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Summary

The immediacy and directness of how physical properties of a good feed through to its

economic price dynamics have probably never been more apparent than for electricity.

In view of the current state of technology still at a loss to provide economically efficient

storage solutions for electricity, the market-clearing (wholesale) price will always adjust

for the flow of electricity produced in every instance of time to exactly equal the amount

consumed by end customers, if system stability is to be maintained and unexpected

blackouts to be avoided.

From a microeconomic point of view, the general non-storability of electricity causes

the intertemporal linkages between economic agents’ decisions today and in the future

to break down: utility maximization, by allocating consumption and production over

time, effectively reduces to a myopic one-period decision problem whereby the absence of

storage possibilities combined with the empirically well-validated assumption of virtually

completely inelastic demand set the stage. Generally, this can be seen as the ultimate

cause for many of the unusual properties evident in the price trajectories of traded

spot electricity contracts, such as excessive levels of volatility, seasonality, upward and

downward price spikes, or the occurrence of negative prices – stylized facts that pose a

significant challenge to market participants when it comes to pricing and hedging these

contracts.

Whereas previous research on electricity price modeling has primarily been concerned

with classic reduced-form approaches that have established as standard tools to model

other (storable) commodities, interest rates, or currencies, this thesis focuses on structural

pricing approaches instead. This relatively new class of models addresses said complexities

in electricity price modeling by exploiting the comparatively transparent price formation

mechanism in electricity markets and thus goes one step beyond standard reduced-form

models: whereas the latter class mainly aims at reproducing the stochastic properties

of the electricity price time series itself, structural approaches focus on the underlying

fundamental factors (such as electricity demand, available generation capacity, and

the prices for generating fuels), and derive prices based on an exogenous structural

specification between these drivers.

In this thesis, we present and discuss fundamental frameworks for electricity pricing
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and show how these can offer new solutions to recent modeling challenges for which

reduced-form approaches are not well-suited and deliver suboptimal results. In the first

part, we propose a new structural pricing model that not only incorporates demand,

capacity, and fuel price as fundamental drivers, but additionally also makes use of demand

and capacity forecasts. In an extensive empirical study, the value of using forward-looking

information is clearly confirmed and thus highly recommended for electricity derivatives

pricing.

In the second and third part of this thesis, we extend our model into a multi-market

setting to investigate the effects of the increasing interconnectivity between electricity

markets on price dynamics, thereby taking the continued roll-out of market coupling

mechanisms as an example. As our findings show, changes in market design, such as

the respective cross-border trading scheme prevailing, decisively impact the pricing and

hedging of electricity contracts and could thus far not be reflected adequately in standard

modeling approaches. Based on our structural setting, we offer new solutions to these

challenges and provide a coherent modeling framework for spot, forward, and also spread-

based derivative contracts when electricity markets are interconnected.



Zusammenfassung

Die Unmittelbarkeit, mit welcher sich die physikalischen Eigenschaften eines Guts auf

dessen ökonomische Preisdynamik auswirkt, tritt bei Elektrizität besonders deutlich

zutage: Da der gegenwärtige Stand der Technik heute (noch) keine wirtschaftlichen

Speicherlösungen für Elektrizität vorweisen kann, ist es stets der markträumende

(Großhandels-) Preis, welcher letztendlich für die in jedem Zeitpunkt erforderliche Balance

zwischen produziertem und abgenommenem Strom sorgen muss – nicht zuletzt zur

Vermeidung von Stromausfällen oder sonstigen Beeinträchtigungen der Systemstabilität.

Aus mikro-ökonomischer Sicht hat die allgemeine Nicht-Speicherbarkeit von Strom

zunächst zur Folge, dass rationale Agenten die Auswirkungen ihrer ökonomischen

Entscheidungen von heute auf Folgeperioden vernachlässigen können: Denn anders als bei

klassischen Problemen der Nutzenoptimierung stellt sich – mangels Speichermöglichkeiten

sowie in Verbindung mit der empirisch gut belegten Annahme nahezu vollständig in-

elastischer Strom-Nachfrage – die Frage der Allokation von Konsum und wirtschaftlichem

Angebot in jeder Periode von Neuem. Letztendlich ist hierin auch die Ursache für viele der

Besonderheiten zu sehen, welche die Verlaufmuster der Zeitreihen von Spot-Strompreisen

kennzeichnen, wie z.B. äußerst hohe Volatilitäten, ausgeprägte Saisonalität, kurzfristige

Preissprünge aufwärts und abwärts sowie das Auftreten negativer Preise. Diese stylized

facts stellen Marktteilnehmer bekanntlich vor besondere Herausforderungen bei der

Bewertung und Absicherung von Stromkontrakten.

Während sich die bisherige Forschung zur Strompreis-Modellierung vorwiegend mit

dem Reduced-Form Ansatz beschäftigt hat, welcher sich als Standard zur Modellierung

anderer (lagerbarer) Rohstoffe, Zinsen und Währungen etabliert hat, werden in der

vorliegenden Dissertation stattdessen strukturelle Bewertungsansätze thematisiert. Diese

relativ neue Modellklasse bezieht den auf Strommärkten vergleichsweise transparenten

Preisbildungs-Mechanismus in den Modellrahmen mit ein und bietet auf diese Weise

eine interessante Alternative, um die bekannten Schwierigkeiten bei der Strompreis-

Modellierung zu adressieren. Im Vergleich zu den Modellen vom Reduced-Form Typ,

welche primär die stochastischen Zeitreihen-Eigenschaften von Preisprozessen direkt

abbilden, weisen strukturelle Ansätze eine tiefergehende ökonomische Struktur auf, und

leiten Preisdynamiken indirekt aus dem Zusammenspiel von Fundamentalfaktoren (Strom-
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nachfrage, verfügbare Erzeugerkapazität und Brennstoffpreise) und Modell-exogener

Gleichgewichtsannahme ab.

Die vorliegende Dissertation stellt den Fundamental-Ansatz zur Strompreis-

Modellierung vor und zeigt auf, wie sich mit dieser Modellklasse Lösungen für

insbesondere solche neue Fragen und Herausforderungen finden lassen, die die klassischen

Reduced-Form Ansätze vor (teilweise unüberwindbare) Probleme stellen. Im ersten Teil

der Arbeit entwickeln wir ein neues Strukturmodell, welches auf den Fundamentalfaktoren

Brennstoffpreis, Stromnachfrage und Erzeugerkapazität basiert, zusätzlich jedoch auch

noch Marktvorhersagen für die letzteren beiden Faktoren verarbeiten kann. In der sich

anschließenden empirischen Studie wird der Nutzen zukunftsgerichteter Informationen

(in Form von Vorhersagen über Angebot und Nachfrage) für die Bewertung von

Stromderivaten eindeutig bestätigt.

Im zweiten und dritten Teil dieser Arbeit überführen wir unser Strukturmodell in

einen Multi-Markt-Ansatz, um die Auswirkungen der stetig zunehmenden Strommarkt-

Integration auf Preisdynamiken zu untersuchen, wobei insbesondere die in Europa nun

vorherrschenden Mechanismen zur Marktkopplung thematisiert werden. Hierbei wird

deutlich, dass Änderungen im Marktdesign – wie etwa die Regelung und Organisation

grenzüberschreitender Stromflüsse – die Bewertung und Absicherung von Stromkontrak-

ten entscheidend beeinflussen können, was im Rahmen der klassischen Reduced-Form

Modelle bisher jedoch nicht abgebildet werden kann. Unser infolgedessen erweitertes

Strukturmodell stellt jedoch einen neuen Ansatz zur Lösung dieser Schwierigkeiten

dar und bietet einen Rahmen, in dem Spot-, Forward-, aber auch Spread-basierte

Stromkontrakte konsistent und unter Berücksichtigung zunehmender Marktintegration

bewertet werden können.



Chapter 1

Introduction

1.1 Electricity Markets: On the Verge of Becoming

Truly Financial Markets?

Compared to other mature commodity markets, electricity markets have come a long way

to finally be recognized as financial markets in a broader sense at best. Following decades

of “cost-plus” pricing and local quasi-monopolies, early deregulation efforts in the 1980s

and early 1990s began to unfold with Chile and the UK among the first to lay out their

plans for a comprehensive liberalization and reconstruction of their electricity markets.1

Thus, and further promoted by the ongoing unbundling of vertically integrated utilities,

several electricity markets across the US, Europe, and Australia had eventually laid the

grounds for a level playing field amongst their market participants such as generators,

suppliers, traders, and speculators.

To the extent that emerging power exchanges and a suitable institutional market

design have helped to establish electricity price indices as reliable and transparent price

signals against which financial contracts can be settled, liquid physical markets were

complemented by active markets for financial futures and, to some extent, also options.

Consequently, with trades being financial rather than physical, “outside” speculators may

be more inclined to participate in transactions and, hence, more willing to take over

idiosyncratic risks in order to diversify their broader portfolios. As is well-known, the

1See, e.g., Pollitt (2004) for further information on electricity market reforms in Chile. However, the
notion of Chile as a pioneer in electricity market liberalization is sometimes contested since the respective
reforms did not immediately aim at promoting independent wholesale markets and breaking up vertically
integrated monopolies (Joskow, 2008). For further details on the UK market reforms, see, e.g., Green
and Newbery (1992) or Newbery and Pollitt (1997).

1
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risk-bearing service by speculators, in turn, helps to promote market integration between

electricity and other financial markets, thus finally reducing risk premia in the former

markets (Bessembinder and Lemmon, 2002). In fact, for the (still hypothetical) case of

a very high degree of integration between electricity markets and the broader financial

markets for other asset classes, Bessembinder and Lemmon even conjecture forward price

risk premia to vanish, due to the low correlation between electricity prices and aggregate

market returns.2

However, the question of how liquid and integrated financial electricity markets will

be – or whether they may even become similarly exposed to some form of financialization

that other commodity markets have recently witnessed3 – does not depend only on

the above aspects of market design and post-liberalization policy framework. More

importantly, it is the spiky and highly volatile nature of electricity prices that makes

pricing and hedging in these markets very challenging in the first place. Price spikes, or a

generally pronounced right-skewness in electricity prices, is inherited from the usually

strongly convex supply/merit-order curves in electricity markets, combined with the

inability to economically store electricity in most markets. As an immediate consequence,

sudden upward price spikes can cause short positions of electricity forwards and futures

to incur substantial losses4 – and which may, ultimately, also affect financial investor

participation.5

Adding to these complexities, certain types of derivative contracts, such as options

on spot or forward electricity, may not be traded liquidly, so that market participants

essentially face a double risk at least: holding a derivative contract on a highly volatile,

spiky, and non-storable underlying on the one hand, while facing illiquidity of stale

2See Bessembinder and Lemmon, 2002; p. 1355: “If the outside speculators are risk-averse but hold
diversified portfolios, then a CAPM-style result will be obtained, with the bias in the forward price as a
predictor of the spot price dependent on the covariance between power prices and overall market returns.
If (as might be expected) power prices are not significantly correlated with aggregate market returns, then
frictionless models with unlimited numbers of either risk-averse or risk-neutral speculators will imply a
zero risk premium for power contracts.”

3See, e.g., Singleton (2012) or Tang and Xiong (2012).
4For instance, on a single day in 1998, US utility Illinova incurred trading losses approximately equal

to its entire total earnings in that year. See Pirrong and Jermakyan (2008). As another example,
Bessembinder and Lemmon (2002) mention two Californian electricity retailers, Southern California
Edison and Pacific Gas and Electric, that had to default on debt servicing and other scheduled payments
in January 2001 due to unexpectedly high electricity prices in the spot markets that, for regulatory
reasons, could not be passed on to retail customers.

5For example, Bellmann et al. (2011) give proof of particularly high and volatile margining costs
in the case of electricity derivatives, thus raising capital requirements to sometimes prohibitively high
levels, especially for smaller financial players. This is confirmed empirically by, e.g., OFGEM (2009) and
NordREG (2010).
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positions and related risk premia on the other. For a financial investor, this is an obvious

dilemma since, as confirmed by Eydeland and Geman (1999), the safest way to hedge

the risks inherent to trading electricity (options) may ultimately only be to own a power

plant.6

Against the above background, the current state of electricity markets today, taking

Germany amidst the Energiewende and other European markets as examples, seems

to contribute little to restoring investor confidence in electricity markets. Following a

continued, strong shift towards generation from renewable energy resources, accompanied

by nuclear phase-out policies in several countries, previously known “laws of the

marketplace” and other empirical realities have started to break down, such as evidenced

by: a significant increase in the number of negative price spikes and also first occurrences of

days with negative baseload prices; a breakdown of the peakload/baseload price differential

with peak prices more frequently falling below baseload prices whenever renewables feed-in

is strong; or a change in the merit-order of supposedly “green” markets, leading to a revival

of, for instance, coal-based generation, which in turn impacts overall price dynamics and

hedging strategies in the respective market.

At the same time, however, a number of developments, projects, and initiatives are

trying to address and mitigate the above challenges, thereby essentially contributing

to creating electricity markets with more transparency and fewer frictions, and thus

benefitting all market participants – regardless of whether with a financial or physical

angle.

First, the recent years have seen a strong increase in the amounts of data being

made available to market participants. Importantly, this not only relates to outturn

data on electricity market fundamentals, such as historic levels of available generation

or consumption, but even more so to forecasts about these factors. On the one hand,

the shift towards “big data” in electricity markets is certainly driven by the strong

proliferation of renewable generation and their inherent intermittency, which makes it

increasingly important to focus on (regional) weather forecasts that not only include

temperature levels, but also wind speed and sunshine. In a recent article, Carr (2013),

for example, mentions that weather forecasting companies have lately seen double-digit

year-on-year growth of their revenues brought in through energy companies. However,

6See Eydeland and Geman (1999), p. 42.
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while the relationship between weather (especially temperature levels) and electricity

demand is reasonably well understood for most markets,7 the link between weather data

and available generation capacity from renewables is comparably weaker, thus confirming

that more information does not always need to yield better trading decisions.8 On the

other hand, new regulatory requirements and transparency initiatives are also contributing

to this development, and are forcing transmission system operators (TSOs) to release

even more detailed and granular forecasts especially about (vertical) load and schedules

of planned outages of major generation facilities. Forecasts of these “hard fundamentals”

can more easily be assessed as regards their impact on electricity prices and are, hence,

very welcome to traders and other market participants.

Second, market integration between European electricity wholesale markets is helping

to finally realize the idea of one common electricity market across national borders.

Again, although not a new development, it is the strong shift towards generation

from renewable sources that has helped to accelerate the “unification” of the formerly

fragmented European electricity markets. For especially in the case of “green” electricity,

the location of generation sites might be far away from the actual centers of demand, thus

putting electricity transmission under the spotlight: for instance, with rising numbers of

on-shore and off-shore wind farms in the North Sea, new ways must be found in order

to efficiently direct these electricity flows to high-demand areas in southern Germany,

France, and the Benelux states. Hence, increasing interconnectivity – i.e., transmission

capacity – between European electricity wholesale markets is a crucial prerequisite for

a successful integration of renewable generation across Europe. Currently, however,

interconnectors that link electricity markets are often congested and, therefore, require

an efficient auction design of how to provide access to scarce transmission capacity

for cross-border trading. In Europe, these capacity rights for interconnector use are

currently made available either via (i) explicit ex-ante auctioning or (ii) implicit auctioning

through market coupling. Coupling-based mechanisms have been particularly successful in

further promoting price convergence amongst European electricity markets, thus factually

creating one common market zone across countries. As is key to this development, the

spreading of coupling-based mechanisms has thoroughly altered electricity price dynamics

7See, e.g., Pardo et al. (2002) for further information.
8Carr (2013), for example, cites industry professionals who confirm that “there are inaccuracies of

5GW and greater in these models, particularly when there are thunderstorms or [there is] snow coverage
on the panels.”
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in the related markets, with both volatility and price spikes clearly reduced through more

economic use of interconnection lines.

Finally, we observe an increased tendency to adjust the overall electricity market

design to allow for more financial trades. To some extent, this may already be considered

a consequence arising from the roll-out of market coupling, as can be observed for the

case of transmission rights: a small change in the regulation of how to treat non-exercised

rights has made possible both the retention of the primarily physical setting for cross-

border trade and, at the same time, the opening of this market to financial investors

that henceforth no longer need to worry about taking on the risk of physical delivery.

From a risk management perspective, a quasi-financial setting for transmission rights also

helps to increase the hedge-effectiveness of futures contracts in those markets that are

still suffering from reduced liquidity and market-making activities.

As will be seen throughout this thesis, these developments are by far not limited to

European markets or to just those markets that are characterized by particularly high

levels of generation from renewables; instead, the above outlined structural developments

can likewise also be anticipated for other electricity markets, such as in the US or

Australia, since they are – directly or indirectly – related to the interplay of those

fundamental factors that determine the electricity price formation mechanism in every

market. However, if changing electricity market paradigms put more focus on underlying

fundamental factors, model risk for market participants will inevitably increase: for

previous approaches to pricing and hedging may become unreliable to the very extent

that extrapolating future prices from historic time series may suffer from previously

unknown regime changes which are triggered, e.g., by innovations such as market coupling.

Obviously, while the developments outlined above are expected to cause financial investor

participation in electricity markets to further increase, so will the problems related to

pricing models that cannot cope with the implications of the changing marketplace.

In the remainder of this thesis, we show that an alternative pricing approach that

gives more weight to underlying price drivers can actually master these challenges well: the

class of structural electricity pricing models is presented in three essays. In each, we take

the above developments in electricity markets as our main motivation to develop, analyze,

and implement this new class of models – thereby, more generally, demonstrating to the

reader our fundamental credo that especially for electricity markets, market structure and
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pricing strategy are intricately intertwined and should always be considered a dynamic

ensemble driven by a permanent state of flux.

In the next section, we give a brief introductory overview of the class of structural

models for electricity pricing. Thereafter, the organization of this thesis is outlined and

a brief summary of each of the three essays to follow is given.

1.2 The Structural Approach to Electricity Price

Modeling

As opposed to standard reduced-form settings that aim at reproducing the key stylized

facts of electricity prices (as observed from past price time series) by directly modeling

price dynamics, structural approaches to electricity price modeling go beyond the historic

price trajectories and instead follow a more detailed approach.9 By modeling the

impact of fundamental factors on electricity prices rather than modeling the price

process itself, structural settings endogenize key stylized facts of electricity prices, such

as upward/downward spikes, but also more intricate market developments such as a

longer-lasting change in the merit-order for a certain generation park. At the same

time, by imposing an exogenously given relationship between fundamental factors to yield

electricity prices, the complexities of a (potentially dynamic) equilibrium setting can be

avoided, which helps to retain tractability especially for practitioners.

Therefore, in a first step, the key building block for structural pricing models usually

involves a supply/demand argument given that the interaction of these two fundamental

factors is well-understood and easier to observe than for other markets.10 In fact,

whereas available generation capacity (i.e., supply) may occasionally be excluded from

the modeling framework if assumed constant for simplicity, all of the structural models

below explicitly include electricity demand as primary fundamental factor and cost driver

next to fuel prices.

9In order to avoid ambiguities, this class of models is sometimes also referred to in literature as
hybrid or fundamental class of electricity pricing models. Throughout the remainder of this thesis, these
classifications will be used interchangeably. However, in order to avoid confusion, and as will become
obvious in this section, we do not subsume under the class of structural pricing models those bottom-up
frameworks that are based on agent-based optimization and related endogenous determination of one- or
multi-period equilibria. See, e.g., Bessembinder and Lemmon (2002) or Buehler and Mueller-Mehrbach
(2007, 2009) for prominent examples of models of this kind.

10See, e.g., Carmona and Coulon (2012) on this argument.
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Figure 1.1: Daily Peak Electricity Demand for Great Britain in 2010
The top graph illustrates the development of electricity demand in Great Britain during the daily

peak half hour in 2010 along with a fitted deterministic component to capture seasonality effects.

The bottom graph shows the corresponding deseasonalized demand process.

From a technical point of view, the time-series properties of electricity demand (and

also available generation capacity) are characterized by distinct seasonalities, primarily

induced by the close relationship between electricity consumption and underlying weather

dynamics, with changes in temperature often accounting for more than 90% of overall

daily demand variation.11 In this context, the mean-reversion property of the temperature

dynamics immediately feeds through into the demand process, which therefore is usually

modeled as an Ornstein-Uhlenbeck (OU) process, as further illustrated in Figure 1.1.

Deferring the discussion regarding the inclusion of additional state variables,

especially fuel prices, to Chapter 2, the next step for modelers now is to find an

adequate specification for the functional relationship between the selected fundamental

factors and electricity (spot) prices: in contrast to other equilibrium-based settings

(e.g., Bessembinder and Lemmon, 2002), the class of models examined in this thesis

derives electricity prices based on an exogenously-specified equilibrium assumption, thus

mimicking the interplay of the involved fundamental factors within the price-setting

mechanism, such as in a merit-order framework. More precisely, this functional

relationship can be disentangled into an assumption on the structure of the (inverse)

supply curve or bid-stack that is combined with the requirement that demand Dt always

be equal to supplied capacity Ct, as is essential for electricity markets clearing. In addition,

it is thanks to the empirically well-validated assumption of completely inelastic electricity

11See, e.g., Pardo et al. (2002) for further information.
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Simplified Bid-Stack Model
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Figure 1.2: System Price Curves and Simplified Representation
The LHS graph illustrates the price formation mechanism in electricity markets, taking bid/offer

curves from the Nordic market (Nord Pool) as an example. In the RHS graph, the supply-demand

equilibrium is represented in a simplified model with inelastic demand and exponential supply curve.

demand that said equilibrium can easily be solved to yield spot electricity prices.12 While

the assumption of inelastic demand is a common “ingredient” to all of the below presented

models, the key differentiating factor is the functional form of the merit-order curve: most

importantly, a good approximation of its characteristic slope and, especially, steepness for

high levels of demand – depending on the respective markets under study – is required

for an adequate reflection of the characteristic spikiness in electricity prices.

Importantly, for this class of models, spikes in electricity prices are no longer modeled

exogenously using jump processes. Instead, they are generated endogenously by invoking

those economic conditions that generally lead to the occurrence of spikes, such as low

levels of available generation facing increased electricity demand. Figure 1.2 illustrates

this aspect as well as the general idea of reflecting the price formation mechanism (i.e.,

balancing electricity demand with supply) with a simplified functional representation.13

As can be inferred from this stylized setting, even an exponential function may not

12Note that this assumption may not be valid for markets in which, e.g., “make-or-buy” decisions of
generators can cause electricity demand to be less inelastic for certain price ranges, depending on the
generators’ costs, and typically resulting in a “kinked” demand curve as shown in Figure 1.2. However,
as shown by Coulon et al. (2014), even in these cases, the structural modeling set-up can be maintained
by interpreting the sum of supply and demand “clusters” as a “slide” stack, which will then also allow
to keep the assumption of inelastic electricity demand. For more information on the impact of market
design (power pool vs. power exchange) on demand elasticity, also see Weron (2006).

13Regarding the integration of dynamics for one (or several) generating fuels into such a setting, we
refer to Chapter 2.
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always adequately match the steepness of the merit-order curve, which, on the one hand,

might lead to suboptimal pricing results, especially when primarily focusing on spot rather

than derivatives pricing. On the other hand, however, an exponential merit-order curve

allows for analytic derivatives pricing formulae: a key benefit that not only pays off for

practitioners upon calibration and for real-time pricing purposes; but that also provides

deeper insights into the complex dependency structures between electricity prices and

underlying fundamental factors, thus altogether accounting for much of the attention and

popularity that the structural pricing approaches have recently seen. Note, however, that

maintaining an exponential merit-order framework – as will be the case throughout the

remainder of this thesis – still provides benefits also for modeling spot prices, e.g., in a

multi-market framework, as will be seen in Chapter 3.14

In the remainder of this section, we briefly summarize some of the key elements to the

field of structural electricity price modeling, thereby also giving an impression of how this

class of models has evolved over time, and how the inclusion of additional state variables

has added to their overall degree of technical sophistication.

Barlow (2002) sets up a simple framework in which electricity prices are determined

by equating inelastic demand with constant, deterministic supply. Specifically, demand

Dt is modeled as an Ornstein-Uhlenbeck process (using conventional notation):

dDt = κ
(
μ−Dt

)
dt+ σdWt. (1.1)

The supply curve (quantity as function of price) is defined as C(x) = C − b0x
α with

maximum system capacity C and α < 0 determining the slope of the curve. Based on the

inverse supply curve, the spot electricity price Pt is then defined as:

Pt =

⎧⎪⎨
⎪⎩
(
C −Dt

b0

)1/α

, Dt < C − ε0b0

P , Dt ≥ C − ε0b0

(1.2)

for some small ε0 and P = ε
1/α
0 as the maximum system price.15

14Also see the structural model by Coulon et al. (2013) presented further below who propose to combine
their exponential framework with a regime-switching setting as an additional way to further improve the
spot pricing performance of their model.

15Re-defining the first case in Equation (1.2) to Pt = fα(D̃t) = (1+αD̃t)
1/α and applying the inverse

Box-Cox transformation, this framework can be further generalized to allow for non-negative α. In view
of fα, the model is also often referred to as a non-linear OU-process.
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Kanamura and Ohashi (2007), however, argue that the curvature of the inverse supply

curve - as implied by the set-up used in Barlow (2002) – is not steep enough to adequately

reflect price spikes and, therefore, propose an alternative specification based on a “hockey

stick” shape. In a stylized way, they argue for a standard merit-order curve to be better

represented by two linear functions – i.e., the flat baseload part and the steep part where

plants with very high marginal costs are dispatched – and a quadratic curve to link them,

resulting in the following piecewise defined inverse supply function Pt = f(Ct):

Pt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 + β1Ct + εt, Ct < z − c

a2 + β2Ct + γ2C
2
t + εt, z − c ≤ Ct < z + c

a3 + β3Ct + εt, Ct ≥ z + c

(1.3)

where Ct represents supplied generation capacity and with parameters specified such that

the slope of the quadratic part at the connecting points z− c and z+ c is equal to β1 and

β3, respectively.

Based on spot price data for the PJM16 market, Kanamura and Ohashi (2007) show

that the “hockey stick” model indeed captures the price spikiness more realistically than

other benchmarks such as the Barlow (2002) model or the jump diffusion-model proposed

by Clewlow and Strickland (2000); however, for the “hockey stick” model, as is also the

case for the non-linear OU-model by Barlow, the availability (and tractability) of analytic

pricing formulae for futures/forwards or other derivatives contracts is clearly affected by

the functional form of the inverse supply curve. A simpler specification of the inverse

supply curve based on an exponential function, as Kanamura and Ohashi (2007) argue,

may come at the cost of reducing the steepness of the curve required for generating price

spikes at times of high demand,17 but at the same time shares the benefit of allowing

for lognormally distributed spot prices and, hence, for closed-form solutions of electricity

derivatives in some cases.

Skantze et al. (2000) propose a model in which the (log-) price is a function of the

state variable demand, Dt, and a (residual) variable, bt, that is meant to relate to supply

conditions; given that (at the time the model was developed) data on actually dispatchable

capacity was either very limited or non-observable, bt is extracted indirectly from spot

16Pennsylvania-New Jersey-Maryland
17Strictly speaking, the occurrence of price spikes should be attributed to a low reserve margin rather

than a high level of demand only; see, e.g., Burger et al. (2004), Boogert and Dupont (2008), or Anderson
and Davison (2008).
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price data, implying that any movement in prices that is not attributable to Dt will be

captured by bt:

Pt = eaDt+bt . (1.4)

A similar framework is put forward by Villaplana (2004) and Cartea and Villaplana

(2008). These authors explicitly incorporate capacity data into their analyses and model

it as a distinct process, thus replacing the above residual state variable bt with available

generation capacity Ct and proposing the following alternative functional forms for the

electricity spot price Pt:

Pt = Cγ
t · β · eαDt , or (1.5)

Pt = β · eαDt+γCt , (1.6)

where Ct can include jump components18 as in Villaplana (2004), a potential stochastic

long-run mean, or a deterministic seasonality component as in Cartea and Villaplana

(2008). However, these authors solely focus on applying their model to extract risk premia

from quoted futures/forwards prices for the PJM, England & Wales, and Nord Pool

electricity markets, but do not provide any results that would allow to gauge the goodness-

of-fit for their chosen specifications in Equations (1.5) and (1.6). Also, and from a technical

point of view, it should be borne in mind that for these models, the capacity process Ct

implicitly assumes that – by parallel shifting of the merit-order curve – capacity going

on- or offline always relates to plants that will be operating, i.e. whose marginal costs are

below the market-clearing price.

An alternative approach might instead be to consider the ratio of demand and

capacity, Dt/Ct, implying that changes in available capacity affect all parts of the curve

evenly; this idea has been applied to the ”SMaPS” model – the model for spot market

price simulation that has been proposed by Burger et al. (2004) and has been implemented

at German utility EnBW. Burger et al. (2004) argue that spot electricity prices Pt should

not be determined based on a merit-order framework only, but instead should also be

influenced by non-technical determinants such as “psychological aspects of the behavior

18Based on the work of Duffie et al. (2000), such setting of an affine jump-diffusion process still
allows for analytic pricing formulae. Villaplana (2004) assumes jumps are negative and are based on an
exponential distribution.
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of speculators and other influence.”19 The fundamental equation of their model can be

written as:

Pt = exp
(
f(t,Dt/c(t)) +Xt + Yt

)
, (1.7)

where f(t,Dt/c(t)) is a deterministic, non-parametric price-load (or inverse supply) curve,

c(t) is a deterministic function specifying the expected availability of power plants, and Xt

and Yt are two processes that reflect the above mentioned additional factors. Specifically,

Xt describes residual market fluctuations in the short-term,20 whereas Yt is modeled as

a random walk that is separately estimated from traded long-term futures contracts and

meant to reflect any longer-term variation in prices.21 In order to derive forward price

dynamics for this model, the authors, however, assume a non-zero market price of risk for

Yt only, leaving aside the non-hedgeable processes Xt and Dt.

The following class of fundamental/hybrid models for electricity spot prices enriches

the supply-demand framework by accounting for the price dynamics of the underlying

generating fuel(s) as additional state variable(s). In a series of articles, Pirrong and

Jermakyan (1999, 2005, and 2008) propose the following multiplicative specification for

the spot price of electricity Pt:

Pt = gγt · φ(Dt), (1.8)

where gt is the spot price of natural gas, representing the marginal fuel in the market,22

and γ ≥ 0 is the elasticity of the power price with respect to the fuel price; for γ = 1,

φ(Dt) can also be interpreted as the “market heat rate” function that indicates the ratio

between electricity and the respective underlying (marginal) fuel necessary to generate it.

In order to further determine Equation (1.8), the authors propose three different ways:

(i) modeling marginal costs of generation as a function of demand and fuel prices,23

(ii) using econometric techniques and specifying some functional form for φ(Dt), or (iii)

19Burger et al. (2004), p. 113.
20In a discretized setting, the authors model Xt using a SARIMA model.
21As Burger et al. (2004) argue, this long-term variation cannot be estimated from historic spot prices

because, e.g., the EEX had only existed for two years at the time their study was performed.
22More generally, this could, of course, also refer to the spot price of any other marginal fuel, such as

coal, for example.
23Yet this comes at the cost of assuming a perfectly competitive electricity market and neglecting

potential effects of strategic bidding; see, e.g., Hortacsu and Puller (2008).
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estimating a non-parametric heat-rate function based on generators’ historic bid data that

are used to construct “bid stack” (merit-order) curves.24 Interestingly, with respect to the

aforementioned approach (ii) to determine φ(Dt), and in order to increase the steepness

of their model-implied merit-order curve, Pirrong and Jermakyan (1999) propose the

following exponential function for the relationship between spot prices and state variables:

Pt = gγt · eαD
2
t+c(t), (1.9)

where c(t) is a (non-specified) function meant to shift the curve over time. In contrast to

the exponential settings put forward in Equations (1.5) and (1.6) (and irrespective of the

inclusion of marginal fuel prices or not), Pirrong and Jermakyan (1999) argue that the

convexity of φ(Dt) should hence be increased by defining the first part of the exponent to

be a convex function of demand itself.

As an alternative, Coulon et al. (2013) present a structural spot pricing model that

is also cast in an exponential framework, yet addresses the (ultimately, still market-

specific) problem of insufficient steepness of the implied merit-order curve by defining a

fundamentals-based regime-switching setting, thus yielding more realistic spot trajectories

and price spikes.25 Defining two different regimes, a “normal” and a “spike regime,” spot

prices in either case are given by:

Pt = gt · exp (αmk
+ βmk

Dt + γmk
Ct) for tk ≤ t < tk+1, k ∈ N, (1.10)

where gt, Dt, and Ct are defined as above and mk ∈ {1, 2} determines which regime is

prevailing: for mk = 2, i.e., the “spike regime,” the set of parameters (α2, β2, γ2) imply a

steeper merit-order curve than for the “normal” regime with mk = 1. The probabilities

of reaching these regimes, in turn, are dependent on electricity demand:

mk =

⎧⎨
⎩

1 with probability 1− psΦ
(

Dtk
−μs

σs

)
2 with probability psΦ

(
Dtk

−μs

σs

) (1.11)

where ps is the maximum probability for a spike to occur (i.e., for Dt → ∞), μs and σs

24This approach is implemented in Pirrong and Jermakyan (2008) but generally faces the drawback
that historic bid data – if publicly available at all – are often released with a lag of 3-6 months only.

25It should be noted that when specifically focusing on spot pricing, the models presented in this thesis
can generally all be overlaid with a corresponding regime-switching setting. In order to avoid unnecessary
complexity, however, we refrain from doing so in the following chapters.
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are the mean and standard deviation of the stationary distribution of electricity demand,

and Φ is the standard normal cumulative distribution function.26

Finally, the models developed by Aı̈d et al. (2009), Aı̈d et al. (2011a), Coulon and

Howison (2009), and Carmona et al. (2013) extend the above considerations into a multi-

fuel framework. Generally, these models are very richly parameterized and will only briefly

be outlined here.

Including n generating fuels in their setting, Aı̈d et al. (2009) and Aı̈d et al. (2011a)

model electricity (spot and futures) prices as a weighted basket of fuel (spot and futures)

contracts Ft, each individually scaled up by a factor hi to reflect the respective heat rates.

The weights, in turn, need to reflect the probability that fuel i (1 ≤ i ≤ n) will be

the marginal fuel, and hence are to be determined by comparing the outturn stochastic

demand process with the cumulated capacity intervals I it at any point in time:27

Pt = g
(
Cmax

t −Dt

) n∑
i=1

hiF
i
t · I{Dt∈Iit}, (1.12)

where I denotes the indicator function and g(·) is a “scarcity” function that reflects

decreasing efficiencies within the portfolio of available power plants.

Coulon and Howison (2009) propose a different approach by dis-aggregating the

empirically observed bid-stack (merit-order) curve into a histogram of bids by adding

up the amount of capacity bid into the market within a certain price bin.28 Coulon

and Howison (2009) then fit density functions to this histogram and transform the

mix of distributions29 into a single mixture distribution, weighted by the share of the

respective fuel in the overall generation mix for the market under study. Deriving

its quantile-function Bt, the electricity spot price Pt = Bt(Dt/Ct) can generally be

determined as the Dt/Ct-quantile of the mixture distribution.

26Note that since spikes in electricity prices can only be observed on an hourly or half-hourly basis
(depending on the respective market), the sequence of random draws of mk is only defined for those times
tk ∈ T = {t1, t2, ...}, i.e., the set containing the start of each (half-) hourly delivery period.

27Iit includes the aggregate capacities of all power plants (ordered by efficiency) up to, and including,
those plants with their generation technology based on fuel i.

28In such a histogram, must-run bids, e.g., by nuclear generators, will add up to a separate bar in a
zero-cost bin, whereas aggregate capacities bid by coal-, gas-, or oil-based generators will be more widely
distributed across price bins, reflecting the different efficiencies of plants.

29Abstracting from “neighboring” fuel types within the merit-order, whose marginal costs might be
overlapping, there will generally be a jump in marginal costs when the marginal fuel changes from, e.g.,
coal to natural gas. Hence, the bars in the bid histogram can roughly be grouped into bars that represent
bids pertaining to the same fuel type. For each of these groups, a separate density function will be fitted.
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While the framework above is very flexible and intuitive, it is a clear disadvantage

that for the multi-fuel case, there are no explicit expressions even for spot, nor for forward

contracts. Instead, Carmona et al. (2013) assume that for each fuel type, the different

heat rates (i.e., levels of efficiency) of the corresponding plants in the respective market

are distributed such that they can be approximated by exponential “sub-bid stacks.” For

instance, in a market with coal- and gas-based generators, we define the following “sub-bid

stacks” bi:

bc(x) = fte
kc+mcx, for 0 ≤ x ≤ C

c
(coal-based generation), (1.13)

bg(x) = gte
kg+mgx, for 0 ≤ x ≤ C

g
(gas-based generation), (1.14)

where ft is the spot price for coal, gt is the price for natural gas, C
c
(C

g
) is the total

capacity of all coal-based (gas-based) generators in the market, and kc and mc are

constants. The aggregated “market bid stack,” in turn, is a piecewise exponential function

and is given by:

B(x) =
(
b−1c + b−1g

)−1
(x), for 0 ≤ x ≤ C = C

c
+ C

g
(1.15)

The spot price Pt, however, depends on the ordering of the respective start and end points

of the underlying “sub-bid stacks” bi. Assuming, for instance, that in the merit-order of

the respective market, coal-based generation is cheaper than gas-based generation (yet

including some area of overlapping bids), we yield the following piecewise defined spot

price:

Pt(Dt, ft, gt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bc(Dt) for 0 ≤ Dt ≤ D1

fα
t g

1−α
t eγ+δDt for D1 ≤ Dt ≤ D2

bg(Dt − C
c
) for D2 ≤ Dt ≤ C

(1.16)

where α, β, γ, and δ are constants that are defined by mi and ki for i = {c, g}; the

breakpointD1 is defined asD1 = (1/mc)(log(gt/ft)+kg−kc), withD2 defined analogously.

The resulting framework thus is especially useful for markets in which the marginal fuel

type changes very frequently, with the key benefit of still allowing for closed-form formulae

for forwards, options, and even dark or spark spread options. However, it should be noted

that including more fuels will clearly lead to too much complexity given the increasing

number of permutations within the bid stack, reflecting the multiple different orderings
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of the fuel types. Nevertheless, the analytic expressions are still reasonably handable for

the two-fuel case, which, at the same time, is the most relevant case in practice when

implementing the model for a specific market.

1.3 Contribution and Organization

The main contribution of this thesis is to offer a comprehensive and rigorous treatment

of structural approaches to electricity price modeling, thereby especially focusing on how

the versatility of this class of models can be exploited to provide new solutions to current

pricing challenges in electricity markets. Since reduced-form approaches for electricity

pricing have traditionally been analyzed and used more widely by both practitioners and

scholars, extant research in this field is abundant; by contrast, this work extends the

smaller, yet growing strand of literature on electricity price modeling based on structural

approaches.30 However, in view of a number of recent major contributions,31 it seems

justified to say that although the theoretical groundwork has been laid, “the jury is

still out” both on (i) how reliably structural models perform in practice and (ii) where

they can actually offer advantages over the well-tested and widely used reduced-form

approaches. It is in this context that the following chapters provide new insights and

findings, thereby specifically investigating how the additional flexibility inherited from

using a structural approach can be used to address those pricing challenges where classic

modeling approaches start to see limitations.

This thesis has been organized in three self-contained chapters that each contain a

more detailed overview of the respective contributions to extant literature, an individual

introduction to the topics covered, and an overview of previous research and findings on

the subject. In the following, we provide a short summary of each chapter and briefly

outline our main approaches and results.

In Chapter 2, we analyze how forecasts of electricity demand and available

generation capacity can be taken advantage of for derivatives pricing purposes.32 Thanks

30For a general and comprehensive overview on electricity price modeling, we refer to Chapter 2.
31See, e.g., Cartea and Villaplana (2008), Aı̈d et al. (2009), Carmona and Coulon (2012), Aı̈d et al.

(2013), Carmona et al. (2013), and Coulon et al. (2013).
32This chapter is based on the corresponding working paper entitled “Electricity Derivatives Pricing

with Forward-Looking Information” co-authored with Roland Füss and Marcel Prokopczuk. Cf. Füss
et al. (2013a).



Introduction 17

to both legal developments and voluntary initiatives by transmission system operators

(TSOs), forward-looking information is publicly available and mainly relates to forecasts

of expected (domestic) electricity demand and available generation capacity. Reliable

outturn and forecast data released by TSOs is clearly appreciated by market participants

since the transparency allows for more informed trading decisions. Nevertheless, most

of the widely-used reduced-form approaches to electricity price modeling are clearly

unsuited to incorporate forecasts of fundamental factors into their model dynamics. By

contrast, the structural modeling approach presented in this chapter lends itself well to

integrating forward-looking information, while retaining a focus on ease of implementation

and tractability to allow for analytic derivatives pricing formulae. In an extensive futures

pricing study, the pricing performance of our model is shown to further improve based on

the inclusion of electricity demand and capacity forecasts, thus confirming the importance

of forward-looking information for electricity derivatives pricing.

In Chapter 3, we focus on the increasing interconnectivity between electricity

wholesale markets, as can be observed for European but also major US markets.33 Given

that existing interconnection lines between adjacent markets tend to be congested, an

efficient allocation scheme is required in order to provide access to scarce cross-border

transmission capacities.

In both the US and Europe, existing schemes have primarily induced economically

inefficient interconnector use given that flows have to be nominated prior to spot market

clearing. By contrast, the market coupling mechanisms recently rolled out in parts

of Europe avoid these inefficiencies by implicitly allocating cross-border transmission

capacity upon spot market clearance. In this chapter, we show that these institutional

aspects of market design clearly manifest in the empirical dynamics of both electricity

spot and derivatives prices, and hence, do have important implications for pricing and

hedging in these markets. Since traditional reduced-form models fail to reproduce such

effects of market microstructure, we extend our fundamental framework developed in

Chapter 2 into a multi-market setting for electricity pricing in order to analyze how

the different allocation schemes affect the key stylized facts of electricity prices. Under

market coupling, for instance, a more economically efficient allocation of interconnector

33This chapter is based on the corresponding working paper entitled “Electricity Spot and Derivatives
Pricing When Markets Are Interconnected” co-authored with Roland Füss and Marcel Prokopczuk. Cf.
Füss et al. (2013b).
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capacities clearly mitigates spot price spikes in the participating markets and furthermore

allows for an important volatility reduction effect. The latter effect, in turn, has strong

implications for derivatives pricing: using a variety of comparative-static analyses and

sensitivities, we show how changes in market design can significantly impact the term

structure of electricity futures prices, e.g., by reversing the entire curve from contango

into backwardation (and vice versa).34

In Chapter 4, we re-visit and examine the close relationship between market design

and price dynamics with special focus being laid on transmission rights valuation.35 In

Europe, where transmission rights are mainly related to cross-border transactions between

adjacent markets, said dependency between aspects of market (micro-) structure and

electricity pricing has even further strengthened since the roll-out of market coupling

mechanisms across the Central Western European (CWE) electricity markets: as a result

of CWE spot prices henceforth coinciding more frequently, modeling the dynamics of

price spreads between adjacent markets has become more intricate and complex, which

cannot generally be achieved with classic reduced-form approaches commonly used for

transmission rights valuation. In this chapter, we demonstrate how these challenges can

instead be addressed with a structural modeling approach, based on the multi-market

setting presented in the previous chapter. In this context, we analyze in detail how

transmission rights can be valued as spread options on the spot prices derived from this

framework – so that the aforementioned intricacies of spread dynamics under market

coupling are adequately captured and reproduced. As is important especially from a

practitioner’s point of view, we yield an analytic option pricing formula that is well-

suited to price transmission rights, and illustrate how related pricing implications compare

against the standard Margrabe (1978) benchmark.

Chapter 5 contains concluding remarks.

34The impact of reduced volatility on other derivatives, such as spread options, is treated separately
in Chapter 4.

35This chapter is based on the corresponding working paper entitled “Transmission Rights Valuation
for Coupled Electricity Markets: An Option-based Approach”. Cf. Mahringer (2013).



Chapter 2

Electricity Derivatives Pricing with

Forward-Looking Information*

2.1 Introduction

Following the liberalization of electricity markets in many countries, utility companies

and other market participants have been facing an increasing need for new pricing models

in order to accurately and efficiently evaluate spot and derivative electricity contracts. In

addition, the end of cost-based pricing and the transition towards a deregulated market

environment also gave rise to new financial risks, threatening to impose substantial losses

especially for sellers of electricity forward contracts. As such, the necessity to now optimize

against the market for both standard electricity products as well as tailored contingent

claims additionally required effective and integrated risk management strategies to be

developed.

These developments have to be seen in the context of the unique behavior of electricity

(spot) prices, which is primarily induced by the non-storability of this commodity: apart

from hydropower with limited storage capabilities, an exact matching of flow supply

*This chapter is based on the corresponding working paper entitled “Electricity Derivatives Pricing

with Forward-Looking Information” co-authored with Roland Füss and Marcel Prokopczuk. Cf. Füss

et al. (2013a). The paper has been presented at the Conference on Energy Finance 2012, Trondheim,

the Conference of the Swiss Society for Financial Market Research 2013, Zurich, the Eastern Finance

Association Meeting 2013, St. Pete Beach, the Financial Management Association Conference 2013,

Luxembourg, and at the ICMA Centre 2013 Research Seminar, Reading. Status: revise and resubmit to

the Journal of Economic Dynamics and Control.
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and flow demand for electricity is required at every point in time. The resulting price

dynamics with their well-known stylized facts such as spikiness, mean-reversion, and

seasonality, have extensively been analyzed in the literature,1 yet still pose a challenge to

both practitioners and researchers in terms of adequately modeling and forecasting their

trajectories.

However, the non-storability of electricity has further implications for the price

formation mechanism. First, unlike in a classic storage economy, it is the instantaneous

nature of electricity that causes the intertemporal linkages between economic agents’

decisions today and tomorrow to break down. In fact, this forms the basis for electricity

markets usually being characterized as very transparent with respect to their underlying

economic factors, including electricity demand, available levels of generation capacity, as

well as the costs for generating fuels and emissions allowances. Against this background,

structural approaches taking this information explicitly into account appear especially

appealing to electricity price modeling (see, e.g., Pirrong, 2012). Second, and as the above

implies, the classic assumption that the evolution of all relevant pricing information, i.e.,

the information filtration, is fully determined by the price process of the commodity itself,

does not hold for non-storable assets such as electricity. In other words, today’s electricity

prices do not necessarily reflect forward-looking information that is publicly available to

all market participants.2 At the same time, legal requirements and voluntary initiatives to

increase data transparency have had power transmission system operators (TSOs) publish

an increasing amount of data regarding the condition of their network, including, e.g.,

forecasts about expected electricity demand or updated schedules of planned short-term

outages.3 Pricing electricity spot and derivatives contracts based on models that make

use of historical information only, may hence result in substantial errors since the model

1See, e.g., Johnson and Barz (1999), Burger et al. (2004) or Fanone et al. (2013).
2Benth and Meyer-Brandis (2009) provide several examples in support of this argument, such as the

case of planned maintenance for a major generating unit, which is likely to be public information available
to all market participants. Assuming a stylized setting, this outage will necessarily affect electricity spot
prices expected to prevail during the time the unit is offline. Likewise, the outage will also affect today’s
prices of derivative contracts such as forward and futures contracts if their delivery periods overlap
with the period of scheduled maintenance. However, in the absence of any means to economically store
electricity bought at (cheaper) spot prices today and to sell it at higher prices during the time of the
outage, there is no opportunity for arbitrage in such situation. This consequently implies that today’s
electricity spot prices will remain virtually unaffected by the announcement of the outage.

3In Europe, Regulations (EC) No. 1228/2003, its follow-up No. 714/2009, and annexed “Congestion
Management Guidelines” (CMG) may serve as the most prominent example, requiring, e.g., that “the TSO
shall publish the relevant information on forecast demand and on generation (...)” (CMG, article 5.7).
In the US, similar standards are in place, e.g., as issued by the Federal Energy Regulatory Commission
(FERC).
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leaves aside important, forward-looking information, although it is publicly available and

likely to play a key role for individual trading decisions.

In this chapter, we hence focus on the prominent role of forward-looking information

in electricity markets and empirically investigate its impact on pricing performance. As

such, we contribute to the literature in the following ways:

First, we propose a new fundamental model for electricity pricing including fuel,

demand, and capacity dynamics that successfully captures the stylized facts of this

commodity and provides analytic derivatives pricing formulae. Second, most studies that

propose new fundamental electricity pricing models do not calibrate the models to market

data. If so, however, they either focus on time series fitting or provide pricing results for

selected individual forward contracts for illustration purpose only. In contrast, we test

our model in an extensive empirical study, using a comprehensive data set of forward

contracts traded in the British electricity market. This also allows us to address several

important implementation challenges that arise during the calibration procedure. Third,

and to the best of our knowledge, we are the first to empirically investigate the pricing

of derivative contracts in electricity markets by explicitly making use of forward-looking

information. By means of an enlargement-of-filtration approach, we show how to properly

integrate forecasts of electricity demand and available capacity into our setting, and thus

account for the apparent asymmetry between the historical filtration and the (enlarged)

market filtration in electricity markets.

In general, existing literature on electricity spot price modeling can be grouped into

two categories: on the one hand, often allowing for analytic derivatives pricing formulae,

considerable attention has been devoted to reduced-form models that either directly

specify dynamics for the electricity spot price process itself or, alternatively model the

term structure of forward contracts, where spot dynamics are derived from a forward

contract with immediate delivery (see, e.g., Clewlow and Strickland, 2000; Koekebakker

and Ollmar, 2001; or Benth and Koekebakker, 2008). Starting with traditional commodity

modeling approaches via mean-reverting one- or two-factor models (Lucia and Schwartz,

2002), a more adequate reflection of the stylized facts of electricity spot price dynamics

demands for more elaborate settings including affine jump diffusion processes and/or

regime-switching approaches (see, e.g., Bierbrauer et al., 2007; Weron, 2009; or Janczura
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and Weron, 2010, for a comprehensive overview). However, this may still not be sufficient

to reliably differentiate between spike- and non-spike regimes as observed in reality, or to

adequately capture the absolute spikiness of electricity prices. As a solution, additional

enhancements have been proposed, such as considering non-constant deterministic or

stochastic jump intensities (see, e.g., Seifert and Uhrig-Homburg, 2007) and their impact

on possibly different speeds of mean-reversion of the underlying Ornstein-Uhlenbeck

(OU) process, which, in turn, negatively affects analytic tractability. The same applies

when trying to mitigate other common drawbacks such as models precluding successive

upward jumps or leaving jump intensities unaffected by previous jumps. Extensions

like Barone-Adesi and Gigli (2002) try to address these problems but must resort

to non-Markovian models, which, however, restricts the applicability for contingent

claim valuation. Finally, and as a point of structural criticism, reduced-form models

obviously fail to analyze the dependence structure between prices and the electricity

markets’ underlying drivers, which not only leaves unexplained important features such

as the occurrence of price spikes, but also affects their applicability for fields such as

cross-commodity option valuation (unless, e.g., a co-integration setting is employed such

as in Emery and Liu, 2002; de Jong and Schneider, 2009; or Paschke and Prokopczuk,

2009). In this context, and given the above mentioned increase in publicly available

fundamental data released by TSOs, it must be seen as a drawback of classic reduced-form

models that they obviously fail to take direct benefit from this increasing transparency.4

On the other hand, the class of structural/fundamental electricity price models

subsumes a wide spectrum of more diverse modeling approaches; starting with

equilibrium-based models (Bessembinder and Lemmon, 2002; Buehler and Mueller-

Mehrbach, 2007; Aı̈d et al., 2011b) or even more richly parameterized full production

cost models (Eydeland and Wolyniec, 2002) on the one end, but also including, on the

other end, econometric approaches such as regression-based settings (Karakatsani and

Bunn, 2008) or time-series models whose efficiency is enhanced by including exogenous

fundamental variables (Weron, 2006; or Misiorek et al., 2006).

4We note that it is still possible to integrate information about the dynamics of fundamental state
variables (such as demand or, e.g., also temperature) into reduced-form models by means of correlated
processes. For an example, see Benth and Meyer-Brandis (2009). However, even though such models may
bridge the gap between classic reduced-form and fundamental approaches, it is still questionable whether a
single correlation parameter may be sufficient to reflect the rich dependence structures between electricity
prices and a fundamental state variable – all the more if the dynamics of several underlying variables are
to be taken into account at the same time.
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Often referred to as hybrid approach, the class of models focused on in this study may

be seen in the middle of this spectrum.5 In its most general form, fundamental settings

of this kind comprise of a selection of separately modeled underlying factors, such as

electricity demand, available generation capacity, and fuels. Along with a specification of

the functional relationship between these factors and electricity spot prices, this setting

can hence be interpreted as merit-order framework.6 The main challenge in this context

is to be seen in an adequate reflection of the characteristic slope and curvature of the

merit-order curve that is usually characterized by significant convexity.7 As a matter

of simplification, many studies (see, e.g., Skantze et al., 2000; Cartea and Villaplana,

2008; or Lyle and Elliott, 2009) propose to approximate the merit-order curve with an

exponential function. While there may be other functional specifications yielding a better

fit, such as a piecewise defined “hockey stick” function (Kanamura and Ohashi, 2007) or

power laws (Aı̈d et al., 2013), the exponential setting offers the key advantage of yielding

log-normal electricity spot prices, allowing for analytic derivatives pricing formulae.

In order to provide timely pricing information to market participants by retaining

tractability, our model also adopts an exponential setting for representing the merit-order

curve. As regards the inclusion of generating fuels, we follow Pirrong and Jermakyan

(2008) by modeling a stylized one-fuel market, leaving aside more flexible multi-fuel

approaches (see Aı̈d et al., 2009, 2013; Coulon and Howison, 2009; Carmona et al.,

2013). While our one-fuel setting avoids a model-endogenous determination both of the

merit-order and the marginal fuel in place, it remains to be discussed how this reduction

in flexibility affects pricing results, and for which markets such a simplification may be

feasible at all.

Regarding the question of how to account for forward-looking information in this

5In order to avoid ambiguities, when we refer to fundamental electricity price models throughout
the rest of this chapter (and within the entire thesis), we shall actually mean the hybrid class of models
within this category.

6Alternatively, this functional relationship can also be seen as inverse supply curve or bid-stack, if we
abstract from generators submitting bids exceeding marginal costs. Also, our setting implicitly assumes
electricity demand being completely inelastic, which is a basic assumption for models of this kind. See
Carmona and Coulon (2012) for further reference as well as for a general and comprehensive review of
the fundamental modeling approach.

7This is a non-trivial issue given that the curvature is determined by both the individual composition
of generating units for each marketplace as well as their marginal cost structure which, in turn, depends
stochastically on other factors such as underlying fuel prices, weather conditions, (un-)planned outages,
and daily patterns of consumption. Additional factors may relate to market participants exercising market
power by submitting strategic bids, but also regulatory regimes awarding, e.g., preferential feed-in tariffs
to renewable energy producers.



24

context, many of the above presented models could in fact be modified to accommodate

short-, mid- or long-term forecasts about future levels of electricity demand or available

capacity. However, previous literature mainly focuses on the benefits of using day-ahead

demand/capacity forecasts in order to improve day-ahead electricity pricing performance

(see, e.g., Karakatsani and Bunn, 2008; Bordignon et al., 2013). A different approach

regarding the integration of forecasts into a pricing model is proposed by Cartea et al.

(2009). In their study, a regime-switching setting is invoked where the ratio of expected

demand to expected available capacity is used to determine an exogenous switching

component that governs the changes between “spiky” and “normal” spot price regimes. In

this way, the modeling of spikes present in spot prices can be improved, although the model

only resorts to very few forecast points per week and available forecasts are not explicitly

part of the price formation mechanism. Burger et al. (2004) also present a model that

requires as input normalized electricity demand, i.e. demand scaled by available capacity.

For the latter, the usage of forecasts of future capacity levels is suggested, but not focused

on in more detail.

Finally, the application of the enlargement-of-filtration approach to electricity

markets was initially proposed by Benth and Meyer-Brandis (2009). Focusing on risk

premia rather than on forward pricing, Benth et al. (2013) use this concept in order to

analyze the impact of forward-looking information on the behavior of risk premia in the

German electricity market. The authors develop a statistical test for the existence of

an information premium8 and show that a significant part of the oftentimes supposedly

irregular behavior of risk premia can be attributed to it.9

The remainder of this chapter is structured as follows: in the next section, we

develop our underlying electricity pricing model. Section 2.3 introduces the concept

of the enlargement-of-filtration approach in the context of fundamental electricity price

modeling. Section 2.4 starts with the empirical part by describing the data, the estimation

methodology, as well as the general structure of the pricing study. Section 2.5 discusses

the pricing results. Section 2.6 concludes.

8The information premium is defined as the difference between forward prices, depending on whether
or not forward-looking information is entering the price formation mechanism.

9On a more general note, the idea to resort to forward-looking information, of course, extends
to numerous other fields of academic research. Another “natural” candidate is, by way of example,
the pricing of weather derivatives. For studies that resort to temperature forecasts in order to price
temperature futures, see, e.g., Jewson and Caballero (2003), Dorfleitner and Wimmer (2010), and Ritter
et al. (2011).
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2.2 A Fundamental Electricity Pricing Model

2.2.1 Electricity Demand

Electricity demand is modeled on a daily basis with its functional specification chosen

to reflect typical characteristics of electricity demand such as mean-reverting behavior,

distinct seasonalities as well as intra-week patterns. On a filtered probability space(
Ω,FD,FD = (FD)t∈[0,T �],P

)
with natural filtration Fq = (F q)t∈[0,T �] (for FD

t = F0∨F q
t ),

demand Dt is assumed to be governed by the following dynamics:

Dt = qt + sD(t), (2.1)

dqt = −κDqtdt+ σDeϕ(t)dBD
t , (2.2)

sD(t) = aD + bDt+
12∑
i=2

cDi Mi(t) + cDWEWE(t) +
4∑

j=1

cDPHj
PHj(t), (2.3)

ϕ(t) = θ sin
(
2π(kt+ ζ)

)
, (2.4)

where qt is an OU-process with mean-reversion parameter κD and a standard Brownian

motion BD
t . Since volatility of electricity demand has often been found to exhibit seasonal

levels of variation (see, e.g., Cartea and Villaplana, 2008),10 we apply a time-varying

volatility function as proposed by Geman and Nguyen (2005) or Back et al. (2013),

with θ ≥ 0, a scaling parameter k = 1
365

, and ζ ∈ [−0.5; 0.5] to ensure uniqueness

of parameters.11 In order to additionally reflect absolute-level demand-side seasonality,

the deterministic component sD(t) contains monthly dummy variables Mi(t) as well as

indicators for weekends WE(t) and public holidays.12 A linear trend is also included in

sD(t) in order to capture the effect of structural developments in the respective market

that may lead to an increase or decrease of electricity demand in the long term.

10As our estimation results will show, volatility of electricity demand in the British market is higher
during winter months than during summer months. However, this effect may be less pronounced or
even reversed for other markets where, e.g., the need for air conditioning during summer months drives
electricity demand to higher and more volatile levels than during winter months.

11This volatility specification allows for continuous differentiability, which is a technical necessity in
the context of the enlargement-of-filtration approach. See the technical appendix to this chapter for
further information.

12Since the extent of a demand reduction induced by a public holiday strongly depends on the
respective season prevailing, three different groups of public holidays shall be distinguished: those
occurring in winter (PH2), the Easter holidays (PH3), and others (PH4). Additionally, the days with
reduced electricity demand between Christmas and New Year are treated as quasi-public holidays (PH1).
This may appear overly detailed; however, almost all coefficients turn out to be highly significant. See
Buehler and Mueller-Mehrbach (2009) for an even more detailed approach.
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2.2.2 Available Capacity

Available capacity Ct is modeled in a similar manner as electricity demand. Hence, on a

filtered probability space
(
Ω,FC ,FC = (FC)t∈[0,T �],P

)
with the natural filtration defined

as Fm = (Fm)t∈[0,T �] (for FC
t = F0 ∨ Fm

t ), we specify the following dynamics:

Ct = mt + sC(t), (2.5)

dmt = −κCmtdt+ σCdBC
t , (2.6)

sC(t) = aC + bCt+
12∑
i=2

cCi Mi(t) + cCWEWE(t) +
4∑

j=1

cCPHj
PHj(t) + cCRR(t), (2.7)

where mt is again an OU-process with mean-reversion parameter κC and constant

volatility σC .13 BC
t is a standard Brownian motion and sC(t) is defined equivalently

to sD(t). Finally, another dummy variable R(t) is included in order to reflect the fact

that, unlike for the electricity demand data used in this study, capacity data relating to

generation units from Scotland is available only after April 2005.14

2.2.3 Marginal Fuel

In addition to the processes for electricity demand and available capacity, we introduce

the dynamics for our third state variable, i.e., the marginal fuel used for generation. For

the sake of simplicity, we assume that the marginal fuel for the respective electricity

market under study does not change. While this certainly is a restrictive assumption, it

may still seem justified for markets that are strongly relying on one generating fuel only

so that during baseload/peakload hours, spot markets are primarily cleared by plants

that use the same fuel for generation. Reflecting the dominant role of natural gas as

marginal generating fuel in the British market – and, more generally, in several other

major electricity markets – we choose it as the single fuel to be included into our overall

pricing model.

Although for modeling natural gas, a variety of multi-factor approaches with varying

degree of sophistication have been proposed by recent literature (see, e.g., Cartea and

13In contrast to demand Dt, available capacity Ct is generally not found to exhibit seasonality in
volatility levels.

14The introduction of the British Electricity Trading and Transmission Agreements (BETTA) as per
April 2005 is generally referred to as the starting point of a UK-wide electricity market. Prior to that,
and although linked via interconnectors, the electricity markets of England/Wales and Scotland were
operating independently.
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Williams, 2008, for an overview), we seek to limit both complexity and (the already

high) parametrization of the model and, therefore, apply the mean-reverting one-factor

model initially proposed by Schwartz (1997). On a given filtered probability space(
Ω,Fg,Fg = (Fg)t∈[0,T �],P

)
, the log gas price, ln gt, is assumed to be governed by the

following dynamics:

ln gt = Xt + sg(t), (2.8)

dXt = −κgXtdt+ σgdBg
t , (2.9)

sg(t) = ag + bgt+
12∑
i=2

cgiMi(t), (2.10)

where Xt is the logarithm of the de-seasonalized price dynamics and sg(t) reflects the

strong seasonality component that is inherent in natural gas prices. Note that the overall

structure of our power price model as well as the availability of closed-form solutions will

be retained when introducing refinements such as a multi-factor log-normal model for

natural gas.15

2.2.4 Pricing Model

In order to link the three state variables – marginal fuel gt, electricity demand Dt, and

capacity Ct – with electricity spot prices Pt, we employ an exponential setting, thus

reflecting the convex relationship between prices and load/capacity as induced by the

merit-order curve. At the same time, we assume power prices to be multiplicative in

the marginal fuel. Both assumptions can be considered common practice and yield the

following structural relationship between spot prices and state variables:16

15Applying a one-factor model for natural gas prices may be seen as simplistic since the structure of this
model implies that all natural gas forward/futures contracts are perfectly correlated across maturities.
However, note that we primarily focus on pricing short-term electricity forward contracts for which only
the short end of the curve may be relevant. In contrast, when pricing longer-term electricity contracts,
we suggest employing a two-factor natural gas price model instead.

16As mentioned in the overview of literature, note that – as is characteristic for this class of models – we
thus derive electricity spot prices based on an exogenously given relationship between fuels, supply, and
inelastic demand (see, e.g., Skantze et al., 2000, Cartea and Villaplana, 2008, Pirrong and Jermakyan,
2008, Lyle and Elliott, 2009 or, more generally, Carmona and Coulon, 2012). Taking the dynamics
for the spot as given, forward pricing formulae are then derived based on a no-arbitrage argument.
Although a (possibly dynamic) equilibrium setting that explicitly models the optimization behavior of
all participants in both spot and forward markets might provide additional insights, such as on the
determinants of endogenously derived forward risk premia, we refrain from doing so here. Given that we
primarily focus on the pricing impact of using forward-looking information, dynamic equilibrium settings
might be unsuited for that purpose, e.g. due to a number of additionally required assumptions and/or
unobserved variables, leading to calibration challenges, and implying reduced flexibility in general.
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Pt = α gδt e
βDt+γCt , (2.11)

or, in log-form:

lnPt = lnα + δ ln gt + βDt + γCt, (2.12)

where δ can be interpreted as the elasticity of the electricity spot price with respect

to changes in the natural gas price. Setting δ = 1 would thus allow to interpret eβDt+γCt

as heat rate function.17 However, given that we primarily investigate baseload power

prices in the empirical part of this chapter, we acknowledge that the elasticity of baseload

power prices with respect to natural gas may be varying and, hence, do not impose the

restriction δ = 1.

Also, and as will be seen later, there is a subtle form of dependence between the

parameters α and δ. In order to give an intuition for the role of α, and at the same time

providing an abstract link to structural multi -fuel power price models, Equation (2.11)

can be re-written as follows (also cf. Equation (1.16) in Chapter 1):

Pt = f
(1−δ)
t︸ ︷︷ ︸
α

gδt e
βDt+γCt . (2.13)

In Equation (2.13), α can hence be interpreted as reflecting the dynamics of another

generating fuel ft (such as coal) which, however, will be held constant for simplicity.

Following classic theory, futures prices equal the expectation of the spot price

at maturity under a suitably chosen risk-neutral measure Q (Cox and Ross, 1976,

and Harrison and Kreps, 1979). However, the non-storability of electricity creates

non-hedgeable risks, leading to an incomplete market setting. Therefore, the risk-neutral

measure Q cannot be determined uniquely, but will instead be inferred from market prices

of traded forward contracts, as will be shown in Section 2.4. In order to govern the change

of measure, and following Girsanov’s theorem, we introduce separate market prices of risk

λD, λC , and λg for the different sources of uncertainty in our model. These market prices

of demand, capacity, and fuel price risk are assumed constant. Given that Pt is log-normal

in the state variables, the log futures price, lnFt(T ), at time t with delivery date T is

17The heat rate indicates how many units of natural gas (or, more generally, of any other generating
fuel) are required to produce one unit of electricity. In our case, the “market” heat rate would refer to
the price-setting plant that generates the marginal unit of electricity.



Electricity Derivatives Pricing with Forward-Looking Information 29

given as follows:

lnFt(T ) = EQ
[
lnPT

∣∣ Ft

]
+ 1

2
VQ
[
lnPT

∣∣ Ft

]
(2.14)

= lnα + δ EQ
[
ln gT

∣∣ Ft

]
+ β EQ

[
DT

∣∣ Ft

]
+ γ EQ

[
CT

∣∣ Ft

]
+1

2
δ2 VQ

[
ln gT

∣∣ Ft

]
+ 1

2
β2 VQ

[
DT

∣∣ Ft

]
+ 1

2
γ2 VQ

[
CT

∣∣ Ft

]
, (2.15)

where EQ
[
·
∣∣ Ft

]
and VQ

[
·
∣∣ Ft

]
indicate expectation and variance under Q and

conditional on Ft which is defined as Ft := FD
t ∨FC

t ∨F
g
t .

18 As further outlined in Section

2.3, when pricing forward contracts by making use of forecasts of electricity demand and

capacity, forward prices will be computed as risk-neutral expectations of the spot price

during the delivery period, conditional on Gt rather than Ft. Consequently, Equation

(2.14) will need to be replaced by lnFt(T ) = EQ
[
lnPT

∣∣ Gt] + 1
2
VQ
[
lnPT

∣∣ Gt], where
Gt := GD

t ∨GC
t ∨F

g
t and (Gt)t∈[0,T �] (or, more precisely, (GD

t )t∈[0,T �] and (GC
t )t∈[0,T �]) is the

enlarged market filtration containing forecasts of expected demand and capacity levels,

respectively.

Also note that Equation (2.14) refers to a contract with delivery of electricity at

some future date T , whereas standard electricity forward contracts specify the delivery of

electricity throughout a delivery period [T , T ] (with T < T ), e.g., one week or one month.

Following Lucia and Schwartz (2002), we compute the price of a forward contract with

delivery period [T , T ], containing n = T − T delivery days, as the arithmetic average of

a portfolio of n single-day-delivery forward contracts with their maturities spanning the

entire delivery period, i.e.:

Ft(T , T ) =
1

T − T

n∑
i=1

Ft(τi). (2.16)

Finally, calculating electricity forward prices based on Equation (2.16) also requires us to

have available the corresponding fuel forward prices with single-day maturities, i.e., one

also needs to compute EQ
[
ln gτi

∣∣ Fg
t

]
(as well as the conditional variance) for every day

τi within the delivery period [T , T ]. For that purpose, we take the log-spot price implied

by the natural gas forward curve at time t as a starting point to compute for every day

τi within the delivery period the price of a hypothetical natural gas forward contract

that matures on the same day. Hence, we calibrate to the gas curve for every pricing

18Note that the second part of Equation (2.14) reflects our implicit assumption of all state variables
being independent of each other.
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day before subsequently fitting the power forward curve. In this context, as a simplified

approach, only one average value for EQ
[
ln gτi

∣∣ Fg
t

]
during the entire delivery period

could be used (e.g., based on the current value of the month-ahead natural gas forward,

when pricing month-ahead electricity forwards). However, this may pose problems for

non-standard delivery periods and would require identically defined delivery periods for

gas and power.19

2.3 The Enlargement-of-Filtration Approach

Non-storability of a given asset Z implies that forward-looking information can neither

be inferred from, nor is reflected in the historical evolution of its price trajectory Zt

(Benth and Meyer-Brandis, 2009). Mathematically speaking, given a finite horizon T �

and letting
(
Ω,F ,F = (F)t∈[0,T �],P

)
be a filtered probability space, the natural filtration

FZ = (FZ)t∈[0,T �] (with Ft = F0 ∨ FZ
t ) may not reflect all forward-looking information

available to market participants.

Assume that agents have access to some (non-perfect) forecast of the price of Z at

some future point in time t� ∈ [0, T �]. Then, there exists a sigma-algebra Gτ with Fτ ⊂ Gτ
for all τ < t�, where Gτ reflects all available information including the forecast, whereas

Fτ does not. For τ ≥ t�, i.e. for times beyond the forecast horizon, we however have

Fτ = Gτ , since no further forward-looking information is assumed to be available.

Next, note that whereas electricity clearly serves as most prominent example for

non-storable underlyings, the above outlined incompleteness of natural filtrations with

respect to forward-looking information can generally be extended to any kind of non-

storable underlying. Therefore, and strictly speaking, we do not enlarge the filtration of

the electricity spot price in order to incorporate forecasts, like Benth and Meyer-Brandis

(2009) do in their reduced-form setting. Instead, we focus on electricity demand Dt in

Equation (2.1) and available capacity Ct in Equation (2.5) which are, of course, non-

storables as well, and hence do not reflect forward-looking information either. Therefore,

and more precisely, it is the filtrations relating to the demand and capacity processes,

19Note, however, that in the UK, electricity forward contracts (still) trade according to the EFA
(electricity forward agreement) calendar, grouping every calendar year into four quarters with three
delivery months with lengths of 4/4/5 calendar weeks, respectively. Consequently, delivery months of
electricity forward contracts may not exactly overlap with corresponding delivery months of traded natural
gas futures contracts.
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respectively, that need to be enlarged in order to integrate forecasts provided by the

system operator.

In the following, all formulae derived in this section relate to available capacity and

forecasts thereof. Additional theoretical background as well as how to derive respective

formulae for the more general case of deterministic, but non-constant volatility (as for

electricity demand Dt) is provided in the technical appendix 2.7.1. For notational

convenience, we work with de-seasonalized forecasts that relate to mt instead of Ct; FC
t

and GC
t are defined as further above.20

In this setting, the (de-seasonalized) forecast of generation capacity available at time

t with forecast horizon T is interpreted as Gt-conditional expectation and can be expressed

as:

EP
[
mT

∣∣ GC
t

]
= mte

−κC(T−t) + σCEP

[∫ T

t

e−κ
C(T−u)dBC

u

∣∣∣∣ GC
t

]
. (2.17)

This raises the question of how to treat expectations like EP
[∫ T

t
e−κ

C(T−u)dBC
u

∣∣ GC
t

]
that

are conditional on GC
t (i.e., the sigma-algebra including forecasts) when BC

t , however, is an

FC
t -adapted Brownian motion. Consequently, BC

t may no longer be a standard Brownian

motion with respect to (GC
t )t∈[0,T �]. Even more importantly, and following the “average

approach” in Equation (2.16), the pricing of, e.g., a forward contract with delivery period

of one month will require us to ideally have capacity forecasts for every day within the

delivery period. Yet, as is outlined in Section 2.4, detailed forecasts on a daily basis, as

released by National Grid for the British market, only cover a window of the next 14 days.

For longer-term prognoses, such as expected available capacity in 21 days, only forecasts

of weekly granularity are published. Consequently, we may at best cover a certain first

part of the delivery period with daily forecasts, whereas for the rest of the period, only a

few weekly forecast points will be available, thus leaving several delivery days “uncovered”

by forecasts. Hence, another key question is how to consistently determine EP
[
mT

∣∣ GC
t

]
when forecasts for capacity on delivery day T are not available, but only for times T1 and

20One could argue that there exist, of course, numerous other forecasts about expected available
capacity that market participants might also have access to. E.g., capacity forecasts released by the
system operator that relate to intermittent energy sources, such as wind or solar power, might be adjusted
based on a utility’s proprietary model involving different meteorological assumptions, e.g., more windy
conditions or fewer sunshine hours. Likewise, the same is true for demand forecasts if market participants
expect, e.g., higher temperatures than implied by the forecast of the system operator. Therefore, if we
speak of G as the sigma-algebra “including forecasts”, we assume away the existence of other forecasts
and only mean to refer to those forecasts released by the TSO.
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T2 with T1 ≤ T ≤ T2. This leads to the following proposition:

Proposition 2.3.1. Suppose that market participants are provided with forecasts of

available capacity at future points in time T1 and T2, i.e., E
P
[
mT1

∣∣ GC
t

]
and EP

[
mT2

∣∣ GC
t

]
.

Then, for t ≤ T1 ≤ T ≤ T2, capacity expected to be available at time T is given as:

EP
[
mT

∣∣ GC
t

]
= EP

[
mT1

∣∣ GC
t

]
e−κ

C(T−T1)

+ EP

[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GC
t

]
σC e

κCT
(
1− e−2κ

C(T−T1)
)

e2κCT2 − e2κCT1
. (2.18)

The first part of the second term on the RHS of Equation (2.18) is given as follows:

EP

[∫ T2

T1

eκ
CudBC

u

∣∣∣∣ GC
t

]
=

1

σC

(
EP
[
mT2

∣∣ GC
t

]
eκ

CT2 − EP
[
mT1

∣∣ GC
t

]
eκ

CT1

)
. (2.19)

Proof. This directly follows from Propositions 3.5 and 3.6 in Benth and Meyer-Brandis

(2009). Detailed derivations for the more general case of non-constant deterministic

volatility are provided in the technical appendix 2.7.1.

Note that we do not impose any specific structure on the nature of the enlarged

filtration (GC
t )t∈[0,T �] apart from the facts that (i) the forecasts released by the TSO are

interpreted as Gt-conditional expectations and (ii) the Ft-adapted process BC
t (likewise

BD
t ) is a semi-martingale under the enlarged filtration. The latter is a common and

well-studied approach in the enlargement-of-filtration theory, although more recent studies

(Biagini and Oksendal, 2005; Di Nunno et al., 2006) have shown that such assumption

could in fact be relaxed. As is shown in the appendix to this chapter in more detail, the

general idea in this case is that BC
t under the enlarged filtration (GC

t )t∈[0,T �] decomposes

into a standard Brownian motion B̂C
t and a drift term A(t) =

∫ t
ϑ(s)ds which is usually

referred to as the information drift. Hence, the additional information is essentially

incorporated in the drift term ϑ(t), so that the dynamics for mt in Equation (2.6) can be

re-written as follows:

dmt = −κC

(
mt −

σC

κC
ϑ(t)

)
dt+ σCdB̂C

t . (2.20)

Based on Equation (2.20) – or, equivalently, on Proposition 2.3.1 – we can now compute Gt-

conditional expectations which relate to those points in time where no TSO forecasts are
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available, but which are still consistent with the modified stochastic dynamics as imposed

by the available forecast points. Although a related concept, the change of the drift for the

above capacity process has not been obtained through a change of the probability measure,

i.e., B̂C
t is a Gt-adapted Brownian motion under the statistical measure P. Therefore,

when it comes to derivatives pricing under a risk-neutral measure Q in Section 2.5, we

consequently look for a Gt-adapted standard Q-Brownian motion B̌C
t = B̂C

t −ΛC
G (t), where

ΛC
G (t) is a finite variation process representing the market price of risk that will be inferred

from prices of electricity derivative contracts.

Finally, we briefly discuss why we propose to use this specific approach of integrating

demand and capacity forecasts here. In fact, one may think of alternative ways of how

the incorporation of forward-looking information could be dealt with.

Assuming the forecast data to be reasonably reliable, one approach would be to

interpret the forecasts as being released under perfect foresight and, hence, treating Dt

and Ct as deterministic processes. In such case, demand and capacity forecasts, ultimately

represented by expected values in Equation (2.14), would be replaced by constants, so

that the corresponding variance terms vanish. Although appealing by its simplicity, this

approach raises several issues: first, when pricing, e.g., a forward contract with monthly

delivery period, it is often the case that detailed forecast data on a daily basis is not

available for all days of the delivery month. Especially for mid- to long-term forecasts,

granularity of forecast points tends to be rather low, i.e., only expected maximum weekly,

monthly, or seasonal demand (capacity) levels may be indicated. Irrespective of the

question of whether long-term forecasts are still sufficiently accurate at all in order to

justifiably treat them as deterministic, the necessary interpolation of missing long-term

forecasts will induce some kind of arbitrariness. Given a variety of different interpolation

methods to choose from, pricing results would consequently be quite sensitive to the

specific technique selected. Second, and as is analyzed further below, future capacity

levels are generally known to be hard to predict, in particular for the British market (see,

e.g., Karakatsani and Bunn, 2008). This results in slightly less reliable forecasts, hence

invalidating the assumption of deterministic forecasts in the first place, and leading to

increased modeling risk otherwise.

A related approach has been presented by Ritter et al. (2011) and Haerdle et al. (2012)

in the context of weather derivatives pricing. In case of missing daily forecast points for
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periods beyond the horizon of the daily forecasts, they propose to proceed as follows: the

respective stochastic process is estimated based on a time series of historical data that has

been extended to also include a given set of available daily forecasts, treating the latter

as if they were actually observed. Missing forecasts are then replaced with expectations

derived from the estimated process. Generally speaking, estimating parameters based on

historic and forecast data at the same time may come close to the general idea of enlarging

the information filtration. However, implementing this approach again comes at the cost

of having to consider daily forecasts as deterministic whenever available. In addition, it is

not a priori clear how to implement the “combined” estimation strategy when estimating

a process on a daily basis and forecasts are given, e.g., on a weekly basis only, yet shall

nevertheless be included in the estimation procedure. Importantly, parameter estimates,

such as the speed of mean-reversion, may be critically affected, especially when during the

estimation procedure, more weight is given to the forecast data relative to the realized

data. Note that this issue is avoided by modifying demand and capacity dynamics as

proposed in Equation (2.20), while retaining the basic F -implied stochastic properties of

the respective processes at the same time.

Finally, as a third approach that might be appealing to practitioners, techniques

similar to yield curve calibration in fixed income could be used: while the näıve approach

of incorporating demand forecasts directly into the seasonal function sD(T ) is wrong,21

it is possible to re-fit the mean-reversion level and let sD(T ) adjust so that expectations

will correctly match the forecast points. For forecast data with high granularity (e.g.,

daily), results will be similar to the enlargement-of-filtration approach, but additional

assumptions for interpolation will be necessary for the case of more widely spaced forecast

points, as well as on which functional representation to use for sD(T ) when expectations

beyond the forecast horizon are to be computed.

Nevertheless, both the enlargement-of-filtration approach as well as the alternatives

discussed above share the common drawback of not adequately reflecting the relationship

between forecast horizon and process variance. As confirmed empirically later (see Section

2.5 and Figure 2.4), especially demand forecasts are more accurate in the short-term,

i.e., their reliability helps to reduce process variance. Importantly, such variance in the

21Note that this will distort the relationship between the speed of mean-reversion of the OU-component
and the actual level of mean-reversion, as imposed by the parameter estimates determined from historical
data.
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difference between forecast and realized demand tends to be lower than what is implied

by a standard OU-process until approximately a horizon of t+8. Thus, relative to realized

demand, the above techniques either imply that there is not enough variance in forecast

demand (e.g., no variance at all as in the case of perfect foresight), or they leave variance

levels unchanged altogether, and hence, too high.

2.4 Data and Estimation Approach

2.4.1 Fundamental Data

The data set used in this study for the fundamental variables demand and capacity

comprises of ten years of historical data for the British electricity market, covering the

period from 2002 up to 2011. These contain both historical realized as well as historical

forecast data, and were obtained from National Grid, the British TSO,22 and Elexon, the

operator of the balancing and settlement activities in the British market.23 Figure 2.1

shows the development of the realized demand and capacity data during the period from

01-Jan-2007 to 31-Dec-2011, i.e., the period covered by our pricing study, whereas the

prior five years are used as estimation period.

With respect to electricity demand, realized data is based on the outturn average

megawatt (MW) value of electricity demand in England, Wales, and Scotland during

the peak half-hour of the day, as indicated by operational metering.24 Specifically,

we use the demand metric IO14 DEM which includes transmission losses and station

transformer load, but excludes pump storage demand and net demand from interconnector

imports/exports.25

Forecasts of expected electricity demand can be classified into two categories: first,

National Grid releases daily updated demand forecasts covering the next 2 weeks ahead

with daily granularity. These are forecasts of electricity demand expected to prevail during

22National Grid both owns and operates the systems in England and Wales. Since the start of BETTA
in April 2005, it has also been operating the high-voltage networks in Scotland owned by Scottish and
Southern Energy as well as Scottish Power.

23The following websites were accessed: http://www.nationalgrid.com, http://www.bmreports.com,
and http://www.elexonportal.co.uk.

24In contrast to most other markets, electricity in Great Britain is traded on a half-hourly basis,
corresponding to 48 settlement periods per day.

25The British electricity market is connected to neighbouring markets via interconnectors such as
to/from France (IFA), the Netherlands (BritNed), or the Moyle Interconnector (connection to Northern
Ireland).
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Figure 2.1: Daily Electricity Demand and Available System Capacity
This figure shows the time series of realized daily electricity demand and available system capacity

in the British market during the period from 01-Jan-2007 to 31-Dec-2011. Displayed demand and

capacity data both relate to the same daily peak (demand) half hour. All data shown were obtained

from National Grid and Elexon.

the peak half-hour of the respective day, which is the reason why we use peak demand

instead of average baseload demand throughout this study. Second, longer-term forecasts

of expected demand are released once a week, covering the next 2–52 weeks ahead with

weekly granularity. These forecasts relate to expected demand during the peak half-hour

of the respective week. Figure 2.2 provides a schematic overview of the different forecast

horizons in the context of pricing a forward contract with monthly delivery period. Finally,

note that special attention was paid to the realized and forecast data employed in our

study being defined consistently.

In terms of realized capacity available, National Grid records maximum export limits

(MEL) for each of the units that are part of the overall balancing mechanism (BM).26

These limits quantify the maximum power export level of a certain BM unit at a certain

time and are indicated by generators to the TSO prior to gate closure for each settlement

period.27 In case of an (un-)expected outage for some generation unit, generators will

accordingly submit a MEL of zero during the time of the outage for this unit. Moreover,

26These are approximately 300 units in Great Britain, with one plant comprising several units.
27In the British market, gate closure is set at one hour before each half-hourly trading period. It refers

to that point in time by when all market participants have to give notice about their intended physical
positions so that the TSO can take action to balance the market.
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Figure 2.2: Schematic Overview of Forecast Horizons for the GB Market
Daily forecasts are available on a 2- to 14-days-ahead basis; additionally, forecasts of expected

maximum demand (capacity) per week are released for weeks 2–52. In this example, the first nine

delivery days of some given forward contract are covered by daily forecasts, expected demand and

capacity for each of the remaining days must be derived based on Proposition 2.3.1.

since MEL do include volatile interconnector flows as well as anticipated generation from

intermittent/renewable sources, they can be seen as a good real-time proxy of available

generation capacity that either is in use for production, or could additionally be dispatched

into the transmission system immediately.

Capacity forecasts are released by National Grid, too, but primarily relate to the

expected “market surplus” SPLD. This variable gives an indication on expected excess

capacity beyond the levels required to satisfy expected demand and reserve requirements,

but is structurally different from the MEL-approach that we follow for the realized

capacity data. Amongst other reasons, this is due to SPLD including a statistically derived

reserve-allowance which is based on average loss levels and forecast errors, rather than

actual reserve levels held in operational timescales which are probably less pessimistic as

well. As such, and in order to consistently define realized and forecast capacity levels, we

instead use forecasts of expected total generation availability (which are also released by

National Grid) and adjust them for few additional items.28 Both timescale and updating

structure of these forecasts are similar to the demand case.

When feeding the forecast data into our model, note that the weekly updated

demand forecasts with a forecast horizon ranging from 2–52 weeks ahead are specified

28Even when using generation availability instead of SPLD, and unlike for the case of demand data,
capacity forecasts still slightly differ in definition from the capacity metric on which the realized data is
based (i.e., MEL). There are several reasons for this: Inter alia, volatile interconnector flows are hard to
predict and, hence, are set at float throughout all forecast horizons. Also, a small number of generating
units submit a MEL which, however, is not included into the forecast of generation capacity. We roughly
adjust for these items to still arrive at consistently defined metrics, e.g., by carrying over latest observed
values/forecast deviations into the future. At the same time, special focus is laid on our adjustments to
remain simple, easily reproducible, and hence likely to be used by market participants. Further details
are available from the authors upon request.
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in correspondence to the expected peak half-hour within the respective week, i.e., it is not

tied to a specific business day. Weekly capacity forecasts then relate to this very same half

hour of expected peak demand, but do not specify an exact date either, which, however,

is required in order to apply Proposition 2.3.1. Based on historic data, the peak half-hour

of demand during a given week was most often found to occur between Tuesday and

Thursday. For the sake of simplicity, we hence assume that weekly demand and capacity

forecasts always refer to the Wednesday of the respective week.29

Finally, an important caveat applies: while forward-looking information may

presumably be beneficial for derivatives pricing, outdated forward-looking information

may certainly lead to the opposite. In fact, depending on both maturity and length

of the delivery period for the respective contract to be priced, it may be the case that

EP
[
Dτ

∣∣ GD
t

]
and EP

[
Cτ

∣∣ GC
t

]
for τ = T . . . T are exclusively determined based on

longer-term forecast points which are only updated weekly, as opposed to the daily

updated 2–14 day-ahead forecasts. Focusing specifically on capacity forecasts, it may,

however, happen that a major unplanned outage occurs just after the most recent weekly

forecasts have been released. Even worse, for few periods in our data sample, forecast

updates are missing altogether, leaving gaps of up to several weeks between successive

forecast updates. Feeding such outdated forecasts into our (or any other) model and

not updating for significant outages (whenever indicated) that move the market, hence

unduly punishes the forecast-based model. Therefore, in case of missing updates or major

unplanned outages not reflected in the most recent set of capacity forecasts, we have

adjusted for such events by combining the forecast data with information provided on

Bloomberg’s “UK VOLTOUT” page as well as in news reports from ICIS Heren. Note

that this information was available to market participants at the time of trading.30

2.4.2 Electricity Spot and Forward Data

Following the historic development of electricity market regulation and especially since the

inception of the New Electricity Trading Arrangements (NETA) regime in 2001, wholesale

29Pricing errors have proven to be rather insensitive to this assumption, i.e., fixing the weekly forecasts
to relate to each Tuesday or Thursday of a given week (or even alternating, based on the business day
for which the weekly peak-hour during the preceding week was observed) did not visibly change results.

30Prominent examples, amongst others, relate to several of the unplanned trippings of nuclear
generation units during 2007/08, which along with increased retrofitting activities of coal-based plants
at that time led to extremely tight levels of available capacity in the British market.
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trading in the British market is predominantly characterized by OTC forward transactions

with physical settlement. The forward market, defined as covering maturities from day-

ahead up to several years ahead of delivery, makes up for about 90% of overall electricity

volume traded in the UK (Wilson et al., 2011). Compared to other major European

electricity markets such as Germany or the Nordic market, financially-settled trades are

less common and mainly concentrate on limited exchange-based trading activity such as

at the Intercontinental Exchange or at the APX UK exchange. More recently, the N2EX

platform, operated by Nord Pool Spot and Nasdaq OMX Commodities and established in

order to re-strengthen exchange-based trading, has also started to list cash-settled power

futures contracts for the British market. Despite these developments, exchange-based

derivatives trading activity still seems to be rather limited, with member participation in

futures trading increasing at slow pace only (see OFGEM, 2011).

In view of this dispersed market structure with the vast majority of trades still being

bilateral or broker-based, our electricity price data is exclusively based on OTC contracts

and was obtained from two sources: first, Bloomberg provides historical forward prices

which are defined as composite quotes from a panel of OTC brokers. Second, we obtained

a comprehensive data set from Marex Spectron, a leading independent energy broker

that operates one of Europe’s largest and most established marketplaces for electricity.

This second data set is entirely based on trade data (including time stamp of trade,

executed through platform or voice brokers) and contains a variety of additional types of

electricity contracts, out of which a second OTC sample was formed. These two samples,

for which pricing errors are analyzed separately in Section 2.5, contain the following types

of contracts:

“Bloomberg Data Set”:

� 1-month ahead forward contracts

“Marex Spectron Data Set”:

� 1-month ahead forward contracts

� 2-months ahead forward contracts

All selected forward contracts are baseload contracts. Moreover, electricity spot (i.e., day-



40

ahead)31 price data is additionally used for model calibration purposes, but is not analyzed

further in the main study. We deliberately focus on pricing the above types of baseload

contracts, leaving aside other instruments with quarterly, seasonal, or yearly delivery

periods. This is due to the following reasons: first, we are primarily interested in the

pricing impact when considering demand and capacity forecasts, compared to a situation

when disregarding such forecasts. Since these forecasts are more accurate for short-term

horizons,32 our study focuses on contracts with short maturities and delivery periods.

Second, trading activity generally concentrates on front months with liquidity at the

longer end of the curve rapidly decreasing (OFGEM, 2011). Finally, and again primarily

for liquidity reasons, we have chosen to analyze baseload contracts instead of peakload

contracts. The fact that we are pricing baseload contracts, although using demand and

capacity during peak half-hours as inputs, may seem inconsistent, but is ultimately due to

the forecast data being available in this format only. It might be possible to convert the

peakload demand and capacity forecasts into corresponding baseload predictions, e.g., by

applying scaling factors that are based on historical averages. However, this is already

indirectly accounted for by the estimation procedure outlined in the following subsection.

An overview of the two data samples is provided in Table 2.1 where descriptive

statistics as well as further contractual characteristics for the day-ahead and forward

contracts are summarized. As can be seen, the data exhibits well-known characteristics

of electricity prices, such as substantial levels of volatility and excess kurtosis. While

generally these effects are more pronounced for spot than for forward contracts, we also

note the obvious difference in skewness of log-returns between both types of contracts.

2.4.3 Estimation Approach and Estimation Results

The individual processes for the state variables demand (Dt) and available capacity (Ct)

are estimated by discretizing Equations (2.2) and (2.6) and using maximum likelihood.

Based on annually rolling windows of five years of time series data, parameters are re-

estimated annually, but held constant throughout every subsequent year when used for

31We follow the classic assumption in literature according to which the day-ahead electricity price is
interpreted as (quasi-) spot price. Although it would be possible to use within-day rather than day-ahead
data for calibration purposes, we refrain from doing so given that within-day markets are more technical
in nature, implying that short-term balancing needs may strongly overlay with our supply/demand
dynamics.

32Longer-term forecasts rely on statistical averages and, thus, should convey no significant additional
information as compared to the “no-forecast” case that is characterized by filtration (Ft)t∈[0,T�].
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Table 2.1: Samples of Baseload Spot and Forward Contracts

This table reports summary statistics for the samples of electricity spot (day-ahead) and forward

prices covering the period from January 2, 2007 until December 30, 2011. [T , T ] denotes the

average delivery period (in days) and T − t the average maturity (in days) as measured until the

start of the delivery period. All contracts from both the Bloomberg and Marex Spectron samples

are baseload contracts. Displayed log-returns for 1- and 2-month(s) ahead forward contracts are

adjusted to account for roll-over of contracts as well as for missing quotes.

Mean Median Std. Dev. Skewness Kurtosis [T , T ] T − t

B
lo
o
m
b
e
rg

D
a
ta

1-Day Ahead

lnPt 3.7543 3.7600 0.3891 0.0818 -0.1121
1.0 1.0

lnPt − lnPt−1 -0.0019 -0.0019 0.0717 1.2812 12.8443

1-Month Ahead

lnFt 3.7781 3.7899 0.3737 0.2196 0.2131
30.4 15.9

lnFt − lnFt−1 -0.0009 -0.0003 0.0219 -0.2365 5.4731

M
a
re

x
S
p
e
c
tr
o
n

D
a
ta

1-Day Ahead

lnPt 3.7500 3.7612 0.3829 0.1225 0.0516
1.0 1.0

lnPt − lnPt−1 -0.0027 -0.0021 0.0721 1.2138 10.9920

1-Month Ahead

lnFt 3.7856 3.7956 0.3604 0.2359 0.4641
30.4 16.1

lnFt − lnFt−1 -0.0010 -0.0014 0.0205 -0.1641 4.8328

2-Months Ahead

lnFt 3.8003 3.7975 0.3532 0.3031 0.4328
30.8 44.8

lnFt − lnFt−1 -0.0009 -0.0005 0.0177 -0.3552 4.5943

pricing purposes. Estimation results and robust standard errors are presented in Tables

2.6 and 2.7 in the appendix to this chapter. The reported significance levels underline

the distinct seasonalities for both demand and capacity, with our chosen specifications

capturing well the most prominent characteristics.

Given the already very high number of parameters to be estimated, we have chosen

a rather simple one-factor approach to model the dynamics of the marginal fuel used

for generation, i.e., natural gas in our case. Since the spot component Xt in Equation

(2.8) cannot be observed directly, estimation of all parameters for the natural gas model

is instead performed based on futures data, by using the Kalman filter and maximum

likelihood. Reformulating the model into state-space representation with corresponding
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transition and measurement equations is a standard exercise (see, e.g., Schwartz, 1997).

Since our study primarily focuses on the pricing of short-term electricity forward contracts,

we refer to the short end of the natural gas curve and, hence, seek to infer the log-spot

natural gas dynamics from corresponding short-term futures contracts with maturities

ranging from one to four months. Relevant data is sourced from Bloomberg and relates to

natural gas futures contracts traded at the Intercontinental Exchange (ICE) with physical

delivery at the National Balancing Point (NBP), the virtual trading hub for natural gas

in Great Britain. Parameter estimates for the dynamics of natural gas are summarized in

Table 2.8. Again, the estimates are statistically highly significant and clearly reflect the

strong seasonal component that is inherent in natural gas prices.

Having estimated the parameters that govern the dynamics of the respective

underlying variables Dt, Ct, and gt, the parameters α, β, γ, and δ that link the three

fundamental factors yet remain to be determined. Generally, two approaches appear

suitable:

1. Based on Equation (2.12), historic log electricity spot prices, lnPt, are regressed on

corresponding time series data of Dt, Ct, and ln gt. This approach is proposed by

Cartea and Villaplana (2008) for a structurally similar model that, however, does

not include marginal fuel dynamics or forward-looking information.

2. Implicitly (re-)estimating the parameters over time, based on a cross-section of

electricity spot and forward prices.

Given evidence that α, β, γ, and δ may not be constant over time, we favor the second

approach. For instance, Karakatsani and Bunn (2008) also apply fundamentals-based

models in their study on electricity spot price forecasting in the British market. They

conclude that the models with the best pricing performance are those that allow for

time-varying coefficients to link the fundamental factors. Moreover, the changing level of

dependence of electricity spot prices on each fuel price due to mixing of bids and merit

order changes as proposed in the model by Carmona et al. (2013) may be seen in the same

spirit. Therefore, and although treated as constants in our model, the time-varying nature

of the parameters α, β, γ, and δ is captured by implicitly extracting and re-estimating

them weekly from the cross-section of quoted power prices. Likewise, the parameters λD
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and λC governing the change of measure from P to Q are inferred in the same way.33

In order to implicitly estimate these parameters, the following objective function is

minimized:34

Φ�
W = argΦW

minRMSPE(ΦW )

= argΦW
min

⎡
⎢⎣
√√√√ 1

NP
W

NP
W∑

i=1

(
P̂W,i(ΦP

W )− PW,i

PW,i

)2

+

√√√√ 1

NF
W

NF
W∑

i=1

(
F̂W,i(Φ

Q
W )− FW,i

FW,i

)2

⎤
⎥⎦ ,

where ΦW ≡ {α, β, γ, δ, λD, λC} with the two subsets ΦQ
W and ΦP

W defined as ΦW ≡ ΦQ
W

and ΦP
W ≡ ΦQ

W \{λD, λC}. To minimize the root mean squared percentage error (RMSPE)

over the in-sample period W , we assemble all available day-ahead prices PW,i (totaling

NP
W quotes) as well as all available forward prices FW,i (N

F
W quotes) and compare against

prices P̂W,i and F̂W,i as predicted by our model based on Equations (2.12) and (2.14).35

For in-sample estimation windows W , we use a length of eight weeks, e.g., w1 − w8,

for the Bloomberg sample. Out-of-sample testing of the model is performed during the

subsequent week (i.e., w9), employing the parameters estimated over W – thus only using

information available up to the respective pricing day. Finally, the in-sample period is

shifted by one week (i.e., new window: w2−w9) and parameters are re-estimated. For the

Marex Spectron sample, we shorten the length of the in-sample estimation windows to

six weeks since more price observations per week are available, thus allowing for a robust

estimation with a shorter window. Furthermore, these changes in the in-sample set-up

may provide additional robustness to our findings examined in Section 2.5, so as to ensure

that pricing improvements from using forecasts do not rely on a specific mix of contracts

or length of in-sample estimation windows.

Different sets of implied parameter estimates Φ�
W are obtained for the Bloomberg and

33Note that for pricing power derivatives in our structural framework, risk-neutral dynamics are also
required for the natural gas component. The corresponding market price of risk λg which is assumed
constant, however, has already been determined by the Kalman filter estimation (see Table 2.8). We hence
assume that the “look-through” risk premium of natural gas indirectly inherent to power derivatives is
equal to the one for (outright) traded natural gas futures contracts. While λg could easily be re-estimated
by including it into the set of implicitly determined parameters Φ, we refrain from doing so and instead
prefer to reduce the number of free parameters here.

34Unlike price time series in financial markets, such as stock prices, the time series of electricity prices
in our sample are stationary, so that we refrain from differencing the data when calibrating the model.

35Note that our sample of day-ahead quotes does not contain any observations of negative prices.
However, if we were to model hourly electricity prices (where the occurrence of negative prices is more
likely than on a day-ahead level), and depending on the regulation for the respective market under study,
our model could be extended to also produce negative prices.
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Marex Spectron samples (which are priced separately), as well as depending on whether

or not forecasts of demand and/or available capacity are used during the estimation

procedure. As an example, Table 2.2 summarizes implied estimates for the Bloomberg

sample, when using both demand and capacity forecasts.36 Although the table only

provides an aggregate view on the estimates, their corresponding means and standard

errors indicate significant weekly variation among the parameters which our model could

not capture when holding constant the “fundamental” parameters α, β, γ, and δ in Φ�
W

otherwise.

Examining the development of the parameter estimates over time, we observe that

β and γ, the parameters governing the sensitivity of the power price with respect to

changes in demand and capacity, respectively, culminate in 2008 and gradually decline

thereafter. As is further outlined in the next section, this can be well explained by the

fact that in terms of excess capacity, the British power market was especially tight in

2008, as is clearly reflected in the behavior of day-ahead and month-ahead forward prices

displayed in Figure 2.3. The following years are marked by a massive increase in installed

generation capacity by more than 10 gigawatts (GW), leading to oversupply especially

of thermal generation and, consequently, to tightening spreads (especially spark spreads)

for generators. As a consequence of these abundant capacity levels, changes in demand

and capacity are of less importance for power price dynamics at that time, as evidenced

by rather small absolute values for the estimates of β and γ in the years 2009–2011.37 As

will be seen, this strongly affects the relative advantage of using forecasts of demand and

capacity.

Recalling that δ can be interpreted as the elasticity of the power price with respect

to changes in the fuel price, we observe that between 2009 and 2011, the estimate for δ

more than doubles. This increase in the power-gas sensitivity may come as a surprise

given that at the same time, spark spreads have continued to decline. However, it is the

heavily gas-based structure of the British generation park that causes especially the short

end of the power price curve to track the NBP gas curve very closely. Hence, the link

between gas and power markets may have become even stronger recently, owing to the

36Estimation results for the other sets of parameters are available from the authors upon request.
37However, the variation of β and γ and especially the increase in absolute values for 2008 could, at

least to some extent, also be due to insufficient convexity of our functional representation of the merit
order curve. The curve is likely to be steeper during times of low system margin than the corresponding
levels implied by our exponential-form representation.
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Figure 2.3: 1-Month Ahead Forward and 1-Day Ahead Electricity Prices
This figure shows the time series of daily forward prices for 1-month ahead and 1-day ahead

electricity contracts (baseload) during the period from 01-Jan-2007 to 31-Dec-2011. All data shown

were obtained from Bloomberg; for dates with missing quotes/prices, the last observed historic price

was carried over.

fact that (i) the LCPD38 has started to reduce availability levels of coal plants and that

(ii) new generation coming online has primarily been of CCGT-type.39 We also note that

the increase in value for δ during 2009–2011 goes in line with a corresponding decrease

in value for α, which appears reasonable when recalling the interpretation of α = f 1−δ
t in

Equation (2.13).

Finally, in view of rather large estimates for the market prices of demand and capacity

risk, λD and λC , it is important to mention that since these two parameters are estimated

simultaneously, they interact with each other during the estimation procedure and cannot

be determined uniquely. It might hence be more convenient to think of a “combined”

market price of (reserve) margin risk βλD + γλC which is also shown in Table 2.2.

38The UK Large Combustion Plant Directive (LCPD) limits the amount of Sulphur Dioxide, Nitrous
Oxides, and dust that coal- and oil-fired power stations are allowed to emit. As an alternative to complying
with the tighter emissions regulations, power stations that were “opted-out” either face restrictions of
operational hours and/or have to close by 2015.

39Combined cycle gas turbine (CCGT) plants are natural gas fired generation plants which, due to their
enhanced technology, achieve high levels of thermal efficiency and offer sufficient flexibility in generation
to meet sudden fluctuations in electricity demand.
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2.5 Pricing Results

In order to examine the pricing impact of using forward-looking information in more detail,

we distinguish between three cases: using (i) no forecasts, (ii) demand forecasts only, and

(iii) forecasts of both demand and available capacity. Results are reported for each of the

five years covered by our study as well as on an aggregate basis for 2007–2011. Table 2.3

summarizes pricing results for 1-month ahead forward contracts from the Bloomberg data

set. As can be seen, employing demand and capacity forecasts clearly improves pricing

performance on an overall basis, reducing pricing errors by up to 50%: aggregate RMSPE

over the entire sample period reduces to less than 6% as compared to an RMSPE of

about 10% when no forecasts are used; corresponding absolute-level RMSE even halves

and decreases by some �4.00/MWh, which also underlines the economic significance of

the pricing improvements achieved by incorporating forecasts into our model – especially

in view of average contract volumes of several thousands of megawatt hours (MWh).

In order for the analysis of pricing errors to be consistent with our estimation

procedure, we mainly focus on root mean squared-based error measures, given that this

objective function has also been used for estimation. However, we also note that the

relative improvement in pricing performance when employing forecasts is generally smaller

when looking at the absolute percentage error (MAPE) as opposed to RMSPE, which

underlines that incorporating forecasts seems to pay off mainly in situations of unusually

high demand or low capacity. Hence, before analyzing the breakdown of pricing errors

on a yearly basis, it is important to recall that primarily during the first 2–2.5 years of

our study, the British power market has suffered from exceptionally poor expected levels

of power plant availability, with reserve margins clearly falling below long-term averages,

especially in 2008. Consequently, the model excluding forecasts fares clearly worse than

during any other period of our study. By contrast, the model including both demand

and capacity forecasts gives strong evidence of its capabilities, reducing pricing errors

even in times of extreme fluctuations in day-ahead and forward price levels, i.e., during

times demanding utmost flexibility from any type of model. Reconsidering Figure 2.3,

the extreme spike in month-ahead forward prices during September/October 2008 was

clearly driven by ever-increasing supply fears,40 and it is obvious that such a trajectory

40This is supported by our analysis of market commentary covering the respective trading days.
Importantly, in these days, prices of month-ahead natural gas were approximately flat.
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can only be captured (albeit not perfectly) by a model that includes forward-looking

information about the capacity levels that are expected to prevail during the respective

delivery months.41

The pricing performance of the models during the year 2007 provides another

opportunity to further discuss what kind of forward-looking information we actually

consider to be contained in the enlarged filtration (GC
t )t∈[0,T �] – and what is not contained

therein. Based on a detailed analysis of single-day pricing errors, the model including both

forecast types yields very satisfactory pricing results throughout this year, except for a

period of rather poor pricing performance during November and December 2007, for which

forward prices are clearly underestimated. Although market commentary may generally

be criticized for over-emphasizing alleged causal relationships between specific events and

strong market movements, several reports released at that time stress, amongst other

reasons, the then very high continental power prices that are said to have impacted British

power prices as well. In fact, French power prices had reached record levels in November

2007, fueled by strikes in the energy sector that led to temporary production cuts of about

8,000 MW. This, in turn, raised concerns about French electricity supplies for the rest

of the year, which ultimately could have resulted in Britain becoming a net exporter of

power to France via its interconnector, putting an additional drain on the already tight

British system.42 However, although market commentary indicates that (British) market

participants do seem to have “priced in” such a scenario, and although pricing errors for

the forecast-based variant of our model would have clearly been reduced, we have decided

not to incorporate this belief (i.e., a longer-lasting strike in France having interconnectors

switch from imports to exports) into our capacity forecasts: (GC
t )t∈[0,T �] is only based

on forecasts released by the TSO and supplemented with updates of major unplanned

41The benefit of using forecasts during times of high demand and/or tight reserve margins can also be
confirmed by regressing the related reduction in pricing errors on a measure that quantifies by how much
the forecasts deviate from corresponding long-term seasonal levels. More precisely, on every pricing day,
we feed into our model estimates of both demand and available capacity that are expected to prevail on
every day within the delivery period of the respective contract (see Equation (2.16)). Thus, for every
delivery day, we compute the percentage deviation between these sets of demand (capacity) expectations
when based on forward-looking information and when excluding it. For our regression, we define the
regressors as the maximum of these demand (capacity) deviations, i.e., where on every pricing day, the
maximum is taken over all delivery days. Especially for the years 2007 and 2008, regressing the reduction
in RMSPE on these regressors yields highly statistically significant coefficients at the 1%-level.

42The interconnector that links British and French electricity markets has a capacity of approx. 2,000
MW; Britain has “traditionally” been an importer of French electricity – which especially during peak
hours tends to be cheaper, also in view of the higher share of nuclear baseload generation capacity. Yet
at that time in 2007, it was feared that the strike would cause electricity in France to become more
expensive than in Britain, thus reverting the usual direction of interconnector flows.
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outages. Although likely to further improve pricing performance, starting to integrate

market beliefs about future available import/export capacity levels would also require us

to do so for the rest of our sample, i.e., during times where such market sentiment may

be more difficult to infer. Moreover, it is obviously impossible to exactly observe and

consistently quantify these beliefs. For instance, it is unknown how long exactly and to

what extent market participants would expect the above scenario of strikes in the French

energy sector to continue.

In the years 2009–2011, the relative improvement of the forecast-based models is

smaller than in previous years. As indicated by the corresponding parameter estimates

for β and γ, the influence of demand and capacity as fundamental factors driving power

prices has been much reduced during these years, primarily due to growing oversupply

in generation capacities leading to permanently higher reserve margin levels. Given that

short- to mid-term power prices at that time were almost exclusively driven by natural gas

dynamics under these conditions, the impact of incorporating forward-looking information

vanishes accordingly. Interestingly, pricing performance of the model for the years 2009–

2011 seems to be even slightly better when using demand forecasts only, and leaving

capacity forecasts aside. As also stressed by Karakatsani and Bunn (2008), this could be

due to the fact that in the British market, the forecasts of available capacity levels (or,

equivalently, margins) released by the TSO tend to be received with slight skepticism and,

hence, are likely to be adjusted (or not used at all) by market players.

This leads to other, more general problems of capacity forecasts, such as their

accuracy in terms of generation from renewables or their consistency in definition with

realized data. This is also reflected in Figure 2.4 where prediction errors between forecast

and realized demand and capacity levels are summarized.43 Capturing well the regular

consumption patterns that characterize the dynamics of electricity demand, related

forecasts are subject to rather low forecast errors only. By contrast, predicted future levels

of available capacity are significantly less accurate and this inaccuracy increases more

strongly for longer forecast horizons. While this certainly impacts pricing performance

during 2009–2011, such generally higher inaccuracy of capacity forecasts nevertheless

seems to be of minor importance during times of exceptionally low reserve margins, as

shown above.

43Note that especially for forecasts of available capacity, the input capacity data from National Grid
has been subject to further adjustments by the authors.
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Figure 2.4: Performance of Demand and Capacity Forecasts
This figure shows the root mean squared percentage error (RMSPE) for the 2–14 days-ahead

forecasts of electricity demand and available system capacity during the period from 01-Jan-2007

to 31-Dec-2011. Note that especially for capacity forecasts, inputs are based on data released by

National Grid plc, after adjustments by the authors.

The results based on the data obtained from Marex Spectron are presented in Tables

2.4 and 2.5. Again, we observe an improvement in pricing performance when integrating

demand and capacity forecasts into our model, as evidenced by relative reductions in total

RMSPE of 8% and 15% for 1-month and 2-months ahead forward contracts, respectively.

Moreover, the overall pattern of pricing errors for both types of forward contracts is in line

with the conclusions drawn from the Bloomberg sample. Notably, integrating demand as

well as capacity forecasts into our model again primarily pays off during the years 2007–

2008, reducing aggregate RMSE during these years by about �1.20–2.00/MWh. Such

economic significance is also confirmed statistically by applying a Wilcoxon signed-rank

test which shows that the reductions in errors are significant at the 1%-level. For the

remaining years, during which the impact of the fundamental factors Dt and Ct has

been found to be rather muted, pricing errors can still be reduced by using only demand

forecasts as compared to the “no-forecast” case.

Obviously, the differences in error metrics between the models including and

excluding forward-looking information are not of the same order of magnitude as those

reductions in pricing errors observed for the Bloomberg sample. Importantly, however,

the in-sample fitting procedure for the Marex Spectron data sample additionally includes

2-months ahead forward contracts. As such, the fact that the benefits of using forecasts
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still prevail when calibrating our model to a broader cross-section of forward quotes may

clearly be seen as underlining the robustness of our general findings.44

Examining the pricing errors in more detail, the year 2008 may again serve as an

example to illustrate another and more subtle effect when using forecasts as compared

to excluding them. For this year, and based on the Bloomberg data sample, pricing

performance of the “no-forecast” variant of the model is especially poor, as indicated by

an RMSPE of about 20%. For the Marex Spectron sample, by contrast, corresponding

pricing errors for 1-month ahead contracts are much lower, yielding an RMSPE of less than

10%. In this context, it is important to note that amidst the height of above mentioned

capacity shortage in 2008 (that led to the prominent spike in 1-month ahead forward

prices in September/October shown in Figure 2.3), supply fears primarily concentrated

on the front month. Consequently, 2-months ahead forward contracts at that time were

clearly less subject to such strong fluctuations in price levels. Therefore, the broader

cross-section of forward quotes in the Marex Spectron sample forces the “no-forecast”

variant of our model to simultaneously accommodate such contrary 1-month and 2-months

ahead price dynamics, which results in a “mediocre compromise” at best: 1-month ahead

contracts are now strongly underestimated (2008 MPE of -2.78% in Table 2.4 vs. 0.98%

in Table 2.3), which, however, halves RMSPE to less than 10%, given that underpricing

pays off after the sudden “collapse” in post-spike forward pricing levels. Yet, on the other

hand, the pronounced spike in 1-month ahead forwards has 2-months ahead contracts

become strongly overpriced post-spike (despite an overall 2008 MPE of -0.69%), which

alone contributes more than 2% to the overall RMSPE of 11.45%. By contrast, and

again comparing Tables 2.3 and 2.4, all pricing errors for the model including demand

and capacity forecasts in 2008 are surprisingly similar, irrespective of whether or not

2-months ahead contracts are included in the cross-section.

Put differently, the above example provides evidence of the additional benefits that

arise when including forecasts into our model. Forecasting low levels of capacity in the

short-term, but higher levels in the mid- to long-term may help govern opposed dynamics

of contracts with differing maturities, such as outlined above. This flexibility is also

reflected in the implicitly estimated fundamental parameters α, β, γ, and δ. In fact, the

44As a further robustness check, the in-sample estimation window was shortened from 6 to 4 weeks,
yielding similar pricing results. In order to preserve space, these results are not reported here, yet available
from the authors upon request.
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implied estimates show clearly higher variation throughout 2007 and 2008 than if demand

and/or capacity forecasts are accounted for during the estimation procedure.45 This

appears reasonable given the additional flexibility for the forecast-based model variants

in fitting observed prices, whereas the model variant without forecasts always has expected

demand and capacity mean-revert to the same long-term levels. As a result, flexibility is

reduced, which must be compensated for by higher variation in the set of fundamental

parameters. Altogether, this again underlines that excluding forecasts from the pricing

procedure not only affects pricing performance, but may also imply using a mis-specified

model.

2.6 Conclusion

Modeling the dynamics of electricity prices has traditionally been a challenging task

for market participants, such as generators/suppliers, traders, and speculators. The

strong links between power prices and their fundamental drivers make structural modeling

approaches especially appealing in this context, and it can be expected that both current

and future developments, such as further integration of geographic markets via market

coupling, will even further promote the importance of bottom-up modeling frameworks

(albeit at the cost of increasing complexity). At the same time, increasing transparency as

well as more reliable outturn and forecast data released by system operators help market

participants face these challenges and allow for more informed trading decisions.

In this chapter, we develop and implement a model for electricity pricing that takes

these developments into account by integrating forward-looking information on expected

levels of electricity demand and available system capacity. Special focus is laid on

calibrating the model to market prices of traded electricity contracts and it is shown

that the model parameters are easily interpretable in an economic way. Being one of the

key advantages of the fundamental approach, this helps to provide deeper insight into the

structure of the market than standard reduced-form models could ever do.

Although hard to compare with other pricing studies that focus on different markets

or periods, the pricing performance of our model appears very robust and reliable.

Importantly, we find that out-of-sample pricing errors can be reduced significantly by

45Table 2.2 provides parameter estimates for the latter case only. To preserve space, parameter
estimates implied by estimating the model without using forward-looking information are not reported
here, yet available from the authors upon request.
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making use of forward-looking information. Especially during times of very tight reserve

margins, as witnessed for the British market in 2008, capacity forecasts are of crucial

importance in order to track sudden outage-induced changes in forward pricing levels

and, therefore, significantly reduce pricing errors. However, we have also found that

if spare capacities or, equivalently, tightness of the system is not perceived as playing

a “fundamental” role, the advantage of employing capacity forecasts reduces and, in

some instances, may even lead to marginally lower pricing performance. This is also

strongly supported by our findings that capacity forecasts are generally less accurate on

average than demand forecasts. Nevertheless, it is still beneficial to keep using demand

forecasts rather than using no forecasts at all. This is especially true for the pricing of

forwards during the years 2009–2011, where the dynamics of natural gas prices are the

main fundamental driver so that demand and capacity only play a subordinate role for

pricing.

Given the above mentioned challenges and future developments, there is ample room

for further research in the field of structural electricity price modeling. First, it would

be interesting to conduct empirical pricing studies for other electricity markets as well.

Given that structural electricity price models may always appear somewhat “tailored”

to capture the characteristics of a specific electricity market, it would be interesting to

see how these types of models perform empirically in those markets where merit-order

dynamics are different. Second, given that our model is cast in a log-normal setting, it is

equally well-suited to option pricing like other previously proposed fundamental models

(see, e.g., Carmona et al., 2013). Further empirical studies might not only investigate

the impact of using forward-looking information on option pricing performance, but also

focus on the question of how pricing performance is affected depending on whether a 1-

or 2-fuel model is used. Finally, the continued shift towards renewable energy sources

in the generation mix of many European power markets poses new and highly complex

challenges regarding the forecasting of availability levels of intermittent generation, such

as for wind or solar power. These forecasts will play an indispensable role especially

when modeling geographic markets that are highly interconnected with each other, so

that abundant supplies are likely to “spill over” across borders and impact price levels in

neighbouring markets.
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2.7 Appendix

2.7.1 Conditional Expectations Based on Enlarged Filtrations

Under the Historical Measure

Let
(
Ω,FD,FD = (FD)t∈[0,T �],P

)
be a filtered probability space and qt be specified as in

Equation (2.2). Assume that EP
[
qT1

∣∣ GD
t

]
and EP

[
qT2

∣∣ GD
t

]
(with FD

t ⊂ GD
t ) are available

from the system operator. Before computing a forecast of expected electricity demand at

time T with t ≤ T1 ≤ T ≤ T2, we first derive relevant formulae under the assumption

that only one forecast point for T1 is given by the system operator, hence neglecting for

the time being the existence of EP
[
qT2

∣∣ GD
t

]
, and that a forecast of electricity demand is

needed for time T with t ≤ T ≤ T1. Formally, this can be expressed as follows:

EP
[
qT
∣∣ GD

t

]
= qte

−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GD
t

]
. (2.21)

In order to manipulate the conditional expectation on the RHS of (2.21), a standard

approach (see, e.g., Protter, 2004; Biagini and Oksendal, 2005) is to exploit the semi-

martingale property of BD
t with respect to Gt, i.e., to decompose BD

t as follows:

BD
t = B̂D

t + A(t), (2.22)

where B̂D
t is a GD

t -martingale (standard Brownian motion) and A(t) a continuous

GD
t -adapted process of finite variation, commonly referred to as the ”information drift”.

Following Hu (2011) and Di Nunno et al. (2006), B̂D
t in Equation (2.22) can be written

more explicitly as:

B̂D
t = BD

t −
∫ t

0

bt(s)B
D
s ds︸ ︷︷ ︸

A1(t)

−
∫ t

0

a(s)

(
EP
[
Y
∣∣ GD

s

]
− ρ′(s)BD

s

)
ds︸ ︷︷ ︸

A2(t)

, (2.23)

with A(t) = A1(t) + A2(t). Following Theorem A.1 in Benth and Meyer-Brandis (2009)

or, equivalently, Theorem 3.1 in Hu (2011), a(s) and bt(s) in above Equation (2.23) are
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given as follows:

a(s) =
ρ′(s)

τ −
∫ s

0

(
ρ′(u)

)2
du

, (2.24)

bt(s) = ρ′′(s)
∫ t

s

ρ′(v)

τ −
∫ v

0

(
ρ′(u)

)2
du

dv, (2.25)

where ρ(t) = EP[BD
t Y ] is twice continuously differentiable, τ = EP[Y 2] and Y is a centered

Gaussian random variable with Y =
∫ T1

0
eϕ(s)eκ

DsdBD
s =

∫ T1

0
eθ sin(2π(ks+ζ))eκ

DsdBD
s .

Focusing on A1(t) and since bs(s) = 0, it holds that:

∫ t

0

bt(s)B
D
s ds =

∫ t

0

∫ s

0

∂bs
∂s

(u)BD
u duds

=

∫ t

0

a(s)

[∫ s

0

ρ′′(u)BD
u du

]
ds (2.26)

=

∫ t

0

a(s)

[
ρ′(s)BD

s −
∫ s

0

ρ′(u)dBD
u

]
ds, (2.27)

where Equation (2.27) is derived from Equation (2.26) by applying Itô’s Lemma to

ρ′(s)BD
s . Based on the above, Equation (2.23) can now be re-arranged to yield:

B̂D
t = BD

t −
∫ t

0

a(s)

(
EP
[
Y
∣∣ GD

s

]
−
∫ s

0

ρ′(u)dBD
u

)
ds︸ ︷︷ ︸

A(t)

. (2.28)

Given above definition of Y , and since it can be shown that ρ′(t) = eϕ(t)eκ
Dt, the

information drift A(t) can be further simplified, so that Equation (2.28) now reads:

B̂D
t = BD

t −
∫ t

0

a(s)EP

[∫ T1

s

eϕ(u)eκ
DudBD

u

∣∣ GD
s

]
ds

= BD
t −

∫ t

0

a(s)EP

[∫ T1

s

ρ′(u)dBD
u

∣∣ GD
s

]
ds (2.29)

= BD
t − EP

[∫ T1

t

ρ′(u)dBD
u

∣∣ GD
t

] ∫ t

0

a(s) exp

(
−
∫ s

t

ρ′(v)a(v)dv
)
ds︸ ︷︷ ︸

A(t)

, (2.30)

where Equation (2.30) is derived from Equation (2.29) based on Proposition A.3 in Benth

and Meyer-Brandis (2009). Hence, in our initial setting of Equation (2.21) where a demand

forecast EP
[
qT

∣∣ GD
t

]
is to be determined that is consistent with the exogenously given
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forecast point relating to T1, this can now be computed as follows:

EP
[
qT
∣∣ GD

t

]
= qte

−κD(T−t) + σDEP

[∫ T

t

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GD
t

]
︸ ︷︷ ︸

IG(t,T )

(2.31)

= qte
−κD(T−t) + σDe−κ

DTEP

[∫ T

t

ρ′(s)dBD
s

∣∣∣∣ GD
t

]
(2.32)

= qte
−κD(T−t) + σDe−κ

DTEP

[∫ T

t

ρ′(s)d
(
B̂D

s + A(s)
) ∣∣∣∣ GD

t

]

= qte
−κD(T−t) + σDe−κ

DT

∫ T

t

ρ′(s)dA(s)

= qte
−κD(T−t) + (2.33)

σDe−κ
DT EP

[∫ T1

t

ρ′(u)dBD
u

∣∣∣∣ GD
t

]
︸ ︷︷ ︸

(�)

∫ T

t

ρ′(s)a(s) exp
(
−
∫ s

t

ρ′(v)a(v)dv
)

︸ ︷︷ ︸
f(s)

ds.

Note that the term IG(t, T ) is also referred to as information premium which is defined

as EP
[
qT

∣∣ GD
t

]
− EP

[
qT

∣∣ FD
t

]
. The term (�), in turn, can be extracted from the given

forecast as follows:

(�) =
1

σD

(
eκ

DT1EP
[
qT1

∣∣ GD
t

]
− qte

κDt

)
. (2.34)

The integral in the second term on the RHS of Equation (2.33) can be further simplified

if volatility is constant, as is the case for the dynamics of the capacity process in Equation

(2.6). In the case of the seasonal volatility function for the demand process as specified

in Equation (2.4), however, no analytic solutions for the integral exist; still, it can be

approximated computationally in an efficient way by using standard numerical integration

techniques.

Having outlined the general procedure for the case T ≤ T1, we now turn to the more

relevant case where EP
[
qT1

∣∣ GD
t

]
and EP

[
qT2

∣∣ GD
t

]
(with FD

t ⊂ GD
t ) are released by the

system operator and a forecast EP
[
qT
∣∣ GD

t

]
needs to be computed with t ≤ T1 ≤ T ≤ T2.

We proceed as follows:

EP
[
qT
∣∣ GD

t

]
= EP

[
qT1 + EP

[
qT − qT1

∣∣ GD
T1

]︸ ︷︷ ︸
(��)

∣∣∣∣ GD
t

]
. (2.35)
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Re-arranging (��) and taking out what is known, i.e. GD
T1
-measurable, we get:

EP
[
qT − qT1

∣∣ GD
T1

]
= qT1

(
e−κ

D(T−T1) − 1
)

+ σDEP

[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GD
T1

]
. (2.36)

Combining Equations (2.35) and (2.36) and using iterated conditioning now yields:

EP
[
qT
∣∣ GD

t

]
= EP

[
qT1

∣∣ GD
t

]
e−κ

D(T−T1)

+ EP

{
σDEP

[∫ T

T1

eϕ(s)e−κ
D(T−s)dBD

s

∣∣∣∣ GD
T1

] ∣∣∣∣ GD
t

}

= EP
[
qT1

∣∣ GD
t

]
e−κ

D(T−T1) + EP
[
IG(T1, T )

∣∣ GD
t

]
. (2.37)

The term EP
[
IG(T1, T )

∣∣ GD
t

]
in Equation (2.37), however, can be manipulated similarly

to Equations (2.31) to (2.33):

EP
[
IG(T1, T )

∣∣ Gt] = EP

{
σDe−κ

DTEP

[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GD
T1

] ∫ T

T1

f(s)ds

∣∣∣∣ GD
t

}

= σDe−κ
DT EP

[∫ T2

T1

ρ′(u)dBD
u

∣∣∣∣ GD
t

]
︸ ︷︷ ︸

(���)

∫ T

T1

f(s)ds. (2.38)

Analogous to Equation (2.34), the term (� � �) can be backed out from the given forecast

points relating to T1 and T2:

(� � �) =
1

σD

(
eκ

DT2EP
[
qT2

∣∣ GD
t

]
− eκ

DT1EP
[
qT1

∣∣ GD
t

])
. (2.39)

2.7.2 Conditional Expectations Based on Enlarged Filtrations

Under an Equivalent Risk-Neutral Measure

For derivatives pricing purposes, and based on Equation (2.14), conditional expectations

EQ
[
·
∣∣ Gt] and variances VQ

[
·
∣∣ Gt] under the enlarged filtration (Gt)t∈[0,T �] and a risk-

neutral measure Q need to be computed for both demand and capacity processes Dt and

Ct, respectively.

Defining A(t) =
∫ t

0
ϑ(s)ds, and based on the manipulations in the previous
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subsection, the GD-adapted dynamics for Dt can be stated as below (see Equation (2.2)):

dqt = −κD

(
qt −

σDeϕ(t)

κD
ϑ(t)

)
dt+ σDeϕ(t)dB̂D

t ,

where B̂D
t is a GD

t -adapted standard P-Brownian motion.46 Applying Girsanov’s theorem,

and given that our market setting is inherently incomplete, we assume that under a

suitably chosen risk-neutral measure Q, B̂D
t is a semi-martingale and decomposes as

follows:

B̂D
t = B̌D

t + ΛD
G (t),

where B̌D
t is a GD

t -adapted standard Q-Brownian motion and ΛD
G (t) =

∫ t

0
λD
G (s)ds is a

finite variation process governing the change of measure as market price of demand risk.

The risk-neutral dynamics for Dt under the enlarged filtration now are:

dqt = −κD

(
qt −

σDeϕ(t)

κD

(
ϑ(t) + λD

G (t)
))

dt+ σDeϕ(t)dB̌D
t ,

where conditional expectation EQ
[
·
∣∣ Gt] and variance VQ

[
·
∣∣ Gt] are then derived in

the standard way. As outlined in Section 2.4, the market price of risk will be assumed

constant and inferred from price quotes of traded derivative contracts. Depending on

whether or not forward-looking information will be used, it will be referred to as λD
G or

λD
F , respectively.

2.7.3 Parameter Estimates for Underlying Fundamental Factors

The following tables provide maximum likelihood estimates and corresponding robust

standard errors relating to the processes for electricity demand (Dt), available capacity

(Ct), and the price for the generating fuel, i.e., natural gas (gt). For further information

on both the derivation of the discrete-time analogues corresponding to Equations (2.2),

(2.6), and (2.9), and on the overall (standard) estimation procedure, see, e.g., Aı̈t-Sahalia

(2002), Schwartz (1997) or, more generally, Hamilton (1994).

46Recall that we assume the filtration (GC
t )t∈[0,T�] to be of such nature that BD

t = B̂D
t + A(t) is a

semi-martingale.
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Chapter 3

Electricity Spot and Derivatives

Pricing when Markets are

Interconnected*

3.1 Introduction

In the aftermath of market liberalization, energy markets in the US and Europe have been

undergoing a number of significant structural developments and institutional changes that

strongly affect the interplay of supply and demand, and hence, the general price formation

process in these markets. In the case of electricity, regulatory developments, such as

the introduction of emissions trading schemes, but also other aspects of market design,

such as power exchanges admitting negative prices, have had a marked and long-lasting

impact on the price dynamics of both spot and derivative contracts. Recently, in both

US and Western European electricity markets, these evolutions have been overlaid with

profound changes in the structure of the supply side that are primarily caused by a general,

continued shift towards generation from renewable energy sources.

Since then, in view of rising shares of solar and wind capacities in many countries,

the questions of (i) how to best integrate renewable generation into the networks and

*This chapter is based on the corresponding working paper entitled “Electricity Spot and Derivatives

Pricing when Markets are Interconnected” co-authored with Roland Füss and Marcel Prokopczuk. Cf.

Füss et al. (2013b). The paper has been presented at the SIRE Conference on “Finance and Commodities”

2013, St.Andrews, and in the PiF Seminar 2013 at University of St.Gallen. Status: submitted to

Operations Research.
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(ii) how to mitigate challenges relating to its intermittency and overall variability have

ranked high on the agenda of system operators, regulatory authorities, and respective

policymakers. However, given that electricity flows are governed by the physical laws of

Kirchhoff and Ohm rather than by the boundaries of geographic markets or otherwise

defined price zones, the issue of integrating renewable generation should not be dealt

with on a national level only, but instead is intimately related to the interconnectivity

of adjacent electricity markets throughout Europe or the US as a whole. Hence, when

assessing future target levels for generation from renewables,1 it is important to see that

these are inherently tied to another aim, i.e., to enable a reliable and efficient transfer of

“green” electricity across well-integrated markets and regions in the first place.

Within the EU, reaching this aim coincides with the intended establishment of

the “Internal Electricity Market” (IEM), an initiative to support further integration of

European electricity markets, with the ultimate goal of achieving full electricity price

convergence across member states.2 Fostering integration between national markets, in

turn, requires substantial investments into transmission infrastructure both within and

across national markets. Already in March 2002, the Barcelona European Council agreed

on a minimum level of interconnectivity between member states of 10% of installed

generation capacities within the respective markets. In this context, the European

Network of Transmission System Operators for Electricity (ENTSO-E) estimates that

for investment projects of “pan-European significance,” a total capital expenditure of

approx. EUR 104bn will be required until 2022 (ENTSO-E, 2012).

However, for the aim of creating a single electricity market across Europe, a

well-defined and functioning market model of how to provide access to cross-border

transmission capacity is at least as important as further investment into transmission

infrastructure. Generally, only few interconnectors in Europe are uncongested3 and over

time, a variety of different congestion management methods have been developed to

govern access to scarce transmission capacity for cross-border trade of electricity. In

the past, these allocation mechanisms have primarily relied on explicit ex-ante schemes,

where traders first have to acquire transmission capacity in order to then arbitrage

1For instance, the European Union (EU) targets a 20% share for renewable energy sources within its
energy mix by the year 2020.

2See, e.g., Article 60(2) of Directive 2009/72/EC: “(...) leading, in the long term, to price
convergence.”

3For instance, this is the case between Germany and Austria, where transmission capacity is sufficient
and no auctioning of rights for interconnector use is required.
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two interconnected, yet institutionally separated electricity markets. In Europe, in

their most widespread form, explicit schemes are usually implemented as (sealed-bid)

auction processes whereby capacity is allocated for different timeframes.4 While explicit

ex-ante auctions of transmission capacity meet the requirement by the EU that access

be provided based on “non-discriminatory market based solutions,”5 they nevertheless

lead to an inefficient market design: amongst a number of deficiencies, it is primarily the

timing sequence of capacity and electricity spot markets that forces traders to acquire

cross-border transmission capacity for a given direction before the spread in electricity

spot prices between the two respective markets is actually determined. Hence, a trader’s

decision about both the direction and the amount of transmission capacity to be requested

can only be based on an expectation of the spread, and in view of generally high levels

of volatility in electricity spot markets, this noisy signal may often cause him to acquire

capacity for the wrong direction.

Since these inefficiencies conflict with the objective of (day-ahead) price convergence

within a single pan-European electricity market, the more efficient alternative of implicitly

allocating cross-border capacity rights via market coupling is increasingly rolled out across

European markets nowadays. Here, markets for transmission capacity and spot electricity

are integrated and, hence, clear simultaneously, which allows for an optimal allocation of

capacities and results in economically efficient cross-border flows. However, although

the previous explicit ex-ante design has already been replaced by an implicit mechanism

for a number of interconnectors, it will continue to play an important role wherever the

harmonization efforts required for market coupling are too high or just infeasible.6

In the US, market architecture for most regions is fundamentally different from the

uniform (zonal) pricing approach that is prevalent in Europe: instead, nodal pricing

(or locational marginal pricing; LMP) has become the standard pricing approach.7 In

4Prior to the implementation of market coupling, explicit auction schemes prevailed throughout
Europe and were (or still are) used to allocate capacity for exchange between, e.g., England – France,
France – Spain, France – Belgium, Belgium – the Netherlands, or the Netherlands – Germany.

5See Regulations (EC) No. 1228/2003 and its follow-up No. 714/2009. Note that this rules out the use
of other cross-border congestion management methods, such as rationing or allocation on a “first-come,
first-served”-basis, given their lack of an inherent market-based mechanism.

6Also see, e.g., McInerney and Bunn (2013) on this argument. Moreover, should the market coupling
algorithm (that determines the optimal cross-border flows) not be available due to technical problems,
the explicit ex-ante scheme will be used as default option to allocate capacity.

7See, e.g., Bohn et al. (1984), Schweppe et al. (1988), and Hogan (1992) for an overview. Nodal
pricing (in different forms) has been implemented, e.g., in California (CAISO), Texas (ERCOT), in the
Midwest (MISO), New York (NYISO), and New England (ISO-NE) markets, in the PJM Interconnection,
and in the Southwest Power Pool (SPP).
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an LMP-based market, the market area is subdivided into numerous pricing points,

or nodes, for each of which an individual marginal electricity price is calculated. For

instance, in the day-ahead market, participants submit bids and offers for specified

point-to-point transactions which are then aggregated and matched by the central market

administrator that clears the market. Thus, both day-ahead prices and corresponding

flows are determined simultaneously and in the case of no congestion, marginal prices will

be equal at each node. However, it is important to note that this approach optimally

addresses transmission constraints within markets only, whereas the above mentioned

problems in efficiently setting up cross-border transactions in Europe also apply for

transactions between markets in the US. For instance, if a trader wants to arbitrage

the PJM and NYISO markets, his transaction still needs to be based on an expectation

of the price spread between the two markets so that less-than-optimal or even adverse

interconnector flows are a common problem on both sides of the Atlantic.

In the future, interconnectivity within the still fragmented US electricity grid is

generally expected to increase further – e.g., through projects such as the planned “Tres

Amigas Superstation,” a bundle of three 5-gigawatt (GW) transmission lines that are

supposed to unite the three regional grids in the US into a single national grid.8 While

the market design for this emerging huge trading hub is still being worked out, a solution

based on implicit allocation, i.e., market coupling, may likely be expected.9

In this chapter, we show both empirically and theoretically that the question

of explicitly versus implicitly allocating cross-border transmission capacity induces

important microstructure effects between interconnected electricity markets,10 which in

turn has significant implications for pricing and hedging in these markets. Both the

pace and scope of the above mentioned structural changes in electricity markets pose

considerable challenges to market participants and, hence, require to use increasingly

sophisticated models that are capable of adequately reproducing such changes in the

8Note that a grid or interconnection is defined as comprising several markets (such as PJM, NYISO,
ISO-NE etc. for the Eastern Interconnection) that are electrically tied together and operate at a
synchronized frequency. Currently, the three regional grids – the Eastern Interconnection, the Western
Electricity Coordinating Council (WECC), and the Electric Reliability Council of Texas (ERCOT) – are
only loosely tied together, which impedes, e.g., the transfer of “green” energy generated from wind in
Texas or sun in Arizona to centers of high demand within the Eastern Interconnection.

9In 2012, Tres Amigas LLC and EPEX Spot have announced a joint cooperation agreement in order to
“share mutual expertise in the development and coupling of their respective markets” (EPEX-Spot, 2012).
EPEX Spot operates, amongst others, the coupled electricity spot markets in Germany and France.

10Unless otherwise stated, when using the term “explicit allocations,” we always refer to explicit
ex-ante allocations.
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“allocation regime.” Moreover, since traditional reduced-form models for electricity

pricing (although popular) are unable to capture these effects, model risk increases even

further, leaving previously used pricing approaches unreliable in many instances.

As such, we contribute to the literature in the following ways: first, we provide

substantial empirical evidence of how spot and futures prices are impacted by the

different ways to organize cross-border exchange between electricity markets. Based on

both interconnector flows and corresponding electricity prices in adjacent markets, we

contrast the above mentioned explicit and implicit allocation schemes and examine how

the workings of either mechanism are reflected in empirical price dynamics.

Second, to the best of our knowledge, we are the first to analyze different set-ups

for cross-border trade of electricity in a fully stochastic-dynamic setting, based on

fundamental state variables such as demand and fuel prices for each market.11 More

precisely, we propose a fundamental two-market model where, due to its granular

structure, the influence of the above aspects of market design on the price formation

mechanism can be mimicked and re-produced in a realistic way; thus, this setting not

only addresses the shortcomings of reduced-form approaches, but also enables us to study

in detail the interplay between the different “allocation regimes” and the ensuing dynamics

for electricity spot and derivative prices. More generally, our framework allows for analytic

pricing formulae for futures (and also options) under both allocation regimes, which adds

to its general applicability and helps to retain tractability and ease of use for practitioners.

Third, we show how the most important stylized facts of electricity spot price

dynamics – price spikes along with high levels of volatility – are altered through the

introduction of market coupling in two adjacent markets. More precisely, our model both

reproduces and allows to further investigate empirically observed facts such as a “volatility

reduction effect” and a general softening of price spikes through market coupling.12 Taking

a risk management perspective, we also show that interconnectivity of electricity markets

can strongly impact the term structure of futures prices, such as reversing curves from

backwardation into contango and vice versa.

11Note that while different ways of organizing cross-border trade of electricity have been thoroughly
examined in the literature (see, e.g., Ehrenmann and Smeers, 2005), these analyses often rely on an
exogenous deterministic and/or non-sequential setting.

12For instance, on 16 June 2013, given a combination of low demand and high levels of non-flexible
generation, negative baseload prices were prevailing throughout the French, Belgian, and German
day-ahead electricity markets. Since the surplus was particularly high in France, the market coupling
mechanism did not achieve price convergence with neighbouring markets as flows required to equalize
prices were exceeding interconnector capacities. However, as noted by EPEX Spot on that day, “(...)
Market Coupling helped to absorb the price peaks despite the low price convergence” (EPEX-Spot, 2013).
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Finally, the basic idea of directly reflecting key aspects of capacity allocation

mechanisms in the price dynamics of the respective commodity can easily be transferred

into a structural setting where gas pipeline capacities, storage access, or also bandwidth

for data transfer have to be acquired prior to (or simultaneously with) commodity markets

clearing. Hence, the general structure of our model can also serve as an important

benchmark case for other network industries such as natural gas or telecommunications.13

The remainder of this chapter is structured as follows: the next section outlines

the workings of the explicit and implicit schemes in more detail and provides further

institutional background for cross-border trading of electricity. Section 3.3 continues the

discussion of the two allocation regimes from an empirical point of view by examining

the price dynamics of several coupled and non-coupled electricity markets in Europe

and the US. Section 3.4 develops the fundamental two-market model and shows how

both explicit ex-ante and implicit allocation mechanisms for capacity rights can be

accommodated within this framework. Numerical simulations and comparative-static

analyses are employed to confirm that the model is capable to reproduce the key stylized

facts of interconnected electricity markets. Section 3.5 concludes.

3.2 Institutional Background

The organization of cross-border trade of electricity, by its nature, is characterized by a

variety of institutional specificities and operational complexities. In the following, to lay

the grounds for a detailed analysis of the above mentioned allocation mechanisms and their

impact on electricity price dynamics, we will therefore only focus on the key conceptual

ideas of each regime, but leave aside other institutional details and technicalities that are

not necessary to motivate our modeling framework.

3.2.1 Explicit Allocation Schemes

The generally widespread implementation of explicit allocation mechanisms is mainly due

to the fact that they can quickly be set up without requiring a particularly high level

13See, e.g., McDaniel (2003) and Stern and Turvey (2003) for further information and a general
overview on capacity auctions in network industries. With respect to natural gas, note moreover that the
general idea of electricity market coupling in Europe is currently planned to be transferred to the still
fragmented gas markets where first coupling arrangements have recently been proposed (and partially
implemented) by several European TSOs and gas exchanges. For instance, for the PEG Nord & Sud zones
in France (which are linked by a physical bottleneck), a gas market coupling project was implemented in
July 2011.



Electricity Spot and Derivatives Pricing when Markets are Interconnected 71

of institutional harmonization between adjacent electricity markets. Importantly, as is

characteristic for explicit schemes, physical transmission capacity markets and electricity

(spot) markets are separated from each other, with the first usually clearing ahead of

the latter. Hence, enabling cross-border trade in this way only requires a low degree of

integration and joint coordination between both transmission system operators (TSOs)

and power exchanges in adjacent markets. For instance, this avoids the necessity for a

common trading platform and uniform exchange rules including a simultaneous closing of

day-ahead auctions for (spot) electricity across markets. However, given that day-ahead

prices in both markets are not yet known by the time when traders have to submit their

bids for transmission capacity, this generally leads to an inefficient market design.14 These

inefficiencies manifest in interconnectors frequently not being used up to their thermal

capacity limits or in adverse physical flows where electricity is directed from a more

expensive market into a cheaper connected market. In such a situation, cross-border

traders have failed to correctly anticipate the price spread ex-ante, and hence end up

having acquired transmission capacity for the “wrong” direction.

From an operational point of view, for most interconnectors, explicitly allocated

transmission rights are physical in nature and are assigned for a pre-specified direction of

flow (e.g., F→ GER) and for different timeframes. For instance, prior to the introduction

of market coupling at the French–German border, physical transmission rights (PTRs)

could be acquired via explicit annual, monthly, and daily auctions. Depending on the

timeframe, allocated transmission rights would hence entitle a trader to nominate and

physically exchange electricity in a given direction from one market to the other during

any hour of the year (month or day, respectively). Figure 3.1 illustrates in more detail

the relevant steps to be taken in order to set up such a cross-border transaction, taking

as example the explicit ex-ante auction scheme at the French–German border before it

was replaced by market coupling in 2010.15 When the holder of a periodic (i.e., monthly

or yearly) transmission right wanted to engage in a cross-border transaction on day t, the

TSO had to be notified by 08:15am on day t−1 and provided with a schedule detailing the

respective capacities to be nominated during every hour on day t.16 In case these capacity

14This is a well-documented fact in the literature. Inefficient cross-border trade across various
European markets has been analyzed by, e.g., Turvey (2006), Kristiansen (2007), Marckhoff and Muck
(2009), Bunn and Zachmann (2010), Bunn and Martoccia (2010), or McInerney and Bunn (2013).

15Although auction rules may differ across markets, the overall structure and timeline of the allocation
procedure described here can generally be seen as representative for other explicit ex-ante schemes.

16See RTE (2009a), p. 17, for transactions between Germany and France.
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holders did not want to trade, their non-nominated capacities originally “earmarked”

for periodic transactions were implicitly transferred and added to those capacities to be

allocated in the daily market. In that case, according to the “use it or sell it” (UIOSI)

principle, traders with monthly or yearly rights received as financial compensation for

every megawatt (MW) of non-nominated capacity the price as determined during the

daily auction for the corresponding hour.17 Based on the nominations received by the

holders of monthly and yearly transmission rights, the TSO then published an update of

the available transmission capacity (ATC) that was to be offered on the daily market by

08:45am on day t − 1; bids for the daily auction then had to be submitted by 09:30am

at the latest, and results were released half an hour later. As already mentioned, this

is well ahead of the close of electricity spot (i.e., day-ahead) markets at around noon:

11:00am for French exchange Powernext and 12:00pm (noon) for its German counterpart

EEX at that time. Finally, having been awarded a transmission right in the daily market,

traders had to notify the TSO by 02:00pm whether they were going to use it and set up

a cross-border transaction on the following day t. As opposed to the UIOSI principle,

for holders of daily transmission rights, however, the “use it or lose it” (UIOLI) principle

applied instead. I.e., in the case of non-nomination, there was no financial compensation;

these unused rights were then, in turn, transferred to the intraday market.

In the US, the institutional design for cross-border (i.e., market-to-market)

transactions is less harmonized than in Europe and a variety of different allocation

methods coexists, sometimes even at the same border. While a detailed description of

these is beyond the scope of this article, we can focus on the following key issues: in view

of the nodal pricing system in the US, combining paths of fixed point-to-point transactions

would generally allow a trader to ship electricity across states with corresponding

path reservations being allocated on a “first-come, first-serve” basis. Given the

inherent inefficiency of these fixed allocations, many markets have replaced the physical

reservations with a financial transmission rights framework and offer-based export/import

scheduling (Spees and Pfeifenberger, 2012). Alternatively, several merchant lines have

also been awarded transmission rights which are then re-allocated via long-term contracts

or shorter-term auctions.18 Nevertheless, irrespective of the exact institutional setting,

bid selection and pricing by the independent system operator (ISO) and the physical

17See RTE (2009b), p. 20.
18Examples include the Hudson and Linden VFT interconnectors at the PJM-NYISO border.



74

scheduling of a market-to-market transaction are still two clearly distinct procedures for

most electricity markets in the US. Hence, whereas other non-auction based allocation

mechanisms may be more common in the US, these mechanisms share a crucial feature of

explicit schemes, i.e. of requiring traders to schedule their transactions ex-ante. Even

though there are increasing efforts to move the physical scheduling process closer to

real-time,19 traders still need to rely on an expectation of the price spread between

markets, which is – roughly speaking – comparable to the explicit allocation schemes

used in Europe.

3.2.2 Implicit Allocation Schemes

By contrast, the concept of market coupling avoids the above timing problem for

cross-border traders by clearing capacity and electricity markets simultaneously, i.e., by

implicitly allocating transmission rights within the spot auction of electricity in each

market. Conceptually, a pricing mechanism that is closely related to market coupling has

long since been implemented in the Nordic market, Nord Pool, the common electricity

market for Norway, Denmark, Sweden, Finland, Estonia, and Lithuania. Here, in a first

step, the market clearing system price is determined by equating total demand and supply,

as aggregated across each national market, thereby ignoring any potential constraints in

transmission capacity between bidding areas.20 Hence, in case of no congestion, there is a

single price for all bidding areas. Otherwise, depending on the location of the transmission

bottleneck(s), the market is “split” into several pricing zones that are assigned different

area prices, and that comprise one or more bidding areas.

The results of the “market splitting” mechanism are in general similar to what is

achieved by the variant of market coupling that is currently implemented between major

Western European markets, and that is examined in this study. Yet, in contrast to

Nord Pool, it is not a single power exchange that determines (in a “top-down” way)

whether to subdivide or retain a single pricing zone across markets. Instead, market

19For instance, the PJM and NYISO markets have recently proposed “Coordinated Transaction
Scheduling” (CTS) whereby traders have the option to submit a price spread at which they are willing to
set up a market-to-market transaction rather than placing indivdual bids in each market. While supposed
to enhance economically efficient interconnector use, transactions still need to be scheduled based on an
expectation of the spread.

20In the Nordic market, national markets are further subdivided into one or more bidding areas,
reflecting transmission bottlenecks both within and across national markets. For instance, the Danish
market is subdivided into two bidding areas (Western and Eastern Denmark) which are linked by a 600
MW interconnector that is frequently congested.
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coupling is characterized by a more de-centralized (“bottom-up”) approach where the joint

coordination effort between all involved national TSOs and power exchanges determines

which national markets are “coupled” with each other to form a single pricing zone.

Specifically, for every day and each interconnector, TSOs determine the amount of

available transmission capacity (ATC) for which the corresponding transmission rights

are no longer allocated explicitly but instead assigned to the respective power exchanges

in the adjacent markets. In order to achieve spot price convergence, a joint optimization

algorithm considers the net import/export positions of each participating exchange for

a given clearing price and thus determines the optimal cross-border flows. As such,

a buy-order in a higher-priced market can be matched with a sell-order in a cheaper

adjacent market, thus mitigating the price differential with any resulting cross-border

flows implicitly covered by the transferred capacity rights. As shown by Meeus et al.

(2009) or Weber et al. (2010), the underlying optimization problem can be re-formulated

as maximizing overall welfare, constrained by interconnector capacities and other real-time

limitations. If one of these constraints is binding – e.g., if flows necessary to equalize prices

exceed the ATC –, then prices cannot fully converge and the resulting congestion rent is

collected by the owner of the interconnector.

The previously outlined explicit setup at the French–German border was modified

when Germany joined the already existing market coupling between France, the

Netherlands, and Belgium (the so-called “Trilateral Coupling”) on 09-Nov-2010, marking

the starting point for the Central Western Europe (CWE) day-ahead market coupling. As

a major change to the pre-existing setting, an explicit allocation of transmission rights for

interconnector access is henceforth only held for monthly and yearly contracts, whereas

on a day-ahead stage, all cross-border transmission capacities are available to cover the

market coupling flows.21 Following the harmonization of day-ahead gate closure times

(12:00pm noon) at all involved power exchanges, the market coupling algorithm then starts

to determine the optimal cross-border flows at around 12:05pm. Finally, the resulting

day-ahead prices are published by the CWE power exchanges by 12:55pm.22

21Note that the transmission capacity of an interconnector is usually “sliced” and allocated for different
timescales. Thus, off-exchange transactions, such as customized OTC cross-border trades, can still be
executed by traders acquiring monthly or yearly transmission rights, whereas all remaining interconnector
capacity can be used by power exchanges for market coupling purposes. Importantly, as pointed out by
Meeus (2011), retaining such a split helps to avoid a potential monopolization of the entire organization
of cross-border trade of electricity by the power exchanges participating in market coupling.

22See http://www.marketcoupling.com/about-emcc/daily-operations.
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3.3 Empirical Analysis:

Market Design and Price Dynamics

3.3.1 Ex-Ante Scheduled Transactions in Europe and the US

The general economic inefficiency of explicit ex-ante schemes is analyzed in Figure 3.2

where the LHS graph plots the spread between German and French day-ahead power prices

against corresponding net transit nominations as percentage of available interconnector

capacity. Clearly, not only are interconnector capacities oftentimes left (partially) unused

– although a non-zero price spread in an efficient market setting would call for additional

cross-border flow until the price spread is fully exploited or the maximum interconnector

capacity is reached. Even worse, out of all nominations during the observation period

(26-Oct-2006 to 09-Nov-2010), approx. 32% led to flows in the wrong direction altogether.

On a more detailed level, the data also reveal that during both peak- and off-peak

hours, French day-ahead power prices exceed German prices more frequently than vice

versa – or, more precisely, during approx. 58% of all hourly periods.23 This pattern, in

turn, also seems to impact the nomination behavior by cross-border traders: conditional

on the spread being negative, i.e. for French day-ahead prices exceeding German prices,

net interconnector flows in the economically correct direction (i.e., to the higher-priced

market) can be observed during approx. 82% of all hourly peak- and off-peak periods.24

By contrast, given a positive day-ahead spread (due to German prices being higher than

their French counterparts), the share of net interconnector flows in the right direction is

disproportionately lower: correct flows can only be observed during approx. 49% of all

hours. Hence, market participants tend to bet on a negative spread, with a positive spread

not only being less frequently observed but apparently also harder to predict correctly.

This diverse picture also manifests as regards the degree of net capacity utilization:

on an overall basis, interconnectors are used at slightly less than 50% of their thermal

capacity when French power prices exceed German power prices. For the opposite case,

average net capacity utilization even gets driven down to less than 10% since, as mentioned

above, adverse flows are observed more frequently. Disaggregating further, we can observe

23Also note that the French–German interconnection, as a series of multiple alternating current (AC)
links, has a higher capacity for GER→F than for F→GER.

24Note that in practice, traders may schedule more flows for those hours where they can be sure to
properly anticipate the price differential between the markets. Hence, on a volume-weighted basis and
conditional on a negative spread, even 93% of all exchanged MWs have flown in the correct direction.
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Figure 3.2: Interconnector Flows: Germany – France and PJM – NYISO
This figure illustrates inefficient interconnector use in both Europe and the US. The LHS graph

plots the day-ahead price spread between Germany and France versus net transit nominations (as

percentage of interconnector capacity) for the same hours. Data shown for the period from 26-

Oct-2006 to 09-Nov-2010. The RHS graph plots the real-time price spread between the PJM and

NYISO markets versus 5-minute scheduled flows (as percentage of interconnector flow limits). Data

shown for the period from 01-Jan-2013 to 30-Jun-2013. The red dashed line indicates economically

efficient flows (as would have occurred under market coupling) such that there is no flow in the

wrong direction, nor less-than-optimal flow in the right direction. Source: RTE (http://clients.rte-

france.com), NYISO (http://www.nyiso.com), and Bloomberg.

that for a price spread of up to 5 EUR/MWh (in either direction) and excluding all adverse

flows,25 French–German interconnectors are still used at only slightly more than 40% of

their thermal capacity. For the complementary case where only price spreads larger than

5 EUR/MWh are considered, “gross” capacity utilization for flows in the economically

correct direction increases to 69%. Clearly, a comparably lower (absolute-level) spread

between day-ahead prices increases the likelihood for traders of having predicted it wrong

during the capacity auction and of hence having to engage in an unprofitable trade, which

ultimately reduces both gross and net capacity utilization.

Similar results can be found when analyzing interconnector flows between the PJM

and NYISO markets in the US during the first half of 2013, as shown in the RHS graph

of Figure 3.2.26 Here, we see that economically inefficient interconnector flows are not

25By contrast, the previous two examples related to net capacity utilization where adverse flows are
included: I.e., for the theoretical case of an interconnector being used up to its full thermal capacity in
both directions, resulting net capacity utilization would be 0%.

26For the actual real-time price spreads, we use the “NY Keystone” (proxy bus) and “PJM
NYIS” prices available via Bloomberg. Five-minute scheduled interconnector flows relate to the
PJM/NYISO interface (i.e., excluding the merchant Linden VFT and Hudson lines as well as the Neptune
Underwater Transmission Line). Data shown for the period from 01-Jan-2013 until 30-Jun-2013. See
www.monitoringanalytics.com for further information.
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only present in day-ahead markets but also when gate closure is moved closer to real-time

(currently 75 minutes prior to the operational hour): in 44% of all 5-minute intervals,

inefficient flows from the more expensive into the cheaper market could be observed. As

regards (net) capacity utilization, the RHS graph clearly shows that the system operator

includes a safety margin of approx. 10% of transfer capacity (which may vary over time

and for which our data is not adjusted).27 However, even abstracting from this, capacity

utilization seems to be less endogenously driven by price differentials than in the LHS

graph. In fact, imports into NYISO prevail (81% of all flows) although positive price

spreads (economically justifying an import) were only observed in 51% of all cases.

3.3.2 Spot and Futures Prices under the CWE Market Coupling

The start of the CWE market coupling has fundamentally changed the dynamics

of the day-ahead price spreads between Germany–France and Germany–Netherlands,

respectively, as Figure 3.3 clearly illustrates for hours 9 and 18 of the day: for both

hourly periods, with few exceptions at mid-November 2010, the spreads are mainly

negative or zero, providing clear evidence for interconnector flows henceforth taking

economically correct directions – i.e., from the then mainly lower-priced German market

to the higher-priced Dutch and French day-ahead markets. The data show that until

year-end 2010, exact price convergence was reached in 81% of all hourly periods for the

German–Dutch day-ahead spread and in approx. 52% of all hours for the German–French

spread. Note however, that for specific hours of the day, these percentages can vary

significantly. For instance, for the German–French spread over the same period, German

day-ahead prices during hour 24 of the day tend to clearly fall below French prices, so that

price convergence could only be reached during less than 23% of all hours. By contrast,

for hour 17 (18), a zero price spread was observed during 80% (74%) of all periods.

These patterns also manifest when analyzing the long-term behavior of the day-ahead

spread between the German and the Dutch electricity markets, as illustrated in Figure 3.4.

For the spread between the prices of electricity to be delivered in both markets during hour

12 (11:00am - 12:00pm/noon) on the next day, Figure 3.4 shows that since the introduction

of the CWE market coupling, positive price spreads were no longer observed at all – with

very few, notable exceptions: On 27 March 2011, after the close of the day-ahead auction

27In order to guarantee operational security, a fraction of the interconnector capacity is usually reserved
in order to be able to quickly react to contingencies.
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Figure 3.3: Spread in Day-Ahead Prices: GER – F and GER – NL
This figure shows the spread in day-ahead electricity prices between Germany and France as well

as Germany and the Netherlands. The LHS graph displays day-ahead prices for hour 9 of the day

(8:00–9:00am), whereas the RHS graph relates to hour 18 (5:00-6:00pm). The vertical dashed line

marks the start of the CWE (Central Western Europe) market coupling between Germany, France,

the Netherlands, and Belgium as per 09-Nov-2010. All data sourced from Bloomberg.

for the following day, the market coupling optimization algorithm could not be run due to

a bug in the system which was ultimately caused by the change to daylight-saving time

on that day. Consequently, as a fallback mechanism in the case of such a de-coupling,

explicit (“shadow”) auctions had to be organized in order to allocate the available daily

transmission capacity.28 For the remaining days, however, the spread was either zero or

negative, implying that whenever available transmission capacity is insufficient in order

to reach price convergence between the two markets, this applies to flows for the direction

GER→NL, but not vice versa. More recently, negative spreads have been slightly more

prevalent, thus driving down the rate of price convergence, which can be attributed to the

steadily growing renewables feed-in in Germany, combined with continued strong levels

of natural gas prices affecting the gas-based Dutch electricity market.29

Table 3.1 summarizes the above qualitative observations by providing descriptive

statistics for the German–Dutch day-ahead spread during selected hours of the day and

28See, e.g., EPEX-Spot (2011) or CREG (2011). A positive spread could also be observed on 29-Oct-
2011, which, interestingly, again coincides with the clock change back to winter time.

29The role of natural gas as marginal fuel in the Dutch market has been further strengthened since
the commissioning of the BritNed subsea cable that links the Dutch with the British market. However,
note that there may also be more subtle, technical aspects to be considered: Especially for highly meshed
grids, loop flows may lead to physical flows that differ from corresponding commercial point-to-point
transactions. See Weber et al. (2010) for an illustrative example. In practice, for instance, high wind
generation in the northern part of Germany may lead to unexpected loop flows of electricity into the
neighboring Dutch, Czech, and Polish markets, from where it flows back to higher-demand areas in
Southern Germany. TSOs need to reflect potential loop flows as contingencies within the safety margins
of their interconnectors, which, in turn, reduces capacity available for market coupling flows.
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Table 3.1: Descriptive Statistics: GER – NL Day-Ahead Spread

This table reports summary statistics for the spread si between day-ahead electricity prices in

Germany and the Netherlands for selected hours of the day (i = {6, 9, 12, 15, 18, 21}). The baseload

spread (sbase; “Base”) is defined as the (unweighted) arithmetic average of all 24 hourly spreads

on a given day. The “Pre Market-Coupling” sample covers the period from 01-Jan-2002 until

08-Nov-2009, the “Post Market-Coupling” sample covers the period thereafter until 31-Dec-2012.

Mean+ and Std. Dev.+ are defined as μ+ = E
[
si|si > 0

]
and σ+ =

√
E

[
(si − μ+)

2 ∣∣ si > 0
]
,

respectively. Note that spreads beyond a threshold of 500 EUR/MWh were excluded from the

samples in order to avoid distortions. All data sourced from Bloomberg.

Hour of Day 6 9 12 15 18 21 Base

P
re

M
a
rk

e
t-
C
o
u
p
li
n
g

n 3234 3234 3225 3229 3205 3234 3234

si < 0 33.6% 52.3% 69.2% 73.1% 65.5% 61.9% 68.6%

Mean 2.01 -2.45 -15.09 -9.10 -12.07 -4.44 -4.84

Mean+ 5.34 6.58 7.89 5.64 6.29 3.83 3.30

Mean− -4.50 -10.66 -25.31 -14.51 -21.75 -9.51 -8.57

Median 1.81 -0.32 -3.90 -3.02 -2.00 -1.55 -1.83

Min -129.47 -464.17 -481.07 -477.09 -480.13 -376.49 -154.98

Max 43.11 256.84 345.05 430.09 412.31 70.14 74.63

Std. Dev. 7.13 21.97 46.34 33.84 47.07 15.31 13.47

Std. Dev.+ 4.94 13.45 19.82 18.96 19.79 4.92 6.10

Std. Dev.− 6.25 24.83 50.90 36.43 53.93 17.21 14.27

Skewness -2.03 -6.83 -4.58 -6.15 -4.97 -8.08 -4.17

Kurtosis 39.29 141.51 35.15 79.64 40.01 138.19 32.41

P
o
st

M
a
rk

e
t-
C
o
u
p
li
n
g

n 784 784 784 784 784 784 784

si < 0 14.7% 15.1% 35.1% 38.5% 24.9% 24.1% 60.5%

si = 0 83.0% 82.7% 64.5% 61.4% 73.5% 74.4% 30.2%

Mean -1.77 -1.17 -4.22 -4.92 -3.00 -2.70 -3.11

Mean+ 2.38 12.15 2.92 0.75 9.10 5.07 0.77

Mean− -12.47 -9.64 -12.05 -12.78 -12.67 -11.53 -5.25

Median 0.00 0.00 0.00 0.00 0.00 0.00 -0.50

Min -217.23 -40.15 -76.90 -139.76 -57.39 -57.04 -89.43

Max 7.02 30.01 5.41 0.75 28.58 9.86 8.23

Std. Dev. 11.58 5.47 8.39 9.63 7.82 6.88 6.67

Std. Dev.+ 2.03 10.30 2.25 n.a. 7.26 3.33 1.38

Std. Dev.− 28.01 8.80 10.31 11.85 10.63 9.57 7.85

Skewness -15.45 -2.17 -2.92 -4.83 -2.89 -3.16 -6.43

Kurtosis 273.80 17.34 12.17 50.54 11.09 12.47 69.76
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Figure 3.4: Spread in Day-Ahead Prices: Germany – Netherlands
This figure shows the spread in day-ahead electricity prices between Germany and the Netherlands

during the period from 01-Jan-2006 to 31-Dec-2012. Underlying day-ahead prices relate to hour

12 of the day (11:00am–12:00pm). The vertical dashed line marks the start of the CWE (Central

Western Europe) market coupling between Germany, France, the Netherlands, and Belgium as per

09-Nov-2010. All data sourced from Bloomberg.

for the corresponding baseload spread, i.e. the average of all 24 hourly spreads. As the key

characteristic of market coupling, price convergence – driving down the spread to zero – is

reflected in several of the statistics. For instance, note that a zero baseload spread could be

observed for approx. 30% of all days since 09-Nov-2010, implying that price convergence

was not only reached for several hours, but even for all 24 hours on these days. On a

more detailed level, we also see that conditional on the spread being negative, both mean

and standard deviation tend to be lower. Consequently, since the introduction of market

coupling, not only can negative spreads si < 0 be observed less frequently, their spikiness

is also reduced in terms of absolute size and variation. This change in the dynamics of the

spread and, hence, of its individual components, can be explained by the fact that under

market coupling, supply and demand shocks occurring in the interconnected markets can

be mitigated more easily – to the extent that these shocks are non-synchronous: The

coordination of cross-border flows between coupled markets always helps to reduce the

economic scarcity (abundance) of net supplies that is signaled by electricity prices in one

market spiking upwards (downwards).30

Finally, as regards the impact of market coupling on futures prices, both empirical

findings and theoretical arguments provide a mixed picture thus far. On the one hand, as

30See De Jonghe et al. (2008) and Huisman and Kiliç (2013) for an analysis of such volatility reduction
potential in the context of the Trilateral Market Coupling between France, Belgium, and the Netherlands.
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Figure 3.5: Spread in 1-Year Ahead Futures Prices: GER – F and GER – NL
This figure shows the spread in (generic) 1-year ahead futures contracts between Germany and

France as well as Germany and the Netherlands during the period from 01-Jan-2006 to 31-Dec-

2012. The vertical dashed line marks the start of the CWE (Central Western Europe) market

coupling between Germany, France, the Netherlands, and Belgium as per 09-Nov-2010. All data

sourced from Bloomberg.

is well known, it is the non-storability of electricity that causes the classic cost-of-carry

relationship between spot and futures prices to break down, which has led to the common

perception that electricity has a “split personality” with respect to spot and futures prices

(Pilipovic, 1998). As such, the argument that futures prices under market coupling need

to converge solely “because spot prices do” does not hold. On the other hand, and

regardless of the above, the well-known interpretation of futures prices as expected spot

prices at maturity under a suitably chosen (possibly non-unique) risk-neutral measure

Q (Cox and Ross, 1976; and Harrison and Kreps, 1979) still holds – also for electricity.

Therefore, the fact that the 1-year ahead German–Dutch futures spread in Figure 3.5

qualitatively tracks the flat and, later on, widening trajectory of the corresponding spot

spread during the years 2011 and 2012 in Figure 3.4, may be seen in line with this

reasoning.31 Empirically, the average spread between 1-year ahead German and Dutch

futures contracts (from 01-Jan-2006 until the start of market coupling) amounts to -4.49

EUR/MWh, whereas the average post-coupling spread has reduced to -1.23 EUR/MWh

(0.05 EUR/MWh in 2011 and -2.61 EUR/MWh in 2012). Yet these results remain slightly

inconclusive – especially in view of a generally highly non-constant supply side in each of

31This simplified argument assumes any potential risk premia to be constant and sets expected spot
spreads equal to realized spreads. Also note that although movements in the German–Dutch spot and
futures spreads may coincide as displayed in the two figures, Figure 3.4 only displays the day-ahead
spread for hour 12 of the day and not an average baseload spread.
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the two markets: for instance, structural changes such as the German nuclear phase-out

or a further continued increase in German renewable generation capacity (that outpaces

European neighbors) may well have been anticipated and reflected in futures prices at

that time already, but not in spot prices. In Section 3.4, we will revisit these aspects from

a theoretical point of view and further analyze the question of futures price convergence

under market coupling within our proposed modeling framework.

3.4 Theoretical Analysis:

Modeling Two Interconnected Markets

In order to conduct our theoretical analysis of the different market designs, we propose

a fundamental two-market framework that is sufficiently granular to reflect the impact

both of the most important underlying price drivers as well as of the different allocation

mechanisms on price dynamics, while retaining flexibility and mathematical tractability

at the same time.32 Taking the class of fundamental electricity pricing models as starting

point,33 we first adopt a setting similar to the one proposed in Füss et al. (2013a) in

order to model electricity spot prices in each market. Similar to Skantze et al. (2004)

and Coulon (2013), flows on the interconnector linking the two markets are then derived

endogenously, depending on whether corresponding cross-border transmission rights are

assumed to be allocated explicitly ex-ante or implicitly via market coupling.

3.4.1 Dynamics of Fundamental Variables

In the following, we define a simplified continuous-time setting of two interconnected

markets where electricity prices in each market i = {1, 2} are modeled as a function of

32From a technical point of view, it seems obvious that traditional reduced-form approaches are
unsuited to include above aspects of market design into the price formation mechanism in a sufficiently
detailed manner: irrespective of whether spot prices in two adjacent markets are modeled simultaneously
in a bivariate reduced-form setting or whether the corresponding spot spread is modeled in a univariate
setting, the ensuing price dynamics will not reflect the inherent interconnectivity between the markets
and, hence, will always ignore the influence of the other market on domestic prices (or of both markets
on the corresponding spread). Consequently, price dynamics will not be tied to any underlying economic
causality that governs the exchange of cross-border flows, resulting in a general mis-specification of the
model. See Mahringer (2013) for an extended critique of the reduced-form approach in a multi-market
modeling context.

33See, e.g., Eydeland and Wolyniec (2002) for a general overview on the various approaches for
electricity pricing, and Carmona and Coulon (2012) for a detailed introduction into the class of
fundamental models for electricity pricing.
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underlying electricity demand Di,t as well as the cost of the marginal fuel gi,t used for

electricity generation.

For the dynamics of electricity demand Di,t on a filtered probability space(
Ω,FD,FD = (FD)t∈[0,T �],P

)
, a mean-reverting Gaussian Ornstein-Uhlenbeck (OU)

process combined with a deterministic seasonal function has generally been considered

an adequate modeling choice:34

Di,t = qi,t + sDi
(t), (3.1)

dqi,t = −κqiqi,tdt+ ηqidBi,t, (3.2)

where qi,t is an OU-process for market i with mean-reversion parameter κqi , Bi,t a standard

Brownian motion, and sDi
(t) a deterministic seasonality function in order to capture the

distinct seasonal patterns that electricity demand usually exhibits.35 Note that since

we are modeling two geographically neighbouring markets, q1,t and q2,t are likely to be

correlated, i.e., we allow for dB1,tdB2,t = �qdt.

Regarding the type of fuel that is used for electricity generation, we only propose a

general specification of the fuel price dynamics gi,t here since these will strongly depend on

(i) the generation park of the respective electricity market to be modeled (e.g., coal- vs.

gas-based markets) and (ii) potentially also on the maturity of the electricity (derivative)

contract to be priced.36 Hence, on a filtered probability space
(
Ω,Fg,Fg = (Fg)t∈[0,T �],P

)
,

we assume prices for the marginal generating fuel gi,t to be governed by the commonly

used mean-reverting one-factor model analyzed by Schwartz (1997):

ln gi,t = Xi,t + sgi(t), (3.3)

dXi,t = −κXi
Xi,tdt+ ηXi

dWi,t, (3.4)

where Xi,t is an OU-process for market i with mean-reversion parameter κXi
, Wi,t a

standard Brownian motion, and sgi(t) a deterministic seasonality function. Again, we

34See, e.g., Aı̈d et al. (2009), Aı̈d et al. (2013), Carmona and Coulon (2012), or Füss et al. (2013a) for
further reference.

35Commonly employed functional specifications include sine-functions or a combination of monthly
dummy variables. See, e.g., Cartea and Villaplana (2008), Aı̈d et al. (2013), or Füss et al. (2013a).

36In case of, e.g., long-term futures contracts, it may be necessary to use a model for generating fuels
that adequately captures both short- and long-term fuel price dynamics, i.e., that needs to include two
or more factors; see, e.g., Cartea and Williams (2008) for an overview in the case of natural gas. While
we refrain from doing so, note that our one-factor setting for the dynamics of the underlying fuel price
process could well be extended to also include log-normal multi-factor models for gi,t.
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allow for potential correlation between the marginal fuel price processes in the two markets

by setting dW1,tdW2,t = �Xdt. This also includes the special case that the marginal fuel

used in both markets is identical, so that we can set �X = 1 and g1,t = g2,t. Note that

we assume zero correlation between demand and fuels both within each market as well as

across markets, which not only helps to simplify valuation formulae but may also seem

justified from an empirical point of view since (short-term) demand is generally inelastic

with respect to fuel prices.37

Although more recent advances in the field of structural electricity price modeling38

have proposed to include additional state variables (such as available generation capacity

Ci,t) or to allow for a model-endogenous determination of the merit order in multi -fuel

set-ups, we confine the model to only include two state variables per market. Although our

model could easily be extended to also include a capacity process Ci,t or an additional fuel

price process for each market, we refrain from doing so as this would neither change the

general structure of the model nor extend the scope of our theoretical analysis, but rather

come at the cost of unnecessary complexity.39 As such, our stylized setting considers

available domestic generation capacity as being fixed in both markets; alternatively, if

a process for available capacity in each market shall nevertheless be integrated into the

model, a straightforward approach would be to model excess capacity, i.e., reserve margins

Mi,t = Ci,t −Di,t, instead of alternatively treating Di,t and Ci,t as separate (but possibly

correlated) processes.

For the purpose of derivatives pricing further below, we need to recast our four-variate

Gaussian setting under the risk-neutral measure Q by introducing (possibly time-varying)

market prices of demand and fuel price risk, λqi,t and λXi,t, respectively. However, given

that, e.g., electricity demand Di,t is not a traded asset, this represents a non-hedgeable

risk, which in turn yields an incomplete market setting. Consequently, “the” risk-neutral

measure Q is no longer uniquely defined but instead comes along with an infinite number

37See, e.g., Pirrong and Jermakyan (2008).
38See, e.g., Aı̈d et al. (2013), Carmona et al. (2013), or Füss et al. (2013a).
39When empirically implementing our model for an electricity market where the marginal fuel may

often change for some time of the day (e.g., coal during off-peak and natural gas during peak hours),
a multi -fuel structural model might still appear more suitable at first glance. However, note that in
electricity spot (day-ahead) markets, products are traded with respect to delivery of electricity during
a certain hour of the day. As such, electricity contracts for delivery during night hours and contracts
with delivery during, e.g., peak hours are essentially different commodities. Therefore, it is still possible
to avoid implementing a multi -fuel setting by modeling electricity prices on an hourly basis (instead of
modeling, e.g., daily (average) electricity prices) and merely fitting the price process gi,t to different fuel
types during peak and off-peak hours.
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of alternative equivalent martingale measures.40 Hence, although straightforward to

accommodate into our model, we choose to set λqi,t = λXi,t = 0, implying P = Q. This

does not affect the comparative-static analyses further below (which are insensitive to an

exact specification of the market prices of demand and fuel price risk) but will rather help

to simplify the following analysis.

To sum up, we obtain a four-variate Gaussian setting where conditional on time t,

q1,T , q2,T , X1,T , and X2,T are distributed as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

q1,T

q2,T

X1,T

X2,T

⎤
⎥⎥⎥⎥⎥⎥⎦
∼ N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

μq1

μq2

μX1

μX2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
q1

ρqσq1σq2 0 0

ρqσq1σq2 σ2
q2

0 0

0 0 σ2
X1

ρXσX1σX2

0 0 ρXσX1σX2 σ2
X2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.5)

with

μqi(t, T ) = qi,te
−κqi (T−t),

σ2
qi
(t, T ) =

η2qi
2κqi

(
1− e−2κqi (T−t)

)
,

μXi
(t, T ) = Xi,te

−κXi
(T−t),

σ2
Xi
(t, T ) =

η2Xi

2κXi

(
1− e−2κXi

(T−t)) ,
ρq(t, T ) =

1

σq1σq2

�qηq1ηq2
κq1 + κq2

(
1− e−(κq1+κq2 )(T−t)

)
,

ρX(t, T ) =
1

σX1σX2

�XηX1ηX2

κX1 + κX2

(
1− e−(κX1

+κX2
)(T−t)) .

For ease of notation, μ(·), σ(·), and ρ(·) will always refer to μ(·)(t, T ), σ(·)(t, T ), and ρ(·)(t, T )

unless otherwise stated, e.g., as will be necessary when introducing our modeling setting

for the case of an explicit ex-ante allocation of transmission rights.

3.4.2 Spot Pricing Formulae

In our setting, the two adjacent electricity markets shall be linked with each other by

an interconnection line with capacity K. Electricity spot prices Pi,t in market i with

40In case of an empirical implementation, λqi,t and λXi,t could be inferred by calibrating the model to
observed prices of traded electricity contracts, as is done in Cartea and Villaplana (2008) or Füss et al.
(2013a), for example. An alternative would be to set Q = Qmin, which denotes the minimal martingale
measure proposed by Foellmer and Schweizer (1991). See, e.g., Aı̈d et al. (2009) for an application in the
context of structural electricity price modeling.
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i = {1, 2} are then defined as follows:

P1,t = α1 g
δ1
1,t exp (β1D1,t − γ1J(t)) , (3.6)

P2,t = α2 g
δ2
2,t exp (β2D2,t + γ2J(t)) , (3.7)

where D1,t and D2,t represents completely inelastic electricity demand as given in

Equations (3.1) and (3.2), and J(t) is the flow of electricity on the interconnection line

at time t. Note that as per standard economic reasoning, we assume that αi > 0, βi > 0,

γi > 0, and δi > 0. Moreover, the market filtration is defined by Ft := FD
t ∨ F

g
t .

Regarding the above functional specification of the relationship between electricity

prices Pi,t and the state variables Di,t and gi,t, the following needs to be taken into

account: in Equations (3.6) and (3.7), electricity spot prices are derived based on an

assumed relationship between generating fuels and demand, as is characteristic for the

class of fundamental electricity pricing models (see, e.g., Skantze et al., 2000; Cartea

and Villaplana, 2008; Pirrong and Jermakyan, 2008; Lyle and Elliott, 2009; or, more

generally, Carmona and Coulon, 2012). These models bridge the gap between standard

reduced-form settings on the one hand, and dynamic equilibrium models on the other

hand, by combining aspects of both approaches: Although derived from an exogenously

imposed functional specification rather than based on the optimization behavior of

individual market participants, electricity prices Pi,t are still derived in a (“reduced”)

equilibrium setting where supply equals demand. Using the exponential function to

represent the characteristically highly convex curvature of the supply curve (merit-order

curve) in electricity markets along with the assumption of completely inelastic demand,

Equations (3.6) and (3.7) merely reflect the simple case of an equilibrium in two markets

with inelastic demand and where imports (exports) are modeled as reductions (additions)

to demand.

Also note that in Equations (3.6) and (3.7), the multiplicative structure of the RHS

terms with respect to the generating fuels is clearly in accordance with the empirical

observation that fuel prices are generally the main driver of merit-order or bid-stack

dynamics in electricity markets (Eydeland and Geman, 1998; Pirrong and Jermakyan,

2008).41 However, when electricity prices are to be modeled on an hourly basis (as opposed

41Hence, the second part of our spot price formula, exp (βiDi,t ± γiJ(t)), is often interpreted as heat
rate function that indicates how many units of generating fuels are required as inputs by generators to
produce one unit of electricity.
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to modeling daily average/baseload prices), occurrences of negative prices may be much

more prominent, in which cases the above fuel price dependence breaks down. Given that

in the event of a negative price spike, renewable generation bidding at negative prices

tends to abound, state variables for coal or gas prices should not impact the negative

price dynamics (although there still may be a link to electricity demand Di,t). While we

do not focus on the issue of negative prices in order to keep the complexity of the following

analysis at a tractable level, note that there are ways to adjust our model for that case.42

3.4.3 Implicit vs. Explicit Allocation

In the following, for the case when capacity rights are implicitly allocated (“ia;” “market

coupling”), corresponding electricity spot prices will be denoted P ia
i,t as compared to P ea

i,t

when the rights are explicitly allocated (“ea;” “connected, but non-coupled markets”).

Note that while the two market regimes analyzed in this study share the same foundation,

i.e., spot price model, they differ with respect to the determination of the interconnector

flow J . Under either regime, J will need to be determined based on a simplified allocation

rule that leaves out complexities observed in reality, yet still yields a pricing formula

that adequately reflects the key characteristics of market coupling (or explicit ex-ante

allocation, respectively) in the ensuing price dynamics.

For the concept of market coupling, this allocation rule needs to mimic the

economically optimal allocation of transmission capacities so that resulting cross-border

flows are always directed from the lower- to the higher-priced market, just until any

existing price differential between the two markets is exploited. Hence, we assume in a

first step that by the joint effort of power exchanges, TSOs, and the market coupling

office in the two markets, J is set in order to reach perfect price convergence between

the markets. The (unconstrained) flow J̃ ia(t) on the interconnector is hence derived as

follows:

P ia
1,t

!
= P ia

2,t (3.8)

α1 g
δ1
1,t exp

(
β1D1,t − γ1J̃

ia(t)
)

= α2 g
δ2
2,t exp

(
β2D2,t + γ2J̃

ia(t)
)
.

42As a first “quick fix”, dependence on fuel prices should be removed by setting δi = 0 so that prices
could, by way of example, be defined as Pi,t = −αi e

−βiDi,t , such as in Carmona et al. (2013). As a second
step, this negative-price regime should be complemented with our standard positive-price regime so that
electricity prices will then be determined in a classic regime-switching setting where state probabilities
can additionally be dependent on electricity demand, so that prices would not be negative all the time,
but only occasionally. See, e.g., Carmona and Coulon (2012) for an application in a one-market setting.
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Solving for J̃ ia(t) then yields:

J̃ ia(t) =
1

γ1 + γ2
[lnα1 − lnα2 + δ1 ln g1,t − δ2 ln g2,t + β1D1,t − β2D2,t] . (3.9)

By contrast, we have discussed in Section 3.2 that one of the key differences between

implicit and explicit allocation of interconnector rights is the timing disconnect between

when a trader is assigned transmission capacity and his physical flows need to be scheduled

on the one hand, and when corresponding electricity (spot) markets clear on the other

hand. More generally, also note that despite the differences between the respective

institutional settings in Europe and the US (e.g., auction-based vs. non-auction based

allocation), the explicit schemes are distinctly characterized by the above mentioned

time lag which has been clearly identified as the main driver for the inherent economic

inefficiency of these schemes in Section 3.3. Hence, in order to derive interconnector flows

for the explicit ex-ante regime, J̃ea(t), the sequential nature of capacity and spot market

clearance needs to be taken into account: in this case, the allocation of capacity rights

is determined ex-ante at some point in time τ = t − k with k fixed. Thus, at time

τ , when being allocated transmission capacity and scheduling flows for time t = τ + k,

market participants now base their decision on the expected price spread between P1,τ+k

and P1,τ+k, serving as best proxy in order to gauge the profitability of their intended

cross-border transaction. Consequently, we shall assume that investors seek to schedule

cross-border trades up until the (unconstrained) flow J̃ea(t) suffices to set expected prices

in the two markets equal:

Et−k
[
P ea
1,t

] !
= Et−k

[
P ea
2,t

]
(3.10)

Et−k
[
α1 g

δ1
1,t exp

(
β1D1,t − γ1J̃

ea(t)
)]

= Et−k
[
α2 g

δ2
2,t exp

(
β2D2,t + γ2J̃

ea(t)
)]

.

Solving the above for J̃ea(t) yields:

J̃ea(t) =
1

γ1 + γ2

[
δ1μX1(t− k, t)− δ2μX2(t− k, t) + β1μq1(t− k, t)− β2μq2(t− k, t)

+
1

2

(
δ21σ

2
X1
(t− k, t)− δ22σ

2
X2
(t− k, t)

)
+

1

2

(
β2
1σ

2
q1
(t− k, t)− β2

2σ
2
q2
(t− k, t)

)
+ lnα1 − lnα2 + δ1sg1(t)− δ2sg2(t) + β1sD1(t)− β2sD2(t)

]
, (3.11)
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where μ(·)(t − k, t) and σ2
(·)(t − k, t) indicate the conditional expectation and variance

relating to the respective processes at time t, yet taken at an earlier point in time (i.e.,

at t− k = τ).43

However, given that both J̃ ia(t) and J̃ea(t), i.e., the optimal flows required to

reach (expected) price convergence, may often surpass the actual capacity K on the

interconnector, the technically feasible flows J ia(t) and Jea(t) are both limited (−K ≤

J (·)(t) ≤ K) and given as:

J (·)(t) = max
(
min

(
J̃ (·)(t), K

)
,−K

)
.

Hence, for either market regime, spot pricing formulae for the two markets need to take

into account the above non-linearity in J (·)(t) and have to distinguish three different

scenarios. For markets 1 and 2 under market coupling, these are:

P ia
1,t = P ia,ex

1,t I{ ˜Jia(t)≤−K} + P ia,un
1,t I{−K< ˜Jia(t)<K} + P ia,im

1,t I{ ˜Jia(t)≥K}, (3.12)

P ia
2,t = P ia,im

2,t I{ ˜Jia(t)≤−K} + P ia,un
2,t I{−K< ˜Jia(t)<K} + P ia,ex

2,t I{ ˜Jia(t)≥K}, (3.13)

where P ia,ex
1,t (P ia,ex

2,t ) is the spot price at time t in market 1 (market 2) if it is exporting

electricity to market 2 (market 1). Physical interconnector flows are then constrained

by the capacity of the transmission line and an amount of K gigawatt (GW) units is

exported from one market to the other. P ia,un
1,t (P ia,un

2,t ) is the time-t spot price if the

interconnection line between the two markets is un-constrained. In such case, there is

no congestion and market 1 (market 2) may either be exporting or importing at below

the capacity limit K. Correspondingly, P ia,im
1,t (P ia,im

2,t ) is the spot price of electricity in

market 1 (market 2) if it is in import-state and J ia(t) has reached its capacity limit. More

explicitly, the above piecewise definition of spot prices under market coupling involves the

43For the explicit scheme, we indirectly assume that the allocation of capacity and the scheduling of
physical flows coincide at time τ , although for the example illustrated in Figure 3.1, scheduling of daily
transactions is set after spot market clearance. However, note that the determination of Jea(t) based on
expected price convergence does not consider the aspect of whether after the close of day-ahead markets,
the trader will actually exercise his transmission right. For instance, if the right is out of the money, i.e.,
if the day-ahead spread turns out to be the opposite of his former belief at time τ = t − k, the trader
could close out his positions by resorting to the intraday platforms in both markets. Thus, the originally
intended cross-border trade would be broken up into a domestic trade in each market, which, however,
leaves unaffected the traders’ commitments to buy/sell electricity in the day-ahead markets. Therefore,
net demand Di,t − Jea(t) in the importing market (Dj,t + Jea(t) in the exporting market) would still be
the same, as it is just another counterparty (i.e., the intraday market) to which electricity is delivered or
from where it is supplied.
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following expressions for market 1 (prices for market 2 are defined analogously):

P ia,ex
1,t = α1 g

δ1
1,t exp (β1D1,t − γ1(−K)) , (3.14)

P ia,un
1,t = α1 g

δ1
1,t exp

(
β1D1,t − γ1J̃

ia(t)
)
, (3.15)

P ia,im
1,t = α1 g

δ1
1,t exp (β1D1,t − γ1K) . (3.16)

If market coupling is not in place and transmission rights are allocated explicitly instead,

spot prices P ea,ex, P ea,un, and P ea,im are defined accordingly.44

Note, however, that our continuous-time setting generally implies that under the

explicit ex-ante regime, the allocation procedure for transmission capacity and/or the

related scheduling of transactions would be held during any infinitesimally small period

of time, rather than, e.g., once a day in the case of day-ahead markets. Likewise, under

market coupling, price convergence at any instance in time is (and will likely remain to

be) out of technical reach. Hence, while adhering to a continuous-time framework for

mathematical convenience, we follow the common assumption of interpreting electricity

prices as discrete-time observations resulting from a price formation process which, in turn,

is driven by the continuous-time dynamics of its underlying state variables.45 Similarly,

in our setting, we can interpret J̃ ia(t) and J̃ea(t) as hypothetical electricity flows which

would prevail at any moment in time, yet which only materialize when it comes to price

formation, i.e., when discretely observed at the scheduling date or at the time when

establishing the market coupling flows.

3.4.4 Analysis of Spot Prices

In order to illustrate the mechanics of our spot pricing formulae, we employ a simulation

with 1,000 time steps for each of the underlying fundamental factors D1,t, D2,t, g1,t,

and g2,t. After simulating sample paths from the discretized processes for the state

variables, we can then impose our different (exogenous) structural pricing relationships

based on Equations (3.6) and (3.7), and depending on whether electricity prices P
(·)
1,t and

44To conserve space, we do not state the corresponding differential equations for P ia
i,t and P ea

i,t . Yet it
is important to note that with an explicit ex-ante scheme, our spot price process is no longer Markovian
given that interconnector flows Jea(t) were already determined by the values of our state variables at
time τ = t − k. The corresponding differential equation hence belongs to the class of stochastic delay
differential equations (SDDE); see, e.g., Mohammed (1984) or Mao (1997) for further information.

45See, e.g., Benth et al. (2008b) or Carmona and Coulon (2012) for a similar discussion.
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P
(·)
2,t are to be derived under an explicit ex-ante or implicit (market coupling) allocation

scheme. Comparability of the simulated spread time-series is ensured by using the same

variates (and, hence, state variables) in each case, thus allowing us to analyze how shocks

from underlying fundamental factors are reflected in electricity prices under the different

regimes for cross-border trade.46 Results are shown in Figure 3.6 where in the top

panel, we additionally have plotted the spread P iso
1,t −P iso

2,t between two isolated electricity

markets with no possibility of cross-border trading. The next two panels show the spreads

P ea
1,t − P ea

2,t and P ia
1,t − P ia

2,t, respectively. Finally, the two panels at the bottom present the

corresponding endogenously determined interconnector flows that are related either to the

spread under an explicit allocation or market coupling regime, respectively.

As can be seen in the top panel of Figure 3.6, without cross-border trade, the spread

P iso
1,t − P iso

2,t fluctuates widely around zero, reaching minimum and maximum values of

approx. -22 EUR/MWh and 26 EUR/MWh, respectively. As shown in the panel below,

allowing for exchange between the markets under an explicit ex-ante scheme generally

mitigates the price differential and thus improves price convergence. Taking as an

example the characteristic spike of approx. 25 EUR/MWh in the top panel (marked

red at simulation step 400), this spike is also reflected in the spread under the explicit

ex-ante regime in the panel below, yet only at approximately half of its original magnitude

(approx. 13 EUR/MWh). At the same time, the spread series P ea
1,t−P ea

2,t still looks slightly

spikier as compared to the case of isolated markets, given that the generally smaller

spread for explicit allocations (as compared to P iso
1,t −P iso

2,t ) comes at the cost of inefficient

interconnector flows that cause it to change its sign more frequently. However, if inefficient

flows Jea(t) go in the wrong direction, spikes of the spot spread will even further increase

as can be seen when examining the second spike highlighted in red towards the end of

the sample period: in case of isolated markets, we have P iso
1,t − P iso

2,t = 14.15 EUR/MWh,

whereas P ea
1,t − P ea

2,t increases to 16 EUR/MWh due to an adverse interconnector flow.

Examining Jea(t) in the second to the last panel, we see that these adverse flows primarily

46More precisely, for the simulation, both markets are identically parametrized; the main input
parameters to our model were set as follows: sD1

= sD2
= 40 GW (i.e., to simplify, we refrain from

incorporating seasonality for the time being), which compares against an interconnector capacity of
K = 2 GW. Furthermore, we have set κqi = 0.5, κXi = 0.001, ηqi = 1.0, and ηXi = 0.02. These
parameter values are in line with the empirical results of Füss et al. (2013a). Additionally, we assume

X = 
q = 0.5. We simulate on a daily basis so that having set k = 1 implies that under explicit
allocation, interconnector flows are determined one day ahead. For the more realistic case of k < 1 (to
reflect intraday timeframes), we can easily adjust our simulation, yet obtain the same qualitative results.
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occur when the fundamentally implied price differential between the two markets is about

to reverse, e.g., as is indicated by the corresponding market coupling flows changing their

direction from import to export (or vice versa).47

Finally, under market coupling, we see that our pricing model adequately captures the

qualitative dynamics of the spot spread as empirically observed, e.g., in Figures 3.3 and

3.4. The “reflected” trajectory of the spread taking on either zero or positive (negative)

values during the first (second) half of the sample period thereby merely reflects that in

our simulation, spot electricity in market 1 is more expensive (cheaper) during most of

that period; hence, a non-zero spread P ia
1,t − P ia

2,t can always be observed whenever the

price differential between the two markets is too high so that interconnector flows J ia(t)

(that would be required to equalize prices in both markets) exceed the capacity limit K.

This occurs in 219 out of 1000 simulation steps. Out of these 219 cases, in turn, it occurs

that Jea(t) = J ia(t) for 99 cases. In these cases, the fundamentals in the two markets

are far apart so that even under an explicit allocation regime, full interconnector use is

induced, and we have P ea
1,t−P ea

2,t = P ia
1,t−P ia

2,t (see, e.g., first spike marked red at simulation

step 400). In the remaining 120 cases with |J ia(t)| = K, corresponding flows Jea(t) are

inefficient so that spikes under market coupling can be further mitigated (see, e.g., second

spike highlighted red).

Our model also allows to investigate more closely the empirically observed volatility

reduction effect of market coupling discussed in Section 3.3. In Figure 3.7, model

sensitivities for the (unconditional) variance of log-spot returns of electricity prices under

market coupling, ln
(

P ia
i,t+1

P ia
i,t

)
, are provided and compared against the variance in case of

isolated markets with no possibility of cross-border trade.48

In the LHS graph, we examine how higher variation in electricity prices (or, more

precisely, in their underlying fundamental drivers) in market 1 is transmitted into market

2, assuming a market coupling regime with interconnector capacity K = {0, 2, 4, 12}. For

47Note that we strictly define only those interconnector flows Jea(t) as efficient where Jea(t) = J ia(t).
This implies that Jea(t) is only efficient when Jea(t) = J ia(t) = ±K, which occurs in 10% of all cases.
76% of all derived flows Jea(t) are inefficient (yet go in the right direction), whereas the remaining 14%
are adverse flows.

48For the sensitivity analyses, we use the same parameters as in the simulation study. Also, we have set
βi = 0.1 and δi = 0.5. For the LHS graph, we still assume state variables to be uncorrelated, 
q = 
X = 0,
although correlation obviously only impacts return variance in the two markets for K > 0. For K = 0,
the unconditional variance of log-spot returns can then be computed as 2× 0.12× 12× (1− 0.6065)+2×
0.52 × 0.22 × (1− 0.9990) = 0.0080, as can be read off from both graphs.



Electricity Spot and Derivatives Pricing when Markets are Interconnected 95

0.5 1 1.5 2 2.5
0

0.004

0.008

0.012

0.016

0.020
Variance Sensitivity: Ratio of Demand Volatilities

ηq1 /ηq2

V
ar
( ln

P
i
,t

+
1

P
i
,t

)

Mkt. 1, K=0
Mkt. 2, K=0
Mkt. 1, K=2
Mkt. 2, K=2
Mkt. 1, K=4
Mkt. 2, K=4
Mkt. 1/2, K=12

−1 −0.5 0 0.5 1
0

0.002

0.004

0.006

0.008

0.010
Variance Sensitivity: Correlation of State Variables


q (for 
X = 0); or: 
X (for 
q = 0)

V
ar
( ln

P
1
,t

+
1

P
1
,t

)

Vary ρ⋅, K=0

Vary ρq, K=2

Vary ρX, K=2

Vary ρq, K=4

Vary ρX, K=4

Vary ρq, K=12

Vary ρX, K=12

Figure 3.7: Sensitivities for Variance of log-Spot Returns

This figure shows sensitivities of the (unconditional) variance of log-spot returns ln
(

Pi,t+1

Pi,t

)
when

varying key input parameters, and assuming given interconnector capacities K of 0GW, 2GW,

4GW, and 12GW, respectively. In the LHS graph, the variance of log-spot returns in both

interconnected markets is plotted against the ratio of (instantaneous) volatilities,
ηq1

ηq2
, for the

processes of electricity demand in both markets (as specified in Equation (3.2)). In the RHS graph,

the variance for market 1 is analyzed when varying the correlation either between the processes for

electricity demand or for the generating fuels in the two markets.

that purpose, the ratio of instantaneous volatilities of the electricity demand processes,
ηq1
ηq2

,

is varied over a range of 0.5 up to 2.5 (thereby keeping ηq2 itself fixed). Consequently, for

the case of isolated markets, the variance of log-spot returns in market 1 (dashed black

line) is steeply increasing, thus merely reflecting the higher variance of the underlying

state variable D1,t that feeds through to spot prices. Given that K = 0, variance in

market 2 remains unaffected, as indicated by the horizontal straight black line. Assuming

a modest level of interconnectivity, K = 2, the dashed dark grey line shows how the

increase in variance for market 1 can be mitigated due to the optimal allocation of

cross-border capacities under market coupling. The ensuing volatility reduction potential

also manifests in the fact that for
ηq1
ηq2

= 1.0, the two dark grey lines intersect at

an approximate level of 0.006: thus, introducing market coupling between these two

identically parametrized markets reduces return variance by some 25% alone. Compared

to the status quo of isolated markets, for K = 2, the increased demand volatility in

market 1 only starts to affect market 2 for
ηq1
ηq2

exceeding a ratio of approx. 2.1, so that up

to this threshold, any increase in ηq1 is outweighed by the merits of coupling. Recalling

the piecewise definition of spot prices (see Equations (3.12) and (3.13)), we see that spot
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prices in markets 1 and 2 will only differ in the import and export states. For higher

levels of interconnectivity, the corresponding “weights” for these states, I{ ˜Jia(t)≤−K} and

I{ ˜Jia(t)≥K}, become smaller whereas I{−K< ˜Jia(t)<K} for the uncongested state increases,

which causes the dynamics of the neighbouring market to increasingly feed through into

the other market. This can also be illustrated technically, when inserting J̃ ia(t) from

Equation (3.9) into P ia,un
1,t from Equation (3.15):

P ia,un
1,t = α1 g

δ1
1,t exp

(
β1D1,t − γ1J̃

ia(t)
)

=
(
α1 g

δ1
1,t

) γ2
γ1+γ2

(
α2 g

δ2
2,t

) γ1
γ1+γ2 exp

(
γ2

γ1+γ2
β1D1,t +

γ1
γ1+γ2

β2D2,t

)
. (3.17)

Consequently, spot prices effectively become a blend of all four state variables and

converge towards each other, as do the light grey variance curves in the LHS graph

of Figure 3.7. Finally, for high levels of interconnectivity, such as K = 12, the resulting

(perfect) price convergence between the two markets also equalizes return variances, as

indicated by the red curves that virtually coincide (except for unrealistically high levels

of
ηq1
ηq2

).

In the RHS graph of Figure 3.7, the variance of log-spot returns in market 1 is

plotted against the correlation between state variables �q or �X . Note that when varying

�q, we keep �X fixed at zero and vice versa.49 When examining both straight and dashed

lines, we again see that higher levels of interconnector capacity K generally allow for a

higher volatility reduction potential as implied by our model. However, when varying

�q, the upward-sloping straight lines imply that variance increases along with correlation,

up until it reaches its upper bound, i.e., the case of isolated markets.50 Intuitively, this

merely reflects the fact that arising synchronicity of demand shocks in the two markets

makes it harder (or even impossible) for the market coupling mechanism to mitigate the

resulting price spikes: if net supplies are scarce in both markets, even an economically

optimal allocation of cross-border capacities cannot improve the situation. Technically,

49Note that the case of 
q > 0 and 
X > 0 should be more realistic from an empirical point of view.
However, setting one of the correlation parameters to zero (while varying the other parameter) helps to
better disentangle and relate the sensitivities to one or the other factor rather than having to consider
mixing effects from both demand and fuel correlations being non-zero at the same time.

50Note, however, that although implied by our graph, this bound is not reached exactly. For 
q = 1,

X = 0, and K = 12, the difference between the variance of log-returns under market coupling and the

variance in isolated markets will approximately amount to 1
2δ

2
iVar

(
ln

gi,t+1

gi,t

)
, where we have assumed

aforementioned identical parametrization of markets and where Var
(
ln

gi,t+1

gi,t

)
is the (unconditional)

variance of log-returns from the fuel price process.
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this is primarily due to the increasing contribution of the covariance between the demand

processes Di,t to overall variance, as can be seen from P ia,un
1,t in Equation (3.17). However,

there is an additional effect that becomes obvious when instead varying �X . Here, it

is helpful to recall that the variance of log-returns is always also determined by the

indicator functions I{·} that link the three scenarios in Equations (3.12) and (3.13). Their

variance, in turn, is strongly linked to the overall variation in absolute-level interconnector

flows J ia(t), as stated in Equation (3.9). Yet in contrast to the above, their variation is

decreasing for higher levels of correlation �q or �X , given that the state variables enter

Equation (3.9) as pairwise differences. Hence, for a reasonable parametrization of our

model, the term δ1 ln g1,t− δ2 ln g2,t is the primary driver for the variation in J ia(t), which

is large for �X = −1 and vanishes for �X = 1. For modest levels of interconnectivity,

this effect outweighs the “synchronicity” effect observed above and, consequently, causes

the dashed lines in the RHS graph of Figure 3.7 to be downward sloping for K = 2 and

K = 4. Finally, for K = 12, it again suffices to focus on Equation (3.17) where we can

see that for varying �X , the impact of increasing covariance between fuel prices on overall

variance is disproportionately smaller than for varying �q, as is also reflected in the graph

by the different slopes of the lines highlighted in red.

3.4.5 Futures Pricing Formulae

With the bulk of electricity trading generally taking place in liquid forward and futures

markets, analyzing the effect of interconnected electricity markets on their price dynamics

is at least as important as in the case of spot trading. Furthermore, given the prominent

role of electricity forward and futures contracts for hedging purposes, the availability

of closed-form pricing formulae for these contracts is particularly crucial from a risk

management perspective.

Before starting to derive the pricing formula for a futures contract under both implicit

and explicit allocation regimes, F ia
i,t(T ) and F ea

i,t (T ) with i = {1, 2} and maturity T , we

state a useful result for calculating integrals over multivariate Gaussian densities:51

∫ l

−∞
ecxΦ

(
a+ bx

d

)
e−

1
2
x2

√
2π

dx = e
1
2
c2Φ2

(
l − c,

a+ bc√
b2 + d2

;
−b√
b2 + d2

)
, (3.18)

51See, e.g., Carmona and Coulon (2012) for an application of this standard result in their multi-fuel
structural electricity pricing model, but also Geske (1979) in the context of pricing compound options.



98

where a, b, c, d, and l are constants, Φ(·) and Φ2(·, ·; ρ) are the cumulative distribution

functions of the univariate and bivariate (correlation ρ) standard normal distribution.

Based on the classic result that futures prices equal spot prices expected to prevail

at maturity under the risk-neutral measure Q (recall our assumption of λqi,t = λXi,t = 0),

and using iterated conditioning, we can explicitly derive the time-t futures price F ia
i,t(T )

for market i and maturity T under market coupling:

F ia
1,t(T ) = Et

[
P ia
1,T

]
= Et

[
P ia,ex
1,T I{ ˜Jia(T )≤−K} + P ia,un

1,T I{−K< ˜Jia(T )<K} + P ia,im
1,T I{ ˜Jia(T )≥K}

]
(3.19)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(∫ lbia

−∞
α1 g

δ1
1,T exp (β1D1,T − γ1(−K)) φ(q1,T |q2,T )dq1,T

+

∫ ubia

lbia
α1 g

δ1
1,T exp

(
β1D1,T − γ1J̃

ia(T )
)
φ(q1,T |q2,T )dq1,T

+

∫ ∞

ubia
α1 g

δ1
1,T exp (β1D1,T − γ1K) φ(q1,T |q2,T )dq1,T

)
· φ(q2,T )φ(X1,T |X2,T )φ(X2,T )dq2,TdX1,TdX2,T ,

where φ(q1,T |q2,T ) and φ(X1,T |X2,T ) are the (risk-neutral) conditional densities of q1,T

given q2,T and of X1,T given X2,T , respectively. φ(q2,T ) and φ(X2,T ) are the (risk-neutral)

unconditional densities of q2,T and X2,T , respectively. The lower and upper bounds lbia

and ubia for the innermost integrals over q1,T can be found by taking as starting point

the corresponding inequations J̃ ia(T ) ≤ −K and J̃ ia(T ) ≥ K, respectively (where J ia(T )

is given by Equation (3.9)), and then solving for q1,T . Based on the standard result for

Gaussian densities that we have stated above in Equation (3.18), and after some lines of

algebra, we finally obtain the following closed-form solution for the futures price F ia
1,t(T )

under market coupling:52

F ia
1,t(T ) = Et

[
P ia,ex
1,T

]
Φ

(
Aia

X+Aia
q −K√

CiaX+Ciaq

)
+ Et

[
P ia,im
1,T

] [
1− Φ

(
Aia

X+Aia
q +K√

CiaX+Ciaq

)]

+ Et

[
P ia,un
1,T

] [
Φ

(
Bia
X+Bia

q +K√
CiaX+Ciaq

)
− Φ

(
Bia
X+Bia

q −K√
CiaX+Ciaq

)]
, (3.20)

52Note that for Et

[
P ia,ex
1,T

]
, Et

[
P ia,un
1,T

]
, and Et

[
P ia,im
1,T

]
, explicit expressions are stated in the technical

Appendix 3.6.1
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with:

Aia
X = δ2

β1
μX2 − δ1

β1
μX1 −

δ21
β1
σ2
X1

+ δ1δ2
β1

ρXσX1σX2 , Aia
q = β2

β1
μq2 − μq1 − β1σ

2
q1
+ β2ρqσq1σq2 ,

Bia
X = δ2

β1
μX2 − δ1

β1
μX1 − δ1

β1

δ1γ2
γ1+γ2

σ2
X1

+ δ2
β1

δ2γ1
γ1+γ2

σ2
X2

+ (δ2/β1)δ1γ2−(δ1/β1)δ2γ1
γ1+γ2

ρXσX1σX2 ,

Bia
q = β2

β1
μq2 − μq1 − β1γ2

γ1+γ2
σ2
q1
+ β2

β1

β2γ1
γ1+γ2

σ2
q2
+ β2γ2−β2γ1

γ1+γ2
ρqσq1σq2 ,

CiaX =
(

δ1
β1

)2

σ2
X1
− 2 δ1δ2

β2
1
ρXσX1σX2 +

(
δ2
β1

)2

σ2
X2
, Ciaq = σ2

q1
− 2β2

β1
ρqσq1σq2 +

(
β2

β1

)2

σ2
q2
,

K = γ1+γ2
β1

K + 1
β1
S, K = γ1+γ2

β1
K − 1

β1
S,

S = lnα1 − lnα2 + δ1sg1(T )− δ2sg2(T ) + β1sD1(T )− β2sD2(T ).

It is important to mention that the structure of the above formula merely reflects our

4-variate Gaussian setting where F ia
1,t(T ) is simply expressed as an average of the respective

futures contracts pertaining to each of the three states. The states are defined by J ia(T )

and weighted by the probability of reaching each such state.53

If we are considering an explicit ex-ante allocation of capacity rights, it is again

possible to derive analytic futures pricing formulae, even though our piecewise defined

spot price process is no longer Markovian, because capacity and electricity spot markets

do not clear simultaneously, as mentioned above. However, given that in our setting, the

individual state variables Di,t and gi,t with i = {1, 2} are still Markovian, and since we

only need to condition on a finite number of points in time of the past (i.e., on τ = T − k

in this case), a closed-form expression for the futures price F ea
1,t(T ) is still possible. Note

first that, unlike for market coupling, Jea(T ) was already determined at an earlier point

in time τ = T − k and hence, is known at time T . At time τ , and based on Equation

(3.6) above, we then obtain:

F ea
1,τ (T ) = Eτ

[
P ea
1,T

]
= α1 exp

(
δ1 (μX1(τ, T ) + sg1(T )) + β1 (μq1(τ, T ) + sD1(T ))− γ1J

ea(T )

+ 1
2
δ21σ

2
X1
(τ, T ) + 1

2
β2
1σ

2
q1
(τ, T )

)
. (3.21)

The time-t value of a futures contract under the explicit allocation regime with maturity

T , F ea
1,t(T ), can then be derived based on Equation (3.21). Using iterated conditioning, it

53However, note that in Equation (3.20), the factors involving the cumulative distribution function Φ(·)
do not exactly represent these probabilities given that for some state z, E

[
P ia,z
1,T I{A}

]
�= E

[
P ia,z
1,T

]
P(A).



100

follows:

F ea
1,t(T ) = Et

[
Eτ

[
P ea
1,T

]]
= Et

[
Eτ

[
P ea,ex
1,T

]
I{ ˜Jea(T )≤−K} + Eτ

[
P ea,un
1,T

]
I{−K< ˜Jea(T )<K}

+ Eτ

[
P ea,im
1,T

]
I{ ˜Jea(T )≥K}

]
, (3.22)

where J̃ea(T ) is Fτ -measurable. The explicit closed-form solution to the above equation

is provided in the technical Appendix 3.6.2

3.4.6 Analysis of Futures Prices

Based on Equations (3.19) and (3.22), we can easily see that the futures price curves in

both markets under either an explicit allocation or market coupling regime are actually

a blend of the respective futures price curves for each state, i.e., Et

[
P

(·),ex
i,T

]
, Et

[
P

(·),un
i,T

]
,

and Et

[
P

(·),im
i,T

]
(as derived in the Appendix), each of which is essentially affine-linear

in the underlying state variables (on log-basis). Revisiting our case of two identically

parametrized markets, and assuming that the deseasonalized state variables have reverted

back to their long-run means, i.e., qi,t = Xi,t = 0, we can now qualitatively argue that the

futures price in an isolated market, F iso
i,t (T ), will always serve as an upper bound to its

counterparts F ea
i,t (T ) and F ia

i,t(T ). Starting with �X = �q = 1, we can verify from Equations

(3.23) and (3.28) that Et

[
P ia,un
i,T

]
= Et

[
P ea,un
i,T

]
= Et

[
P iso
i,T

]
. In this case, given that the

state variables will coincide in any instance, there will be no price differentials between

the two markets that would provide an incentive for cross-border trade. Consequently,

the weightings for the import and export states in Equations (3.20) and (3.25) must be

zero, yielding F ia
i,t(T ) = F ea

i,t (T ) = F iso
i,t (T ). With decreasing correlations �X and �q, two

effects must be distinguished: first, Et

[
P ia,un
i,T

]
and Et

[
P ea,un
i,T

]
will always be smaller than

Et

[
P iso
i,T

]
, which can again be seen from Equations (3.23) and (3.28) in Appendices A

and B. Second, the above mentioned weightings for the import and export states will

start to increase, and given the convexity of the exponential function, Et

[
P

(·),ex
i,T

]
will

have a stronger effect on increasing futures prices than Et

[
P

(·),im
i,T

]
on decreasing them.

Note, however, that the corresponding weightings in Equations (3.20) and (3.25) are

not symmetric but are adjusted by the terms K and K (L and L, respectively). As

a consequence, the import weighting will always be higher than the export weighting,
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which – along with the first effect – will ensure that F
(·)
i,t (T ) ≤ F iso

i,t (T ).

However, introducing cross-border trade between the two electricity markets may not

only lead to a level shift in futures prices F
(·)
i,t (T ) as compared to F iso

i,t (T ), but may also

change the shape of the futures curve, as is shown in Figure 3.8. Here, we have assumed

a higher price for the generating fuel in market 1 by setting X1,t = 0.4, whereas we retain

qi,t = X2,t = 0 and fix all other parameters as employed in Subsection 3.4.4 Consequently,

for the case of isolated markets, spot prices in market 1 will be higher than the futures

prices that reflect the mean-reverting behavior of X1,t back to its zero-mean in the long

run, which altogether results in a backwardated futures curve in market 1. Market 2,

given that K = 0, is not affected by the higher fuel prices in the adjacent market and has

its futures curve in contango.

By contrast, with the possibility of cross-border exchange with either explicitly or

implicitly allocated capacities, the curve in market 1 now is in contango for short-term

maturities, which, in turn, forces the futures curve in market 2 into short-term

backwardation. Hence, market 1 clearly benefits from indirectly accessing lower-cost

generation in the neighboring market where prices now are correspondingly higher.

Disaggregating further, the humped shape of the futures curve in market 1 can be

explained by examining its individual components: with X1,t = 0.4 and for very short

maturities, the probability of the more expensive market 1 nevertheless being in the export

state is almost zero. The longer the time horizon, however, the more is X1,t expected

to mean-revert so that the weighting for Et

[
P

(·),ex
1,T

]
(see Equations (3.20) and (3.25),

respectively) increases. This effect dominates for maturities of up to slightly more than

one year. Thereafter, it is outweighed by the facts that (i) both Et

[
P

(·),ex
1,T

]
and Et

[
P

(·),im
1,T

]
are generally decreasing in T (given our starting value for X1,t) and that (ii) Et

[
P

(·),un
1,T

]
– although being approximately flat for any maturity – also exerts downward pressure on

the “aggregate” futures curve since its associated weighting factor is decreasing for longer

maturities.

Finally, it is interesting to see how the spread between futures prices will react to

a change in the allocation mechanism, i.e., when switching from explicit allocations to

market coupling (or vice versa). The bottom LHS graph of Figure 3.8 shows the spread

between futures prices that corresponds to the top RHS and LHS graphs. As can be seen,

switching from the explicit ex-ante mechanism to market coupling leads to a widening
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Figure 3.8: Futures and Futures Spread Term Structure
The top LHS and RHS graphs show the futures term structure in markets 1 and 2 for the cases

that the capacity of the interconnector (i) is not available (isolated markets), (ii) is allocated via

an explicit ex-ante scheme, or (iii) via an implicit scheme. The bottom LHS graph presents the

corresponding spreads between futures prices in both markets. The bottom RHS graph displays the

distribution of interconnector flows J̃ea(T ) and J̃ ia(T ) for an assumed horizon of T = 30 days.

of the futures spread, which seems to be surprising given that spot price convergence

under market coupling could be expected to also manifest in futures prices. The reason

for this result is as follows: in order to assess how the futures spread will react to a

change in the allocation regime, we need to compare Equations (3.19) and (3.22) for

both markets. In view of the results from Equations (3.26) and (3.27) in Appendix B,

and further simplifying, we shall now only focus on the differences between the indicator

variables in the two expressions: in fact, it can be shown that for the more expensive

market 1, a change to market coupling will always lead to a higher probability for the

export state I{ ˜Jia(T )≤−K}. To illustrate this fact, the bottom RHS graph of Figure 3.8

shows the distribution of interconnector flows J̃ ia(T ) and J̃ea(T ) for an assumed maturity

of T = 30 days. From Equations (3.9) and (3.11), in turn, we know that J̃ ia(T ) is a
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random variable (being itself a function of random variables) up until time T , whereas

J̃ea(T ) will already be determined at time T−k. Consequently, the variance of the time-T

interconnector flows under market coupling will always be higher than for the case of

explicit allocation, as is indicated by the fatter tails of the red distribution in the graph.

More precisely, the area below the red curve for flows J̃ ia(T ) < −K essentially reflects

the probability of the more expensive market 1 being in the export state. Given our

assumption of equal capacity limits in both directions of the interconnector, P(J̃ ia(T ) <

−K) for market 1 always increases as soon as the mean of flows is larger than zero. Hence,

the weighting of the three different futures price components under market coupling will

shift towards Et

[
P ia,ex
1,T

]
for market 1 and towards Et

[
P ia,im
2,T

]
for market 2. As such,

roughly speaking, the more expensive market will even see slightly higher futures prices

under market coupling, whereas the cheaper market can expect slightly lower futures

prices, which altogether leads to a widening of the spread.54

However, when comparing these theoretical effects with empirical observations, the

following caveat applies: in contrast to what is implied by our model, futures prices may

nevertheless converge in reality given that actually available interconnector capacities K

under market coupling can be higher than the capacities that are available for the same

line under an explicit scheme. In fact, there are two reasons for this. On the one hand,

the issue of opposing flow nominations is treated differently under the two regimes; under

an explicit scheme, such as explicit ex-ante auctions, transmission rights are allocated

separately for each direction and flows nominated in opposite directions cannot be netted

at all timescales.55

On the other hand, as is analyzed in Mahringer (2013) for the French–German border,

the share of explicitly allocated yearly and monthly PTRs that are actually exercised by

traders to ship electricity across borders has significantly declined since the introduction

of market coupling. In this case, the UIOSI principle leads to a perfect hedging of the

spread risk between two markets on a day-ahead basis, which causes market participants

54Note that our simplified reasoning leaves aside other effects such as (i) covariance terms between

expectations and indicator functions or (ii) the fact that generally Et

[
P ia,un
1,T

]
≤ Et

[
P ea,un
1,T

]
, all of which

are second-order effects, however, that do not outweigh the indicated directions of how futures prices
move when changing from explicit to implicit allocations.

55See Höffler and Wittmann (2007) for a detailed analysis of netting in interconnector auctions. With
respect to our example represented by the timeline in Figure 3.1, opposing flows nominated by holders
of yearly or monthly transmission rights can be netted prior to the day-ahead auction of transmission
capacity. However, this is not possible on the day-ahead stage itself. For further information, also see
Hobbs et al. (2005), Bunn and Zachmann (2010), or Pellini (2012).
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to increasingly opt for the financial compensation in case of no-exercise, rather than to

set up a physical transaction in order to arbitrage the two markets by themselves.

Hence, these non-nominated capacities become available to the market coupling

facilitator on a day-ahead basis, thus increasing K under market coupling. As can be

seen in the bottom LHS graph of Figure 3.8, assuming, by way of example, that the

above arguments lead to a 25% increase in actually available interconnector capacity K

under market coupling now clearly leads to a lower futures spread as compared to the

case of an explicit ex-ante regime.

3.5 Conclusion

Pricing and hedging in electricity markets has traditionally been a challenging and

complex field. The complexity is primarily driven by the general non-storability of this

commodity, however, additionally complicated by institutional specificities such as the

differentiation of hourly electricity products, futures contracts delivering electricity over

a certain period rather than at a fixed point in time, longer-term delivery contracts with

cascading upon maturity, or other exotic products such as swing options. More recently,

the increasing interconnectivity between national markets has further added to these

complexities.

As has been shown, different ways of organizing cross-border trade between

interconnected markets can significantly alter empirical price dynamics and, hence, render

previously used, widespread modeling approaches inapplicable. As such, aspects of

market design do and will continue to be of key interest for both practitioners and

researchers, especially given two important developments: first, within the foreseeable

future, interconnection capacity between markets is projected to remain scarce. Hence,

price differentials between markets will persist, and so will different ways to manage

ensuing congested cross-border flows. Second, the CWE market coupling focused on in

this study is accompanied by a series of other regional coupling initiatives throughout

Europe, such as the South-Western Europe (SWE) coupling between France, Spain

and Portugal, or the North-Western Europe (NWE) coupling between CWE and the

Scandinavian/Baltic countries. Within the “Price Coupling of Regions” (PCR) initiative,

these different coupling projects are planned to be integrated in order to finally reach the

EU policy goal of a single Internal Electricity Market. By then, the IEM is projected to
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be the world’s largest electricity market, surpassing other mature markets in both the US

and Australia.

Responding to the need for more sophisticated, accurate pricing models in this

context, the class of fundamentally driven electricity pricing models has proven to offer

a framework that provides sufficient granularity to reflect aspects of market design,

while at the same time retaining flexibility and tractability to allow for closed-form

solutions for many types of derivative contracts. Specifically, the model proposed in

this study does not focus on the different explicit and implicit allocation mechanisms for

interconnector capacity per se, but rather tries to mimic the outcomes of these different

schemes by focusing on the resulting endogenous cross-border flows under each regime.

The derived model dynamics and pricing formulae do address the shortcomings of the

classic reduced-form approach and provide a rich framework to analyze how the key

stylized facts of electricity spot prices as well as the term structure of futures prices

change when markets are interconnected.

A further extension of our model could be to include a third interconnected market

into our setting. While this will increase the complexity of the resulting pricing formulae,

the general approach will stay the same, yet will depend on whether the additional market

will be linked to both or only one of the two other markets. However, note that it may still

be valid to apply a two-market model even if the empirical coupling mechanism involves

more than two markets. As a matter of simplification, it may be advisable to reduce the

number of markets to be modeled separately by aggregating those neighbouring markets

with structurally similar patterns of demand, or similar structures within their generation

parks; with only infrequent congestion at their borders, or those markets that are small

compared to their neighbor (e.g., Belgium vs. France). For instance, the CWE coupling

could be decomposed into the German market on the one hand, and all other markets

that are part of the Trilateral coupling on the other hand.

Another avenue for further research could focus on empirically implementing the

model to price PTRs under market coupling, e.g., for the German–French border.

Released data show that auctions for this border incite high investor interest, and the

participation of the trading arms of several investment banks may boost liquidity even

further.
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3.6 Appendix

3.6.1 Futures Prices for the Implicit Regime

Expressions for Et

[
P ia,ex
1,T

]
, Et

[
P ia,un
1,T

]
, and Et

[
P ia,im
1,T

]
in Equation (3.20) can easily be

derived based on our piecewise definition of electricity spot prices in Equations (3.14) to

(3.14) and using the properties of the lognormal distribution:

Et

[
P ia,ex
1,T

]
= α1 exp

(
δ1 (μX1 + sg1(T )) + β1 (μq1 + sD1(T )) + γ1K + 1

2
δ21σ

2
X1

+ 1
2
β2
1σ

2
q1

)
,

Et

[
P ia,un
1,T

]
= exp

(
δ1γ2
γ1+γ2

(μX1 + sg1(T )) +
δ2γ1
γ1+γ2

(μX2 + sg2(T )) +
β1γ2
γ1+γ2

(μq1 + sD1(T ))

+ β2γ1
γ1+γ2

(μq2 + sD2(T )) +
γ2

γ1+γ2
lnα1 +

γ1
γ1+γ2

lnα2

+ 1
2

(
δ1γ2
γ1+γ2

)2

σ2
X1

+ 1
2

(
δ2γ1
γ1+γ2

)2

σ2
X2

+ δ1δ2γ1γ2
(γ1+γ2)

2σX1σX2ρX

+ 1
2

(
β1γ2
γ1+γ2

)2

σ2
q1
+ 1

2

(
β2γ1
γ1+γ2

)2

σ2
q2
+ β1β2γ1γ2

(γ1+γ2)
2σq1σq2ρq

)
, (3.23)

Et

[
P ia,im
1,T

]
= α1 exp

(
δ1 (μX1 + sg1(T )) + β1 (μq1 + sD1(T ))− γ1K + 1

2
δ21σ

2
X1

+ 1
2
β2
1σ

2
q1

)
.

3.6.2 Futures Prices for the Explicit Ex-Ante Regime

In order to derive an analytic pricing formula for the time-t futures price F ea
1,t(T ) with

maturity T in market 1 under the case of explicit allocations, we re-state Equation (3.22):

F ea
1,t(T ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(∫ lbea

−∞
Eτ

[
P ea,ex
1,T

]
φ(q1,τ |q2,τ )dq1,τ

+

∫ ubea

lbea
Eτ

[
P ea,un
1,T

]
φ(q1,τ |q2,τ )dq1,τ

+

∫ ∞

ubea
Eτ

[
P ea,im
1,T

]
φ(q1,τ |q2,τ )dq1,τ

)
· φ(q2,τ )φ(X1,τ |X2,τ )φ(X2,τ )dq2,τdX1,τdX2,τ ,(3.24)

where φ(q1,τ |q2,τ ) and φ(X1,τ |X2,τ ) are the (risk-neutral) conditional densities of q1,τ

given q2,τ and of X1,τ given X2,τ , respectively. φ(q2,τ ) and φ(X2,τ ) are the (risk-neutral)

unconditional densities of q2,τ and X2,τ , respectively. The lower and upper bounds lbea

and ubea for the innermost integrals over q1,τ can be found in the same way as for lbia and

ubia in the case of market coupling, i.e., by taking as starting point the corresponding

inequations J̃ea(T ) ≤ −K and J̃ea(T ) ≥ K, respectively (where Jea(T ) is given by

Equation (3.11)), and then solving for q1,τ . To preserve space, we introduce the following
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shorthand notation:

bi = e−κqi (T−τ) = e−κqik, di = e−κXi
(T−τ) = e−κXi

k

Simplifying according to Equation (3.18) and after few manipulations, we finally obtain:

F ea
1,t(T ) = Et

[
Eτ

[
P ea,ex
1,T

]]
Φ

(
Aea

X +Aea
q −L√

CeaX +Ceaq

)
+ Et

[
Eτ

[
P ea,im
1,T

]] [
1− Φ

(
Aea

X +Aea
q +L√

CeaX +Ceaq

)]

+ Et

[
Eτ

[
P ea,un
1,T

]] [
Φ

(
Bea
X +Bea

q +L√
CeaX +Ceaq

)
− Φ

(
Bea
X +Bea

q −L√
CeaX +Ceaq

)]
, (3.25)

where we have:

Aea
X = δ2d2

β1b1
μX2(t, τ)− δ1d1

β1b1
μX1(t, τ)−

(δ1d1)
2

β1b1
σ2
X1
(t, τ) + δ1δ2d1d2

β1b1
ρX(t, τ)σX1(t, τ)σX2(t, τ),

Aea
q = β2b2

β1b1
μq2(t, τ)− μq1(t, τ)− β1b1σ

2
q1
(t, τ) + β2b2

β1b1
β1b1ρq(t, τ)σq1(t, τ)σq2(t, τ),

Bea
X = δ2d2

β1b1
μX2(t, τ)− δ1d1

β1b1
μX1(t, τ)−

(δ1d1)
2γ2

(β1b1)(γ1+γ2)
σ2
X1
(t, τ) + (δ2d2)γ1

(β1b1)(γ1+γ2)
σ2
X2
(t, τ)

+ δ1δ2d1d2(γ2−γ1)
β1b1(γ1+γ2)

ρX(t, τ)σX1(t, τ)σX2(t, τ),

Bea
q = β2b2

β1b1
μq2(t, τ)− μq1(t, τ)− β1b1γ2

γ1+γ2
σ2
q1
(t, τ) + (β2b2)

2γ1
β1b1(γ1+γ2)

σ2
q2
(t, τ)

+ β2b2(γ2−γ1)
γ1+γ2

ρq(t, τ)σq1(t, τ)σq2(t, τ),

CeaX =
(

δ1d1
β1b1

)2

σ2
X1
(t, τ)− 2 δ1δ2d1d2

(β1b1)
2 ρX(t, τ)σX1(t, τ)σX2(t, τ) +

(
δ2d2
β1b1

)2

σ2
X2
(t, τ),

Ceaq = σ2
q1
(t, τ)− 2β2b2

β1b1
ρq(t, τ)σq1(t, τ)σq2(t, τ) +

(
β2b2
β1b1

)2

σ2
q2
(t, τ),

L = γ1+γ2
β1b1

K + 1
β1b1
T ,

L = γ1+γ2
β1b1

K − 1
β1b1
T ,

T = S + 1
2

(
δ21σ

2
X1
(τ, T )− δ22σ

2
X2
(τ, T )

)
+ 1

2

(
β2
1σ

2
q1
(τ, T )− β2

2σ
2
q2
(τ, T )

)
.

Finally, regarding explicit expressions for Et

[
Eτ

[
P ea,ex
1,T

]]
, Et

[
Eτ

[
P ea,im
1,T

]]
, and

Et

[
Eτ

[
P ea,un
1,T

]]
, we can see that by using iterated conditioning, we yield the following

result for the first two expectations:

Et

[
Eτ

[
P ea,ex
1,T

]]
= Et

[
P ia,ex
1,T

]
, (3.26)

Et

[
Eτ

[
P ea,im
1,T

]]
= Et

[
P ia,im
1,T

]
. (3.27)
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For Et

[
Eτ

[
P ea,un
1,T

]]
, based on the properties of the lognormal distribution and using

iterated conditioning, we obtain after few lines of algebra:

Et

[
Eτ

[
P ea,un
1,T

]]
= exp

(
δ1γ2
γ1+γ2

(μX1 + sg1(T )) +
δ2γ1
γ1+γ2

(μX2 + sg2(T )) +
β1γ2
γ1+γ2

(μq1 + sD1(T ))

+ β2γ1
γ1+γ2

(μq2 + sD2(T )) +
γ2

γ1+γ2
lnα1 +

γ1
γ1+γ2

lnα2

+ 1
2

(
δ1γ2
γ1+γ2

)2

d21σ
2
X1
(t, τ) + 1

2
γ2

γ1+γ2
δ21σ

2
X1
(τ, T )

+ 1
2

(
δ2γ1
γ1+γ2

)2

d22σ
2
X2
(t, τ) + 1

2
γ1

γ1+γ2
δ22σ

2
X2
(τ, T )

+ δ1δ2γ1γ2
(γ1+γ2)

2d1d2σX1(t, τ)σX2(t, τ)ρX(t, τ)

+ 1
2

(
β1γ2
γ1+γ2

)2

b21σ
2
q1
(t, τ) + 1

2
γ2

γ1+γ2
β2
1σ

2
q1
(τ, T )

+ 1
2

(
β2γ1
γ1+γ2

)2

b22σ
2
q2
(t, τ) + 1

2
γ1

γ1+γ2
β2
2σ

2
q2
(τ, T )

+ β1β2γ1γ2
(γ1+γ2)

2 b1b2σq1(t, τ)σq2(t, τ)ρq(t, τ)
)
. (3.28)



Chapter 4

Transmission Rights Valuation for

Coupled Electricity Markets:

An Option-based Approach*

4.1 Introduction

In network industries, such as wholesale electricity or natural gas, transactions between

adjacent market areas are critically dependent on the institutional framework that

coordinates access to the (oftentimes congested) interconnection lines linking the

respective networks. The design of this mechanism, in turn, must not only adapt to the

specificities of the traded commodity – such as the non-storability of electricity preventing

real-time scheduling of flows – but also adequately capture the functional context of why

said flow goods shall be exchanged across market borders: be it of limited scope in the

case of markets relying on the principle of self-sufficiency, or be it vital for those that

primarily serve as a transit hub linking their neighboring markets.

With respect to cross-border trade of electricity, its overall economic relevance has

gradually changed over time – especially for European markets. Starting in early pre-

liberalization times as an “emergency back-up” to help balance unexpected (net) supply

shortages between the then primarily isolated European electricity markets, cross-border

transactions have since become a crucial instrument to realize the idea of a single pan-

*This chapter is based on the corresponding single-authored working paper entitled “Transmission

Rights Valuation for Coupled Electricity Markets: An Option-based Approach.” Cf. Mahringer (2013).

The paper has been presented in the PiF Seminar 2013 at University of St.Gallen.
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European electricity market, as promoted by the European Union (EU). In this context,

as one of the milestones for fostering more competitive and liquid cross-border trade, the

EU electricity market directives expressly stipulate third-party access to interconnectors

based on a “non-discriminatory market-based” allocation mechanism.1

From a variety of such allocation mechanisms that comply with this requirement,

explicit ex-ante auctions of physical transmission rights (PTRs) have turned out to become

the most widely implemented congestion management method,2 which is primarily due

to the fact that they only require a low level of institutional standardization between the

respective interconnected markets. Hence, rather than embarking on the arduous task

of harmonizing the design of European electricity markets, explicit ex-ante auctions help

to avoid this problem by instead separating the markets for cross-border transmission

capacity and electricity. Thus, the auction process for PTRs and/or the nomination of

corresponding physical cross-border flows are scheduled prior to the clearing of electricity

spot markets, so that in general, interconnector regulation does not directly interfere with

their individual operational timescales.

However, as has extensively been analyzed in the literature,3 explicit ex-ante

mechanisms are generally prone to producing economically inefficient interconnector flows,

given that the above timing disconnect forces cross-border traders to submit bids in the

capacity market based on the expected rather than realized price differential between

the respective two markets. As an alternative, implicit auction mechanisms, such as

market coupling, integrate the auction of cross-border capacity into the spot auctions

of electricity, thus always yielding economically efficient interconnector flows from the

cheaper to the more expensive market. Ultimately, perfect price convergence across all

markets involved in the coupling mechanism can be reached when the cross-border flows

required to equalize prices are operationally feasible and not constrained by insufficient

transmission capacities on the interconnection lines.4

1See, e.g., Regulations (EC) No. 714/2009 (Article 12(2)) and its predecessor, No. 1228/2003.
2Given that in Europe, most interconnectors at that time used to be (and still are) congested, we will

use the terms “capacity allocation mechanism” and “congestion management method” interchangeably.
3See, e.g., Ehrenmann and Smeers (2005), Turvey (2006), Zachmann (2008), Bunn and Zachmann

(2010), or Füss et al. (2013b).
4Note that although prevalent in Europe, market coupling mechanisms are currently planned to also

be implemented, e.g., in the US electricity markets: for instance, the Tres Amigas Superstation project has
been set up in order to unite the three major regional US electricity grids (the Eastern Interconnection,
the Western Electricity Coordinating Council (WECC), and the Electric Reliability Council of Texas
(ERCOT)); for the management of cross-border flows across the interconnectors at this trading hub, a
market coupling mechanism is currently being considered. See EPEX-Spot (2012).
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In this context, these different institutional set-ups for cross-border trade have been

shown to significantly impact the dynamics of both spot and futures prices in each of

the interconnected markets (Füss et al., 2013b). However, since generic transmission

contracts, in their broadest sense, can generally be interpreted as a derivative written

on the spread between electricity prices in the two interconnected markets, their value

must hence be even more sensitive to a change in the respective “regime” for cross-

border trade: clearly, for a transmission right, the value of the corresponding underlying

spread option must be different under a market coupling mechanism (targeting perfect

price convergence between markets) as compared to under explicit ex-ante auctioning and

scheduling (causing inefficient flows that help sustain price differentials).

In extant literature, however, these institutional details are only rarely taken into

account when it comes to the pricing of transmission rights or obligations. Generally,

most studies focus on the pricing of PTRs in the context of an explicit ex-ante auction

regime,5 and propose to value the rights as European options on the spread between

spot prices in the respective two electricity markets. Important institutional details that

characterize the explicit ex-ante auction regime, such as the timing disconnect between

the markets for transmission capacity and spot electricity, are left out in most of these

analyses, however. For instance, Wobben et al. (2012) model PTRs as options on the

spot spread, yet admit that “in fact these contracts are options on the expected spot

prices, because nomination takes place 4h before day-ahead market clearing.” As such, by

assuming that option exercise and determination of its payoff occur simultaneously, most

empirical research on the pricing of PTRs – even if only to simplify matters – has thus

relied on a framework that, strictly speaking, applies to implicitly auctioned transmission

rights rather than to explicit auctions: as will be shown in this chapter, it is only for the

former type of auction mechanism that the option payoff (i.e., the spot spread) can be

considered realized upon option exercise.

Janssen et al. (2011) follow this line of reasoning and compare the value of PTRs

under the two regimes by reducing the problem to an analysis of different times of option

exercise. More precisely, given that in the case of explicitly auctioned PTRs, option

exercise virtually coincides with the ex-ante scheduling of flows, they propose to value

such contract as an option on the expected spot price spread between the respective two

5The pricing of explicitly auctioned PTRs is examined by, e.g., Marckhoff (2009), Marckhoff and
Muck (2009), Bunn and Martoccia (2010), Wobben et al. (2012), and McInerney and Bunn (2013).
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markets, whereas under market coupling, the transmission right shall be valued as an

option that is directly written on the same, yet realized, spread. However, modeling the

spot price spread as a univariate asset fitted to historical data, they do not consider that

the spread dynamics under a market coupling regime are essentially different as compared

to an explicit ex-ante regime, given that the mechanics of the coupling mechanism will lead

to increased spot price convergence between the two markets.6 Therefore, when comparing

the two different types of contracts, it is obvious that an option directly written on the spot

spread itself will be worth more than if it were written on an expectation of the spread at

maturity and had to be exercised upon nomination – as long as both spreads (erroneously)

obey the same dynamics. Nevertheless, the fact that under market coupling, a zero price

spread will be obtained more frequently (thus, by contrast, driving down the value of the

option on the realized spread) has thus far not yet been considered in literature – neither

theoretically, nor empirically.

Hence, it is not only the aspect of market design that makes transmission rights

valuation under market coupling a challenging task; finding the best way to adequately

capture the intricate dependence structure of the price spread on (i) the most important

power price determinants in each of the coupled markets, but also on (ii) other variables

such as the interconnector capacity, even further increases the complexity of the required

modeling set-up – and clearly questions the widespread use of classic reduced-form

approaches in this context: a frequently mentioned example relates to the high share

of renewables in the German generation mix. For instance, during times of significant

wind energy feed-in, this not only lowers German day-ahead prices but may also spill over

into adjacent markets via interconnector flows. This effect tends to be strong for the case

of market coupling (see, e.g., Heren, 2011; Carr, 2012a), and often results in primarily

negative cross-border spreads (with respect to the German market). By contrast, if the

fundamentals in the German and neighboring electricity markets are not too far apart,

price spreads can be exactly zero for certain hours of the day and for several days in a row.

Obviously, these scenarios cannot be reproduced when using a reduced-form modeling

approach – be it univariate to model the spread directly, or be it bivariate when modeling

the spot price time series for each market separately.

In this chapter, we address these challenges and investigate the pricing of transmission

rights under market coupling, taking the currently prevailing European market design for

6See Füss et al. (2013b) for further information.
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coupled electricity markets as a starting point. As such, we contribute to the literature in

the following ways: first, we outline the institutional setup for cross-border trading under

market coupling and provide empirical evidence that recent changes in market design

have clearly affected both pricing levels and exercise behavior for PTRs. In view of the

continued implementation of market coupling throughout Europe, spread options between

coupled pricing areas are a crucial tool for hedging and, thus, are seeing considerable

demand by both physical as well as financial electricity traders. Using data for the French–

German interconnector, we see that the apparent undervaluation of PTRs compared to

the corresponding futures spreads disappears when changing from an explicit auction

set-up with ex-ante scheduling of flows to an implicit set-up such as market coupling.

Second, to the best of our knowledge, we are the first to derive an analytic pricing

formula for a spread option on spot electricity prices in two coupled markets. Based on the

fundamental framework for modeling two interconnected electricity markets proposed by

Füss et al. (2013b), we not only take into account the above mentioned institutional details

for cross-border trade but also yield a model that adequately reproduces the distinct

spread dynamics that are characteristic for a market coupling regime. More generally,

the availability of analytic pricing formulae helps to retain tractability and ease of use

for practitioners, but also will facilitate calibration to observed PTR prices in case of an

empirical implementation.

Finally, we conduct sensitivity analyses for the key input parameters to our spread

option formula in order to analyze in detail the main determinants of value for a

transmission right under market coupling. Here, it is important to see that since we

model electricity prices as a function of fundamental factors, the relationship between

option prices and the current value of the underlying spot spread is no longer unique,

but must be disaggregated further to the level of underlying state variables. Importantly,

differentials in the levels of the individual state variables – that would otherwise result in

a non-zero spread between spot prices in each market – can be mitigated and balanced

by the market coupling mechanism, which in turn significantly impacts option prices as

compared to the situation when the two markets are isolated and not interconnected.

The remainder of this chapter is structured as follows: the next section provides

additional background on the institutional framework for cross-border trading under

market coupling. Section 4.3 outlines the general modeling framework. Section 4.4 derives
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the spread option formula for two coupled markets and provides sensitivity analyses to

further illustrate the intricacies of spread option pricing under market coupling. Section

4.5 concludes.

4.2 Transmission Rights and Market Coupling

4.2.1 Physical and Financial Transmission Contracts

Being a network-bound commodity, the transfer of electricity across markets may be

subject to transmission congestion on the respective interconnection line, which prevents

price convergence and has traders face locational price risk instead. In order to hedge such

transmission risk, instruments and contracts that are available in the areas of cross-border

trading and congestion management can generally be categorized according to two criteria:

(i) enforceability of the contract (rights vs. obligations), and (ii) the nature of the

settlement mechanism (financial vs. physical).

Transmission rights are characterized by a convex payoff profile based on their

inherent optionality for the option holder to collect the price difference between two

connected markets, to the extent it is non-negative for a pre-specified direction of flow

and given hour of the day. For instance, if a generator in market 1 who is contractually

obliged to supply electricity to customers in neighboring market 2 hedges his cross-zonal

position with a transmission right for the direction 1 → 2, he will be entitled to receive

the price spread for every transmitted megawatt hour (MWh) of electricity if market 2 is

more expensive than market 1 – but not vice versa (since the right is only uni-directional).

Transmission obligations, by contrast, require their holders to also bear the downside

risk of a negative price spread for a given direction of flow – as implied either from

the (mandatory) physical scheduling of flows or the payoff from a financially settled

transmission obligation.

Regarding the second criterion, financial transmission contracts are not directly

tied to the scheduling of physical flows of electricity across a possibly congested

interconnection line, but instead replicate the same payoff (upon financial settlement)

as if the corresponding physical positions had been entered into. By contrast, physical

transmission contracts are more operational in nature, and are primarily intended to

establish an exchange of electricity – be it mandatory or optional – between two connected
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markets. As such, while both physical and financial contracts are ultimately linked to the

available transmission capacity of the underlying interconnector,7 only the former class

of contracts provide factual network access to the holder. Instead, with an exclusively

FTR-based set-up, all cross-border transactions are essentially handled through the

involved power exchanges or, e.g., a market coupling facilitator. In this case, and returning

to the above example, a generator in market 1 cannot directly serve the customers in

market 2 via physically transferring electricity via the interconnector, but can replicate

the payoff from such transaction by (i) selling its own generation in market 1, (ii) sourcing

the owed volumes in market 2, and (iii) hedging his cross-zonal position with a financial

transmission contract.

Out of this classification, physical contracts are prevalent in Europe and are mainly

established as rights (i.e., PTRs) which are often also referred to as a “carve-out” of

cross-border transmission capacity (Duthaler and Finger, 2008). However, an important

contractual feature, the so-called “Use-It-or-Sell-It” (UIOSI) property, also allows these

rights to be used as financial transmission rights (FTRs). For instance, given a monthly

(yearly) PTR,8 its holder is entitled to schedule physical flows of electricity across the

respective interconnector during any individual hour of that month (year). In case the

trader does not want to exercise his right for a certain hour (e.g., because it might be

uncertain as to how the price differential between the markets will turn out, thus risking

an economically inefficient trade by transferring electricity from a more expensive market

into a cheaper market), the TSO needs to be notified one day in advance, usually in the

morning hours well ahead of the close of the day-ahead electricity markets.9

7In the case of financial contracts, options or obligations issued by the transmission system operator
(TSO) need to be funded by the congestion rent that is collected for the respective interconnector
concerned, and that depends on (physical) transmission constraints such as the capacity of the line.
Hence, given the integrated nature of meshed electricity networks, revenue adequacy (between issued
contracts and congestion rents to fund them) is generally ensured by carrying out a simultaneous feasibility
test that determines the optimal number of contracts to be issued for all interconnectors within a given
network at the same time. Note that in general, a lower number of financial transmission options can be
released for a given interconnector than in the case of obligations due to the inability of netting opposite
flow directions. See, e.g., ETSO (2006) or, more generally, Kristiansen and Rosellón (2013) for further
information.

8In Europe, PTRs are usually auctioned off for different timescales, i.e., a certain fraction of the
overall interconnector capacity is allocated via yearly and monthly auctions; the remaining capacity
either is also auctioned off via the day-ahead capacity market (where transmission rights for all 24 hours
of the subsequent day are allocated individually) or, in the case of market coupling, is made available to
the power exchanges and/or market coupling office. Hence, in the latter case, OTC traders can still set-up
tailor-made, non-exchange based cross-border transactions by acquiring monthly or yearly transmission
rights (instead of the daily rights no longer offered to the market).

9See, e.g., RTE (2009a) and RTE (2009a) where this process is outlined for cross-border trading at
the French–German border.
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As a financial compensation in case of non-exercise, the trader then receives the

market value of the forfeited option(s) relating to those hour(s) during which he does

not want to schedule any cross-border flows. Hence, in the case of explicit auctions, the

unused capacity (that was originally allocated to holders of monthly/yearly transmission

rights) is returned to the market and added to those capacities that are up for allocation

on the day-ahead stage. The prices achieved for the corresponding hours during that

auction then yield the financial compensation for traders who chose not to exercise. Yet

in the case of market coupling, there are no auctions of short-term transmission rights that

would help to establish the financial compensation in a similar manner: on a day-ahead

stage, these capacities are not allocated to the market but directly passed on to the power

exchanges that schedule the market coupling flows intended to achieve price convergence.

In this case, the financial compensation instead is defined as the actual spread between

the prices resulting from the day-ahead auctions of electricity for the respective coupled

markets.

Importantly, this mechanism thus not only always ensures revenue adequacy

(Duthaler and Finger, 2008), but also allows for perfect hedging of price differences

between adjacent coupled markets in Europe by using monthly/yearly PTRs with UIOSI

property and not exercising them. As such, this combination of physical and financial

features could also be seen as a first step towards transitioning to a fully financial setting

comparable to the US, especially given that FTRs were also recently proposed as an

alternative to the current physical set-up in Europe by the Agency for the Cooperation

of Energy Regulators (ACER).10

4.2.2 PTRs and the Impact of the CWE Market Coupling

The implications of the above theoretical concepts and specificities of market design can

best be illustrated when examining the introduction of the Central Western Europe

(CWE) market coupling and how it changed the valuation of physical transmission

rights. Prior to the implementation of CWE market coupling in November 2010, when

Germany joined the then already existing “Trilateral Coupling” of the French, Belgian,

and Dutch electricity markets, PTRs with UIOSI property for the French–German and

Dutch–German borders were allocated via explicit ex-ante auctions on a yearly, monthly,

10For further information, see ACER (2011) and de Maere d’Aertrycke and Smeers (2013).
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and day-ahead basis. Under the coupling mechanism, monthly and yearly PTRs are still

auctioned explicitly, yet as will be seen, both previous valuation approaches and patterns

of exercise for these rights have fundamentally changed.

In the academic literature cited in the previous section, PTRs are generally proposed

to be valued as a portfolio of hourly spread options or exchange options (Margrabe,

1978) with payoff (P1,T − P2,T )
+ at maturity T – as implied by the physical positions

taken by a cross-border trader who is long in market 2 and short in market 1 whenever

electricity is cheaper in the former market than in the latter. Following this line of

reasoning, and abstracting from other contractual details for the time being, prices paid

for monthly transmission rights should reflect an inherent optionality and, hence, exceed

the corresponding spread of 1-month ahead futures prices. Taking the French–German

border as an example, as can be seen in the top panel of Figure 4.1, the auction prices for

monthly PTRs more or less closely track the spread in 1-month ahead futures contracts

when the spread is positive, or are bounded at zero when the spread is negative for a

given direction of flow. However, at several instances prior to the start of the CWE

market coupling, prices paid were clearly lower than the corresponding futures spread,

which contradicts the above valuation argument. This is again illustrated in the middle

panel of Figure 4.1, where the absolute-value premia of PTR prices vs. futures spreads

are shown for the direction of flow that implies a positive futures spread.11

This apparent undervaluation of PTRs especially during the years 2006-09, i.e., prior

to the German market joining the market coupling mechanism, is due to several reasons.

Clearly, cross-border trading in Europe had previously suffered from rather low levels

of investor interest and trading activity so that the observed negative price differences

between PTRs and futures spreads could merely be due to market participants demanding

a premium for the illiquidity of the transmission rights. Importantly, however, the above

interpretation of a PTR with payoff (P1,T − P2,T )
+ at maturity essentially ignores the

fact that under the previous regime, “option exercise” actually had to take place before

the spread P1,T − P2,T was determined: recall that holders of longer-term transmission

rights either had to notify their intended transactions to the TSO in the morning or,

alternatively, could opt to receive as financial compensation the PTR price at which their

11Specifically, at every auction date, we obtain a PTR price for each direction that could be compared
with the corresponding futures spread. However, we refrain from comparing the PTR price for the
direction for which the futures spread is negative since the concept of a PTR premium over a negative
futures spread might be ill-defined in this context.
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rights were re-sold in the daily auction. In either case, however, the inefficiencies of the

explicit auction setting would affect both the option payoff in case of physical exercise or

the price of the re-sold daily PTRs and, hence, of the alternative financial compensation.

Since the start of the CWE market coupling, however, this setting has changed. As

outlined above, although daily transmission capacity is no longer offered to the market

at all, this does not apply to longer-term rights for monthly and yearly transmission

capacity which are still allocated explicitly. In addition, according to the UIOSI feature,

the financial compensation for non-exercised long-term rights is now directly tied to the

actually realized spot price difference during the respective hourly period (to the extent

it is positive).12 Hence, (automatic) exercise of the option takes place whenever the

day-ahead spread between the two relevant markets implies a positive intrinsic value

of the instrument. Therefore, it is only under market coupling that the underlying to

the PTR with a UIOSI feature coincides with the realized spread (and not the expected

spread), and only in this case should valuation of such a contract be based on the payoff

profile (P1,T − P2,T )
+.

Moreover, this change to the specifications of the UIOSI principle under market

coupling has clearly changed the overall characteristics of these instruments, which may

also help to further promote liquidity in both primary and secondary markets. On

the one hand, physical traders such as generators now benefit from an increased hedge

effectiveness that also allows them to increasingly resort to non-domestic markets in

order to hedge forward their production. For instance, recently observed declines in

trading volume for Dutch and Belgian futures contracts were attributed to several Dutch

and Belgian generators henceforth hedging by using structures based on the more liquid

German futures contracts (Carr, 2012b), which can then be complemented with PTRs

to account for the remaining spread risk. On the other hand, the possibility to use the

PTRs with UIOSI feature as a (purely) financial transmission right is not only appealing

to generators seeking effective hedges, but may also help to spark interest from other

investor groups. Thus, especially for speculators and other players without physical

assets, previous barriers to take part in European cross-border trade may be lowered,

which more generally opens up further perspectives for trades to be financially motivated

12See RTE (2009b), pg. 57: “(...) a price equal to (...) the price difference between the relevant
day-ahead spot markets in Belgium, France, the Netherlands, and Germany for the considered Hourly
Period (which might be zero (0) EUR/MWh), as far as the direction of the Programming Authorization
equals the direction of flow resulting from relevant power exchange prices (...).”
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rather than physically. These developments are also reflected in Figure 4.1 where in the

mid panel, we can qualitatively observe that the undervaluation of PTRs (compared to

futures spreads) has clearly been mitigated, given that the pricing of these instruments

obviously has become more competitive in general since 09-Nov-2010. Also, the bottom

panel indicates that since the start of market coupling, actually nominated capacities

have strongly decreased, which provides clear evidence for the above mentioned shift

in applicability of PTRs towards hedging (or even speculation) rather than for physical

shipping.

4.3 Modeling Two Coupled Electricity Markets

4.3.1 Reduced-Form Modeling Approaches

Although popular, reduced-form approaches to electricity price modeling increasingly

struggle to keep pace with recent developments and regulatory changes in electricity

markets, such as the introduction of negative electricity prices at some power exchanges,

or the impact of carbon emission allowances as additional price driver.13 The

interconnectivity of European electricity markets adds to these complexities and poses

new challenges: unlike under the explicit ex-ante scheduling of cross-border flows that

caused the typical oscillating behavior of the day-ahead price spreads between adjacent

markets, spread dynamics under market coupling are now fundamentally different, given

that prices in coupled markets will usually coincide much more frequently.

In the case of spread options, the dynamics of the underlying price spread have

previously most often been modeled either indirectly as the difference between individual

spot price time series in a bivariate reduced-form setting (see, e.g., Marckhoff, 2009; or

Wobben et al., 2012) or directly as a univariate asset (see, e.g., Cartea and Gonzalez-

Pedraz, 2012; or Marckhoff and Muck, 2009). Both approaches, however, will clearly

yield a mis-specified model if to be applied to coupled electricity markets, which is due

to both structural and practical reasons.

More precisely, not only do reduced-form settings fail, by their inherent nature,

to make use of additional information about fundamental factors that strongly drive

electricity price dynamics, such as generating fuels, domestic electricity demand, or

13See, e.g., Fanone et al. (2013) and Carmona et al. (2012), respectively, for further information.
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available generation capacity. Extending a pricing framework to include this kind of

information, especially when combined with forecasts for some of these factors, can

help increase pricing performance significantly (Füss et al., 2013a). Consequently,

reduced-form models thus also leave aside the same type of information for adjacent

markets, which, however, is crucial in view of the increasing interconnectivity of European

electricity markets.

Furthermore, against this background, calibration of these models is also problematic

and may yield unreliable estimation results. Especially for electricity markets, structural

breaks due to a change in market design, such as a first-time roll-out of market coupling or

also the case of other national markets joining an existing coupling, may occur relatively

often, so that proper and sound model calibration directly based on historic spot (or

forward) price data is almost impossible. Note that these problems can be mitigated when

instead inferring price dynamics from underlying state variables that may be unaffected

by such changes in market design.14

In addition, the transmission capacity of an interconnector has a crucial impact on

the behavior of the spread between two adjacent markets. Although limited by an upper

(thermal) bound, the actually available capacity can fluctuate a lot over time, which

need not only be due to varying safety margins as imposed by TSOs, but also due to

frequent maintenance and unexpected outages. Kristiansen (2007), for instance, examines

cross-border electricity flows between Denmark and Germany during the years 2003-2004,

and reports that the interconnector was not operating at all for 23% of the time due

to scheduled maintenance. Therefore, when calibrating a reduced-form model – be it

univariate to model the spread directly or bivariate for its components – to such historic

data, the resulting price dynamics would implicitly be driven by an average interconnector

capacity that may well be too low.15 Equivalently, the same problem arises when a future

outage of the interconnector is announced so that the dynamics of the spread would need

to be adjusted for this event.

Note that when alternatively implementing a regime-switching approach with the

regimes being defined according to available transmission capacity of the interconnector,

14This is especially the case for the state variables that will be used to model electricity prices in our
fundamental framework presented further below – i.e., for electricity demand and the generating fuel.
Unlike demand and fuel prices, available generation capacity – that is also often used to model electricity
prices in a fundamental framework (see, e.g., Cartea and Villaplana, 2008; Aı̈d et al., 2013; Füss et al.,
2013a) – might nevertheless be affected by a change in market design since this may impact the possibly
strategic bidding behavior of the generators in each of the interconnected markets.

15This is due to the averaging over periods of both full use and outages at the same time.
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these problems could potentially be mitigated. However, as can empirically be observed,

not only do available capacities fluctuate considerably for many European interconnectors,

which might require to factually distinguish more regimes than is technically sensible from

a modeling point of view; but also may special cases (e.g., where the interconnector can

temporarily be used in one direction only) lead to additional complexities. In any case,

the resulting model dynamics would still not be driven by the economic causality of cross-

border exchange under market coupling, which, however, is prominently incorporated in

the fundamental modeling approach that we present for transmission rights valuation

further below.

4.3.2 Fundamental Modeling Approaches

In order to address the shortcomings of the reduced-form approaches when it comes to

transmission rights valuation, we propose to use the modeling framework for two coupled

markets that is originally developed in Füss et al. (2013b). This set-up belongs to the class

of fundamental (or structural/hybrid) electricity pricing models,16 and models electricity

prices for each market i as a function of underlying state variables, i.e., domestic electricity

demand Di,t and the price for the domestic generating fuel gi,t. Having established the

dynamics for these fundamental price drivers, we then derive electricity spot prices Pi,t

for each market based on an exogenous functional specification that mimics the typical

price formation process in electricity spot markets, based on a supply-demand equilibrium

with totally inelastic demand and a steeply increasing merit-order curve. Finally, the

interconnector flow that links the two markets is introduced into the setting and derived

by (i) equating spot prices in each market, and (ii) considering the arising non-linearity in

the flow due to the upper/lower bounds to interconnector capacity K. We briefly re-state

the model in the following and refer to Skantze et al. (2004), Coulon (2013), and Füss

et al. (2013a, 2013b) for further information.

Regarding the first state variable, the dynamics of Di,t are modeled based on a

mean-reverting Ornstein-Uhlenbeck (OU) process and a deterministic function in order

to reflect the distinct seasonalities that can generally be observed for electricity demand

16See, e.g., Pilipovic (1998), Eydeland and Wolyniec (2002), or Benth et al. (2008b) for a general
overview on different electricity pricing models, and Carmona and Coulon (2012) for an exhaustive
summary of the approaches subsumed under the class of fundamental models.
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(see, e.g., Cartea and Villaplana, 2008; or Füss et al., 2013a). On a filtered probability

space
(
Ω,FD,FD = (FD)t∈[0,T �],P

)
, demand Di,t is hence assumed to be governed by the

following dynamics:

Di,t = qi,t + sDi
(t), (4.1)

dqi,t = −κqiqi,tdt+ ηqidBi,t, (4.2)

where qi,t is an OU-process for market i with mean-reversion parameter κqi , Bi,t is a

standard Brownian motion, and sDi
(t) is a deterministic seasonality function. Note that

when modeling two geographically neighboring markets, it is natural to assume that q1,t

and q2,t are correlated, i.e., we allow for dB1,tdB2,t = �qdt.

Regarding the price process for the generating fuel, we again follow Füss et al.

(2013b) and employ the mean-reverting one-factor model by Schwartz (1997) along

with a deterministic component; hence, on a filtered probability space
(
Ω,Fg,Fg =

(Fg)t∈[0,T �],P
)
, the log fuel price, ln gt, shall be driven by the following dynamics:

ln gi,t = Xi,t + sgi(t), (4.3)

dXi,t = −κXi
Xi,tdt+ ηXi

dWi,t, (4.4)

where Xi,t is an OU-process for market i with mean-reversion parameter κXi
, Wi,t is

a standard Brownian motion, and sgi(t) is a deterministic seasonality function. Again,

potential correlation between the marginal fuel price processes in the two markets is

considered by allowing for dW1,tdW2,t = �Xdt.

For pricing derivatives, such as spread options in the context of transmission rights

valuation, we have to transfer the above P-dynamics for Di,t and gi,t to a risk-neutral

measure Q by introducing market prices of demand and fuel price risk, Λqi(t) =
∫ t

0
λqi,sds

and ΛXi
(t) =

∫ t

0
λXi,sds.

17 Note that in the case of our market setting, however,

there is no unique equivalent martingale measure given that non-traded risk factors

17When pricing derivatives in electricity markets, the market price of risk has often empirically been
observed to change signs and/or exhibit term structure-like patterns, which can be explained by, e.g.,
different degrees of hedging pressure of consumers and producers depending on their time horizon for
risk diversification (see, e.g., Benth et al., 2008a; Weron, 2008; or, more generally, Bessembinder and
Lemmon, 2002). Given that, e.g., in the case of yearly transmission rights, the underlying portfolio of
hourly spread options comprises a wide range of maturities, we propose to use time-varying market prices
of risk, thus yielding a more flexible parametrization for our class of risk-neutral measures Q.
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(such as electricity demand Di,t) cannot be hedged and, hence, render the market

incomplete. Following, e.g., Carmona et al. (2013) or, more generally, Bjork (2009),

we thus assume that the market selects a risk-neutral pricing measure Q which fulfills

Q ∈ {Q ∼ P: the discounted price of each tradable asset is a local Q-martingale}.

Finally, we thus have the following four-variate Gaussian setting where conditional

on time t and under Q, q1,T , q2,T , X1,T , and X2,T are distributed as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

q1,T

q2,T

X1,T

X2,T

⎤
⎥⎥⎥⎥⎥⎥⎦

Q∼ N

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

μq1

μq2

μX1

μX2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

σ2
q1

ρqσq1σq2 0 0

ρqσq1σq2 σ2
q2

0 0

0 0 σ2
X1

ρXσX1σX2

0 0 ρXσX1σX2 σ2
X2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.5)

with

μqi(t, T ) = qi,te
−κqi (T−t) + ηqi

∫ T

t

e−κqi (T−s)λqi,sds,

σ2
qi
(t, T ) =

η2qi
2κqi

(
1− e−2κqi (T−t)

)
,

μXi
(t, T ) = Xi,te

−κXi
(T−t) + ηXi

∫ T

t

e−κXi
(T−s)λXi,sds,

σ2
Xi
(t, T ) =

η2Xi

2κXi

(
1− e−2κXi

(T−t)) ,
ρq(t, T ) =

1

σq1σq2

�qηq1ηq2
κq1 + κq2

(
1− e−(κq1+κq2 )(T−t)

)
,

ρX(t, T ) =
1

σX1σX2

�XηX1ηX2

κX1 + κX2

(
1− e−(κX1

+κX2
)(T−t)) .

For ease of notation, we introduce the shorthand notation that μ(·), σ(·), and ρ(·) refer to

μ(·)(t, T ), σ(·)(t, T ), and ρ(·)(t, T ).

In order to link state variables and electricity spot prices, we invoke a continuous-time

equilibrium by intersecting inelastic demand Di,t with an exponential supply curve in each

market, thereby considering the role of marginal fuel prices gi,t as primary cost driver

when (conventionally) generating electricity. Additionally, the two electricity markets are

interconnected where the flow on the corresponding transmission line is denoted by J(t).
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Electricity spot prices Pi,t in market i with i = {1, 2} are then defined as follows:

P1,t = α1 g
δ1
1,t exp (β1D1,t − γ1J(t)) , (4.6)

P2,t = α2 g
δ2
2,t exp (β2D2,t + γ2J(t)) , (4.7)

where the flow J(t) on the interconnector results from a simplified allocation rule that is

to reproduce the economically efficient allocation of cross-border capacities under market

coupling and the resulting price convergence.18 Hence, in a first step, the (unconstrained)

interconnector flow J̃(t) is determined by equating the spot prices in the coupled markets:

P1,t
!
= P2,t (4.8)

α1 g
δ1
1,t exp

(
β1D1,t − γ1J̃(t)

)
= α2 g

δ2
2,t exp

(
β2D2,t + γ2J̃(t)

)
.

Solving for J̃(t) then yields:

J̃(t) =
1

γ1 + γ2
[lnα1 − lnα2 + δ1 ln g1,t − δ2 ln g2,t + β1D1,t − β2D2,t] . (4.9)

However, given that flows on the interconnector are limited by its thermal capacity

K, we require for operationally feasible flows J(t) that −K ≤ J(t) ≤ K and, hence,

define J(t) = max
(
min

(
J̃(t), K

)
,−K

)
;19 consequently, electricity spot prices in the

two markets are piecewise defined according to three different scenarios as implied by the

above non-linearity in J(t):

P1,t = P ex
1,t I{ ˜J(t)≤−K} + P un

1,t I{−K< ˜J(t)<K} + P im
1,t I{ ˜J(t)≥K}, (4.10)

P2,t = P im
2,t I{ ˜J(t)≤−K} + P un

2,t I{−K< ˜J(t)<K} + P ex
2,t I{ ˜J(t)≥K}, (4.11)

where P ex
1,t (P ex

2,t) is the spot price at time t in market 1 (market 2) if it is exporting

electricity to market 2 (market 1). Physical interconnector flows are then constrained by

the capacity of the transmission line and an amount ofK gigawatt (GW) units is exported

from one market to the other. P un
1,t (P un

2,t ) is the time-t spot price if the interconnection

18Again, we refer to Füss et al. (2013b) for further details.
19Note that we could easily accommodate the case of an interconnection line with different levels of

transmission capacity for each direction, i.e., K1→2 �= K2→1, yet refrain from doing so to simplify our
analysis.
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line between the two markets is un-constrained. In such case, there is no congestion and

market 1 (market 2) may either be exporting or importing at below the capacity limit

K. Correspondingly, P im
1,t (P im

2,t ) is the spot price of electricity in market 1 (market 2) if

it is in import-state and J(t) has reached its capacity limit. More explicitly, we have for

market 1 (prices for market 2 are defined analogously):

P ex
1,t = α1 g

δ1
1,t exp (β1D1,t − γ1(−K)) , (4.12)

P un
1,t = α1 g

δ1
1,t exp

(
β1D1,t − γ1J̃(t)

)
, (4.13)

P im
1,t = α1 g

δ1
1,t exp (β1D1,t − γ1K) . (4.14)

4.4 Valuation and Analysis of Transmission Rights

4.4.1 Valuation as Spread Option

Let Vt(T ) denote the value of a transmission right providing access to an interconnector

between two coupled markets at time t and with maturity T . As mentioned above, under

market coupling, Vt(T ) can be determined by interpreting the right as an option written

on the spread between spot electricity in the two markets, with payoff (P1,T − P2,T )
+ =

max(P1,T − P2,T , 0). Vt(T ) can then be derived as follows:

Vt(T ) = e−r(T−t)EQ
t

[
(P ex

1,T − P im
2,T )

+ I{ ˜J(T )≤−K} + (P un
1,T − P un

2,T )
+ I{−K≤ ˜J(T )≤K}

+(P im
1,T − P ex

2,T )
+ I{ ˜J(T )≥K}

]
.

Given that in the first two states (J̃(T ) ≤ −K and −K ≤ J̃(T ) ≤ K), the option will

expire worthless, whereas it will always be in the money for J̃(T ) ≥ K, we now yield:

Vt(T ) = e−r(T−t)EQ
t

[(
P im
1,T − P ex

2,T

)
I{ ˜J(T )≥K}

]
= e−r(T−t)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

ub

(
α1 g

δ1
1,T exp (β1D1,T − γ1K)−

α2 g
δ2
2,T exp (β2D2,T + γ2K)

)
· φ(q1,T |q2,T )φ(q2,T )φ(X1,T |X2,T )φ(X2,T )dq1,Tdq2,TdX1,TdX2,T ,(4.15)

where the bound ub is derived from the inequation J̃(T ) ≥ K (with J̃(T ), in turn, similarly

defined as in Equation (4.9)) and solving for q1,T . Furthermore, in order to yield an



Transmission Rights Valuation for Coupled Electricity Markets 127

analytic pricing formula for the value of a transmission right, we need to compute several

integrals over Gaussian densities, which can be simplified by relying on the following

standard result:20

∫ l

−∞
ecxΦ

(
a+ bx

d

)
e−

1
2
x2

√
2π

dx = e
1
2
c2Φ2

(
l − c,

a+ bc√
b2 + d2

;
−b√
b2 + d2

)
, (4.16)

where a, b, c, d, and l are constants, Φ(·) and Φ2(·, ·; ρ) are the cumulative distribution

functions of the univariate and bivariate (correlation ρ) standard normal distribution.

Applying Equation (4.16) and leaving out the maths in between, we can derive the

following closed-form solution for Vt(T ):
21

Vt(T ) = e−r(T−t)
[
E

Q
t

[
P im
1,T

]
Φ

(
−AX+Aq+K√

CX+Cq

)
− E

Q
t

[
P ex
2,T

]
Φ

(
−BX+Bq+K√

CX+Cq

)]
,(4.17)

with

AX = δ2
β1
μX2 − δ1

β1
μX1 −

δ21
β1
σ2
X1

+ δ1δ2
β1

ρXσX1σX2 , Aq =
β2

β1
μq2 − μq1 − β1σ

2
q1
+ β2ρqσq1σq2 ,

BX = δ2
β1
μX2 − δ1

β1
μX1 +

δ22
β1
σ2
X2
− δ1δ2

β1
ρXσX1σX2 , Bq =

β2

β1
μq2 − μq1 +

β2
2

β1
σ2
q2
− β2ρqσq1σq2 ,

CX =
(

δ1
β1

)2

σ2
X1
− 2 δ1δ2

β2
1
ρXσX1σX2 +

(
δ2
β1

)2

σ2
X2
, Cq = σ2

q1
− 2β2

β1
ρqσq1σq2 +

(
β2

β1

)2

σ2
q2
,

K = γ1+γ2
β1

K − 1
β1
S,

S = lnα1 − lnα2 + δ1sg1(T )− δ2sg2(T ) + β1sD1(T )− β2sD2(T ).

We remark that in the case of spread options on electricity spot prices, the underlyings

can obviously not be used to set up a hedging portfolio and replicate the option

payoff; also, although we model electricity prices as derived from a continuous-time

equilibrium between underlying state variables, we do not employ a fully agent-based

optimization setting, so that alternatively resorting to utility indifference pricing only for

valuing derivatives (but not for determining the underlying price processes as equilibrium

outcomes) may be seen as inconsistent.22 However, even for an incomplete market setting,

20For further information on the result in Equation (4.16) (which ultimately is based on a change-of-
variables transformation), see Geske (1979) and also Carmona and Coulon (2012).

21Note that in below Equation (4.17), we omit to state E
Q
t

[
P im
1,T

]
and E

Q
t

[
P ex
2,T

]
explicitly – both of

which, however, can easily derived based on Equations (4.12) and (4.14), respectively, and the properties
of the lognormal distribution.

22See, e.g., Kluge (2006) for an introduction to utility indifference pricing in the context of electricity
markets and Henderson (2002) for a general overview.
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derivative prices have to be consistent within the set of all traded contracts, as required by

the (albeit weaker) no-arbitrage arguments that we invoke here for spread option pricing:

even though derivative prices will not be unique but depend on the respective equivalent

martingale measure chosen, they will exclude the possibility for arbitrage profits based on

the set of all other instruments that are actually traded. Note in this context that although

modeling electricity prices as a function of underlying state variables increases the number

of risk-neutral parameters to be extracted, it can help at the same time to enlarge

the set of traded contracts that can be used for calibration purposes – especially when

considering electricity derivatives as not being written on spot electricity, but instead as

derivatives on underlying electricity demand and the generating fuel. Thus, in an empirical

implementation, depending on the scope and number of contracts to be considered in order

to extract the parametrization for the risk-neutral measure Q, derivatives on only one of

these underlying risk factors, such as natural gas options/futures, could additionally be

included and allow for an even more robust calibration.

4.4.2 Sensitivity Analysis for Transmission Rights

In order to examine the key determinants of value for transmission rights, Figures 4.2 and

4.3 illustrate payoff profiles (P1,T−P2,T )
+ and option values Vt(T ) for given interconnector

capacities K of 0 GW, 2 GW, and 5 GW.23 Note, however, that unlike for a “classic”

payoff profile of a plain vanilla spread option, we here cannot directly plot the option

payoff (P1,T − P2,T )
+ against the underlying spot spread as measured on the abscissa.

Recalling that for K > 0, the spot spread consists of the components in Equations (4.10)

and (4.11), we see that plotting option values Vt(T ) obtained for different interconnector

capacities K against the same spot spread obviously would lead to distortions: notably,

the probability of observing a given level of the spread in the market will not be the same

across different capacities K. Instead, in the below analysis, we vary the fundamental

state variables that are at the origin of changes in the spot spread, which not only avoids

the above problem, but also allows for a more detailed picture on how Vt(T ) is impacted

23We assume two identically parametrized markets where the main input parameters to our model are
set as follows: sDi

= 40 GW, sgi = 0.5 (thus leaving out any seasonalities in electricity demand or fuel
prices as a matter of simplification), κqi = 0.5, κXi = 0.001, ηqi = 1.0, ηXi = 0.02, βi = 0.1, and δi = 0.5.
Furthermore, even though from an empirical point of view, the case of ρq > 0 and ρX > 0 may be more
relevant, we assume state variables to be uncorrelated when analyzing their individual impact on option
prices (instead of having to separate “overlapping effects” arising from non-zero correlations). Finally,
we also assume λqi,t = λXi,t = 0 and r = 0.
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differently by movements in electricity demand and fuel prices.

In Figure 4.2, we analyze how both payoff and value of the transmission right, Vt(T ),

depend on deseasonalized demand in market 1, q1,t (thereby keeping the initial values of

the other state variables fixed at zero, i.e., q2,t = Xi,t = 0). Interestingly, the kink in the

payoff profiles (indicating where the option starts to be in the money) is shifting to the

right for higher levels of interconnector capacity K, which is due to the increased price

convergence through the market coupling mechanism: for K > 0, the interconnector helps

to meet higher demand in market 1 (as indicated by q1,t) with additional supplies from

the neighboring market and thus creates a “deadband” of differentials in the underlying

state variables that can still be balanced in order to maintain a zero price spread between

electricity markets. In the LHS graph, we furthermore see that irrespective of the specific

level of K, all transmission right values for an assumed time-to-maturity of τ = T −

t = 10 days are virtually straight horizontal lines and insensitive to the initial value

chosen for q1,t. Hence, if today’s variation in electricity demand does not impact the

final distribution of the option payoff upon maturity, all demand shocks away from the

long-term (seasonal) mean must reverse by then, as is ensured by a correspondingly high

speed of mean reversion for our OU-process (as specified in Equations (4.1) and (4.2)): In

fact, having set κqi = 0.5 implies a half-life for demand shocks of only slightly more than

one day, as is characteristic for electricity demand.24 Consequently, q1,t will not impact

the option value Vt(T ) except for very short-term maturities. By contrast, when instead

varying the deseasonalized log-fuel price X1,t in Figure 4.3, it is obvious that for the same

maturity, the generally lower speed of mean reversion clearly causes option values to be

more sensitive to variation in fuel prices. Since positive (negative) deviations of X1,t from

the long-term mean will decay only very slowly, they will still be persistent at maturity

and, compared to the horizontal lines in the LHS graph, will lead to a relative increase

(decrease) in option value.

With respect to the question how interconnector capacity K affects option prices, it

is obvious to see from both figures that higher levels of K facilitate price convergence, thus

strongly reducing the likelihood of reaching the export state J̃(T ) ≥ K. Therefore, taking

the case of K = 5 GW in Figure 4.3 as an example, and with all state variables expected

24Note that the parameter values used for our sensitivity analyses are in line with the empirical values
as estimated in Füss et al. (2013a). High levels for the speed of mean reversion for electricity demand
are also confirmed by, e.g., Pirrong and Jermakyan (2008) or Coulon et al. (2013).
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Figure 4.2: Transmission Right Values and Payoff Profiles: Varying Demand
This figure shows the payoff profiles for an option written on the spot spread between two coupled

electricity markets, (P1,T − P2,T )
+, and assuming given interconnector capacities K of 0 GW, 2

GW, and 5 GW. Additionally, the spread option value Vt(T ) is plotted for a time-to-maturity of

τ = T − t = 10 days. Note that since the underlying of the option, i.e., the spot spread P1,t − P2,t,

is itself sensitive to the interconnector capacity K, we instead vary de-seasonalized demand q1,t in

market 1 in order to avoid distortions (thereby keeping the other state variables in market 1 and 2

fixed at zero).

to mean-revert to their unconditional moments by maturity at time T , Vt(T = t + 10)

is already close to zero and coincides with the horizontal axis. At the same time, this

underlines the degree of model risk if transmission rights under market coupling were

(erroneously) to be valued as spread options within a classic reduced-form setting. Given

that interconnectivity and ensuing frequent price convergence between the markets would

be ignored (i.e., K = 0), option values would generally be overstated: for instance,

Vt(T = t + 10) for K = 0 is almost four times as high as with K = 2 – and in fact, we

can show that Vt(T ) for K = 0 will always serve as an upper bound to option prices.

More precisely, for the case of two isolated markets with no possibilities to

import/export electricity from each other, Equation (4.17) above entails Margrabe’s

formula (see Margrabe, 1978) as a special case and reduces to the well-known case of

an exchange option on two lognormally-distributed assets, ln
(
P iso
1,T

)
and ln

(
P iso
2,T

)
with

mean μPi
, variance σ2

Pi
, and correlation ρP1,P2 . As is straightforward to show, for K = 0,
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Figure 4.3: Transmission Right Values and Payoff Profiles: Varying Fuel Price
This figure shows the payoff profiles for an option written on the spot spread between two coupled

electricity markets, (P1,T − P2,T )
+, and assuming given interconnector capacities K of 0 GW, 2

GW, and 5 GW. Additionally, the spread option value Vt(T ) is plotted for a time-to-maturity of

τ = T − t = 10 days. Note that since the underlying of the option, i.e., the spot spread P1,t − P2,t,

is itself sensitive to the interconnector capacity K, we instead vary the log-fuel price X1,t in market

1 in order to avoid distortions (thereby keeping the other state variables in market 1 and 2 fixed at

zero).

our option pricing formula then can be summarized as follows:

Vt(T ) = e−r(T−t)
[
F iso
1,t (T )Φ (D1)− F iso

2,t (T )Φ (D2)
]
, (4.18)

with

D1 =
ln
(

F iso
1,T

F iso
2,T

)
+ 1

2
σ2
P1,P2

σP1,P2

, D2 =
ln
(

F iso
1,T

F iso
2,T

)
− 1

2
σ2
P1,P2

σP1,P2

,

where F iso
i,t (T ) = E

Q
t

[
P iso
i,T

]
and σ2

P1,P2
= σ2

P1
− 2ρP1,P2σP1σP2 + σ2

P2
. Even though it

may be intuitively clear that Vt(T ) must increase when interconnector capacity gets

smaller, it is helpful to realize how this effect is reproduced by the mechanics of our

model: notably, for K → 0, we can already see that the arguments to the cumulative

distribution functions (cdf) in Equation (4.17) converge towards D1 and D2, respectively.
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For identically parametrized markets, we then have F iso
1,T = F iso

2,T and D1 = −D2. This,

in turn, implies that for K = 0, the difference between the “weightings” Φ (D1) and

Φ (D2) will be highest and, given the curvature of the standard normal cdf, will start

to become smaller with increasing K (as a consequence of both functional arguments to

the cdf in Equation (4.17) becoming smaller themselves). At the same time, it is only for

K = 0 that EQ
t

[
P im
1,T

]
and E

Q
t

[
P ex
2,T

]
coincide, with the latter term otherwise exceeding the

former; consequently, for non-zero K, not only will the probability weightings converge

to each other, but EQ
t

[
P im
1,T

]
and E

Q
t

[
P ex
2,T

]
will also move in opposite directions, causing

Vt(T ) in Equation (4.17) to become even smaller and, hence, establishing the Margrabe

formula in Equation (4.18) as an upper bound.

Finally, Figure 4.4 shows additional sensitivities of the option value Vt(T ) when

varying (i) the interconnector capacity K, and (ii) the ratio of unconditional (long-term)

demand between the two markets. Additionally, the probability of the spread option

being “in the money” is shown in the panels on the right, where we have computed

the risk-neutral probability Q(A) with Q(A) = E
Q
t [IA] (where A refers to the event

J̃(T ) ≥ K).

As can be seen in the top row of Figure 4.4, the option value is very sensitive

to the interconnector capacity K given that an increase in K strongly facilitates price

convergence between the two markets, in which case the option will expire worthless. In

fact, for our example, an interconnector capacity of 5 GW is already sufficient to drive

both option value and probability of being in the money down to zero. Also note that

for K = 0, i.e., for above mentioned Margrabe case, price convergence cannot be reached

(unless by coincidence); thus, given that all other parameters were chosen to be equal in

the two markets, the probability of exercising the option is exactly 1/2.

Varying the ratio of long-term demand in the two markets μq1/μq2 for T 
 t, the

option value is zero for ratios less than 1.0: in this case, higher demand in market 2 always

induces higher electricity prices P2,T at maturity, so that (P1,T − P2,T )
+ will be zero. On

the other hand, a small increase of the ratio beyond 1.0 implies ceteris paribus a strong

increase in option value. Finally, note that although the two markets are again identically

parametrized, the probability Q(A) for a long-term demand ratio of exactly 1.0 is now

below 1/2. For a fixed interconnector capacity (which here has been set to K = 2), price

convergence between the two markets can now be reached more easily than in the previous
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Figure 4.4: Transmission Right Value Sensitivities
This figure shows sensitivities of the transmission right value Vt(T ) (with payoff (P1,T −P2,T )

+ at

time T ) as well as of the risk-neutral probability Q(A) (where Q(A) = E
Q
t [IA] with A referring to

the event J̃(T ) ≥ K), when varying key determinants: (i) interconnector capacity K, and (ii) the

ratio of unconditional (long-term) demand between the two markets.

case outlined above, which must be compensated by a higher demand ratio in order to

reach a probability of 1/2.

4.5 Conclusion

Driven by continuing efforts to foster electricity market integration across Europe,

cross-border trading has gradually evolved out of a primarily operational into a more

liquid setting where transactions are increasingly becoming financial rather than physical.

Following the recent roll-out of market coupling across the central European markets,

and accompanied by a small but important change with respect to the UIOSI feature

of physical transmission rights, longer-term PTRs now benefit from increased hedge

effectiveness – given that the common inefficiencies when scheduling flows ex-ante no

longer prevail. At the same time, the possibility of not exercising PTRs (but using them

as FTRs instead) has sparked further investor interest, e.g., by financial players such as
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the trading arms of major investment banks. As preliminary empirical evidence confirms,

these changes have resulted in more competitive auction bids for PTRs that entail a

premium above the corresponding futures spread, which in turn is in accordance with the

common spread option approach to transmission rights valuation.

However, the intricate price dynamics of the spot spread between two coupled markets

render previously used reduced-form approaches unreliable and call for more granular

modeling frameworks: the fundamental setting presented in this chapter incorporates

a simplified representation of a market coupling mechanism and, thus, adequately

reproduces the stylized facts of electricity prices in coupled markets – which hence also

applies to the corresponding spread dynamics. Our log-normal setting furthermore allows

us to derive a closed-form pricing formula for transmission rights by interpreting the right

as an option on the spot spread between the two markets, which is important both for

computing the related option Greeks and other risk management measures, but even more

so when it comes to an empirical implementation of the model.

Aspects for further research are abundant and, hence, this chapter could be taken

as a starting point for further research centering on the analysis of transmission rights

valuation in a fundamental modeling context: First of all, our setting could be extended

to include additional coupled markets, which – albeit at the cost of increasing complexity

– will clearly enhance its applicability and scope of use given the continued spreading (and

linking) of both new and existing coupling initiatives. In this context, the availability of

analytic pricing formulae will be crucial: not only because it usually allows for a better

understanding of the model mechanics, but also since computational speed becomes even

more important the more markets are to be modeled at the same time. Otherwise,

simulations may likely suffer from the curse of dimensionality, making calibration to

observed PTR or other derivatives prices – which is a frequently used calibration method

used in an incomplete market setting – even less viable. Also, given the disproportionately

high influence of renewable generation sources on spot prices in Germany, the value

of transmission rights for neighboring markets could start to become sensitive to the

potential occurrence of negative prices (e.g., at least for few selected hours of the day

during which negative prices are most likely to occur). Hence, it would be interesting to

extend our model to allow for negative-price regimes, as could be achieved with, e.g., a

regime-switching set-up.25

25See, e.g., Coulon et al. (2013) for an application in the context of structural electricity pricing models.
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From an empirical point of view, it would be important to test the pricing

performance of our fundamental setting, using publicly available PTR auction prices

for one or several borders at the same time. Although the small sample size – PTRs

are auctioned off only once a month/year – may affect the results, this also poses new

challenging questions when it comes to calibrating our model. In order to yield stable and

robust calibration results, trade prices of other electricity spot and/or derivatives contracts

may need to be considered, too, and it would be interesting to see whether our setting is

sufficiently flexible to adequately price all these contracts at the same time. Finally, note

that although not discussed explicitly in this chapter, themarket splitting mechanism used

in the Nordic electricity market, NordPool, is conceptually similar to the market coupling

mechanism analyzed here. Within NordPool, transmission risk between pricing areas is

not managed via transmission rights but instead with Contracts for Difference (CfD),

which represents an entirely financial-market based solution.26 Given that our model

could easily be adapted to this slightly different institutional framework, CfDs could be

valued as the price of a forward spread between the local area price and the system price,

thereby again taking into account that the market splitting mechanism facilitates prices

convergence.

26See, e.g., Kristiansen (2004) or Marckhoff and Wimschulte (2009) for further information.



136



Chapter 5

Concluding Remarks

In this thesis, we have focused on modeling electricity spot and forward prices in a

structural framework, as opposed to the class of reduced-form models that are traditionally

and widely used for other types of commodities, but also for other asset classes such

as equities or FX. Although the basic idea of the latter class of models, i.e., to

disentangle electricity price dynamics into a seasonal component and one (or more)

stochastic processes, generally yields well-tested, pragmatic, and tractable modeling

frameworks, these approaches do not fully take account of both the specificities and recent

developments present in today’s liberalized electricity markets.

First and foremost, the transparency of the price formation mechanism for (spot)

electricity, described in Chapter 1, allows for a more detailed and “informed” modeling of

prices than is feasible for other commodity markets.1 The class of pricing models presented

in this thesis takes up this idea by going one step beyond mimicking the stochastic behavior

of electricity prices and instead focusing on the interaction of fundamental price drivers

such as supply and demand or the underlying fuel used for electricity generation.

In Chapter 2, we accordingly present a structural pricing framework and, based on

the concept of enlarged filtrations, extend it to integrate forecasts of electricity demand

and supply. These forecasts are available for many electricity markets globally and, as is

shown in the empirical part of Chapter 2, clearly help to reduce pricing errors for electricity

forward contracts compared to the case in which such information is discarded. While

we thus strongly recommend using forward-looking information for electricity derivatives

pricing whenever available, our results also show that the relative importance of the

1See, e.g., Pirrong (2012).
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fundamental factors (e.g., fuel vs. demand/capacity) may change over time, and so will

the advantage of using forecasts for derivatives pricing purposes.

Apart from increasing amounts of (forward-looking) data that is publicly available

to market participants and that reliable pricing models must be able to reflect in their

forecasts, further – new – challenges for electricity pricing also stem from the high degree of

cross-border integration and interconnectedness of electricity markets today. As outlined

in Chapter 3, the organization of cross-border trade of electricity via interconnection lines

across Europe not only raises many interesting questions of institutional market design

and (micro-) structure; above all, it also requires to adapt electricity pricing models to

the respective allocation scheme under which corresponding interconnector capacities are

made available to the market.

Most notably, this applies to the continued roll-out of market coupling schemes across

the European electricity markets which eliminate previous inefficiencies emanating from

explicit ex-ante allocation methods and, hence, accordingly foster price convergence across

neighboring markets. Importantly, however, we show that this change in market structure

significantly impacts price dynamics for interconnected electricity markets, even more

so for cross-border spreads, which altogether can hardly be reflected with the standard

reduced-form models. Hence, we extend our fundamental pricing framework presented in

Chapter 2 into a two-market setting in which, thanks to our structural approach, both

said allocation schemes can be invoked and tested for their implications on price dynamics.

Whereas Chapter 3 especially focuses on spot and forward contracts, the impact

of market coupling on transmission rights valuation is focused on in Chapter 4. Here

we present the current regulatory framework for interconnector access in Europe and

derive a new analytic valuation formula for transmission rights providing access to the

interconnection lines, when valued as spread options under the case of market coupling.

Continuing the discussion and extending the results from the previous chapter, we

highlight how the coupling mechanism significantly affects both option values and premia

versus corresponding forward spreads, and show how our results relate to the well-known

Margrabe formula for spread option pricing.

Having given a rigorous treatment of the class of fundamental electricity pricing

models, their fields of application, their advantages, and their limitations, it should also
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be borne in mind that a reliable and powerful pricing model will always need to be tailored

to and reflect currently prevailing market foundations and paradigms. This starts with the

respective “target market model”2 and corresponding network code for wholesale market

design, and is overlaid with regulatory policies such as on carbon emission allowances or

renewables feed-in tariffs. In addition, our set of given “market axioms” also subsumes

other exogenous factors, such as the state of technology, according to which efficient large-

scale storage facilities for electricity are currently still neither technically nor economically

feasible. At the same time, the obvious state of flux that electricity markets – especially

in Europe – are facing nowadays has probably never been as pronounced and dynamic

since early liberalization efforts have started to unfold.

Therefore, while we have illustrated in this thesis how structural modeling approaches

can help to address many of the new challenges around electricity pricing, the relationship

between (market) structure and (pricing/risk management) strategy will continue to

change, and so will the above “pillars” that define the current status quo in electricity

markets. As such, our fundamental modeling frameworks will also finally have to follow

suit. However, be it the continued increase in renewable generation and the related move

towards a more decentralized generation concept that will change the structure of the

supply side and its cost function; be it upon further technological revolution that smart

grids, electronic cars and other battery-based solutions will impact the demand side and its

degree of (in-) elasticity: maintaining a structural view on the electricity price formation

process, its drivers, and their interplay, rather than on the (historical) trajectory of prices

itself, should help to capture the impact of these coming innovations in a more holistic

way in the first place – and, as will be crucial for electricity pricing and risk management

purposes in the future, it is only on these informed grounds that modelers then should

decide about which abstractions to impose on their model in order to balance accuracy

and tractability.

2In Europe, for instance, the “Florence Forum” was set up in 1998 in order to promote the development
of the European coupling-based target model and monitor the overall process of market integration. The
basic day-ahead target model for the Internal Electricity Market in Europe was presented at the 17th
meeting of the Florence Forum in 2009, and laid out the basic principles and guidelines for today’s market
coupling arrangements.
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F.E. Benth, J. Šaltytė-Benth, and S. Koekebakker. Stochastic Modeling of Electricity and

Related Markets. World Scientific, London, 2008b.

F.E. Benth, R. Biegler-König, and R. Kiesel. An empirical study of the information

premium on electricity markets. Energy Economics, 36:55–77, 2013.

H. Bessembinder and M.L. Lemmon. Equilibrium Pricing and Optimal Hedging in

Electricity Forward Markets. Journal of Finance, 57(3):1347–1382, 2002.

F. Biagini and B. Oksendal. A general stochastic calculus approach to insider trading.

Applied Mathematics & Optimization, 52(2):167–181, 2005.

M. Bierbrauer, C. Menn, S. Rachev, and S. Trueck. Spot and derivative pricing in the

EEX power market. Journal of Banking & Finance, 31(11):3462–3485, 2007.

T. Bjork. Arbitrage Theory in Continuous Time. Oxford University Press, New York,

2009.

R.E. Bohn, M.C. Caramanis, and F.C. Schweppe. Optimal pricing in electrical networks

over space and time. RAND Journal of Economics, 15(3):360–376, 1984.

A. Boogert and D. Dupont. When Supply Meets Demand: The Case of Hourly Spot

Electricity Prices. IEEE Transactions on Power Systems, 23(2):389–398, 2008.



Bibliography 143

S. Bordignon, D.W. Bunn, F. Lisi, and F. Nan. Combining day-ahead forecasts for British

electricity prices. Energy Economics, 35(1):88–103, 2013.

W. Buehler and J. Mueller-Mehrbach. Dynamic Equilibrium Valuation of Electricity

Futures. Working Paper, Universität Mannheim, 2007.

W. Buehler and J. Mueller-Mehrbach. Valuation of electricity futures: Reduced-form vs.

dynamic equilibrium models. Working Paper, Universität Mannheim, 2009.

D.W. Bunn and M. Martoccia. The Efficiency of Network Transmission Rights as

Derivatives on Energy Supply Chains. Journal of Derivatives, 18(2):46–57, 2010.

D.W. Bunn and G. Zachmann. Inefficient arbitrage in inter-regional electricity

transmission. Journal of Regulatory Economics, 37(3):243–265, 2010.

M. Burger, B. Klar, A. Mueller, and G. Schindlmayr. A spot market model for pricing

derivatives in electricity markets. Quantitative Finance, 4(1):109–122, 2004.

R. Carmona and M. Coulon. A survey of commodity markets and structural model

for electricity prices. In F.E. Benth, editor, Financial Engineering for Energy Asset

Management and Hedging in Commodity Markets; Proceedings from the special thematic

year at the Wolfgang Pauli Institute. Vienna, 2012.

R. Carmona, M. Coulon, and D. Schwarz. The Valuation of Clean Spread Options:

Linking Electricity, Emissions and Fuels. Quantitative Finance, 12(12):1951–1965, 2012.

R. Carmona, M. Coulon, and D. Schwarz. Electricity price modeling and asset valuation:

A multi-fuel structural approach. Mathematics and Financial Economics, 7(2):167–202,

2013.

G. Carr. European power market coupling marches on. Energy Risk, 2012a.

G. Carr. European power market: CWE’s next challenges. Energy Risk, 2012b.

G. Carr. European power traders look to different sources of data. Energy Risk, 2013.

A. Cartea and C. Gonzalez-Pedraz. How much should we pay for interconnecting

electricity markets? A real options approach. Energy Economics, 34(1):14–30, 2012.



144

A. Cartea and P. Villaplana. Spot price modeling and the valuation of electricity forward

contracts: The role of demand and capacity. Journal of Banking & Finance, 32(12):

2502–2519, 2008.

A. Cartea and T. Williams. UK gas markets: The market price of risk and applications

to multiple interruptible supply contracts. Energy Economics, 30(3):829–846, 2008.

A. Cartea, M.G. Figueroa, and H. Geman. Modelling Electricity Prices with Forward

Looking Capacity Constraints. Applied Mathematical Finance, 16(2):103–122, 2009.

L. Clewlow and C. Strickland. Energy Derivatives: Pricing and Risk Management. Lacima

Productions, London, 2000.

M. Coulon. Forward Price Approximation for Coupled European Electricity Markets.

Working Paper, University of Princeton, 2013.

M. Coulon and S. Howison. Stochastic behaviour of the electricity bid stack: From

fundamental drivers to power prices. Journal of Energy Markets, 2(1):29–69, 2009.

M. Coulon, W.B. Powell, and R. Sircar. A model for hedging load and price risk in the

Texas electricity market. Energy Economics, 40:976–988, 2013.

M. Coulon, C. Jacobsson, and J. Ströjby. Hourly Resolution Forward Curves for Power:

Statistical Modeling Meets Market Fundamentals. In M. Prokopczuk, editor, Energy

Pricing Models: Recent Advances, Methods, and Tools. Palgrave Macmillan, London,

2014.

J.C. Cox and S.A. Ross. The valuation of options for alternative stochastic processes.

Journal of Financial Economics, 3(1–2):145–166, 1976.
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F. Höffler and T. Wittmann. Netting of Capacity in Interconnector Auctions. The Energy

Journal, 28(1):113–144, 2007.

B.F. Hobbs, A.M. Rijkers, and M.G. Boots. The More Cooperation, The More

Competition? A Cournot Analysis of the Benefits of Electric Market Coupling. The

Energy Journal, 26(4):69–97, 2005.

W.W. Hogan. Contract Networks for Electric Power Transmission. Journal of Regulatory

Economics, 4(3):211–242, 1992.

A. Hortacsu and S.L. Puller. Understanding strategic bidding in multi-unit auctions: a

case-study of the Texas electricity spot market. RAND Journal of Economics, 39(1):

86–114, 2008.

Y. Hu. An enlargement of filtration for Brownian motion. Acta Mathematica Scientia,

31B(5):1671–1678, 2011.
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