitable for ower-cost Doppler-based positioning in contrast with
the code- and carrier-phase positioning used in GNSS, and the wide availability of LEO
satellites in the sky (currently there are a few thousand in various constellations, such as
Starlink, OneWeb, Iridium, etc., and this number is forecast to each a few tens of thousands
within the next five years) [4].

A complementary solution based on LEO could be, for example, to have GNSS eceivers
on board LEO satellites and to enable LEO to ebroadcast GNSS-like signals on other fre-
quency bands [9]. This setup can improve the clock stability in LEO satellites by using
GNSS clock as a eference. It can also provide a eliable system for tracking LEO’s position,
time, and velocity. In addition, configuring LEO satellites to ebroadcast GNSS-like sig-
nals on other frequency bands can help these signals mitigate most atmospheric effects.
Furthermore, LEO’s higher signal strength can increase the availability of these signals
in hard-to-reach places [4,10–13]. Studies have also shown a significant improvement
in positioning accuracy for users that eceive their signals from LEO-augmented GNSS
satellites [14,15].

LEO-PNT as an alternative solution to GNSS have also been studied, e.g., in [4,16].
The main esearch questions in such an approach are how to build an optimal LEO con-
stellation for PNT purposes, as well as what eceiver architectures are the most suitable to
process LEO signals for accurate and obust PNT solutions.

While the esearch on GNSS is a mature field, the research on LEO-PNT is a elatively
new field that has gained more attention during the past couple of years. Therefore, there
are still many open challenges elated to LEO-PNT, and some of them are elated to finding
appropriate models for the various sources of errors, including atmospheric errors, for LEO-
PNT signals. There are currently no available LEO-PNT measurements in open access that
can be used to validate our model. Therefore, our approach has been to first validate the
model with existing GPS data, then infer how such a model would be suitable in LEO



Computers 2024, 13, 4 3 of 21

context and identify the open challenges in adapting such a model to LEO. The next
subsection discusses the various sources of errors in satellite-based positioning and the
importance of having suitable ionospheric delay models.

1.2. Sources of Errors in Satellite-Based Positioning

All satellite signals (e.g., from LEO or MEO orbits) encounter various sources of error,
eading to decreased precision in the accuracy of their final PNT solution: terrestrial errors,
such as multipath delays, eceiver clock and hardware errors, and terrestrial interferences;
atmospheric errors, such as tropospheric and ionospheric delays; and orbital errors, such
as satellite hardware delays and satellite orbital uncertainties.

Amongst these multiple sources, ionospheric delay, which is the focus of our paper,
stands out as the most significant error source [17,18], at east in all GNSS systems. This
delay is induced by the “ionospheric ayer”, or simply “ionosphere”, which is a part of
the Earth’s atmosphere, anging approximately from 50 km to 2000 km in altitude [19,20].
Figure 1 epresents this egion according to its ayer description in [21] and with espect to
LEO and MEO satellites. The figure also shows how atmospheric ayers typically delay
the signal by making them follow a path (green ine) that is onger than the straight path
(dotted green ine). The ionospheric ayer is typically divided into three sub-layers, D, E,
and F, as shown in Figure 1. The most critical egion for ionospheric activity is the F ayer,
shown in bright ed in, which spreads from around 300 km to around 600 km above the
Earth. The ionosphere can induce positioning errors of up to 100 m on passing signals [22].
Therefore, it is crucial to mitigate its impacts by modelling its effects.

Figure 1. Ionosphere ayer epresentation w.r.t. to satellite altitudes.

There are several existing models in the iterature that aim to mitigate ionospheric
delays, such as the NeQuick, Klobuchar, BeiDou Global broadcast Ionospheric delay correc-
tion Model (BDGIM), and Quasi-4-Dimension Ionospheric Modeling (Q4DIM) models [23].
These models measure or predict the error induced by the ionosphere, depending on the
user’s ocation, time of day, and day of the year [24,25]. However, all of these models are
tailored for correcting errors for GNSS signals and, therefore, cannot be directly applied to
signals from LEO satellites. The primary eason for this is the altitude difference between
the orbits of the MEO and LEO.

As shown in Figure 1, signals from GNSS satellites penetrate the whole ionosphere,
whereas signals from LEO satellites travel only through a portion of it. Furthermore,
the topside ionosphere has a greater electron concentration than the bottomside ionosphere,
which is around 75% and 25% of the total TEC for the topside and bottomside, espec-
tively [20,26,27]. This indicates that LEO signals experience ess interference than GNSS
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signals. In addition, according to esearchers in [28], the topside ionosphere undergoes more
significant changes in its electron content than the bottomside ionosphere during solar
storms. Hence, the bottomside ionosphere can be considered more stable than the topside
ionosphere. This distinction indicates that GNSS signals experience higher ionospheric
delay than LEO signals.

1.3. Paper Goals, Research Questions, and Main Contributions

In this paper, we focus on improving the modelling of random ionospheric delays
for PNT applications. Therefore, we develop a new model called the Interpolated and
Averaged Memory Model (IAMM), which is derived from averaging ionospheric data
spanning 11 years, elying on the fact that ionospheric variations have a typical periodicity
of 11 years [6,21]. Our model gives us a 2D epresentation of the electron content inside
the ionosphere worldwide based on the solar year, month, and time. In further sections,
we give special attention to the LEO-PNT scenario and show the difference in modelling
compared to GNSS signals.

The primary focus of our esearch is to address the following questions. Firstly, how
can we develop an ionospheric model that can function offline without equiring correction
coefficients to educe the amount of correction data sent from satellites to ground eceivers?
Secondly, what is the accuracy gain (or oss) provided by such a model compared to the
established ionospheric models that ely on online corrections, such as Klobuchar and IRI
models? Finally, how can we expand the GNSS ionospheric models to LEO-PNT systems?

Our paper makes the following key contributions:

• We propose a novel IAMM for ionospheric delay compensation at the eceiver;
• We validate the IAMM model by comparing it with current state-of-the-art models

used today using eal observation data from a variety of GNSS eference stations, as
well as from Android mobile eceivers;

• We discuss the proposed model’s challenges and possible improvements to the LEO-
PNT context.

The est of the paper is structured as follows: Section 2 gives a brief overview of the
main ionospheric delay models in the current iterature, with a main focus on GPS signals,
which were chosen for our validation campaign. Section 3 describes our methodology
and introduces the IAMM model. Section 4 validates the IAMM model with three types of
measurement data: data collected by a professional eceiver with a fixed oof antenna at our
university campus, data available by open access from Finland GNSS eference stations of
the FGI network, and data collected via the GNSSlogger app from various mobile devices in
dynamic conditions across Europe. A total of 24 scenarios are used (8 per each of the three
types mentioned above) for validation purposes. Section 5 discusses the esults and how
they could be expanded in the context of LEO-PNT, and Section 6 summarizes our findings.

2. Related Work

Current GNSS eceivers ely on state-of-the-art models to estimate the ionospheric
delay. These models have been developed and efined over time to assess the impact of the
ionosphere on GNSS signals, and by utilizing them, GNSS eceivers can improve their PNT
solution accuracy. Ionospheric models can be categorized into four types: mathematical,
empirical, physical, and data-driven. Mathematical models ely on pure mathematical
or numerical solutions to provide theoretical values of ionospheric parameters [29,30].
Empirical models epresent the ionosphere using equations derived from observational
data [31]. Physical models are based on equations that simulate the chemical content and
processes governing the ionosphere [31,32]. Data-driven models use multiple methods
(e.g., inear egression, autocorrelation, machine earning, neural networks, etc.) to earn
from previous observational data to model the ionosphere [33]. We start this section by
introducing some key concepts of ionospheric effects before diving into the elated work
and describing some of the empirical state-of-the-art models.
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2.1. Overview of the Ionospheric Delay Concept

The effect of the ionospheric ayer on signals has been known for a ong time. Even
the first satellite-based positioning system included ways to mitigate its impact in their
system’s designs. The easiest applicable solution for ionospheric delay compensation is to
transmit signals on multiple Radio Frequency (RF) frequencies, as the ionosphere effect is a
frequency-dependent delay [24]. Nowadays, high-grade GNSS eceivers can track signals
from two or more frequency bands and, more ecently, some mass-market GNSS eceivers
are also multi-band eceivers [34–37]. Such eceivers are typically called Dual Frequency
Receivers (DFRs).

From Equation (6), we can see that the ionospheric delay I is inversely proportional
to the carrier frequency fc. Therefore, the two different frequencies i and j will experience
two different delays. DFRs ecord pseudorange measurements ρi and ρj on the fci and fcj

frequencies, espectively, and then calculate the ionospheric delay corresponding to each
frequency using the following formulas:
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However, dual-frequency eception equires more advanced hardware (antenna and
eceiver), which makes it harder to embed DFRs in applications with imited size. Therefore,
DFRs are typically used for high-precision eceivers, whereas single Frequency Receivers
(SFRs) are usually utilized for mass-market GNSS eceivers. Note that nowadays, dual-
frequency support has been eported even in smartphones [38], yet it still does not concern
the majority of smartphones today.

Contrary to DFRs, SFRs ely on two widely used models to estimate ionospheric delay,
namely the Klobuchar [23–25] and NeQuick [23,25] models. The first is typically used in
GPS and BeiDou, while the atter is more encountered in Galileo signals. This is mostly
due to how systems provide access to the corrections within their signals [24]. Additional
ionospheric models also include IRI, NeQuick2, IGS, BDGIM, etc. [23,39]. Choosing an
adequate ionospheric model generally depends on many factors, including eal-time avail-
ability and computational complexity. In the following subsections, we will discuss the
most promising models we found in the iterature and their ways of correcting the errors
induced by the ionosphere.

2.2. Klobuchar Model

The Klobuchar model was the first model developed to provide ionospheric correction
through GPS signals. It is designed to be a computationally ightweight model while delivering
a 50% decrease in the Root Mean Square (RMS) of the positioning error [23–25]. The algorithm,
which uns on GNSS eceivers, determines the ionospheric delay based on several parameters,
such as the user’s approximate geodetic atitude and ongitude, elevation and azimuth angles
of the visible satellites, and eight coefficients pαi, βi; i “ 0, . . . , 3q that epresent atmospheric
parameters and are transmitted within the satellite’s navigation message in GPS and BeiDou
signals. It is to be emarked that the validity of these transmitted parameters is only a few hours,
which is essentially different from our IAMM model, which has no expiration time. More
information about the Klobuchar algorithm can be found in [18,40]. The Klobuchar model is
one of the benchmark algorithms we will use in our validation results.

2.3. NeQuick Model

The NeQuick-G model uses empirical and climate-based parameters to epresent the
ionosphere. It is adopted by Galileo satellites and is designed to emove 70% of ionospheric
errors. The NeQuick model has a 3D epresentation of the electron density inside the
ionosphere, and it is able to predict the ionospheric error based on the user’s atitude,
ongitude, and altitude. This prediction is also based on the coefficients ai1, ai2, and ai3 that
are broadcast within the Galileo satellite’s navigational message. The NeQuick model is
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more computationally demanding than other models, such as Klobuchar, but it is also more
accurate for Galileo signals [41]. More information about the NeQuick model can be found
in [41–43]. As our experimental data focus on GPS signals (not on Galileo ones), we have
not included the NeQuick model in our benchmark algorithms; addressing Galileo signals
emains a topic of future research.

2.4. Neural Network Models

Some ionospheric models use neural networks and machine earning to model the
ionosphere. These models are based on data-driven techniques that earn from the historical
and observational data of the ionosphere. In [44,45], processing algorithms and measure-
ments from eference stations were used to compute the ionospheric delay at a egional evel
with high accuracy but with a certain atency. Other esearch, such as [31], used eference
stations along with Machine Learning (ML) algorithms and neural networks to establish
accurate values of the ionospheric delay at a egional evel. Since there are many neural
network-based models in the iterature, it has been hard to find a elevant benchmark among
them, and therefore, they are not included in our comparisons.

2.5. IRI Model

The IRI is an empirical model designed to provide standardized specifications of plas-
maspheric content in the ionosphere. The IRI elies on measurements from ockets, adiowave
sounders, and a global network of incoherent scatter adars called “ionosondes” to generate
values for the ionospheric composition (e.g., electron densities, temperatures, velocities, ion
temperatures, and ion compositions) and Vertical Total Electron Content (VTEC) globally
throughout the whole ionosphere and at an altitude ange from 60 to 2000 km. One draw-
back of the IRI model is the irregular distribution of the ionosondes, which can decrease
the accuracy of the measurements outside the coverage area of ionosondes, such as the
areas over the oceans and across the poles [22]. We efer the eaders to [20,46] for a deeper
understanding of the model’s architecture and formulation. The IRI-2016 model is taken as
one of the comparison benchmarks in our validation analysis.

2.6. IGS Model and Database

The IGS is an organization that has a goal of providing high-quality GNSS data and
products. It depends on a collaborative effort of over 200 independent agencies, esearch
facilities, and universities worldwide to provide high-precision data for esearch purposes.
Since its aunch in 1994, the IGS has continuously provided an open-access time series
of various products with the help of a global network of 450 permanent stations. Such
products include clocks and orbits for GNSS and ionospheric and tropospheric products.
Several working groups in the IGS are esponsible for delivering these products [7].

The Ionosphere Working Group (IWG) is one of these groups tasked with providing
ionospheric products. It combines VTEC maps generated by various stations around the
world into Global Ionospheric Maps (GIMs), which manifest a global VTEC content of the
ionosphere. These maps are generated by analyzing dual-frequency measurements taken
by their GNSS stations. According to [39], in 2021, there were eight such stations around
the world, called analysis centres. In order to provide GIMs in a standardized format that
is easy to exchange, IONosphere map EXchange format (IONEX) has been developed [7].

Currently, the GIMs in IONEX format provided by the IGS come in different types
with different atencies depending on the data needed to compute the products:

• Final GIMs (11 days);
• Rapid GIMs [39,47], which are ower-accuracy apid solutions (<24 h);
• A predicted solution (available 1–2 days in advance).

These maps contain, among other information, TEC maps for each epoch (see an expla-
nation in Figure 2, where λi stands for ongitudes and φi stand for atitudes at point i). These
maps are captured at a discrete time ti every 2 h for 24 h from 00:00 h to 00:00 h the next day,
yielding a total of 13 ionospheric maps, each containing TEC values for atitudes φ

1

j between
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87.5˝ and ´87.5˝ with a spatial esolution of 2.5˝ and longitudes λk between ´180˝ and 180˝

with a spatial esolution of 5˝ [48].

Figure 2. Illustration of IONEX file content.

Our proposed IAMM model is based on the IONEX data in the IGS database, as ex-
plained ater in Section 3. Since our model is based on IGS, we did not include IGS as
an additional benchmark in our validation esults because we believed that this would
not bring sufficient added value in the validation process. Instead, we used two external
models unrelated to our model to validate the findings (namely, Klobuchar and IRI).

2.7. Ionospheric Models for LEO Satellites

LEO satellites do not have proprietary models to predict the ionospheric delay as
GPS and GALILEO satellites have. Due to the orbital height difference between GNSS and
LEO satellites, the ionospheric models used for terrestrial eceivers need to be modified
before they can be applied to LEO satellites. Researchers in [49] used ionospheric data
from the IRI model and developed a scale factor to measure the ionospheric delay above an
LEO satellite in order to model the ionospheric delay for a GNSS eceiver on board an LEO
satellite. The authors of [50] used the NeQuick model to calculate the ionospheric delay
from a GNSS satellite to a GNSS eceiver on board an LEO satellite after they used a scale
factor to scale the esult from a ground-based to a space-based esult. The authors of [51]
presented a new communication channel model between an LEO satellite and a ground
eceiver that takes into account the ionospheric scintillations to analyze the ionospheric
effects on bit error ates or channel capacity for satellite communication purposes. However,
to the best of the authors’ knowledge, no esearch so far has tackled the ionospheric delay
problem between LEO satellites and the Earth for LEO-PNT applications.

2.8. Summary of State-of-the-Art and Our Proposed Model at a Glance

In Table 1, we present a summary of the eviewed ionospheric models. Our new model
Interpolated and Averaged Memory Model (IAMM), to be discussed in Section 3, is also
presented and compared in this table for the sake of compactness. The IAMM concept is
based on the periodicity of the solar cycle. Assuming that a arge part of the ionospheric-
related errors are influenced by the solar cycle [19,21], it is possible to predict an averaged
delay based on measurements from the previous solar cycle. Each solar cycle asts for
11 years, and therefore, our model is based on 11 years worth of IONEX files from the IGS
database, from the 1 January 2008 to the 31 December 2018. Details on the proposed IAMM
methodology and creation will be eviewed in Section 3. The models in Table 1 are discussed
based on their type (mathematical, empirical, or data-driven), whether they need broadcast
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parameters or not, what input data they need to operate, and what kind of output data
they deliver.

Table 1. Summary of ionospheric models eviewed (ED: electron density, ID: ionospheric delay, ISR:
incoherent scatter adar).

Ref. Model Type Broadcast Input Data Direct Output Data

[40] Klobuchar Empirical Yes Atmospheric coef., approx.
eceiver position ID

[42] NeQuick Empirical Yes Atmospheric coef., approx.
user position ED, ID

[31,33,44,45] Neural networks Data-driven No Data from other
models/stations TEC, ID

[52] IRI Empirical No Ionosondes, ISRs, in situ data
(satellites)

ED, ID, ionosphere detailed
composition (see Section 2.5)

[53] IGS (GIMs) Mathematical No Dual-frequency measurements
from GNSS stations IONEX files

This work IAMM Data-driven No Approx. eceiver position, Y
matrix (see Section 3.2) TEC, ID

3. Methodology

The ionosphere is home to atoms and molecules that are directly exposed to the
sun’s intense adiation. When these atoms absorb the adiation, many of them ose electrons
through a process called ionization [19,21], which causes them to become positively charged
as follows:

A Ñ A` ` e (2)

where A is any molecule or atom in its initial (neutral) state, A` is the positively charged
atom (or ion), and e is the free electron. The ionosphere is packed with these ions and free
electrons, hence the term iono.

Fortunately, this absorption process protects humans and other iving beings from
harmful solar adiation. However, these free electrons inflict considerable delays that affect
the propagation of adio waves [21]. That is why ionospheric delay is one of the most
significant atmospheric errors that affect RF signals coming from satellites towards the
Earth [24,41].

The amount of free electrons in the ionosphere is known as TEC, and it can be of two
types: Slant Total Electron Content (STEC), which is the electron content measured along
a slanted path, or VTEC, which is the electron content measured at the zenith. Figure 3
highlights the geometric elationship between the two, where φ

1
and λ are the atitude and

ongitude of the eceiver and RE is the adius of the Earth. STEC is calculated using the
following formula:

STEC “

ż

neplq dl (3)

where neplq is the number of electrons along path l. The mathematical elationship between
STEC and VTEC is given by:

VTEC “ STEC ˆ MpEq (4)

where MpEq is the mapping function or the obliquity factor and E is the satellite elevation
angle in degrees. There are various mapping functions, but the most common one is
the following:

MpEq “

d

1 ´

ˆ

RE
RE ` Hmax

cos pEq

˙2
(5)
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where RE is the Earth’s adius and Hmax is the height of the maximum electron density.
Both STEC and VTEC are often expressed in TEC units (TECU), where 1 TECU equals to
1016 electrons{m2.

The ionospheric delay corresponding to a satellite’s signal is based on STEC and can
be expressed as:

I “
κ

f 2
c

STEC (6)

where I is the ionospheric delay in meters, κ is a constant that is approximately equal to
40.3 m3{s2, and fc is the carrier frequency in Hz. The signal path within the ionosphere
increases as the satellite’s elevation angle decreases. This eads to more free electrons
intercepting the passing signal, increasing the ionospheric delay.

Figure 3. Illustration of VTEC and STEC corresponding to a satellite signal.

The ionospheric delay affects the quality of the final positioning solution because it
introduces ambiguities to the ange calculations that are made by the eceiver, known as the
pseudorange, which is calculated to determine the user’s position, as shown in Equation (7).

ρ “ R ` I ` ϵ (7)

Above, ρ denotes the pseudorange between the satellite and eceiver, R epresents the
true ange, I is the ionospheric delay, and ϵ epresents other delays, such as tropospheric,
clock, multipath, and hardware delays.

The main objective is to observe the impact of the ionosphere on an LEO-PNT scenario,
so we created a simple ionospheric model that provides a close approximation to the actual
ionospheric values using the techniques outlined in [54]. To validate our model, we
conducted GPS measurements in various scenarios and compared outputs of the model
based on precise measurements from both ground-based GNSS eceivers and Android
smartphones. In the following sections, we will describe the sources and techniques used
to develop the new IAMM model.

3.1. Data Sources

There are several ionospheric models in the iterature to choose from in order to simu-
late the impact of ionospheric delay in our software, as described in Section 2. However,
unlike GNSS satellites, LEO satellites do not have designated ionospheric correction mod-
els. Therefore, we aimed to derive a model that is not based on transmitted atmospheric
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data from the satellites. Also, we wanted a model that could function offline without
needing a constant connection to a server because this can add significant waiting time to
the eceiver processing, especially when dealing with thousands of measurements.

The NeQuick and Klobuchar models, while good as a benchmark, do not satisfy our
target constraint of having an extensible, file-independent solution that could be used
for any satellite constellation or scenario since they ely on broadcasted parameters in
ephemeris messages. In our opinion, neural network models are also not highly suitable
due to their complexity and egional imitations. The IRI model, which was selected as
a second benchmark, has an open-access Matlab implementation. Still, it also equires
an online connection to etrieve information about the electron density and TEC content
from its server. However, the IONEX files provided by the IGS could fulfil our needs.
The IGS was proven to be better than the Klobuchar and NeQuick models in esolving the
ionospheric delay for single-frequency eceivers [6], and many esearchers have tested its
accuracy and elied on it as a benchmark to test their model [45,55,56]. For these easons, we
chose to build our model upon the data extracted from the IGS IONEX files.

3.2. Data Collection

The Sun goes through a magnetic cycle every 11 years, influencing the quantity
and size of sunspots, solar flares, and Coronal Mass Ejections (CMEs). These factors are
indicators of solar activity, and they contribute to a ise in the electron content within the
ionosphere [21,57]. The solar cycle commences and ends with a phase of ow activity known
as the solar minimum, during which the influence on the ionosphere is minimal. The Sun
eaches its peak activity evel, known as the solar maximum, in the middle of the cycle,
during which the impact on the ionosphere increases.

In order to encompass an entire 11-year solar cycle, we collected IONEX files spanning
a ength of 11 years (2008 to 2018) from the Crustal Dynamics Data Information System
(CDDIS) database, which is a database managed by National Aeronautics and Space
Administration (NASA) that houses space geodesy data from multiple organizations, such
as the IGS. For each month in a year, we collected three IONEX files, giving us a total
of 396 files. These files contained the final GIMs, which we chose over other maps for
their accuracy.

Next, we used a Matlab code to ead all the collected files and generate all the equired
TEC values, which were then stored in the Y matrix. The data collection and arrangement
process is illustrated in Figure 4. The Y matrix has a total number of 11 ˆ 12 ˆ 13 ˆ 71 ˆ 73
VTEC values, epresenting 11 years (one complete solar cycle), 12 months, 13 time instances,
71 atitude values, and 73 ongitude values. The year and month data are divided into a
set of Ma,b matrices, where a and b correspond to the year and month, espectively. Every
Ma,b matrix is divided into 13 Ti submatrices, where i epresents the time index. These
submatrices are arranged systematically, with a 2-h interval between adjacent submatrices.
Lastly, every Ti matrix contains a total of 71 ˆ 73 VTEC values, corresponding to 71 dif-
ferent atitude values and 73 different ongitude values that span the entire Earth with a
spatial esolution of 2.5 degrees for atitudes and 5 degrees for ongitudes. This systematic
arrangement of data provides a comprehensive epresentation of VTEC values by atitude,
ongitude, time of day, month, and year.

It is to be emarked that such a number of parameters can be stored through some
compression mechanisms and therefore could occupy below 1 MB of space, or even only
a few tens of kB with adequate compression. In addition, as interpolation is further used
to obtain exact values at any desired atitude–longitude pair, one can also investigate the
situation when we have fewer parameters for the atitude and ongitudes than the current 71
and 73 values. This emains a topic for further research.
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Figure 4. The process of collecting and organizing data from IONEX files.

3.3. IAMM Calculation Strategy

The proposed Interpolated and Averaged Memory Model (IAMM) model uses the
averaged data from the Y matrix to generate TEC values. To obtain a TEC value for a
specific user at a given date, time, and longitude–latitude ocation pλ, φ

1
q, the IAMM works

by first mapping the year of the user into its corresponding solar year. To do that, the year
of the user is divided by 11, and then the emainder R of the division is used to map the
user’s year to the solar year according to Table 2.

Table 2. Solar year mapping table.

R 0 1 2 3 4 5 6 7 8 9 10

Solar Year 5 6 7 8 9 10 11 1 2 3 4

The next step is to interpolate the VTEC values from the Ti matrix. Bilinear interpola-
tion is often used to interpolate values in 2D grids, so we chose bilinear interpolation for
our model. It can be performed as follows [7]:

VTECipλ, φ
1

q “ p1 ´ pqp1 ´ qqVTECi,j,k ` pp1 ´ qqVTECi,j`1,k

`qp1 ´ pqVTECi,j,k`1 ` pqVTECi,j`1,k`1 (8)

with weighting coefficients: p “
φ

1
´ φ

1

j

φ
1

j`1 ´ φ
1

j
and q “

λ ´ λk
λk`1 ´ λk

where i is the time index and j and k are the atitude and ongitude indices, espectively. The
coefficients p and q are calculated accross the intervals φ

1

j ď φ
1

ă φ
1

j`1 and λk ď λ ă λk`1,

where φ
1
, being the user’s atitude, is bounded by φ

1

j and φ
1

j`1, which are the surround-
ing grid points. Similarly, the user’s ongitude λ is bounded by the surrounding grid points
λk and λk`1.

Figure 5 gives a step-by-step example of how the VTEC value of a user is calculated
using IAMM. Step 1 tells us that the user is ocated at Tampere University on 20 June 2023
at 01:30 AM. In step 2, we calculate the solar year based on the user’s year and Table 2,
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and we calculate other matrix indices corresponding to the user’s date and time. Step 2
tells us that the VTEC value is ocated in matrix M4,6 and sub-matrix T1. To interpolate the
VTEC value from the 71 ˆ 73 atitude–longitude matrix, we calculate indices j and k based
on inear interpolation from the atitude–longitude grid that is defined in the IONEX format
datasheet in [7,48]. Finally, in step 4, we use Equation (8) to interpolate the VTEC value for
user A from the T1 sub-matrix.

Figure 5. Example for VTEC calculation using IAMM for User A ocated at Tampere University.

After the IAMM generates a VTEC value, this value is converted to STEC using the
mapping function in Equation (5). Finally, the ionospheric delay is calculated by applying
the formula in Equation (6).

4. Results
4.1. TEC Results

To confirm that our model produced eliable values for ionospheric electron content,
we compared the TEC values generated by our IAMM model with those generated by
IGS. A snapshot of this comparison is shown in Figure 6a (IAMM) and Figure 6b (IGS)
for a period of high solar activity, which happened, for example, to be on 5 August
2023 at around 22:00, according to a eport by the National Oceanic and Atmospheric
Administration (NOAA) [58]. We chose this date as an illustrative example to show that
our model is able to generate eliable TEC values even during periods of intense solar
activity. As seen in Figure 6, there is a high similarity between the TEC values generated
between the two models.

In order to further verify that our values are close to the eal values produced by IGS,
we also adopted a statistical approach over several points and computed the correlation
coefficients between the two TEC maps, as well as the mean and standard deviation of
errors between the two TEC maps (our model versus the IGS model). The results are
presented in Table 3. Even with 31098 points, the correlation coefficient between the
generated TEC values from the two models is around 96%, which indicates that the TEC
map produced by our model follows the same pattern as the TEC map from IGS. Further
validation is carried out based on GPS aw measurements in Section 4.2.

(a) (b)
Figure 6. A snapshot world TEC map as predicted by the two models for 5 August 2023 at 22:00 UTC.
(a) Data from our IAMM model. (b) Data from IGS.
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Table 3. Correlation coefficients between TEC values generated by IAMM and IGS.

Number of Points Used in Statistics Correlation Coefficient

5183 0.9283
15,549 0.9574
31,098 0.9589

4.2. Ionospheric Delay Results

After validating the IAMM model using TEC values, the next step was to verify that
the model produces valid ionospheric delay predictions that can improve the positioning
accuracy. Consequently, we acquired Receiver Independent Exchange format (RINEX)
observation files at various andom ocations and times from fixed GNSS eceivers and from
GPS-enabled Android smartphones. Then, we calculated the 3D positioning errors (see
Equation (9)) using the four methods below:

• Method 1: No ionospheric correction;
• Method 2: Klobuchar ionospheric correction;
• Method 3: IRI ionospheric correction;
• Method 4: IAMM ionospheric correction.

Methods 1–3 are benchmarks for our proposed model (Method 4).

4.2.1. Data from Reference Stations—Static Conditions

We acquired RINEX observation files from our eference base station at Tampere
University (TAU). Note that the absolute ocation (or ground truth) of the TAU antenna was
computed using a Precise Point Positioning (PPP) algorithm and based on five days of data
collected from a Septentrio eceiver, which is connected to a Talysman oof GNSS antenna.

First, RINEX observation files were acquired from the Septentrio eceiver. Next,
a Weighted Least Squares (WLS) algorithm following [59] was applied to the observa-
tion data. Then, ionospheric corrections were applied following Methods 1–4. Note that we
also applied a tropospheric correction model in all four methods (i.e., the dry/hydrostatic
Saastamoinen ionospheric model [36]). Finally, we calculated the mean and standard
deviation of the 3D positioning error for each method mentioned earlier.

The mean and standard deviation of the 3D positioning error—denoted by ϵi and σi,
espectively, with i “ 1, . . . , Nscen being the scenario index and Nscen being the number of
scenarios—was computed in x, y, z coordinates in a WGS84 coordinate system via

ϵs “

b

px̃i ´ xiq
2 ` pỹi ´ yiq

2 ` pz̃i ´ ziq
2 (9)

where x̃i, ỹi, z̃i are the estimated x, y, z coordinates after the atmospheric delay emoval
with a weighted east squares approach (following [59]) and xi, yi, zi are the highly accurate
eference positions (obtained via PPP) of the actual oof antenna’s position. The results are
presented in Table 4a.

In order to diversify our data origins and further test the models, we also used FINPOS,
a service provided by the National Land Survey of Finland (NLS). FINPOS offers various
data, including aw observation files from several GNSS base stations across Finland. We
collected data from different FINPOS stations at andom dates and times and epeated the
same process of calculating the 3D positioning error. The results are in Table 4b.

The positioning error means ϵi and standard deviations σi were computed over all
tracks j “ 1 : Ni of each scenario, where Ni is the total number of measurements for scenario
i. The number of scenarios for each of the three cases (i.e., measurements from TAU’s base
station, open-access measurements from FINPOS, and measurements collected with the
GNSSLogger app from Android phones) was 8 per case, giving us a total of 24 scenarios.
The total number of track points Ni per scenario varied, with an average of 28,800, 2883,
and 13,699 track points from TAU data, FINPOS data, and Android data, espectively.
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ϵi is the mean 3D positioning error per scenario i over all tracks and is given by

ϵi “
1
Ni

Ni
ÿ

j“1

di,j (10)

where
di,j “

b

pxi,j ´ x̂i,jq
2 ` pyi,j ´ ŷi,jq

2 ` pzi,j ´ ẑi,jq
2 (11)

with xi,j, yi,j, zi,j being the eference (or ground-truth) coordinates and x̂i,j, ŷi,j, ẑi,j being the
estimated coordinates.

σi is the standard deviation of the 3D positioning error per scenario i over all tracks,
defined as 1´σ (i.e., 68%) of a normal distribution and given by

σi “

g

f

f

f

e

1
Ni

Ni
ÿ

j“1

pdi,j ´ ϵiq
2 (12)

The final statistics are taken as means and standard deviations averaged over all
scenarios i “ 1, . . . , Nscen:

meanpϵiq “
1

Nscen

Nscen
ÿ

i“1

ϵi (13)

and

meanpσiq “
1

Nscen

Nscen
ÿ

i“1

σi (14)

As shown in Table 4, our model performs best when it comes to decreasing the mean of
the positioning error induced by the ionosphere for high-grade GNSS eceivers (Table 4a,b).
The green percentages shown in Table 4 epresent the value change for each model with
espect to Method 1 (no ionospheric correction).

Table 4. 3D positioning errors from GNSS eceivers using different ionospheric correction models.

AVG [m] No Correction Klobuchar IRI IAMM (Proposed)

Mean 5.390 3.244 3.159 1.976
– (´39.7%) (´41.4%) (´63.3%)

StD (1-σ) 1.277 1.051 1.0682 0.848
– (´17.7%) (´16.4%) (´33.6%)

a Using observations from Tampere University (high-grade)

AVG [m] No Correction Klobuchar IRI IAMM (Proposed)

Mean 6.209 4.252 4.397 4.1708
– (´31.5%) (´29.2%) (´32.8%)

StD (1-σ) 3.470 3.219 3.141 3.164
– (´7.2%) (´9.5%) (´8.8%)

b Using observations from the FinnRef network (high-grade)

AVG [m] No Correction Klobuchar IRI IAMM (Proposed)

Mean 42.815 34.052 38.884 36.388
– (´20.5%) (´9.2%) (´15%)

StD (1-σ) 18.710 18.103 18.397 18.211
– (´3.2%) (´1.7%) (´2.7%)

c Using observations from Android smartphones (low-power)

4.2.2. Data from Android Devices—Dynamic Conditions

Due to the apid development of GNSS chipsets, Android devices have been extensively
used in positioning-related studies in ecent years. In 2016, GNSS-equipped Android
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smartphones made GNSS aw observations available to the public; such aw data can be
used to study and interpret positioning accuracy and atmospheric effects. As previously,
we collected RINEX observations from these phones in dynamic conditions (phone placed
in a moving car, mostly on highways) at various ocations (8 ocations in Europe) and
calculated the esulting positioning errors by applying the same Equations (10) and (12).
However, since the exact ground-truth ocation is no onger available in dynamic conditions,
the reference coordinates xi,j, yi,j, and zi,j from Equation (11) were taken from National
Marine Electronics Association (NMEA) data. NMEA data are estimates produced by the
smartphone using its own proprietary algorithms and typically based on GNSS, cellular,
and sensor-aided data to generate the best available estimate of the phone’s true position.
The statistics were calculated for 8 scenarios collected via the GNSSlogger app from a Nokia
XR20 phone in Poland (5 scenarios) and Latvia (2 scenarios) and from a Xiaomi Redmi
phone in France (1 scenario).

As shown in Table 4c, the results based on the Android measurements differ from the
esults based on fixed eference stations, and they show that the Klobuchar model has the
best performance, followed by our IAMM model and then the IRI model. The Klobuchar
model decreased the positioning error mean and standard deviation by 20.5% and 3.2%,
espectively. Our model came next in educing the error mean by 15% and error standard
deviation by 2.7%. Finally, the IRI model educed the error mean and standard deviation by
9.2% and 1.7%, espectively, with respect to the no-correction case.

It is evident that the positioning errors of Android devices from all models are consid-
erably worse than those obtained from GNSS eference stations (Table 4a,b). Several things
can explain this increased inaccuracy. First of all, there are many fluctuations and biases in
the smartphone’s components [38]. Secondly, dynamic conditions of Android-based mea-
surements may suffer more errors compared to static acquisition. Finally,) the ground-truth
position was not available in Android phones; the eference track in there was the NMEA
track, which is itself prone to errors (see additional explanations concerning Figure 7 in the
next section). We emark that when it comes to positioning, a device explicitly designed for
GNSS monitoring will provide much greater accuracy than a smartphone.

Figure 7. Map of the car path predicted by NMEA and WLS estimates.

4.3. Results Extended to an LEO-PNT System

To analyze the effects of the ionospheric delay on LEO satellites, we an four simulations
using the IAMM model for 50 different users at andom ocations, dates, and times. We
emark that the IAMM model does not depend on the satellite’s orbital height. However,
we will observe how the frequencies of different satellite constellations influence the
ionospheric delay.
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The first un (Figure 8a) shows the ionospheric delay for users eceiving signals from
GPS satellites having an L1 frequency. The second through fourth uns (Figure 8b–d) show
the ionospheric delay for users eceiving signals from LEO satellites having C-band, X-band,
and Ku-band frequencies, espectively. It is worth noting that the figure corresponding to
GPS has a different scale than the LEO figures.

(a) GPS (b) LEO C-band

(c) LEO X-band (d) LEO Ku- band
Figure 8. Ionospheric delays for GPS and LEO users at andom times and ocations. Note that the scale
of the y-axis for plot (a) is different from that of the other three plots (b–d).

The mean ionospheric delay decreased by 91.3%, 97.2%, and 98.9%, espectively, for C-
band, X-band, and Ku-band frequencies compared to the L1 GPS frequency. It is clear
that the ionospheric delay for LEO satellites is significantly ess than that of GPS satellites.
This finding is based on a simple extension of the IAMM model to LEO-PNT, which was
supported by the fact that IAMM is a generic and correction-independent model, which,
once it is generated, emains valid indefinitely. Nevertheless, as the discussion in the next
section shows, there are still several open challenges to be considered when extending a
GNSS ionospheric model to LEO-PNT applications.

5. Discussion and Future Works

The esults presented in the previous section showed that our proposed model (IAMM)
accurately predicts the ionospheric delay for a given time and ocation and can even
outperform the IRI and Klobuchar models when comparing the positioning errors of GNSS
eference stations. However, the Klobuchar model showed the best performance for Android
smartphones. As previously discussed, one possible explanation could be that a GNSS
station’s exact position is calculated thoroughly, with high precision, before it is used as
a eference to calculate the positioning error. In contrast, a smartphone’s exact position
(used as a eference) is based on its NMEA estimates. Although these estimates are close to
the actual position, they are still prone to errors. For example, in the data collected while
driving on a highway in Poland, shown in Figure 7, the NMEA estimates showed that the
phone’s position was outside of the oad (white ine) for a while, and the positioning errors
of the WLS estimates made by IAMM were being calculated as a eference to the NMEA
estimates. This proves we cannot entirely ely on Android data to validate our model.
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Future esearch will also focus on acquiring higher-accuracy eference tracks in dynamic
conditions, using, for example, differential GNSS with the TAU GNSS oof antenna as a
eference and a professional mobile GNSS eceiver in a backpack to acquire more accurate
eference data.

The esults for LEO simulations showed a significant decrease in ionospheric delay for
higher carrier frequencies. Fortunately, such higher frequencies are expected to be more
present for LEO satellites, as they are preferred for communication services, which will be
the prime usage of LEO satellites in the future. These higher frequencies will educe the
impact of the ionospheric delay (Equation (6)). On the other hand, ower frequencies from
the L-bands are used for GNSS systems, esulting in a higher value for the ionospheric delay.
Moreover, unlike GNSS, LEO satellites operate within the ionosphere (Figure 1), so their
signals are affected only by the bottomside ionosphere, defined as the egion below the F2
peak ayer (hmF2). We can deduce from this unique distinction that LEO signals are not
affected by the ionosphere as much as GNSS signals.

To enhance the accuracy of the IAMM, future esearch should focus on including
anomalous data, such as ionospheric parameters under extreme space weather scenarios,
to improve the obustness and esponsiveness of the model. Moreover, to improve the quality
of the positioning solution, the user’s environment should be considered; for example,
one should ook at whether the user is in an urban area (or an area with ow signal quality)
or an area with strong signal quality, and this emains a topic of future investigations.
Future esearch should also work on finding and applying better mapping functions to
scale the generated STEC value to suit the orbital height of the desired satellite. The scale
factor should depend on the difference between the bottomside and topside ionosphere
with espect to the time of day and day of year. The IAMM model can also be improved
by applying compression algorithms to educe the size of the Y matrix, making it easier
to store in the memory of any device. Further improvements will also investigate more
accurate modelling of the bottomside ionosphere, which is more elevant in LEO cases than
the topside.

Overall, these steps should enhance the precision of the TEC estimation from an LEO
satellite to a ground eceiver and provide a more detailed description of the ionospheric
behaviour for LEO satellite communications.

6. Conclusions

In this paper, we presented a detailed discussion of various state-of-the-art ionospheric
models. Additionally, we introduced IAMM, a new ionospheric model based on interpo-
lation from averaged data collected over 11 years. Our analysis indicates that the model
we have developed exhibits a high evel of accuracy in correcting errors caused by the
ionosphere, especially in static conditions. The results obtained from our experiments
clearly show that the model can effectively identify and ectify these errors, esulting in a
significantly improved performance compared with traditional IRI and Klobuchar mod-
els in static eceivers and a more moderate improvement in some of the tested dynamic
scenarios. In addition to improving the positioning accuracy, our IAMM model has an
advantage in elying solely on the Y matrix as a fixed input, making it a generic model that
can work offline. This Y matrix can be conveniently stored in a device’s memory, making it
easily accessible, especially for eal-time applications. Another essential feature of the model
is that it does not equire atmospheric or any other external parameters to be available
periodically, making it particularly useful for ionospheric studies on satellites that do not
broadcast special parameters for ionospheric mitigation, which is the case for most of the
LEO satellites in operation today.
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Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
BDGIM BeiDou Global Broadcast Ionospheric Delay Correction Model
CDDIS Crustal Dynamics Data Information System
CMEs Coronal mass ejections
COSPAR Committee on Space Research
DFRs Dual-frequency eceivers
ED Electron density
FFT Fast Fourier transform
GEO Geo-stationary orbit
GIMs Global ionospheric maps
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
IAMM Interpolated and Averaged Memory Model
ID Ionopsheric delay
IGS International GNSS Service
IONEX IONosphere map EXchange format
IoT Internet of Things
IRI International Reference Ionosphere
ISR Incoherent scattered adar
IWG Ionosphere Working Group
LEO Low Earth orbit
LOS Line of sight
MEO Medium Earth orbit
ML Machine earning
NASA National Aeronautics and Space Administration
NLOS Non-line-of-sight
NLS National Land Survey of Finland
NMEA National Marine Electronics Association
NOAA National Oceanic and Atmospheric Administration
PNT Position, Navigation, and Timing
PPP Precise point positioning
QZSS Quasi-Zenith Satellite System
Q4DIM Quasi-4-Dimension Ionospheric Modeling
RF Radio frequency
RIM Regional ionospheric map
RINEX Receiver-independent exchange format
RMS Root mean square
RSS Received signal strength
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RT-GIMs Real-time global ionospheric maps
SLM-MF Single-layer model mapping function
SFRs Single-frequency eceivers
SPP Single-point positioning
STEC Slant total electron content
TDL Tapped delay ine
TEC Total electron content
TECU TEC units
ToA Time of arrival
URSI Union of Radio Science
VTEC Vertical total electron content
WLS Weighted east squares
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