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Abstract (English) 
With the growing internationalization of commodity and financial markets, researchers 
have increasingly focused on how price discovery and trading volumes in one market 
might impact/be impacted by other markets. Of particular interest have been the 
linkages between the markets in the developing world and those in the developed 
world.   

The first chapter examines the process of information transmission among bullion 
(gold and silver) and metal (aluminum, copper and zinc) markets in India and its 
counterparts.  We examine the transmission flow between MCX, India and its global 
counterparts, COMEX, LME and SHFE. The MGARCH results of volatility spillovers 
indicate that, in the case of bullion, MCX seems to be more dominant than COMEX, 
implying that it is no longer a satellite market. However, for metals LME seems to 
play the dominant role, followed by MCX and SHFE. 

In the next chapter the research is extended to include three strategically linked oil 
markets of UK (ICE), India (MCX) and United States (NYMEX) exchanges. The 
results confirm a long-run equilibrium relationship between futures and spot prices in 
each market. It is found that ICE is the most dominant platform followed by NYMEX 
and MCX in price discovery process. Thus, MCX, an emerging market platform seems 
to act like a satellite market vis-à-vis international platforms. The volatility spillover 
results suggest that there is a long-term spillover from ICE to MCX and from MCX to 
NYMEX.  

While the first two chapters attend to information flow between emerging markets and 
developed markets, the third chapter draws on this knowledge with a view to 
developing optimum portfolio of stock market securities representing several sectors, 
including bullion, metals and oil. Portfolio optimization involves determination of 
investment-mix   such   that   it  meets   investors’   aspirations,   that   often   are  multiple   and  
vague. Conflicts of objectives and the incompleteness of available information make it 
almost impossible for investors to build a reliable mathematical model for repre-
sentation of their preferences by considering single aspiration level for each goal. To 
overcome this problem, this study integrates analytic hierarchy process (AHP) and 
multi-choice goal programming (MCGP) as a decision aid to obtain an optimal asset 
allocation that better suit the preferences of investors under their needs. An empirical 
study is further included to illustrate the usefulness of the proposed approach in real-
life applications of portfolio selection.  
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Abstract (Deutsch) 
Mit der wachsenden Internationalisierung der Rohstoff- und Finanzmärkte hat sich die 
Wissenschaft zunehmend mit der Frage auseinandergesetzt, wie die Preisfindung und 
das Handelsvolumen in einem Markt von anderen Märkten beeinflusst werden. Von 
besonderem Interesse waren hierbei die Zusammenhänge zwischen den Märkten der 
Schwellen- und der Industrieländer.  

Im ersten Kapitel der vorliegenden Arbeit wird der Prozess der 
Informationsübertragung zwischen den Märkten für Edel- und Industriemetalle in 
Indien und ihren Entsprechungen in den Industrieländern untersucht.  So wird der 
Informationsfluss zwischen dem MCX India und seinen globalen Gegenstücken 
COMEX, LME und SHFE mit einem MGARCH-Modell erforscht. Die Ergebnisse der 
Untersuchung der Volatilitäts-Spillover deuten daraufhin, dass im Falle der 
Edelmetallmärkte der MCX dominanter ist als der COMEX. Dies bedeutet, dass der 
MCX nicht länger ein Satellitenmarkt des COMEX ist. Die Resultate der 
Untersuchung der Industriemetallmärkte hingegen zeigen, dass der LME die 
dominante Rolle innehat, gefolgt vom MCX and SHFE.  

Das zweite Kapitel erweitert die Untersuchung um drei strategisch miteinander 
verbundene Ölmärkte an den Börsen in Grossbritannien (ICE), Indien (MCX) und den 
Vereinigten Staaten (NYMEX). Die Ergebnisse bestätigen eine langfristige 
Gleichgewichtsbeziehung zwischen Future- und Spotpreisen in jedem Markt. 
Weiterhin zeigt die Untersuchung, dass die ICE die dominanteste Rolle im 
Preisfindungsprozess spielt, gefolgt von NYMEX und MCX. Entsprechend kann die 
MCX als Satellitenmarkt der internationalen Handelsplätze bezeichnet werden. Die 
Ergebnisse der Untersuchung der Volatilitäts-Spillover legt nahe, dass es einen 
langfristigen Spillover von ICE zu MCX sowie von MCX zur NYMEX gibt.  

Während sich die ersten beiden Kapitel mit dem Informationsfluss zwischen 
Schwellen- und Industrieländern befassen, wird im dritten Kapitel vor dem 
Hintergrund dieses Wissens ein optimales Aktienportfolio entwickelt, welches Aktien 
aus verschiedenen Sektoren (u.a. dem Rohstoffsektor) beinhaltet. Eine 
Portfoliooptimierung ist die Bestimmung eines Investmentmix, der den Zielen des 
Anlegers entspricht. Diese Ziele sind oftmals vielfältig und wage. Zielkonflikte sowie 
unvollständige Informationen machen es dem Anleger fast unmöglich ein verlässliches 
mathematisches Modell zu verwenden, das seine Präferenzen abbildet und die 
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Erreichung eines jeden Einzelziels berücksichtigt. Um dieses Problem zu lösen, wird 
in dieser Studie Analytic Hierarchy Process (AHP) und Multi-Choice Goal 
Programming (MCGP) als Entscheidungshilfe verwendet, um eine optimale Asset 
Allokation zu erhalten, die die Präferenzen des Investors besser berücksichtigt. In einer 
empirischen Studie wird zudem die Zweckmässigkeit des vorgeschlagenen Vorgehens 
der Portfolioselektion für die Praxis untersucht. 



Information Transmission – Bullion And Metals 1 

 

 

1. Information Transmission between International and 
Indian Commodities Futures Markets:  

An Empirical Study for Bullion and Metals 
Abstract 

This study examines the process of information transmission in futures prices of 
bullion (gold and silver) and metals (aluminum, copper and zinc) in India, represented 
by Multi-Commodity Exchange (MCX) and its global counterpart trading platforms, 
such as Commodity Exchange Inc. (COMEX), London Metal Exchange (LME) and 
Shanghai Futures Exchange (SHFE), for the period of 2005 to 2012. Structural breaks 
are identified for all sample series, which capture the impact of the recent economic 
crisis on global commodity markets. The price discovery results confirm that there is a 
long-term equilibrium relationship among the futures prices of the examined trading 
platforms in each commodity series, with the exception of aluminum. The MGARCH 
results of volatility spillovers indicate that, in the case of bullion, MCX seems to be 
more dominant than COMEX, implying that it is no longer a satellite market, while in 
the case of metals; LME seems to play the dominant role, followed by MCX and 
SHFE. The research contributes to the commodity market literature for emerging 
economies. 
 

1.1 Introduction 
A large number of studies have examined the process of information transmission by 
way of analyzing the price discovery and volatility spillovers for both mature and 
emerging commodity markets (see Ross, 1989; Tse, 1998; Thomas and Karande, 2001; 
Chan et al., 2004; Lee et al., 2009; Hua and Chen, 2007; Ge et al. 2008; Fung et al., 
2010; Dey and Maitra, 2011; Du et al., 2011; Liu and An, 2011; Kumar and Pandey, 
2011). Price discovery is defined as the process that deals with flows of information 
from one market to another. Volatility spillovers are the means by which the volatility 
in one market impacts that of another market. In recent years, strong upheavals in 
commodity prices, exacerbated by the global financial crisis, have attracted a great 
deal of attention from researchers and policymakers in examining price behavior in 
commodity markets, owing to their strong policy implications for market practitioners. 
In this study, we compare the process of information transmission in futures prices of 
bullion and metals in India with its global counterparts, such as the COMEX, LME 
and SHFE. The study is motivated by the fact that globally, due to strong demand for 
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bullion and metals in emerging economies owing to their high economic growth, many 
of these economies have started setting up their own commodity exchanges and, 
gradually, their share in total trade has been increasing consistently. In this light, the 
two most promising economies are India and China, whose commodity exchanges 
have recorded spectacular growth in recent years and in some commodities, their 
trading activity is enormously large vis-à-vis their counterparts, making them two of 
the strongest trading platforms in the world. We specifically investigate price 
discovery and volatility spillovers between the Indian commodity market and 
international markets. The study proxies the Indian commodity market by using the 
data from the MCX, because it is the largest futures trading platform in the country for 
bullion and metals. The study focuses on India because it has one of the fastest-
growing commodity markets in the world and it is competing in bullion and metals 
with leading global platforms such as COMEX, LME and SHFE. The Indian economy 
has been growing at an impressive rate of more than 9% during the last decade. 
Despite the fragile recovery of the United States and troubled European countries, the 
Indian economy still has not weakened its growth momentum and is expected to 
achieve a growth rate of 5.5% in 2013 and 5.7% in 2014, as projected by the 
International Monetary Fund (IMF, 2013). The Indian economy is also been seen as 
one of the largest commodity markets, augmented by high agricultural growth and 
increased demand for metals, bullion and energy products for industrial and domestic 
purposes.  

In this study, we focus on bullion and metals, as these are the most actively traded 
commodities in India and account for 63% (38% bullion and 25% metals) of the 
average daily trading volume. It may be noted that agricultural commodities and 
energy products account for only 25% and 12% of the trading volumes, respectively, 
on the Indian commodity exchanges. In India, MCX is the largest trading platform for 
bullion, metals and energy products. In recent times, MCX has recorded the highest 
trading volume in gold and silver among all world-trading exchanges. The National 
Commodity & Derivatives Exchange (NCDEX) is the most active exchange for 
agricultural commodities. The criteria for selection of sample commodities from the 
bullion and metals category are as follows: a) India should be among the five largest 
producers/consumers of a given commodity; b) the Indian commodity exchange 
should figure among the top three trading platforms, based on trading activity for a 
given commodity; and c) the average daily trading volume should be 0.1 million or 
more in terms of respective commodity units.  
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The third criterion ensures that there is enough market depth for a traded commodity. 
All bullion and metals that satisfy either criterion (a) or (b) and, in addition, satisfy 
criterion (c) have been shortlisted. Five commodities have been selected: gold, silver, 
aluminum, copper and zinc. The commodity exchanges have been selected based on 
the level of trading activity exhibited for sample commodities. In the case of bullion, 
MCX competes with COMEX and TOCOM. Because COMEX and MCX are the two 
largest trading platforms in the case of bullion, they have been chosen in order to study 
the price discovery and volatility spillovers in futures prices. In the case of metals, 
LME and SHFE are two markets that compete with MCX. The LME and SHFE metals 
markets are relatively more developed than those of MCX. But gradually, the share of 
MCX is increasing and, in the case of zinc, it is almost closer to LME and SHFE. It 
may here be noted that we have included LME and SHFE as the proxy markets for 
international commodity exchange, given their international importance for metals. 

The following are the major objectives of this study: a) to evaluate whether there are 
any structural breaks in the time series of futures prices for sample commodities; 
b) to examine the process of price discovery between MCX and COMEX for bullion 
(gold and silver) and between MCX, LME and SHFE for metals (aluminum, copper 
and zinc); and c) to investigate whether there are any short- and long-term volatility 
spillovers between MCX and COMEX for bullion and the three exchanges for metals. 

The chapter comprises of  six sections, including the present one: A brief review of the 
literature is provided in Section 1.2. Section 1.3 covers data and their sources, while 
methodology and estimation procedures are described in Section 1.4. In Section 1.5, 
we provide empirical results, followed by a summary and conclusion in the last 
section.  
 

1.2 Literature Review 

A large number of studies have examined the price discovery and volatility spillovers 
under two broad frameworks: first, within markets, examining the relationship 
between spot and futures (see Gagnon and Karolyi, 2006)1; second, between markets 
(futures price linkages) for an identical asset (see Hasbrouck, 1995; Lihara et al., 1996; 
Ding et al., 1999; Tse, 1998; Roope and Zurbruegg, 2002; Xu and Fung, 2005; among 
others). The early studies focused on examining the markets within—specifically, the 

                                              
1 Gagnon and Karolyi (2006) could be a good reference in this regard. 
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relationship between spot and futures prices. Such an examination of information 
transmission between markets has helped investors identify the dominant and satellite 
markets to exhibit the role of dominant exchanges in the price discovery and volatility 
spillover   of   an   identical   asset.   In   this   regard,   Garbade   and   Silber’s   (1979)   seminal  
study on stock market linkages could be considered the pioneer work highlighting the 
role of the short-run behavior of an identical asset traded in two different markets, i.e., 
the New York Stock Exchange (NYSE) and the regional stock exchanges, by way of 
emphasizing the NYSE as the dominant and the regional stock exchanges as the 
satellite markets. In another study, Eun and Shim (1989) examined how the 
information transmission could lead to dominance in the futures market. Their study 
concluded that the US equity market dominates the rest of the world in terms of 
information transmission. Later, some important studies also examined this issue in 
cross-country settings and with a considerably large set of assets (see King and 
Wadhwani, 1990; Susmel and Engle, 1994; Koutmos and Booth, 1995; Booth et al., 
1996; Booth and Ciner, 1997; Booth et al., 1998; Tse, 1999; Low et al., 1999; Fung et 
al., 2001; among others). Here, it may be noted that most studies in literature have 
examined the process of information transmission in a mature markets setting and very 
few studies have highlighted the role of price discovery and volatility spillovers in the 
emerging market context, particularly the commodity market. In this regard, Fung et 
al. (2003) confirmed the volatility spillovers between mature (US) and emerging 
(China) markets for three commodities futures, i.e., copper, soybeans and wheat. Their 
study concluded that in the case of copper and soybeans, the US futures market played 
a dominant role in transmitting information to the Chinese market, while in case of 
wheat, both markets were found to be segmented. Hua and Chen (2007) investigated 
the international linkages of Chinese commodity futures markets in the case of 
aluminum, copper, soybean and wheat. Considering the Chicago Board of Trade 
(CBOT) and the LME as counterpart markets for agri and non-agri commodities, they 
reported that aluminum, copper and soybean futures prices were integrated with spot 
prices. However, they did not find such co-integration for wheat spot and futures 
prices. Ge et al. (2008) examined the dynamic linkages between the cotton futures 
markets of China and the United States. Their study reported both markets as strongly 
linked. Du et al. (2011) examined the important factors that impact crude oil volatility 
and investigated the possible linkages between crude oil volatility and agricultural 
commodities. Their study found evidence of volatility spillovers for sample 
commodities. Liu and An (2011) examined information transmission and price 
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discovery in informationally linked markets. Using data on both synchronous and non-
synchronous trading from Chinese futures/spot markets, the New York Mercantile 
Exchange (NYMEX), CBOT and CME Globex futures markets for copper and 
soybeans. Their study found evidence of bidirectional volatility spillovers between US 
and Chinese markets moving strongly from US to Chinese markets.  

With regard to India, there are very few studies that have examined the information 
transmission mechanism in the Indian commodity market. As mentioned above, the 
empirical literature on price discovery and volatility spillovers mainly deals with 
developed markets such as the USA and UK. In India, significant and relevant 
literature on commodity market is sparse and has mainly focused on agricultural 
commodities (see Thomas and Karande, 2001; Naik and Jain, 2002; Kabra, 2007; Roy, 
2008; Ghosh, 2009a, 2009b, 2010; Roy and Dey, 2009; Mahalik et al., 2010; Dey and 
Maitra, 2011). Further, the Indian literature is limited to regional exchanges and covers 
small samples from the period prior to the establishment of national exchanges and 
covers very few commodities traded on these exchanges. Pertinent to the objectives of 
our research, Kumar’s   (2004)   study   examined   the   price   discovery   and   reported the 
inability of futures markets to fully incorporate information and confirmed that they 
are not fully efficient. In another important study, Kumar and Pandey (2011) examined 
the international linkages of the Indian commodity futures market with its offshore 
counterpart markets, i.e., CBOT, LME and NYMEX. They reported that world 
markets have a bigger (unidirectional) impact on Indian markets.  

To summarize, in the literature on price discovery and volatility spillovers, which rests 
upon the process of information transmission, it is clear that while there is broad 
consensus on the role of information linkages across markets. The issue is still 
unsettled, especially in the light of the recent turbulent periods that have jolted 
commodity markets across the globe. Furthermore, there is very limited research on 
information transmission between emerging markets such as India and important 
international commodity exchanges; thus, the research issue needs to be empirically 
addressed. Futures markets in emerging countries are characterized by low liquidity 
and less efficient trading systems (see Tomek, 1980; Carter, 1989), making them 
different from the counterpart markets in mature countries. In the Indian context, prior 
research on the subject (see Kumar and Pandey, 2011) has used data through 2008. It 
may be noted that Indian commodity futures exchanges began trading only in 2004 
and, hence, are of nascent origin. The period from 2009 to the present, which has been 



Information Transmission – Bullion And Metals 6 

 

 

relatively unexplored, is of great importance, as it is the time when these trading 
platforms have achieved a higher level of trading liquidity and there may be a 
strengthening of international linkages. The present study attempts to fill these 
important research gaps by examining the information transmission between MCX  
(in India) and prominent international commodity exchanges for bullion and select 
metals using longer data periods and contemporary econometric techniques.  
 

1.3 Methodology 
1.3.1 Process of Price Discovery 

At the first stage, stationarity conditions using conventional methods of unit root 
tests—Augmented Dickey Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS)—have been checked for all commodities under 
consideration, followed by structural break unit root tests, in order to identify any 
abnormal events during the sample period. For this purpose, the Zivot-Andrews 
(hereafter ZA, 1992) unit root test and the Gregory and Hansen (hereafter GH, 1996) 
test of co-integration with structural breaks have been employed (see Glynn et al., 
2007 and Cook, 2006, for details).2 The results of the GH test (1996) are further 
confirmed by the Johansen and Juselius (1992) co-integration test and the Vector Error 
Correction Model (VECM), as mentioned in equations (1.1) and (1.2). The bivariate 
co-integrated series  is represented by a VECM: 

 (1.1) 

 (1.2) 

Note that 1 1, 1 2, 1t t tEC F a bF� � � � � is the lagged error correction term.  

Given the large number of parameters that would have to be estimated in the volatility 
spillover model (as discussed in subsection 1.3.2), a two-step procedure similar to that 
implemented by Bekaert and Harvey (1997), Ng (2000) and Baele (2005) has been 
considered in this study. In the first step, the VECM is estimated to obtain estimates of 
the shock vector for futures prices. In the second step, the first-stage residuals are used 
as data to check for volatility spillover between the futures prices of both markets.  
 
                                              
2 This study provides a detailed review of unit root tests with structural breaks. 
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1.3.2  Process of Volatility Spillovers 

Numerous studies have investigated the process of volatility spillovers to understand 
the spread of shock originating from one market to another. Most studies in the 
literature have used different variants of GARCH models to examine the volatility 
spillover between markets (see Hamao et al., 1990; Lin et al., 1994; Koutmos and 
Booth, 1995; Booth et al., 1997; Christofi and Pericli, 1999; Engle et al., 1990). 
According to Chan et al. (1991), it is the volatility and not just the simple price change, 
that determines the flow of information from one market to another.3 

The BEKK model is used as a benchmark to examine the volatility spillovers (see 
Wang, 2008). The other models, e.g., CCC (constant conditional correlation) and DCC 
(dynamic conditional correlation), are used to substantiate the BEKK results under the 
VARMA-GARCH (see Ling and McAleer, 2003) framework. We use the VARMA 
approach for CCC and DCC because such an approach of modeling conditional 
variances permits large shocks to one variable to affect the variances of other 
variables. Hence, this helps in substantiating BEKK results vis-à-vis CCC and DCC 
models to demonstrate volatility spillovers. Under this approach, the variance terms 
take the following form (for a 1, 1 model): 

Mean equation: 

 where             (1.3) 

In equation (1.3), is the estimated residual of the sample series; is a random error 

term with conditional variance  and denotes the market information at time t-1. 

Equation (1.4) specifies the variance equation. i=1, 2, 3, 4, 5 shows the number of 
sample commodities analyzed pairwise. 

Variance equation: 

 (1.4) 

This is a convenient specification that allows for volatility spillovers (see Sadorsky, 
2012). denotes the constant terms; α   denotes   the  ARCH   terms and β   denotes   the  

GARCH   terms.   The   coefficient   α12, for example, represents the short-term volatility 
                                              
3 For further details, Chan et al. (1991) could be a good reference on the need to study volatility spillovers. 
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spillover   from   one   market   to   another   (say,   for   example,   MCX   to   LME),   while   β12 
represents the long-term volatility spillover in the same manner as mentioned above. It 
may   be   noted   that   under   Ling   and   McAleer’s   (2003)   approach   to   modeling,   the  
conditional variances allows large shocks to one variable to affect the variances of the 
other variables. This is a convenient specification that allows for volatility spillovers. 
The Engle (2002) DCC model is estimated in two steps. In the first step, GARCH 
parameters are estimated followed by correlations in the second step.  

 (1.5) 

In equation (1.5), is the conditional covariance matrix, as in our case; is the 

conditional correlation matrix and is a diagonal matrix with time-varying standard 

deviations on the diagonal. 

 

 

Where   is a symmetric positive definite matrix: 

 (1.6) 

is the 3×3 unconditional correlation matrix of the standardized residuals ; the 

parameters   θ1 and   θ2 are non-negative with a sum of less than unity. Under the 
condition of = and , equation (1.7) becomes the CCC model. 

 (1.7) 

The MGARCH models are estimated by Quasi-Maximum Likelihood Estimation 
(QMLE) using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. T statistics 
are calculated using a robust estimate of the covariance matrix (see Sadorsky, 2012). 
 

1.4  Data 

The sample data for the daily futures prices of MCX, COMEX, LME and SHFE for 
five commodities, including two precious metals (gold and silver) and three non-
precious metals (aluminum, copper and zinc), are retrieved from the Bloomberg 
database. We use the data of gold and silver traded on COMEX and aluminum, copper 
and zinc futures price traded on LME and SHFE as the counterpart markets for Indian 
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futures markets. All closing prices of futures series are taken for the nearest contract to 
maturity. Based on the availability of the data, the sample period of each commodity is 
as follows: aluminum (October 26, 2005, to April 27, 2012; 1,581 observations); 
copper (January 4, 2005, to April 27, 2012; 1,766, observations); gold and silver 
(January 3, 2005, to April 30, 2012; 1,851 and 1,855 observations, respectively); and 
zinc (March 27, 2007, to April 27, 2012; 1,237 observations). In order to maintain 
parity across sample markets, all price series have been converted to US dollars after 
making the adjustment in terms of units of measurement.4 For estimation purposes, all 
price series are further converted into natural logarithms.  
 

1.5  Empirical Results 
We examine the plot of commodity futures prices observed at sample trading 
platforms over the study period. In the descriptive statistics for sample commodity 
returns shown in Table 1.1, the mean returns of sample commodities are positive, with 
the exception of zinc, in all markets.5 The highest mean daily returns are observed in 
the case of silver in MCX and COMEX (0.084% and 0.082%), followed by gold in 
MCX and COMEX (0.074% and 0.073%), respectively. The lowest average returns 
are found in the cases of zinc in LME (-0.038%), followed by MCX and SHFE 
(-0.037% and -0.035%), respectively. Mean returns for sample commodities are almost 
similar across competing trading platforms, with the exception of aluminum. SHFE 
returns in the case of aluminum are almost three and four times larger than those 
observed for LME and MCX. The standard deviation as a measure of volatility is 
highest for silver (2.432%) in MCX, followed by zinc in LME (2.395%) and MCX 
(2.381%). The skewness co-efficients of all metals are negative, except aluminum and 
zinc for MCX, highlighting the negative impacts of a series of economic crises 
observed in recent times, including the ongoing upheaval in Europe. All returns series 
are leptokurtic and violate normality, as exhibited by Jarque-Bera (JB) statistics. This 
is further substantiated by the results of ARCH effects, which confirm the presence of 
clustering in all examined commodities. The Ljung Box (LB) test further indicates 
autocorrelation in the sample series, especially in squared returns up to 10 lags.  

                                              
4 For example, MCX measures the futures lot in Rs/Kg terms for aluminum, copper and zinc, while LME and SHFE trade lots in USD/ton 

and CNY/ton terms. Similarly, the unit of trade is different among the examined markets for precious metals. Spot market data for 
USD/rupee currency have been downloaded from the Reserve Bank of India website and for USD/Chinese yen, the data have been 
extracted from the Bloomberg database. 

5 Sample commodities have been calculated using the first difference of the log price series multiplied by 100. 
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1.5.1  Tests of Stationarity and Price Discovery Process 

Stationarity conditions of the sample commodity futures price series expressed in 
logarithmic form were tested by conventional ADF (unit root test) at the 1% level of 
significance. The ADF test confirms the existence of unit root at the significant level 
and achieves stationarity at the first difference.6 The results of the ADF test are 
reconfirmed by additional tests of stationarity using PP and KPSS tests. It shall be 
noted that the unit root results may be suspect when the sample period under analysis 
may have witnessed major events (e.g., a global economic crisis such as sovereign 
debt defaults, currency devaluation, regulatory shocks, etc.), which are likely to create 
structural breaks in a particular series. In order to account for any possible regime 
shifts resulting from structural breaks, the ZA unit root test has been implemented on 
sample commodity series. The results are shown in Table 1.2. It can be observed that 
most of the structural breaks identified by the ZA test are during the period 2008 and 
2009 highlighting the impact of the US-born global financial crisis and its aftermath. 
The possible reason could be a sudden fall in global demand of these commodities, due 
to the gloomy economic outlook of major consuming countries.  

Table 1.2: Zivot-Andrews Structural Breaks Unit Root Results 

           Variables   At Level   Break Period   
COMEX_gold  -5.223  16-07-2008  
MCX_gold  -5.109  22-07-2008  
COMEX_silver  -4.467  15-07-2008  
MCX_silver  -4.309  15-07-2008  
SHFE_alum  -5.342  25-08-2008  
LME_alum  -4.255  14-07-2008  
MCX_alum  -4.197  14-07-2008  
SHFE_copper  -3.304  25-08-2008  
LME_copper  -3.290  04-07-2008  
MCX_copper  -3.322  03-07-2008  
SHFE_zinc  -3.780  20-03-2009  
LME_zinc  -4.304  03-03-2009  
MCX_zinc  -4.265  02-03-2009  

Critical Values 
1%  -5.570 
5%  -5.080 

Note: All series exhibit non-stationarity, confirming the use of co-integration with regime shifts. 

 

                                              
6 Results of ADF, PP and KPSS unit root results are available upon request. 
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After the ZA test, we move to analyze the price discovery process exhibiting the lead-
lag relationships between the futures prices of examined markets. Keeping in mind the 
importance of structural breaks, we apply the GH co-integration test with regime 
shifts. The GH test provides the structural break dates for sample series, as shown in 
Table 1.3.  
Table 1.3: Gregory and Hansen Co-integration Test  

Variables   t-stat          Period 

MCX_gold on COMEX_gold  -10.376**  04-09-2007 

COMEX_gold on MCX_gold  -10.433**  01-12-2008 

MCX_silver on COMEX_silver  -7.370**  05-04-2006 

COMEX_silver on MCX_silver   -7.479**  05-04-2006 

SHFE_alum on LME_alum  -5.184*  24-01-2011 

LME_alum on SHFE_alum  -4.734  28-04-2011 

MCX_alum on LME_alum  -10.821**  29-03-2007 

LME_alum on MCX_alum  -10.988**  29-03-2007 

MCX_alum on SHFE_alum  -4.569  05-12-2008 

SHFE_alum on MCX_alum  -4.602  09-05-2011 

SHFE_copper on LME_copper  -5.823**  15-02-2006 

LME_copper on SHFE_copper  -5.713**  22-08-2006 

MCX_copper on LME_copper  -10.749**  01-11-2006 

LME_copper on MCX_copper  -10.773**  01-11-2006 

MCX_copper on SHFE_copper  -6.002**  21-08-2006 

SHFE_copper on MCX_copper  -6.097**  21-08-2006 

SHFE_zinc on LME_zinc  -5.139*  24-12-2008 

LME_zinc on SHFE_zinc  -5.156*  24-12-2008 

MCX_zinc on LME_zinc  -11.907**  16-01-2008 

LME_zinc on MCX_zinc  -11.904**  18-01-2008 

MCX_zinc on SHFE_zinc  -5.219**  24-12-2008 

SHFE_zinc on MCX_zinc  -5.139**  24-12-2008 

                           Significance Level Critical Values  

1%  -5.47   

5%   -4.95     

Note: ** indicates the level of significance at 1%. Like linear regression, the EG-based GH test 
considers dependent and independent variables. 

The structural breaks identified by the GH test highlight the boom and European crisis 
period for the sample commodities. Despite the number of structural breaks for each 
commodity, the GH co-integration test indicates long-term co-integration relationships 
for all commodities and all trading platforms estimated pair-wise, except in case of 
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SHFE-MCX and LME-SHFE for aluminum. These negative results do not come as a 
surprise, given the abnormal return for aluminum observed at SHFE and the absence 
of matching structural break dates between these two pairs of platforms over the study, 
as shown above. The results of the GH test are further confirmed by the Johansen and 
Juselius (1992) test of co-integration on futures prices of five commodities (see Table 
1.4). The results indicate that commodity futures prices across trading platforms, with 
some exceptions, are the same as those of the GH test and exhibit long-term 
equilibrium relationships, thus confirming an efficient price discovery process.  

Table 1.4: Johansen Co-integration Results 

Trace Test  Maximum Eigen Value Test 

Null Alternative Statistics 
95% 

 Null Alternative Statistics 
95% 

Critical Value Critical Value 
Co-integration between SHFE_alum and LME_alum 

r=0 r>=1 16.554 20.262  r=0 r=1 12.526 15.892 
r<=1 r>=2 4.028 9.165  r<=1 r=2 4.028 9.165 
r<=2 r>=3    r<=2 r=3   

Co-integration between MCX_alum and LME_alum 
r=0 r>=1 94.956* 15.495  r=0 r=1 91.940* 14.265 

r<=1 r>=2 3.016 3.841  r<=1 r=2 3.016 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between SHFE_alum and MCX_alum 
r=0 r>=1 23.334 25.872  r=0 r=1 18.058 19.387 

r<=1 r>=2 5.276 12.518  r<=1 r=2 5.276 12.518 
r<=2 r>=3    r<=2 r=3   

Co-integration between SHFE_copper and LME_copper 
r=0 r>=1 36.991* 15.495  r=0 r=1 32.761* 14.265 

r<=1 r>=2 4.231* 3.841  r<=1 r=2 4.231* 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between MCX_copper and LME_copper 
r=0 r>=1 89.341* 15.495  r=0 r=1 85.046* 14.265 

r<=1 r>=2 4.295* 3.841  r<=1 r=2 4.295* 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between SHFE_copper and MCX_copper 
r=0 r>=1 41.287* 15.495  r=0 r=1 36.960* 14.265 

r<=1 r>=2 4.327* 3.841  r<=1 r=2 4.327* 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between SHFE_zinc and MCX_zinc 
r=0 r>=1 20.094* 15.495  r=0 r=1 15.951* 14.265 

r<=1 r>=2 4.143* 3.841  r<=1 r=2 4.143* 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between MCX_zinc and LME_zinc 
r=0 r>=1 80.663* 15.495  r=0 r=1 76.719* 14.265 

r<=1 r>=2 3.944* 3.841  r<=1 r=2 3.944* 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between SHFE_zinc and LME_zinc 
r=0 r>=1 19.892* 15.495  r=0 r=1 15.593* 14.265 

r<=1 r>=2 4.298* 3.841  r<=1 r=2 4.298* 3.841 



Information Transmission – Bullion And Metals 14 

 

 

Trace Test  Maximum Eigen Value Test 
r<=2 r>=3    r<=2 r=3   

Co-integration between COMEX_gold and MCX_gold 
r=0 r>=1 64.658* 15.495  r=0 r=1 64.031* 14.265 

r<=1 r>=2 0.627 3.841  r<=1 r=2 0.627 3.841 
r<=2 r>=3    r<=2 r=3   

Co-integration between COMEX_silver and MCX_silver 
r=0 r>=1 49.248* 15.495  r=0 r=1 47.767* 14.265 

r<=1 r>=2 1.482 3.841  r<=1 r=2 1.482 3.841 
r<=2 r>=3    r<=2 r=3   

Notes: a) * indicates the level of significance at 1%, based on which order of integration is chosen; b) 
the lag structure is decided based on the minimum values of the Akaike information criterion. 

Table 1.5: Estimated Co-efficient of the VECM 

Commodity 
Futures Co-efficient Commodity Futures Co-efficient Commodity 

Futures Co-efficient  

β1comex/mcx (gold) 
-0.050 
[-1.377] β1lme/mcx(copper) 

-0.221** 
[-5.040] β1lme/mcx(zinc) 

-0.260** 
[-3.787]  

β2mcx/comex (gold) 
-0.080** 
[-2.492] β2mcx/lme(copper) 

-0.108** 
[-2.084] β2mcx/lme(zinc) 

-0.198** 
[-2.516]  

β1lme/mcx(alum) 
-0.133** 
[-4.579] β1shfe/mcx(copper) 

-0.060** 
[-5.723] β1shfe/mcx(zinc) 

-0.033** 
[-3.480]  

β2mcx/lme(alum) 
-0.127** 
[-3.793] β2mcx/shfe(copper) 

0.004 
[ 0.246] β2mcx/shfe(zinc) 

-0.025 
[-1.625]  

β1comex (silver) 
- 0.028 
[-1.064] β1shfe/lme(copper) 

-0.066** 
[-5.125] β1shfe/lme(zinc) 

-0.033** 
[-3.454]  

β2mcx(silver) 
-0.050** 
[-2.318] β2lme/shfe(copper) 

0.014 
[ 0.868] β2lme/shfe(zinc) 

-0.026 
[-1.610]  

Note: ** denotes the level of significance at 1% and better. Values in parentheses [  ] show t-values. 

 

Table 1.5 shows the VECM results. The EC, which is also called as speed of 
adjustment coefficient 𝛽  is shown in the table. In the case of precious metals, the co-
efficient EC term is higher and more significant in the case of MCX than in the case of 
COMEX, implying that the futures price of COMEX leads the futures price of MCX. 
For futures prices of non-precious metals, there are high and significant EC terms for 
LME and MCX in the case of aluminum, with a higher magnitude of EC co-efficient 
of LME futures market than of MCX, implying that in case of aluminum, MCX leads 
LME in the price discovery process. In the case of copper, however, among all three 
markets, the EC terms are significant, with a higher magnitude of EC co-efficient in 
the case of LME, followed by MCX and then SHFE. This further implies that it is the 
SHFE followed by MCX and LME that leads in the price discovery process. 
Seemingly, for zinc, it is again LME that has high EC terms, followed by MCX and 
SHFE. In other words, SHFE leads MCX and LME in the price discovery process. To 
summarize, we can say that in the case of precious metals, futures prices of COMEX 
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assimilate new market information more quickly than those of MCX do. In the case of 
non-precious metals, for aluminum, MCX leads LME in the price discovery process, 
while SHFE leads MCX and LME for copper and zinc. Based on the results, it can be 
inferred that, except for precious metals, futures markets of emerging countries such as 
China and India have started playing a prominent role in the price discovery process. 
The reason could be that these two economies are among the largest consumers of 
these metals. 
 
1.5.2  Volatility Spillover Process 

In this section, we analyze the volatility spillover effects among commodity market 
platforms. The estimated results are shown in Table 1.6 (Panels A and B) for precious 
metals and Tables 1.7–1.9 for non-precious metals. The BEKK model is used as the 
benchmark and its results are compared with the two restricted correlation models, 
CCC and DCC.  

Table 1.6: MGARCH-Precious Metal Results 

Panel A. Gold (COMEX-MCX) 

               BEKK                   CCC                  DCC   

   Co-eff t-stat   Co-eff t-stat   Co-eff t-stat 

μ1  0.004 0.198  0.009 0.468  0.010 0.596 

μ2  0.007 0.349  -0.001 -0.062  0.007 0.429 

c(1,1)  0.104 1.887*  0.011 0.657  0.015 1.255 

c(2,1)  0.010 0.212  - -  - - 

c(2,2)  0.092 2.243**  0.006 1.502  0.008 2.091** 

α(1,1)  0.578 7.148**  0.136 2.328**  0.096 2.236** 

α (1,2)  0.000 -0.004  -0.059 -1.350  0.005 0.165 

α(2,1)  -0.354 -4.368**  -0.006 -0.423  0.082 2.911** 

α (2,2)  0.189 2.921**  0.030 2.175**  -0.018 -0.755 

β(1,1)  0.859 17.416**  0.313 0.574  0.635 3.336** 

β (1,2)  0.050 1.135  0.671 1.137  0.289 1.562 

β (2,1)  0.105 1.928*  0.143 1.313  -0.079 -1.380 

β (2,2)  0.933 24.246**  0.843 9.012**  1.012 20.398** 

ρ(2,1)  - -  0.880 124.118**  - - 

θ(1)  - -  - -  0.108 5.714** 

θ(2)   - -   - -   0.825 30.479** 
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Panel B. Silver (COMEX-MCX) 

  BEKK  CCC  DCC 
  Coeff t-stat Signif  Coeff t-stat Signif  Co-eff t-stat Signif 

μ1  0.034 1.538 0.124  0.019 0.859 0.390  0.020 0.994 0.320 
μ2  0.031 1.522 0.128  0.017 0.801 0.423  0.018 1.004 0.315 
c(1,1)  0.267 4.671** 0.000  0.032 1.758 0.079  0.027 2.073 0.038 
c(2,1)  0.164 3.257** 0.001  - - -  - - - 
c(2,2)  0.000 0.000 1.000  0.019 1.297 0.195  0.022 1.488 0.137 
α(1,1)  0.107 0.623 0.533  0.127 4.949 0.000  0.084 1.959 0.050 
α (1,2)  -0.316 -1.545 0.122  0.028 1.010 0.312  0.072 1.006 0.314 
α(2,1)  0.290 1.293 0.196  -0.084 -0.938 0.348  -0.031 -0.284 0.776 
α (2,2)  0.703 4.143** 0.000  0.301 2.626 0.009  0.238 2.182 0.029 
β(1,1)  1.259 8.422** 0.000  0.869 5.364 0.000  0.978 3.886 0.000 
β (1,2)  0.417 3.107** 0.002  -0.045 -0.291 0.771  -0.179 -0.600 0.548 
β (2,1)  -0.458 -2.615** 0.009  0.519 2.009 0.045  0.443 2.408 0.016 
β (2,2)  0.490 3.414 0.001  0.308 1.214 0.225  0.377 2.192 0.028 
ρ(2,1)  - - -  0.903 101.635 0.000  - - - 
θ(1)  - - -  - - -  0.032 0.675 0.500 
θ(2)  - - -  - - -  0.646 1.399 0.162 

Note:   models   estimated   using  QMLE  with   robust   (heteroskedasticity/misspecification)   standard   errors.   In   the  
variance equations,  c  denotes  the  constant  terms,  α  denotes  the  ARCH  terms and β  denotes  the  GARCH  terms.  
The co-efficient  α12, for example, represents the short-term volatility spillover from COMEX to MCX for gold 
and silver in Panels A and B, respectively, while β12 represents the long-term volatility spillover from COMEX 
to MCX for both panels and is interpreted in the same manner as above. * and ** denote the level of significance 
at 5% and above and 1% and better, respectively. 
 

Table 1.7: MGARCH-Aluminum Results 

Panel A: MCX-LME 

Variable 
  MCX and LME 
 BEKK  CCC  DCC 

  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 
μ1  -0.005 -0.275  -0.015 -0.670  -0.008 -0.356 
μ2  0.015 0.732  0.005 0.209  0.021 0.890 
c(1,1)  0.223 5.014**  -0.044 -0.663  0.010 1.366 
c(2,1)  0.144 4.382**  - -  - - 
c(2,2)  0.000 0.000  0.049 1.704  0.011 0.874 
α(1,1)  0.099 1.589  0.137 2.291**  0.002 0.253 
α (1,2)  -0.222 -4.839**  -0.066 -0.966  0.062 4.262** 
α(2,1)  0.162 3.391**  -0.035 -1.057  0.020 1.079 
α (2,2)  0.314 6.656**  0.069 2.566**  0.024 1.260 
β(1,1)  1.095 39.974**  -0.411 -1.511  1.214 5.632** 
β (1,2)  0.266 8.430**  2.065 4.820**  -0.416 -1.353 
β (2,1)  -0.251 -9.236**  1.334 1.015  0.595 1.264 
β (2,2)  0.765 40.324**  0.040 0.053  0.591 2.219** 
ρ(2,1)  - -  0.657 22.037**  - - 
θ(1)  - -  - -  0.060 1.927* 
θ(2)  - -  - -  0.188 0.319 
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The results of the BEKK model for precious metals, as shown in Table 1.6 (Panels A 
and B), indicate several instances of significant volatility spillovers. For both the short 
and the long-term, in the case of gold, the results confirm a unidirectional volatility 
spillover from MCX to COMEX, implying that the former is a more dominant trading 
platform than the latter. Similarly, for silver (see Table 1.6, Panel B), there is no 
significant volatility spillover between both markets in the short run, while in the long-
term, there is a bilateral volatility spillover between COMEX and MCX futures 
markets, with stronger volatility moving from the latter to the former. In sum, based on 
price discovery and volatility spillover results, MCX seems to be the more dominant 
platform vis-à-vis COMEX for precious metals. This is in contrast with the price 
discovery results, where COMEX leads MCX in the price discovery process. In the 
case of non-precious metals, starting with aluminum, the results between MCX and 
LME (see Table 1.7, Panel A) indicate a bidirectional volatility spillover in the short 
and long terms, with stronger volatility moving from MCX to LME. Due to the 
absence of co-integration, volatility spillovers have not been studied for SHFE-MCX 
and SHFE-LME combinations. 

Table 1.8: MGARCH-Copper Results 

Panel A: MCX-LME 

 
 BEKK  CCC  DCC 
 Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 

μ1  0.029 1.584  0.036 1.834  0.038 1.909* 
μ2  0.036 1.929*  0.036 1.718  0.042 2.187** 
c(1,1)  0.171 1.879  0.053 2.104**  0.047 3.079** 
c(2,1)  0.024 0.170  - -  - - 
c(2,2)  0.037 0.471  0.003 0.099  0.024 1.782 
α(1,1)  0.103 2.052**  0.149 4.027**  0.131 3.127** 
α (1,2)  -0.213 -4.844**  -0.002 -0.049  0.008 0.163 
α(2,1)  0.219 4.627**  -0.053 -1.496  -0.012 -0.302 
α (2,2)  0.290 5.729**  0.106 4.007**  0.090 3.626** 
β(1,1)  1.104 34.451**  0.423 2.522**  0.709 6.058** 
β (1,2)  0.321 6.236**  0.551 2.232**  0.164 1.119 
β (2,1)  -0.262 -13.298**  0.930 1.773  0.350 1.391 
β (2,2)  0.728 16.434**  0.290 0.896  0.655 4.076** 
ρ(2,1)  - -  0.695 33.937**  - - 
θ(1)  - -  - -  0.039 1.344 
θ(2)  - -  - -  0.905 11.180** 
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Panel B: MCX-SHFE 

  BEKK  CCC  DCC 

  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 
μ1  0.030 1.395  0.028 1.249  0.027 1.226 

μ2  0.014 0.653  0.015 0.841  0.014 0.766 

c(1,1)  0.198 4.765**  0.064 2.232**  0.064 2.761** 

c(2,1)  0.015 0.149  - -  - - 

c(2,2)  0.149 2.687**  -0.014 -0.359  -0.013 -0.330 

α(1,1)  0.186 1.601  0.149 4.560**  0.150 4.468** 

α (1,2)  -0.213 -1.398  -0.055 -2.161**  -0.058 -2.023** 

α(2,1)  0.129 1.089  0.016 0.590  0.015 0.632 

α (2,2)  0.370 4.836**  0.125 4.278**  0.126 4.744** 

β(1,1)  0.959 35.689**  0.456 2.911**  0.460 3.381** 

β (1,2)  0.069 0.755  0.856 2.425**  0.850 2.750** 

β (2,1)  -0.039 -0.539  1.324 1.697  1.318 1.733 

β (2,2)  0.901 13.870**  0.349 1.191  0.352 1.288 

ρ(2,1)  - -  0.416 19.982**  - - 

θ(1)  - -  - -  0.000 0.228 

θ(2)  - -  - -  0.925 17.018** 
 

Panel C: SHFE- LME 

  BEKK  CCC  DCC 

  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 
μ1  0.009 0.437  0.003 0.190  0.002 0.133 

μ2  0.021 1.119  0.015 0.940  0.016 0.877 

c(1,1)  0.151 3.693**  -0.009 -0.267  -0.006 -0.314 

c(2,1)  0.041 0.862  - -  - - 

c(2,2)  0.117 5.170**  0.042 1.986**  0.036 2.076** 

α(1,1)  0.410 5.522**  0.159 4.604**  0.159 5.069** 

α (1,2)  0.031 0.389  -0.038 -1.518  -0.042 -2.252** 

α(2,1)  -0.180 -1.725  -0.106 -2.785**  -0.125 -3.187** 

α (2,2)  0.181 2.726**  0.143 4.870**  0.152 5.258** 

β(1,1)  0.885 20.441**  0.373 1.852  0.401 4.724** 

β (1,2)  -0.034 -1.185  0.810 2.104**  0.786 4.105** 

β (2,1)  0.079 1.716  0.663 2.813**  0.665 7.037** 

β (2,2)  0.993 49.499**  0.458 3.385**  0.480 6.766** 

ρ(2,1)  - -  0.641 42.216**  - - 

θ(1)  - -  - -  0.027 2.095** 

θ(2)  - -  - -  0.387 2.037** 

Note: models estimated using QMLE  with   robust   (heteroskedasticity/misspecification)   standard   errors.   In   the  
variance  equations,  c  denotes  the  constant  terms,  α  denotes  the  ARCH  terms and β  denotes  the  GARCH  terms.  
The  coefficient  α12, for example, represents the short-term volatility spillover from MCX to LME in Panel A, 
MCX to SHFE in Panel B and SHFE   to   LME   in   Panel   C,   respectively,   while   β12 represents the long-term 
volatility spillover in the same manner as mentioned above. * and ** denote the level of significance at 5% and 
above and 1% and better, respectively. 



Information Transmission – Bullion And Metals 19 

 

 

In the case of copper (see Table 1.8, Panels A to C), in the short and the long-term, 
there is a bidirectional volatility spillover between MCX and LME, with marginally 
stronger volatility spillovers moving from LME to MCX in the short-term, while in the 
long-term, there is a stronger volatility spillover moving from MCX to LME (see 
Panel A). Between MCX and SHFE and between SHFE and LME, there are no short- 
or long-term volatility spillovers using the BEKK model. This is in contrast with the 
results of the CCC and DCC models, which indicate unidirectional volatility spillovers 
moving from MCX to SHFE and bilateral volatility spillovers between SHFE and 
LME, which are stronger from LME to SHFE in the short-term and SHFE to LME in 
the long-term. The results imply that volatility in MCX has a strong bearing on the 
SHFE futures market, while there is a stronger volatility transmission from LME to 
SHFE (see Panels B and C).  

Table 1.9: MGARCH-Zinc Results 

Panel A: MCX-LME 

  BEKK                CCC               DCC 

  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 

μ1  0.021 0.694  0.032 1.427  0.028 1.105 

μ2  0.015 0.572  0.028 1.179  0.030 1.005 

c(1,1)  0.719 1.801  0.023 0.830  0.013 0.482 

c(2,1)  0.577 1.672  - -  - - 

c(2,2)  0.000 0.001  -0.049 -2.134**  -0.049 -2.201** 

α(1,1)  -0.381 -2.088**  0.030 0.561  0.021 0.698 

α (1,2)  -0.114 -0.548  -0.036 -0.658  -0.032 -0.647 

α(2,1)  0.487 2.193**  0.076 1.366  0.055 1.136 

α (2,2)  0.389 1.651  0.046 0.747  0.060 1.345 

β(1,1)  0.652 1.556  0.615 1.826*  0.702 1.723 

β (1,2)  -0.238 -0.727  0.469 1.117  0.383 0.741 

β (2,1)  -0.049 -0.237  0.969 4.486**  1.108 4.286** 

β (2,2)  0.918 5.434**  0.227 1.467  0.136 0.766 

ρ(2,1)  - -  0.758 55.437**  - - 

θ(1)  - -  - -  0.011 0.462 

θ(2)  - -  - -  0.821 2.067** 
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Panel B: MCX-SHFE 

             BEKK                CCC                 DCC 
  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 

μ1  0.024 0.773  0.022 0.851  0.019 0.813 
μ2  0.027 0.979  0.008 0.332  0.011 0.485 
c(1,1)  0.119 2.676**  0.113 8.879**  0.065 2.548** 
c(2,1)  0.068 1.588  - -  - - 
c(2,2)  0.000 -0.002  -0.149 -10.081**  -0.109 -3.832** 
α(1,1)  0.139 1.827*  0.095 4.411**  0.089 3.579** 
α (1,2)  0.223 2.520**  0.018 0.685  -0.085 -2.884** 
α(2,1)  -0.148 -4.055**  -0.021 -0.551  -0.032 -0.966 
α (2,2)  0.153 1.950*  0.084 4.283**  0.106 4.162** 
β(1,1)  0.956 102.201**  0.038 2.099**  0.370 1.693 
β (1,2)  -0.129 -4.657**  15.547 67.199**  6.292 2.384** 
β (2,1)  0.126 3.795**  36.332 30.024**  17.102 3.497** 
β (2,2)  0.960 69.165**  -0.725 -7.769**  -0.319 -0.857 
ρ(2,1)  - -  0.049 62.881**  - - 
θ(1)  - -  - -  0.006 3.088** 
θ(2)  - -  - -  0.000 0.059 
 

Panel C: SHFE-LME 

               BEKK                 CCC                 DCC 

  Co-eff t-stat  Co-eff t-stat  Co-eff t-stat 
μ1  0.024 0.805  0.034 1.418  0.030 1.076 
μ2  0.033 1.109  0.025 0.928  0.020 0.841 
c(1,1)  0.246 3.926**  0.104 1.728  0.057 0.951 
c(2,1)  -0.050 -0.721  - -  - - 
c(2,2)  0.000 0.000  -0.128 -1.380  -0.102 -0.978 
α(1,1)  0.190 2.488**  0.092 3.625**  0.080 2.755** 
α (1,2)  0.262 4.758**  0.007 0.233  -0.082 -2.409** 
α(2,1)  -0.111 -1.804  -0.032 -0.804  -0.047 -1.457 
α (2,2)  0.169 3.938**  0.092 3.488**  0.111 4.209** 
β(1,1)  0.883 29.352**  0.140 0.740  0.429 1.883* 
β (1,2)  0.434 15.187**  10.684 3.058**  5.213 2.094** 
β (2,1)  -0.451 -17.402**  25.758 3.360**  16.969 3.572** 
β (2,2)  0.794 32.143**  -0.565 -1.749  -0.446 -1.349 
ρ(2,1)     0.063 14.000**    
θ(1)        0.006 3.231** 
θ(2)        0.000 1.670 

Note:   models   estimated   using  QMLE  with   robust   (heteroskedasticity/misspecification)   standard   errors.   In   the  
variance  equations,  c  denotes  the  constant  terms,  α  denotes  the  ARCH  terms and β  denotes  the  GARCH  terms.  
The  coefficient  α12, for example, represents the short-term volatility spillover from MCX to LME in Panel A, 
MCX to SHFE in Panel B and SHFE   to   LME   in   Panel   C,   respectively,   while   β12 represents the long-term 
volatility spillover in the same manner as mentioned above. * and ** denote the level of significance at 5% and 
above and 1% and better, respectively. 

 



Information Transmission – Bullion And Metals 21 

 

 

Last, in the case of zinc (see Table 1.9, Panels A to C), between MCX and LME, there 
is a unilateral volatility spillover moving from LME to MCX. In the long-term, the 
BEKK results indicate no evidence of volatility spillovers between either trading 
platforms. This is in contrast to the CCC and DCC models, which indicate a 
unidirectional volatility spillover from LME to MCX (see Panel A). Similarly, 
between MCX and SHFE, there are bilateral volatility spillovers moving strongly from 
MCX to SHFE in the short as well as the long-term, implying that there is stronger 
volatility transmission from MCX to SHFE (see Panel B). Between SHFE and LME, 
there is unidirectional volatility spillover from SHFE to LME; in the long-term, there 
is a bilateral volatility spillover moving strongly from LME to SHFE (see Panel C).  

The results of the CCC model for sample commodities indicate highly positive 
correlations with a significance level at 1% and better. In the case of precious metals 
(gold and silver) (see Table 1.6, Panels A and B), the correlation co-efficients between 
COMEX and MCX (ρ21) are 0.880 (gold) and 0.903 (silver). Similarly, for non-
precious metals, in the case of aluminum, the correlation between MCX and LME (ρ21) 
is 0.657 (see Table 1.7, Panel A). In the case of copper, the highest correlation is 
between MCX and LME (ρ21) at 0.695, followed by SHFE and LME (ρ21) at 0.641 and 
MCX and SHFE at 0.416 (see Table 1.8, Panels A to C). For zinc (see Table 1.9, 
Panels A to C), the strongest correlation is between MCX and LME (ρ21) at 0.758, 
followed by SHFE and LME (ρ21) at 0.063 and the lowest correlation is observed in 
the case of MCX and SHFE at 0.049. It may be noted that, among all commodities, the 
highest correlations are found in the case of gold and silver, implying that the trading 
platforms for bullion are more synchronized in terms of trade facilitation and 
information transmission compared to trading platforms for metals. Hence, precious 
metal trading exhibits stronger information transmission and, therefore, a relatively 
greater international character. 

The results of the DCC model indicate that the estimated co-efficients on θ1 and θ2 for 
examined commodities are positive, but the level of significance varies. These 
estimated co-efficients sum to a value that is less than 1, implying that the dynamic 
conditional correlations of all commodities are mean-reverting.  
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Table 1.10: Diagnostic Tests for Standardized Residuals 

  BEKK  CCC  DCC 
  Q (20) Q sqr(20)  Q (20) Q sqr(20)  Q (20) Q sqr(20) 

Gold (COMEX-MCX)  23.245 18.539  24.982 19.578  22.501 19.003 
  [0.277] [0.552]  [0.202] [0.485]  [0.314] [0.522] 
Silver (COMEX-MCX)  15.258 22.179  13.646 21.256  13.864 21.447 
  [0.762] [0.331]  [0.848] [0.382]  [0.837] [0.371] 
Aluminum (MCX-LME)  26.470 9.017  25.598 9.486  25.678 9.515 
  [0.151] [0.983]  [0.180] [0.977]  [0.177] [0.976] 
Copper (MCX-LME)  18.751 21.473  19.393 20.415  18.214 19.565 
  [0.538] [0.370]  [0.497] [0.432]  [0.573] [0.485] 
Copper (MCX-SHFE)  11.347 13.683  10.608 14.923]  10.416 14.402 
  [0.937] [0.846]  [0.956] [0.781]  [0.960] [0.810] 
Copper (SHFE-LME)  18.711 18.217  18.007 19.754  17.893 19.815 
  [0.541] [0.573]  [0.587] [0.473]  [0.595] [0.470] 
Zinc (MCX-LME)  15.716 16.171  13.434 15.315  12.917 15.089 
  [0.734] [0.706]  [0.858] [0.758]  [0.881] [0.771] 
Zinc (MCX-SHFE)  10.815 14.055  11.084 13.986  10.464 13.307 
  [0.951] [0.828]  [0.944] [0.831]  [0.959] [0.864] 
Zinc (SHFE-LME)  13.227 19.001  13.700 20.268  13.833 20.396 
  [0.868] [0.522]  [0.845] [0.441]  [0.839] [0.433] 

Note: Values in parentheses are p-values. 

In the diagnostic tests for the standardized residuals and their squared terms (see Table 
1.10), we find no evidence of serial correlation at the 1% or even 5% level of 
significance and better. The results indicate no evidence of autocorrelation, even in the 
squared standardized residuals. 
 

1.6 Conclusion 

This study examines the process of information transmission in futures prices of 
bullion and metals between India, represented by MCX and its global counterparts, 
such as COMEX, LME and SHFE. The sample period of the study is from 2005 to 
2012 (through April). We identified structural breaks for all sample futures price 
series. These structural breaks highlight the boom period of 2006, the US subprime 
crisis of 2008 and the Eurozone crisis of 2010–2011. The price discovery results 
confirm that there is a long-term equilibrium relationship among the futures prices of 
the examined trading platforms, even after accounting for the structural break in each 
commodity series, implying that there is informational efficiency across sample 
markets. Long-term equilibrium relationships, however, are not confirmed for MCX-
SHFE and LME-SHFE in the case of aluminum, implying an absence of price 
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discovery in these cases. For precious metals (gold and silver), if there is any 
disequilibrium in the short-term, MCX adjusts more quickly than COMEX does to 
restore the long-run equilibrium. In other words, the COMEX futures market leads 
MCX in the price discovery process. MCX impounds new market information more 
quickly than LME does in the case of aluminum. For copper and zinc, it is the SHFE 
that leads MCX and LME.  

The results of volatility spillovers under the MGARCH framework indicate that, in 
general, there exist both short-term as well as long-term volatility spillovers between 
sample markets. However, in the case of gold, there is a univariate volatility spillover 
from MCX to COMEX, both in the short and long terms. No short-term spillover 
effects are observed in the case of silver; in the long-term, however, there is a bivariate 
spillover moving more strongly from MCX to COMEX. This implies that, while 
innovations in each market impact volatility; in the other market, MCX seems to play a 
more dominant role in the process. For aluminum, copper and zinc, unilateral short-run 
volatility spillovers are observed from LME to MCX, while bilateral spillovers are 
observed in the long-term, with MCX in the more dominant role, vis-à-vis LME, for 
the first two metals. Long-term volatility spillover effects seem to be absent in the case 
of zinc. Both MCX and LME play more important roles than SHFE plays in 
information transmission related to volatility. The volatility spillover results provided 
by the BEKK model exhibit some contradiction with the other two restricted models, 
CCC and DCC, for copper and zinc.  

Our empirical results have strong economic implications for market players and 
regulators, as well as academicians working on international financial integration 
literature. For precious metals, while COMEX tends to play a lead role in the price 
discovery process, the volatility-related information transmission in the long run seems 
to be stronger from MCX to COMEX. Thus, in contrast to the findings of Kumar and 
Pandey (2011), COMEX does not seem to be a fully dominant platform in the overall 
information transmission process. In other words, MCX, an emerging market platform, 
may not qualify as a pure satellite market. For non-precious metals, the emerging 
market platforms in China (SHFE) and India (MCX) seem to be more dominant than 
the mature market platforms are, both in price discovery as well as in the volatility 
spillover process. Thus, the emerging market platforms have achieved their due 
importance, given the high level of demand for these metals in the fast-growing 
manufacturing industry. The recent global economic crisis has impacted all economies, 
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but the western economies have fared worse compared to their emerging counterparts. 
Hence, the center of gravity of the world economy has gradually been shifting from 
west to east and it is likely that the emerging market platforms may perform leadership 
roles in information transmission for all other commodities, including precious metals, 
in the near future. 

Our results highlight the role of emerging commodity market platforms in the 
international information transmission process. Hence, policy makers in emerging 
markets such as India should facilitate necessary institutional and fiscal architecture, as 
well as regulatory reforms, so that their commodity market trading platforms can 
achieve greater liquidity and efficiency in order to achieve a relatively more dominant 
position in the international information transmission process. 
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2. An Examination of Price Discovery and Volatility   
Spillovers of Crude Oil in Globally                                

Linked Commodity Markets 
Abstract 

This chapter examines the price discovery and volatility spillovers between spot and 
futures as well as futures prices of three strategically linked oil markets viz., Inter-
Continental Exchange (ICE), MCX and NYMEX from 05 February 2006 to 15 October 
2012. The results confirm a long-run equilibrium relationship between futures and spot 
prices in each market; futures prices lead spot prices in the price discovery process. 
Analyzing futures prices, we find that ICE is the most dominant platform, followed by 
NYMEX and MCX in price discovery process. Thus MCX, an emerging market platform, 
seems to act like a satellite market vis-à-vis international platforms. The volatility 
spillover results suggest that there is a long-term spillover from ICE to MCX and from 
MCX to NYMEX. The volatility information seems to flow from NYMEX to ICE. The 
GARCH-CCC & DCC model results confirm both cross-market and within market co-
movements which become weak during the crisis period and tend to become stronger 
during the stable period. The study provides relevant implications for policy makers and 
market traders. The outcome of this study contributes to commodity market literature, 
especially relating to information transmission between strategically linked markets.  
 

2.1 Introduction 

Since the early 1970s, the frequent upheavals in the energy market, especially the price 
of crude oil, have always been an issue of great concern for academics, regulators and 
policy makers owing to its adverse impact on the macroeconomic fundamentals of the 
global economy. In this regard, an important issue that has garnered a great deal of 
attention from researchers and policy makers is the market behavior of energy 
markets—particularly crude oils with respect to their price discovery and volatility 
spillover potentials (Lean et al., 2010). In recent years, particularly after the global 
economic crisis of 2008, there have been significant changes in the energy markets 
worldwide, particularly for crude oil. In the literature, studies have considered several 
factors, such as globalization, changing economic dynamics, international relations 
and global politics, war, technological innovations and developments in energy 
markets and the recent financial crisis. These have shifted the economic and political 
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focus from the west to east. Moreover such factors have increased volatility in the 
energy market environment that have led market players to hedge the investment risk 
using derivatives such as futures and options for energy products (Nomikos and 
Andriosopoulos, 2012). In the international commodity market, the crude oil market is 
characterized as an umbrella market because of a large variety of products, such as 
West Texas Intermediate (WTI); Brent Blend (BB); Maya, Bonny Light (BL) and 
Dubai-Fateh (DF). Among these crude oils, WTI and BB are considered as light and 
sweet crude oil because of their higher API gravity index7 compared to others 
(Kaufmann and Ullman, 2009). Hence, WTI and BB are widely used for domestic and 
industrial purposes. In both mature and emerging markets, WTI and BB are also highly 
traded crude oil on their trading platforms. In terms of recent trends, WTI is being 
taken as a benchmark for price determination in the crude oil industry.  

Taking the above discussion as a starting point, this chapter attempts to investigate the 
price discovery and volatility spillovers between futures and spot prices and between 
futures prices of WTI traded on three commodity trading platforms viz., NYMEX, ICE 
and MCX. It may be noted that NYMEX and ICE are two principal platforms for oil 
trading at a global level and hence compete with each other for a price leadership role 
in the crude oil market. MCX is the major commodity exchange in India. India is a fast 
emerging, trillion-dollar economy for which crude oil is an important item in the 
import bill. Hence, MCX in our case represents an emerging market platform, which 
shall help us in understanding the information transmission process between mature 
and emerging economies relating to an international commodity like crude oil. In 
futures markets, a market is characterized as dominant market when it assimilates all 
the new information rapidly in its price and has stronger volatility spillovers to other 
markets (Hong, 2001). Under the efficient market hypothesis (EMH), it is assumed 
that all the publicly available information must be incorporated into the price for 
traded assets with no possibility of speculation and arbitrage. But in a technology-
driven, complex financial system, it is often observed that the process of information 
transmission is not as symmetrical as it is understood to be (Kaufmann and Ullman, 
2009). Therefore, this motivates researchers and policy makers to investigate the 
energy market platforms with respect to their price discovery and volatility spillover 
potential. In literature, price discovery implies a lead-lag relationship between futures 
and spot prices in a market and between futures prices in two different markets (Tse, 
                                              
7 American Petroleum Institute (API) gravity index is a measure of how light or heavy a petroleum product relative to water. See Kaufmann 

and Ullman (2009) for more details. 
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1999). Under the co-integration framework, it implies the establishment of a long-run 
equilibrium relationship. In the event of any departures from equilibrium due to 
exogenous shocks, price discovery also takes into account the speed of adjustment of a 
market towards equilibrium price. Econometrically, such a process is called an error 
correction mechanism (see, Zhong et al., 2004; Rittler, 2012). Besides price discovery, 
a volatility spillover also plays an important role in information transmission, as it 
highlights the process through which volatility in one market affects that of another 
market (Chan et al., 1991). The present study is particularly important in light of the 
increasing integration of global commodity markets that has generated interest for 
understanding the volatility spillovers from one market to another. Volatility spillovers 
are usually attributed to the cross-market hedging and changes in commonly available 
information, which may simultaneously impact the expectations of various participants 
across markets (Engle et al., 1990). More specifically, volatility spillovers examine 
information assimilation in two different ways: firstly, in terms of own-volatility 
spillovers under lagged innovations (information) and secondly in terms of its own 
lagged volatility spillovers. Spillovers under lagged innovations are referred to as 
clustering effects under the ARCH framework and lagged spillovers of an asset itself is 
referred to as volatility persistence under the GARCH framework—Such effects have 
strong implications for market participants since they highlight the assimilation of 
information rather than just the information contained in the price (Hong, 2001; 
Gagnon and Karolyi, 2006; Nekhili and Naeem, 2009). One can also use volatility 
spillovers to measure the spillover of past information and lagged volatility of an 
asset/market on another asset/market this is referred to as cross volatility spillover 
effects (Gagnon and Karolyi, 2006). Such effects have also practical implications as 
cross volatility spillovers help in characterizing the commodity market as a dominant 
or a satellite trading platform (see, Karmakar, 2009; Mahalik et al., 2010; Du et al., 
2011; Liu and An, 2011; Arouria et al., 2012, among others).  

This chapter examines the process of how volatility in the oil futures prices changes 
across markets. Since oil prices in examined countries play an important role in 
driving economic growth among sample commodity exchanges, it is crucial for market 
participants to understand the volatility spillovers process across these exchanges and 
their dominance in oil trading. In particular, the study empirically examines the first 
and the second moment properties of oil futures traded on the three sample exchanges. 
Much of the research to date has focused on the interaction between the cash and the 
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futures tiers of the crude oil market. The present study tries to answer the following 
research questions: Firstly, between NYMEX and ICE, the two leading international 
trading platforms for oil futures contracts, which is the dominant trading platform for 
crude oil trading (WTI) globally? Secondly, between these mature trading platforms 
and an emerging market trading platform such as MCX, what is the information 
transmission process? To address these questions, the objectives of this study are: 

(i).  to examine the lead-lag relationship between spot and futures prices and between 
futures prices of sample markets; 

(ii).  to investigate the volatility spillovers among sample markets to ascertain the 
dominant and satellite platforms. 

 

The chapter comprises six sections, including the present one: A brief review of the 
literature is provided in Section 2.2. Section 2.3 covers data and their sources, while 
methodology and estimation procedures are described in Section 2.4. In Section 2.5, 
we provide empirical results, followed by a summary and conclusion in the last 
section.  
 

2.2 Literature Review 
In this section, the primary focus is on information linkages among strategically 
located markets. Prior research has focused mainly on financial markets; 
comparatively less attention has paid to the commodity and foreign exchange markets 
(see Koutmos and Booth, 1995; Hamao et al., 1990; Hong, 2001). There have been 
notable studies relating to energy products (see Antoniou and Foster, 1992; Ng and 
Pirrong, 1996; Tse and Booth, 1997; Lin and Tamvakis, 2001; Ewing et al., 2002; 
Hammoudeh et al., 2003; Lanza et al., 2006; Malik and Hammoudeh, 2007; Mu, 2007; 
Hammoudeh and Yuan, 2008; Kaufmann and Ullman, 2009; Bekiros and Diks, 2008; 
Nomikos and Andriosopoulos, 2012; Arouri et al., 2012; Ji and Fan, 2012). So far, 
none have examined price discovery and volatility spillovers by taking into account 
the recent changes in the international economic dynamics and strong upheavals in 
energy products, particularly crude oil.  

The study of Tse and Booth (1997) examines the information transmission between 
New York heating oil futures and London gas oil futures and reports that the former is 
a more dominant market than the later. Lin and Tamvakis (2001) examine the spillover 
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effects  between  NYMEX  and  London’s  International  Petroleum  Exchange  (IPE)  crude  
oil futures markets and report that there is a stronger volatility spillover from NYMEX 
to IPE when traded in different hours. Using Dynamic Conditional Correlations (DCC 
– GARCH), Lanza et al. (2006) examine the daily returns on WTI oil forward and 
futures prices. Similar to our study, they reports dramatic aberrations in time-varying 
conditional correlations with the magnitude being negative to zero. Spargoli and 
Zagaglia (2007) examine the co-movement between futures markets for crude oil 
traded on NYMEX and ICE. Using the structural BEKK-GARCH model they find that 
during the turmoil period, NYMEX reacts more quickly than ICE. This further implies 
that NYMEX assimilates new information more quickly than ICE. Bekiros and Diks 
(2008) examine the relationship between futures and spot prices of WTI under 
different time intervals by applying linear and nonlinear causal relationships analyzing 
two sample periods, namely PI, which spans 1991 to 1999 and PII (1999 to 2007). 
They highlight the weaknesses related with first moment relationships (lead-lag 
relationships) with the use of a nonlinear causality test. Based on the linear causality 
results, the study reports bi-directional Granger causality between spot and futures 
prices in both periods, whereas the nonlinear causality results indicate the uni-
directional causal relationship from spot to futures prices only in PII. Kaufmann and 
Ullman (2009) examine the unified nature of global oil market by investigating the 
causal relationships among prices for crude oils from Africa, Europe, Middle East and 
North America on both spot and futures markets and include different variants of crude 
oil, such as WTI, BB, Maya, Bonny Light and Dubai–Fateh. They report a weak 
relationship between futures and spot prices and also reports that spot prices of Dubai-
Fateh lead other spot and futures prices; while among other crude oil futures and spot 
prices, WTI leads other exchanges and contracts. However, studies have also 
examined the information transmission of oil under different dimensions by linking oil 
with metals and stock markets. In this regard, Lean et al., (2010) examine the market 
efficiency of oil futures and spot prices of WTI by applying both mean-variance (MV) 
and stochastic dominance (SD) approaches and report no evidence of any MV and SD 
relationships between the examined series and conclude that spot and futures do not 
dominate one another. Hence, there is no arbitrage opportunity between futures and 
spot markets. 
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Arouria et al. (2012) examine the impact of oil price fluctuations on European equity 
markets by analyzing volatility spillovers and hedging effectiveness. Based on the results 
of Vector Autoregression (VAR-GARCH) model, they find a strong evidence of 
significant volatility spillovers between oil price and sector stock returns. In the Indian 
context, Goyal and Tripathi (2012) examine the lead-lag relationship between spot and 
futures of crude oil by applying mutual and across-exchange causality tests. Using the data 
of US WTI crude oil spot prices, UK Brent spot and MCX WTI spot, they find an 
evidence of price discovery in mature exchanges, where spot prices lead futures prices 
under the VECM framework and further report reverse causality from emerging to mature 
exchanges. Ewing and Malik (2013) examine the volatility transmission between gold and 
oil futures by taking into account a structural break. Using uni-variate and bi-variate 
GARCH models, they find a strong evidence of significant volatility transmission between 
gold and oil returns after taking into account structural breaks in variance. By and large 
the findings of recent studies as mentioned above are not in line with present work. To 
summarize, we can say that while there is a broad consensus on the role of information 
linkages across markets, the issue is still unsettled, especially in light of the recent 
turbulent periods, which have jolted the commodity markets across the globe, especially 
the crude oil prices taking a northward trend. Moreover, the futures markets in emerging 
countries are characterized by low liquidity and less efficient trading systems (Tomek, 
1980; Carter, 1989), making them different from the counterpart markets in mature 
countries. Under emerging market frameworks, this is the first attempt to examine price 
discovery and volatility spillovers by taking into account a more recent period, which has 
still been unexplored in cross-market frameworks; it is of great importance as it is the time 
when these trading platforms have achieved a higher level of trading liquidity and there 
may be strengthening of international linkages in terms of energy products.  
 

2.3 Methodology 

2.3.1  Process of Price Discovery and Co-Integration 

In the first stage, a stationarity condition using conventional methods of unit root tests 
viz., ADF, PP and KPSS have been used to check for stationarity for all sample series. 
Following Zhong et al. (2004) and Hou and Li (2013), we apply Johansen and Juselius 
(1992) to exhibit the long-run relationship followed by VECM, as mentioned in 
equations (2.1) and (2.2). The bivariate co-integrated series : ( , ) ',t t tP F S 
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Note that 1 1 1t t tEC F a bS� � � � � is the lagged error correction (EC) term.  

The error correction model of the bivariate co-integrated series is 

represented using the following VECM: 

 (2.3) 

 (2.4) 

Where, 1 1, 1 2, 1t t tEC F a bF� � � � � is the lagged EC term. 

Given the large number of parameters that would have to be estimated in the spillover 
model (discussed in subsection in 2.3.2), a two-step procedure similar to that 
implemented by Bekaert and Harvey (1997), Tse (1999), Ng (2000) and Rittler (2012) 
has been considered in this study. In the first step, a VECM is estimated to obtain the 
residuals. In the second step, first-stage residuals are used to estimate volatility 
spillovers between spot and futures prices and between the futures prices of both 
markets. 
 
2.3.2  Process of Volatility Spillovers 

It is the volatility that determines the flow of information from one market to another 
and not just a simple price change (Chan et al., 1991).8 Numerous studies have 
investigated the process of volatility spillovers to exhibit the spread of news from one 
market that affects the volatility spillover process of another market. The important 
studies in the existing literature are of Hamao et al. (1990), Koutmos and Booth (1995) 
and Lin et al. (1994) for the US, UK and Japanese stock markets and Booth et al. 
(1997) and Christofi and Pericli (1999). Engle et al. (1990) introduced the GARCH 
models to examine the volatility spillovers. Most studies in the literature have used 
different variants of GARCH models to study volatility spillovers between markets.  

                                              
8 For further details, Chan et al. (1991) could be a good reference on the need to study the volatility spillovers. 
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Keeping in view the above-mentioned literature, we employ the GARCH-BEKK 
(Baba et al. 1990) model to model the volatility spillover dynamics between futures 
and spot prices and between futures prices of ICE, MCX and NYMEX. In addition to 
the BEKK model, CCC and DCC models are employed to infer upon the constant and 
time-varying correlation patterns of the sample oil price series under consideration. A 
brief description of each model is mentioned below.  

 
GARCH (BEKK) Model 

The BEKK model is the most natural way to deal with the multivariate matrix 
operations. In this study, the model is implemented on the standardized residuals 
obtained from the VECM of the series under the following specification. 

 

Mean equation: 

2

0 , 1
1

it i ij j t it
j

X P P X H�
 

 � �¦
 
where 1| (0, ), 1,2it it itI N h iH �                                               (2.5) 

In equation (2.5), itX  is the estimated residual of the sample series; itH is a random error 

term with conditional variance ith ; 1itI � denotes the market information at time t-1. 

Equation (2.5) specifies the variance equation i=1, 2 denotes the bivariate model. The 
BEKK parameterization of multivariate GARCH model is written in the following 
manner:  

'
1 ' ' 't t t tH CC A A B H BH H�  � �  (2.6) 

Where the individual elements of C, A and B matrices for equation (2.6) are 
mentioned below: 
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The off-diagonal elements of matrix A ( 12a and 21a ) represent the short-term volatility 

spillover (ARCH effect) from market 1 to another market 2. The off-diagonal elements 
of matrix B ( 12b and 21b ) represent the long-term volatility spillover (GARCH effect) in 

the same manner as mentioned above. 
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CCC-GARCH and DCC-GARCH Models 

The Engle’s   (2002)  DCC  model   is  estimated   in   two  steps.   In   the   first step, GARCH 
parameters are estimated followed by correlations in the second step: 

t t t tH = D R D   (2.7) 

In equation (2.7), tH is a 2 2u conditional covariance matrix as in our case; tR  is a 

conditional correlation matrix and tD is a diagonal matrix with time-varying standard 

deviations on the diagonal. 

1/2 1/2
11 22( , )t t tD diag h h  

1/2 1/2 1/2 1/2
11 22 11 22( , ) ( , )t t t t t tR diag q q Q diag q q� � � �  

Where tQ is a symmetric positive definite matrix: 

1 2 1 1 1 2 1(1 ) 't t t tQ Q QT T T H H T� � � � � � �  (2.8) 

Q is the 2×2 unconditional correlation matrix of the standardized residuals itH . The 

parameters θ1 and θ2 are non-negative with a sum of less than unity. Under the 
condition of tR = R and ij ijR U  equation (2.9) becomes the CCC model. 

,
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q q

U  

 
(2.9) 

The MGARCH models are estimated by QMLE using the BFGS algorithm. T statistics 
are calculated using a robust estimate of the covariance matrix (see Sadorsky, 2012). 

2.4 Data 

The sample data for the daily spot and futures prices of NYMEX, ICE and MCX for 
WTI have been retrieved from the Bloomberg database. All closing prices of futures 
series are taken for the nearest contract to maturity (see Zhong et al., 2004). The 
sample period of the study is 05 February 2006 to 15 October 2012 (1727 
observations). To maintain parity across the sample markets, the price series are taken 
in USD terms.9 For estimation purposes, all price series have further been converted 

                                              
9 Previous day observation is used in case of missing observations assuming that the data were unavailable because of national holidays or 

any other reasons. Two days rolling average to account for time synchronization of different markets lying in different time zones has not 
been considered in this study due to a severe autocorrelation problem as highlighted by (Chiang, Jeon and Li, 2007). 
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into natural logarithms. The sample series under investigation are denoted as follows: 
ICE, NYMEX and MCX denote the futures prices of WTI crude oil traded on ICE, 
NYMEX and MCX platforms; MCXSPOT denotes the spot price of MCX and SPOT 
denotes the spot prices of ICE and NYMEX. 
 

2.5 Empirical Results 

The time-series graphs of actual WTI crude oil prices clearly shows the evidence of 
similar movement in prices, implying that there is not much scope of arbitration in the 
oil market and the relevant market information is intercepted by each sample market 
immediately (see Fig. 2.1).  
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Figure 2.1: Time-series plots of ICE, NYMEX, MCX, SPOT and MCXSPOT 

Besides this, we have also plotted the continuously compounded daily returns graphs of 
all sample markets. It appears that clustering in each market is more prominent during 
June 2008 to August 2009 and during April 2011 to June 2011 (see Fig. 2.2).  
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Figure 2.2: Time-series plot of daily returns of ICE, NYMEX, SPOT, MCX and MCXSPOT 

While the first clustering period can be attributed to the global economic crisis and its 
aftermath, the second period is related to the intensified phase of the Eurozone crisis. 
The return behavior of each market appears to be similar, as it has been observed in the 
case of actual prices. But it would be interesting to see how the behavior of these 
markets changes in terms of their price discovery under the first moment condition and 
volatility spillovers in the second moment condition. The descriptive statistics of 
sample oil futures and spot series are shown in Table 2.1.10 The mean returns of WTI 
crude oil appear to be almost the same across all markets. The highest mean daily 
returns are observed in the case of NYMEX and SPOT, which is 0.021% and lowest in 
case of ICE, MCX and MCXSPOT, which is 0.020%. The standard deviation as a 

                                              
10 Sample oil prices series have been calculated using the first difference of the log price series multiplied by 100. 
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measure of volatility is highest for SPOT (2.559%) and NYMEX (2.538%), followed 
by ICE (2.477%) and MCXSPOT (2.437%). Strikingly, the lowest volatile market 
appears to be of MCX, which has a volatility of 2.252%. However, this low volatility 
may be an outcome of lower information flows owing to less trading volume coupled 
with relatively greater price regulations in an emerging market like India. 

Table 2.1: Descriptive Statistics of Sample Commodities 

    Futures Returns       Spot Returns 

  ICE  MCX  NYMEX  MCXSPOT  SPOT 

Mean  0.020  0.020  0.021  0.020  0.021 

Max.  15.659  24.532  16.410  17.915  21.277 

Min.  -13.065  -9.301  -13.065  -14.196  -13.065 

Std.Dev.  2.477  2.252  2.538  2.437  2.559 

Skewness  0.063  0.725  0.134  0.172  0.307 

Kurtosis  7.453  13.421  7.972  7.346  9.308 

JB  1427.781  7965.404  1783.879  1367.761  2890.642 

Prob.  [0.000]  [0.000]  [0.000]  [0.000]  [0.000] 

Arch   
 48.814 
[0.000]**  

14.955 
[0.000]**  

45.048 
[0.000]**  

33.858 
[0.000]**  

57.608 
[0.000]** 

LB  
17.459 
[0.064]  

11.928 
[0.289]  

24.554 
[0.006]**  

29.0469 
[0.001]**  

30.376 
[0.000]** 

LB2  
1106.96 
[0.000]**  

239.081 
[0.000]**  

1038.05 
[0.000]**  

587.742 
[0.000]**  

798.412 
[0.000]** 

Obs.   1727   1727   1727   1727   1727 

Note: ** denotes level of significance at 1% and better. Values in parentheses [ ] indicate the p-values. JB = 
Jarque Bera and LB = Ljung Box. LB statistics are reported up to 10 lags. 

On the whole, the risk-returns relationship is positive for all sample series under 
consideration. The volatility measures are more than a hundred times larger than the 
mean values. All returns series exhibit a positive skewness and are also leptokurtic. 
This automatically leads to the violation of the normality assumption as exhibited by 
the Jarque-Bera (JB) statistics. The results imply that all the sample markets are not 
informationally efficient. There is also strong evidence of volatility clustering in 
sample series, indicating the need for a greater analysis of the second moment. The 
Ljung-Box (LB) test confirms no autocorrelation in the level of sample series up to 10 
lags, with the exception of NYMEX, MCXSPOT and SPOT, while all variables 
indicate significant autocorrelation in squared terms. 
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2.5.1 Tests of Stationarity and Price Discovery Process 

Stationarity conditions of the oil futures-spot price series expressed in logarithmic 
form are tested by conventional ADF, PP and KPSS tests (see Table 2.2).  

Table 2.2: Unit Root Results 

    ADF       PP       KPSS     

Variables  Level  First 
Difference  Level  First 

Difference  Level  First 
Difference 

Futures prices 

ICE  -2.213  -43.971**  -2.061  -44.082**  0.202  0.060** 

MCX  -2.045  -41.899**  -2.029  -41.900**  0.204  0.061** 

NYMEX  -2.259  -43.947**  -2.088  -44.110**  0.201  0.060** 

Spot prices 

MCXSPOT  -2.181  -44.173**  -2.047  -44.252**  0.202  0.061 

SPOT  -2.258  -43.496**  -2.213  -43.503**  0.201  0.055 

Critical Values 

1%  -3.963  0.216 

5%  -3.412  0.146 

10%  -3.128  0.119 
Note: ** indicates the level of significance at 1% and better. 

All the unit root tests clearly confirm the existence of a unit root at level and exhibit 
stationarity at first difference for all oil price series. Table 2.3 shows the results of 
Johansen and Juselius (1992) test of co-integration and indicates that all sample oil price 
series exhibit a long-run relationship, confirming the strong informational linkages 
between spot and futures as well as between futures prices of the examined sample trading 
platforms. 

Table 2.3: Johansen Co-integration Results 

Trace Test  Maximum Eigen Value Test 

Null Alternative Statistics 
95% 

 Null Alternative Statistics 
95% 

Critical Value Critical Value 

Co-integration between ICE and SPOT 

r=0 r>=1 317.806** 25.872  r=0 r=1 313.19** 19.387 

r<=1 r>=2 4.614 12.518  r<=1 r=2 4.614 12.518 

r<=2 r>=3    r<=2 r=3   
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Co-integration between MCX and MCXSPOT 

r=0 r>=1 258.953** 25.872  r=0 r=1 254.78** 19.387 

r<=1 r>=2 4.167 12.518  r<=1 r=2 4.167 12.518 

r<=2 r>=3    r<=2 r=3   

Co-integration between NYMEX and SPOT 

r=0 r>=1 278.88** 25.872  r=0 r=1 274.09** 19.387 

r<=1 r>=2 4.782 12.517  r<=1 r=2 4.782 12.517 

r<=2 r>=3    r<=2 r=3   

Co-integration between ICE and NYMEX 

r=0 r>=1 252.167** 15.494  r=0 r=1 248.64** 14.264 

r<=1 r>=2 3.517 3.841  r<=1 r=2 3.517 3.841 

r<=2 r>=3    r<=2 r=3   

Co-integration between ICE and MCX 

r=0 r>=1 150.53** 25.872  r=0 r=1 146.94** 19.387 

r<=1 r>=2 3.596 12.517  r<=1 r=2 3.596 12.517 

r<=2 r>=3    r<=2 r=3   

Co-integration between NYMEX and MCX 

r=0 r>=1 167.92** 25.872  r=0 r=1 164.36** 19.387 

r<=1 r>=2 3.558 12.517  r<=1 r=2 3.558 12.517 

r<=2 r>=3    r<=2 r=3   

Notes: a) * indicates level of significance at 1%, based of which order of integration is chosen. 
b) The lag structure is decided based on the minimum values of the Akaike information criterion. 

 

Table 2.4 shows the VECM results. The EC, which is also called the speed of 
adjustment co-efficient 𝛽 , is shown in the table. The results indicate that between spot 
and futures prices of all sample markets, the speed of adjustment co-efficient 𝛽  
appears to be greater in spot than in the futures market, indicating that when the co-
integrated series is in disequilibrium in the short-run, it is the spot price (cash market) 
that makes a greater adjustment than the futures price (futures market) to restore the 
equilibrium. In other words, futures price leads the spot price in the price discovery 
process. From an investment strategy perspective, the significantly negative EC term 
for spot series implies that spot prices are over-valued in most sample markets. 
However, only in the case of NYMEX spot positive numbers are reported implying 
that the spot prices in these markets are relatively undervalued. The information 
provides market traders an incentive to sell/short-sell oil in spot and buy oil futures 
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and exercise lending options to make arbitrage profits. Such an arbitrage process could 
be the reason for a long-run equilibrium relationship between spot and futures prices in 
these markets as confirmed by the co-integration results. The causality test reconfirms 
our findings of an observable bilateral causality between all sample futures and spot 
prices, which is stronger from the former to the latter. In sum, oil futures prices help in 
the discovery of oil spot prices. 

In the cross-market analysis, a long-run equilibrium relationship is confirmed between 
futures prices of all sample markets; there are significant EC terms for all futures 
series with the exception of ICE/NYMEX, thereby implying that any departures from 
the equilibrium are significant. Based on the magnitude of EC co-efficient and its 
statistical significance, it can be therefore inferred that among all three futures markets, 
it is the ICE that leads NYMEX and MCX futures markets in price discovery process. 
In other words, ICE futures prices assimilate new information quicker than NYMEX 
and MCX. Strikingly, in the case of NYMEX and MCX futures prices, speed of 
adjustment is by and large the same, indicating that MCX is efficiently getting 
integrated with global trading platforms in the case of oil. From   a   global   investor’s  
perspective, it seems that the ICE futures is relatively over-valued owing their 
representation by a considerably negative coefficient. Hence, the arbitrage process may 
involve selling ICE futures and buying NYMEX futures to reap short-term profits. 
Moreover, the causality tests provide a reconfirmation that ICE seems to be a 
dominant platform in the crude oil price discovery process, followed by NYMEX and 
then MCX. 

Table 2.4: Estimated Co-efficient of the VECM 
Commodity Co-efficient Commodity  Co-efficient 
β1(ice/spot) -0.048  β2(spot/ice)  -0.35 
 [-0.893]    [-6.367]** 
β1(mcx/mcxspot) -0.102  β2(mcxspot/mcx)  -0.499 
 [-1.869]    [-11.242]** 
β1(nymex/spot) 0.285  β2(spot/nymex)  -0.767 
 [ 2.918]**    [-7.959]** 
β1(ice/nymex) -0.133  β2(nymex/ice)  -0.834 
 [-1.091]    [-6.959]** 
β1(ice/mcx) -0.146  β2(mcx/ice)  -0.333 
 [-2.068]**    [-5.436]** 
β1(nymex/mcx) -0.257  β2(mcx/nymex)  -0.244 
 [-4.072]**    [-4.472]** 

Note: values in parentheses [ ] show t-values. ** denotes the level of significance at 1% and better. 
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The price discovery results of VECM are further substantiated by the Granger 
causality results (see Table 2.5). The results indicate a bidirectional causal relationship 
between spot and futures prices of sample oil markets with stronger causality moving 
from futures to spot, indicating that futures price leads the spot price in the price 
discovery process. However, among three oil trading platforms prices analyzed 
pairwise, it appears that ICE strongly Granger causes NYMEX and MCX as the 
magnitude of F-statistics of ICE is found to be higher than of MCX and NYMEX. 
Between NYMEX and MCX, NYMEX has a stronger Granger causality to MCX, 
implying that in the international oil market, ICE futures prices assimilate new market 
information faster than NYMEX and MCX for price discovery. 

Table 2.5: Granger Causality Results 

 
Note:        shows null hypothesis does not Granger Cause. Values in parentheses are p-values.  
** denotes the level of significance at 5% and better. 
 

2.5.2 Volatility Spillovers Process 

The estimated results of GARCH-BEKK model to examine the volatility spillovers 
among sample countries are shown in Table 2.6 (Panel A to F). The volatility spillover 
results between ICE futures and its SPOT, shown in Panel (A), confirm that there is an 
ARCH effect only in the case of SPOT. This implies that past innovations of SPOT 
prices have a significant and positive impact on the current SPOT volatility. Turning to 
cross-volatility spillover effects in the short-run, the results indicate that there are 
bilateral volatility spillovers between ICE and SPOT prices, with a stronger volatility 
spillover moving from ICE futures to SPOT. It may be noted that in the case of ICE, 
the past innovations in spot prices positively impact the current futures price volatility, 
while in the case from futures to spot it is exactly the opposite. With respect to long-
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term effects of ICE futures and spot, the results indicate that there is a strong evidence 
of volatility persistence, implying that there is a observable GARCH effect in the case 
of futures and spot. This further means that the past volatility of current futures/spot 
prices impacts the current volatility futures/spot significantly. Surprisingly, volatility 
persistence appears to be stronger in futures compared to spot. Turning to cross-market 
long-term volatility spillovers, the results indicate that there are bilateral volatility 
spillovers between spot and futures with stronger volatility spillover moving from 
futures to spot. It may here be noted that unlike the short-term, the past volatility of 
SPOT impacts the current volatility of futures (ICE) negatively, while impacting 
futures price volatility and spot price volatility positively.  

Similarly, in the case of MCX in the short-run, the spillover results indicate that there 
is no ARCH effect in futures and spot prices. While there is a unilateral volatility 
spillover moving from futures to spot, the spillover appears to be negative, implying 
that the past innovations in the futures market impact the current spot market inversely 
in the short-term. With respect to long-term spillovers, the results indicate strong 
evidence of volatility persistence in the case of futures and spot prices. The results 
imply that the past volatility of futures and spot impact their current futures and spot 
considerably. Strikingly, there appears to be no long-term cross-market volatility 
spillovers between spot and futures prices in the case of MCX. With respect to 
NYMEX (see Panel C), the results indicate that there is a positive short-term clustering 
in the case of SPOT prices. Surprisingly, there is no cross-market spillover, implying 
that in the short-term, it is only the SPOT market that bears the impact of past 
innovations in the market. Turning to long-term volatility spillovers, the results 
indicate no evidence of volatility persistence. However, there is a negative volatility 
spillover moving from futures to spot, while the inverse is not found.  

In sum, we confirm a bilateral volatility spillover between ICE futures and spot in both 
futures as well as spot in the long-run, which is stronger from the former to the latter. 
Further, a unilateral volatility spillover from futures to spot is confirmed for MCX in the 
short-term and for NYMEX only in the long-term. Thus, the oil futures seem to have a 
destabilizing effect on spot prices, which should be of concern to policy makers and 
regulators.  

With respect to futures markets volatility spillovers involving futures prices, we start with 
ICE and NYMEX results. We find that there are no significant own as well as cross-
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market spillovers in the short-term (see Panel D). The long-term volatility spillover results 
show high volatility persistence in the case of both ICE and NYMEX. This implies that 
the past volatility of ICE and NYMEX impact their current volatility considerably. With 
respect to cross-market spillovers, the results indicate only a one-way volatility spillover 
moving from NYMEX to ICE. This is in contrast to price discovery results, particularly 
the Granger causality results which indicate ICE as the lead market. The results of 
volatility spillovers have strong implications as it indicates that the past volatility of 
NYMEX impacts current volatility of ICE futures prices. However, the results of ICE and 
MCX (see Panel E) indicate that in the short-term, there is a strong evidence of volatility 
clustering in both ICE and MCX futures prices. The results of short-term cross-market 
volatility spillovers indicate that there is a one-way spillover moving from MCX to ICE. 
In the long-term, the results indicate that there is a strong evidence of high volatility 
persistence in the case of ICE and MCX, implying that there are significant impacts of 
past volatility on current volatility for ICE and MCX futures prices. Turning to cross-
market volatility spillovers, the results indicate that there is a unilateral volatility spillover 
moving from ICE to MCX. The long-term results are in line with price discovery results 
indicating the dominance of ICE over MCX. Lastly, we analyze the spillover results for 
MCX and NYMEX. The results indicate that in the short-run, own volatility spillovers are 
high for MCX while for NYMEX this is not the case. With respect to short-term cross-
market volatility spillovers, the results indicate negative and unilateral volatility spillovers 
moving from NYMEX to MCX. The negative volatility spillover co-efficient shows that 
the past innovations of NYMEX indicate the current volatility of MCX significantly. 
Turning to long-term results, it appears that there is strong evidence of volatility 
persistence in both markets, implying that there is an impact of past volatility of futures 
prices on the current volatility of futures prices. With respect to cross-market volatility, the 
results indicate that there is a unilateral volatility spillover moving from MCX to 
NYMEX. The results imply that in contrast to the short-term, in the long-term, past 
volatility of MCX appears to have a stronger impact on the current volatility of NYMEX.  

To summarize, we can say that the volatility spillover results are more or less in line 
with price discovery results. Turning to cross-market volatility spillover, there is a case 
of unilateral volatility spillover in each market, implying that the information flow 
across markets is not symmetric. However, there is also a substantial finding of the 
evidence of strong volatility persistence in most of the sample markets. This implies 
that own volatility spillover is stronger than the cross-market spillovers. The possible 
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explanation could be due to domestic reasons, such as longer trading hours, presence 
of more noise traders than value traders and regulatory regimes, which could have 
strong bearing on the market. However, the spot and futures market results indicate 
that it is the futures price that assimilates new information quicker than the spot prices 
in each sample market with the exception of MCX. Turning to cross-market volatility 
spillovers, the results indicate that between ICE and NYMEX, the volatility spillover 
of NYMEX appears to have a stronger effect on ICE. Similarly, in the case of ICE and 
MCX, the spillover impact of MCX is stronger in the short-term, while in the long-
term ICE dominates MCX. Additionally, MCX futures price volatility impacts 
NYMEX futures price volatility. Also, NYMEX seems to be the dominant market vis-
à-vis ICE, while the latter is a more dominant platform in the price discovery process. 

Turning to constant and time-varying dynamic conditional correlations, the results of 
CCC model suggest that there is strong correlation between each pair of markets. But 
based on the magnitude of correlations, it appears that the correlation is high between 
NYMEX and its SPOT (0.974) and is significant followed by ICE and its SPOT 
(0.934) and MCX and its MCXSPOT (0.544). With respect to cross-market 
correlations, the results indicate the high correlation between ICE and NYMEX 
(0.954) followed by ICE and MCX (0.839) and MCX and NYMEX (0.807). The CCC 
model provides interesting results. MCX futures exhibit greater association with the 
international counterpart exchanges then its local spot market. This implies that 
emerging market platforms like MCX exhibit a greater integration with international 
markets than at the domestic level. This may be due to the nature of oil as an 
international commodity and the possible market microstructure differences between 
futures and spot markets, making the former more informationally linked to each other 
than to their cash counterpart. Turning to DCC results, the estimated coefficients of 
θ(1)  and  θ(2)  are  high  in  each  case  except  ICE   in case of SPOT and MCX in case of 
MCXSPOT.  
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Table 2.6: MGARCH Results 

Panel A. ICE-SPOT 

Variables 
                BEKK                CCC                  DCC 
Coeff. t-stat  Coeff. t-stat   Coeff. t-stat 

μ1  0.032  [0.951]  0.062  [2.248] *  0.053  [2.097] * 
μ2  0.032  [1.093]  0.061  [2.409] *  0.051  [2.218] * 
c(1,1)  0.037  [1.259]  0.039  [2.505] *  0.037  [2.175] * 
c(2,1)  -0.133  [-1.884]         
c(2,2)  0.001  [0.002]  0.047  [2.285] *  0.042  [2.021] * 
α(1,1)  -0.105  [-1.339]  0.079  [3.248] *  0.086  [2.013] * 
α (1,2)  -0.656  [-6.492]*         
α(2,1)  0.215  [2.705] *         
α (2,2)  0.584  [5.191] *  0.107  [2.682] *  0.108  [2.213] * 
β(1,1)  1.186  [53.072] *  0.869  [22.399] *  0.855  [13.571] * 
β (1,2)  0.647  [5.021] *         
β (2,1)  -0.212  [-9.201] *         
β (2,2)  0.325  [2.394] *  0.832  [14.318] *  0.822  [11.065] * 
ρ(2,1)      0.934  [78.323] *     
θ(1)          0.019  [0.884] 
θ(2)          0.565  [8.372] * 
Log 
likelihood  -

2459.49    -2618.61    -
2596.76   

 

Panel B. MCX-SPOT 

Variables 
 BEKK  CCC  DCC 

 Coeff  t-Stat  Coeff  t-Stat  Coeff  t-Stat 

μ1  0.030  [1.379]  0.039  [1.693]  0.037  [1.521] 

μ2  0.027  [1.283]  0.036  [1.651]  0.041  [1.777] 

c(1,1)  0.123  [1.827]  0.021  [3.32] *  0.021  [3.523] * 

c(2,1)  -0.135  [-1.613]         

c(2,2)  0.013  [0.143]  0.034  [1.759]  0.033  [2.265] * 

α(1,1)  0.185  [1.510]  0.056  [4.22] *  0.059  [4.587] * 

α (1,2)  -0.219  [-2.034]*         

α(2,1)  0.031  [0.353]         

α (2,2)  0.224  [1.885]  0.102  [2.44] *  0.108  [3.443] * 

β(1,1)  0.971  [23.27] *  0.919  [59.14] *  0.918  [56.56] * 

β (1,2)  0.104  [1.679]         

β (2,1)  -0.002  [-0.064]         

β (2,2)  0.909  [14.27] *  0.862  [15.48] *  0.861  [21.31] * 

ρ(2,1)      0.544  [27.56] *     

θ(1)          0.056  [4.10] * 

θ(2)          0.399  [1.877] 

Log likelihood  -
4198.67    -4200.06    -4192.02   
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Panel C. NYMEX-SPOT 

Variables 
              BEKK              CCC                DCC 
 Coeff.  t-stat  Coeff.  t-stat  Coeff.  t-stat 

μ1  0.021  [0.539]  0.021  [0.529]  0.026  [0.977] 

μ2  0.025  [0.724]  0.023  [0.537]  0.029  [1.024] 

c(1,1)  0.932  [20.510]*  0.074  [2.638]*  0.040  [3.047]* 

c(2,1)  0.927  [23.319]*         

c(2,2)  0.000  [-0.006]  0.077  [2.511]*  0.042  [2.858]* 

α(1,1)  0.318  [1.281]  0.285  [3.372]*  0.189  [6.397]* 

α (1,2)  -0.408  [-1.291]         

α(2,1)  0.029  [0.132]         

α (2,2)  0.641  [2.389]*  0.301  [3.633]*  0.190  [5.036]* 

β(1,1)  -0.493  [-1.541]  0.666  [11.52]*  0.728  [35.35]* 

β (1,2)  -1.139  [-3.069]*         

β (2,1)  0.489  [0.912]         

β (2,2)  1.087  [1.783]  0.651  [10.315]*  0.721  [23.17]* 

ρ(2,1)      0.974  [252.50]*     

θ(1)          0.083  [1.250] 

θ(2)          0.640  [0.000] 

Log likelihood  -1527.9    -1896.8    -1929.4   

 

Panel D. ICE-NYMEX 

Variables 
               BEKK              CCC             DCC 
 Coeff  t-stats  Coeff  t-stats  Coeff  t-stats 

μ1  0.000  [0.010]  0.086  [2.671] *  0.004  [2.525] * 
μ2  0.003  [0.092]  0.084  [2.595] *  0.006  [1.995]* 
c(1,1)  0.119  [1.006]  0.028  [1.749]  0.026  [92.4] * 
c(2,1)  -0.069  [-0.919]         
c(2,2)  0.000  [0.000]  0.029  [1.631]  0.027  [207.8] * 
α(1,1)  0.061  [0.537]  0.072  [1.646]  0.063  [215.2] * 
α (1,2)  -0.072  [-0.652]         
α(2,1)  -0.046  [-0.448]         
α (2,2)  -0.111  [-0.970]  0.084  [1.616]  0.076  [985.2] * 
β(1,1)  -0.650  [-2.662]*  0.891  [19.15] *  0.891  [816.8] * 
β (1,2)  -0.367  [-0.829]         
β (2,1)  1.586  [7.305] *         
β (2,2)  1.324  [3.144] *  0.878  [15.50] *  0.875  [142.1] * 
ρ(2,1)      0.954  [77.86] *     
θ(1)          0.041  [-0.048] 
θ(2)          0.959  [2.210] * 
Log 
likelihood  -2270.08    -2341.50    -

2234.50   
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Panel E. ICE-MCX 

Variables 
               BEKK             CCC              DCC 
 Coeff  t-stat  Coeff  t-stat  Coeff  t-stat 

μ1  0.038  [2.032]*  0.045  [1.970]  0.046  [1.896] 
μ2  0.023  [1.234]  0.045  [1.799]  0.037  [1.424] 
c(1,1)  0.198  [5.142]*  0.012  [1.807]  0.019  [2.46] * 
c(2,1)  0.062  [1.287]         
c(2,2)  0.000  [0.000]  0.014  [2.593] *  0.016  [2.788] * 
α(1,1)  0.470  [5.091] *  0.058  [2.839] *  0.087  [4.401] * 
α (1,2)  0.051  [0.476]         
α(2,1)  0.215  [2.896] *         
α (2,2)  0.190  [2.355] *  0.058  [2.890] *  0.079  [4.77] * 
β(1,1)  0.901  [19.20] *  0.926  [32.76] *  0.890  [35.9] * 
β (1,2)  0.104  [2.152] *         
β (2,1)  0.032  [0.535]         
β (2,2)  0.897  [21.40] *  0.925  [41.37] *  0.903  [52.51] * 
ρ(2,1)      0.839  [66.80] *     
θ(1)          0.058  [3.23] * 
θ(2)          0.927  [40.12] * 
Log 
likelihood  -3285.44    -3359.80    -3307.27   

 

Panel F. NYMEX-MCX 

Variables 
             BEKK               CCC               DCC 
 Coeff.  t-stat  Coeff.  t-stat  Coeff.  t-stat 

μ1  0.027  [1.429]  0.058  [2.104] *  0.034  [1.388] 
μ2  0.035  [2.051]*  0.055  [2.548] *  0.032  [1.380] 
c(1,1)  0.084  [2.106] *  0.016  [2.129] *  0.017  [2.208] * 
c(2,1)  0.231  [8.418] *         
c(2,2)  0.000  [-0.001]  0.015  [2.058] *  0.022  [2.076] * 
α(1,1)  0.155  [1.655]  0.050  [3.158] *  0.079  [3.881] * 
α (1,2)  -0.272  [-4.25] *         
α(2,1)  -0.002  [-0.013]         
α (2,2)  0.589  [7.342] *  0.060  [2.787] *  0.099  [3.262] * 
β(1,1)  0.909  [26.29] *  0.929  [50.24] *  0.905  [46.91] * 
β (1,2)  0.062  [1.097]         
β (2,1)  0.089  [2.034] *         
β (2,2)  0.839  [16.58] *  0.919  [34.21] *  0.878  [26.47] * 
ρ(2,1)      0.807  [55.29] *     
θ(1)          0.097  [2.481] * 
θ(2)          0.877  [18.45] * 
Log likelihood  -3392.56    -3496.68    -3433.39   

Note:  Models  estimated  using  QMLE  with  robust  (heteroskedasticity/misspecification)  standard  errors.  μ i denotes 
the mean equation coefficients. In the variance equations, c  denotes   the   constant   terms,  α  denotes   the  ARCH  
terms   and   β   denotes   the  GARCH   terms.  The   coefficient   α12 for example can be interpreted as the short-term 
volatility spillover moving from ICE futures to its SPOT in Panel, rest of the panels are also interpreted in the 
same   manner,   respectively.  While,   β12 represents the long-term volatility spillover from ICE to SPOT for is 
interpreted in the same manner as above. * denotes the level of significance at 5% and better for panels A to F, 
respectively. 
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2.5.3  Dynamic Conditional Correlations 

Fig. 2.3 shows the time-varying DCCs. The results between futures and spot prices of 
sample markets indicate an evidence of volatility clustering in each case. However, 
there appears to be stronger volatility clustering in the case of MCX. For the DCC 
patterns in the case of ICE and SPOT, the magnitude of correlation coefficients are 
high (0.90), indicating a strong evidence of co-movement. Similar DCC patterns are 
also seen in the case of NYMEX and SPOT. In the case of MCX, the DCCs are high 
and range from 0.10 to 0.80. DCCs of within markets indicate that until 2008 there 
was not much variation in correlations. However, there appears to be a strong variation 
in correlations around October 2008 then it further shoots up around June 2009. 
Seemingly, there is again a fall in correlation around October 2010 then it went up 
again afterwards, indicating a strong impact of the global financial crisis and Eurozone 
turmoil. Turning to cross-market volatility spillovers, there is not much variation in 
DCC in the case of ICE and NYMEX, but there are apparent ups and downs in DCC 
for ICE and MCX and for NYMEX and MCX. The magnitudes of DCC among the 
three pairs range from 0.20 to 0.90. The correlation patterns of ICE and NYMEX are 
in tandem within market correlations. The correlation patterns for ICE and MCX and 
for MCX and NYMEX reached low values around March 2007, October 2008 and 
October 2010, but there is a sudden jump in the magnitude of correlation co-efficients 
such that it reaches up to 0.90. This implies that during crisis period, DCCs are 
generally lower and increase significantly afterwards. The possible reasons could be 
because of a sudden fall in demand during the crisis period. This could have caused 
economies to be bottomed out and demands to be resurged thereby leading to a closer 
co-movement between alternative oil markets (see Sadorsky, 2012). Given in June 
2012 to October 2012, there is again a drop in DCC, as can be observed from the 
graph. To conclude, one can say that there is a clear trend in the DCC patterns of 
examined markets during a crisis event and normally the correlations appear to be 
higher afterwards. Finally, the diagnostic tests find that for the standardized residuals 
and its squared values it exhibit no evidence of serial correlation at the 1% level across 
all the models applied (see Table 2.7). 
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Figure 2.3: Time –varying conditional correlations from the DCC model 
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Table 2.7: Diagnostic Tests for Standardized Residuals 

           BEKK            CCC           DCC 
  Q (20) Q sqr(20)  Q (20) Q sqr(20)  Q (20) Q sqr(20) 

ICE/SPOT  24.818 24.365  27.179 24.995  27.449 25.141 
  [0.209] [0.227]  [0.130] [0.202]  [0.123] [0.196] 
ICE/NYMEX  23.836 28.986  25.222 28.706  25.502 28.781 
  [0.250] [0.088]  [0.193] [0.094]  [0.183] [0.092] 
ICE/MCX  31.081 23.874  28.183 21.664  28.347 21.365 
  [0.054] [0.248]  [0.105] [0.359]  [0.101] [0.376] 
MCX/SPOT  18.018 21.008  17.685 19.667  17.651 19.569 
  [0.586] [0.480]  [0.608] [0.620]  [0.610] [0.620] 
NYMEX/MCX  23.470 26.219  19.869 32.436  19.446 32.973 
  [0.266] [0.131]  [0.466] [0.039]  [0.493] [0.034] 
NYMEX/SPOT  26.614 30.618  19.431 15.623  19.313 15.413 

  [0.113] [0.080]  [0.494] [0.740]  [0.502] [0.752] 
 

2.6 Conclusion 

This chapter examines the price discovery and volatility spillovers between spot and 
futures and between futures prices of three markets viz., ICE, MCX and NYMEX. The 
results confirm the existence of price discovery between spot and futures and among 
sample futures markets. Between spot and futures, the futures price leads the spot price 
in price discovery process, implying that futures prices assimilate new market 
information faster than spot in all sample markets. This result is in contrast to the 
findings of Goyal and Tripathi (2012). In the results of futures prices of the three 
markets analyzed pairwise, we find that ICE is a more dominant market, followed by 
NYMEX and MCX in terms of price discovery. Causality test results further confirm a 
two-way information transmission between spot and futures markets exists, which is 
stronger from the former to the later. Between futures markets, two-way information 
linkages exist which are stronger from ICE to NYMEX, ICE to MCX and NYMEX to 
MCX. The volatility spillover results indicate that it is the futures price that assimilates 
new information quicker than spot in each sample market with the exception of MCX. 
Turning to cross-market volatility spillovers, the results show that between ICE and 
NYMEX, the volatility spillover of NYMEX appears to have a stronger effect on ICE. 
Similarly in the case of ICE and NYMEX, the spillover impact of MCX is stronger in 
the short-term, while in the long-term ICE dominates MCX. Apparently, between 
NYMEX and MCX, in the short-term, NYMEX has a stronger spillover than MCX, 
while in the long-term there are opposite results. It may be noted that in terms of 
volatility spillovers, NYMEX appears to be the dominant market, while ICE and MCX 



Price Discovery and Volatility Spillovers: Crude Oil 57  

 

 

appear to be equally competing markets, which is in line with the findings of Spargoli 
and Zagaglia (2007). The CCC model results show a strong co-movement between 
ICE futures, NYMEX futures and their spot platforms. Interestingly, for MCX, the 
cross-market association (between futures prices) seems to be much stronger than 
within market association (between spot and futures), thus implying that emerging 
market platforms for oil are more integrated with their international exchanges than 
with domestic spot markets. The DCC results confirm that there are stronger cross-
market associations; however, weaker within market associations during economic 
crisis periods. These within market associations seem to become stronger for stable 
periods.  

The research has strong implications for policy makers as well as market traders. The 
mature market trading platforms like ICE and NYMEX seem to be dominant with 
regard to information dissemination on oil trading vis-à-vis emerging market platforms 
like MCX, which clearly appears to be a satellite market. ICE seems to play a 
leadership role in the international oil price discovery process. Hence, a price quote of 
ICE for WTI crude should be used as a pricing benchmark by world economies, 
including India. As expected, futures markets for oil seem to be more informationally 
efficient than the spot market. From a risk management perspective NYMEX seems to 
take the lead in the information transmission relating to return volatility. Furthermore, 
since international futures prices seem to be more correlated with each other than with 
the corresponding spot prices; this confirms the international nature of oil as a 
commodity. Finally, oil market integration seems to be stronger during stable phases 
than during crisis periods, which may have policy implications for global oil trade. 

The futures market volatility does have some destabilizing implications for spot prices, 
thus indicating that crude prices may be affected by speculative activity besides the 
demand-supply fundamentals and tax regimes. Therefore, the market trades may 
exploit any departures from equilibrium in the short-run by developing appropriate 
arbitrage strategies.  

The present study contributes to commodity market literature, especially that which 
deals with information linkages between mature and emerging market platforms and 
focuses on the little explored area of information linkages between mature and 
emerging market platforms. The study is particularly relevant, given the strategic 
importance of oil in the global economy. 
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3. Asset Portfolio Optimization using Analytical Hierarchy 
Process and Multi-choice Goal Programming 

Abstract 

Drawing on our understanding of market linkages, in the present chapter, a model of 
portfolio optimization is developed. Real-life portfolio selection problems seem 
complex in nature. In fact, the conflicts of objectives and the incompleteness of 
available information make it almost impossible for investors to build a reliable 
mathematical model to represent their preferences by considering a single aspiration 
level for each goal. Also, in some situations, investors want to make a decision about a 
problem, with a goal that can be achieved from specific aspiration levels (i.e., one goal 
mapping many aspiration levels). To overcome this difficulty, the present study 
integrates analytic hierarchy process (AHP) and multi-choice goal programming 
(MCGP) as a decision aid to obtain an optimal asset allocation that better suits the 
preferences of investors, according to their needs. This study obtains weights from the 
AHP and implements them for each goal using MCGP for the asset allocation 
problem. According to the function of multi-aspiration provided by MCGP, investors 
can set multi-aspirations for each goal to find the optimal asset allocation. The 
advantage of the proposed integrated AHP-MCGP approach is that it allows investors 
to indicate multiple aspiration levels for each goal. A real-life portfolio selection 
problem is considered to validate the usefulness of the proposed approach. 
 

3.1 Introduction 
The asset portfolio selection involves obtaining optimal proportions of the assets to 
construct a portfolio that respects investor preferences. Portfolio selection as a field of 
study began with the Markowitz model (1952), in which return is quantified as the 
mean and risk as the variance. Konno and Yamazaki (1991) used absolute deviation 
and Speranza (1993) used semi-absolute deviation to measure risk in portfolio 
selection. All these formulations are based on the assumption that investors have 
complete information for decision making. However, in reality, the information is 
often incomplete and hence decisions are made with uncertainty. Moreover, financial 
markets are also affected by the vagueness and ambiguity associated with the use of 
linguistic   expressions   (Sheen,   2005)   such   as   “high   risk,”   “low   profit,”   and   “low  
liquidity”   by   investors   and   investment   experts.   Portfolio   selection   formulations   have  
benefited greatly from the fuzzy set theory (FST) (Zadeh, 1965) in terms of integrating 
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quantitative and qualitative information, the subjective preferences of the investors and 
the knowledge of the experts. 

A review of the literature on the applications of FST in portfolio selection shows that a 
variety of approaches are being used. Ammar (2008) discussed the fuzzy portfolio op-
timization problem within a convex quadratic programming framework. Bilbao-Terol 
et al. (2006) applied fuzzy compromise programming to portfolio selection. Chen and 
Huang (2009) presented a portfolio selection model with fuzzy returns and risks. Fei 
(2007) studied optimal consumption and portfolio choice under the conditions of 
ambiguity and anticipation. Hasuike et al. (2009) considered portfolio selection models 
involving probabilistic future returns with ambiguous expected returns assumed as 
random fuzzy variables. Huang (2007a, 2007b) proposed portfolio selection models 
that involved stochastic return rates with fuzzy information and return rates containing 
both randomness and fuzziness. A new definition of risk was used by Huang (2008) 
for portfolio selection in a fuzzy environment. Jana et al. (2009) studied the 
multiobjective possibilistic model of portfolio selection considering transaction cost 
and using entropy for portfolio diversification. Li and Xu (2009) proposed a portfolio 
selection model in a hybrid uncertain environment considering the return of each asset 
as a fuzzy random variable. Lin and Liu (2008) developed portfolio selection models 
with minimum transaction lots using a fuzzy multiobjective decision-making 
approach. Qin et al. (2009) presented portfolio selection models in which cross-
entropy was used to define diversity and solved these models in a fuzzy environment. 
Tiryaki and Ahlatcioglu (2009) used a fuzzy analytic hierarchy process in portfolio 
selection to provide both ranking and weighting information to the investors. Vercher 
et al. (2007) studied fuzzy portfolio selection models to minimize the downside risk 
constrained by a given expected return. Vercher (2008) proposed models for portfolio 
selection in which returns on the assets were considered fuzzy numbers and obtained 
optimal portfolios using semi-infinite programming in a soft framework. Zhang et al. 
(2007) proposed portfolio selection models that were based on lower and upper 
possibilistic means and possibilistic variances, respectively. Zhang (2007) discussed 
portfolio selection problem using upper and lower possibilistic means and variances 
for bounded assets while considering uncertain returns of the risky assets as fuzzy 
numbers. Zhang et al. (2009) used interval-valued possibilistic means and possibilistic 
variance in portfolio selection. 
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The aforementioned studies of portfolio selection considered return and risk as the two 
fundamental  factors  that  govern  investors’  choice.  However,  it  is  often  found  that  not  
all the information relevant to portfolio selection can be captured in terms of only 
return and risk. Other considerations/criteria might be of equal, if not greater, 
importance to investors. By considering these in the portfolio selection model, it may 
be possible to obtain portfolios in which the deficit on account of the return and risk 
criteria is more than compensated by portfolio performance on other criteria, resulting 
in greater overall satisfaction for investors. There are studies that consider criteria 
other than return and risk, e.g., Ehrgott et al. (2004), Fang et al. (2006), Gupta et al. 
(2008, 2010, 2011, 2012). 

A common limitation of all the studies reviewed thus far is that they were based on a 
single aspiration level for each objective. However, in real-life investments, investors 
are interested in indicating multiple aspiration levels. In our view, portfolio selection 
models can be substantially improved by incorporating multiple aspiration levels for 
each goal (i.e., one goal mapping multiple aspiration levels). By allowing investors to 
indicate multiple aspiration levels, we can avoid underestimations in decision making. 
For example, setting multiple aspiration levels for financial goals can avoid neglecting 
the still suitable assets that may be omitted due to the strict single aspiration level. To 
the best of our knowledge, there is no research on incorporating multiple aspiration 
levels into portfolio selection. 

The purpose of this chapter is to incorporate multiple aspiration levels into portfolio 
selection. It may be noted that aspirations pertaining to financial investments are 
rooted, inter alia, in expectations about the real sectors underlying the financial assets. 
Implicit is the assumption that the dynamics of the markets for the real sectors are 
imputed in the behavior of the assets representing them. Thus, the risk-return measures 
of the assets and the portfolio constructed from them broadly capture our 
understanding of commodity markets and their linkages. Toward this aim, an 
integrated method of analytical hierarchy process and multi-choice goal programming 
(AHP-MCGP) is proposed to solve portfolio selection problems. First, AHP is used to 
calculate the relative weight of the four criteria, namely, short-term return, long-term 
return, risk and liquidity, for a given investor type. Then, using these relative weights 
for each goal and considering realistic constraints regarding the portfolio selection, a 
MCGP model is formulated and solved to obtain optimal asset allocation. A brief 
discussion of the goals follows. 
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For portfolio return, we consider short-term return (average performance of the asset 
during a 12-month period) and long-term return (average performance of the asset 
during a 36-month period). This is done in order to capture the subjective preferences 
of the investors for portfolio return. For a given expected return, the investor penalizes 
negative semi-absolute deviation, which is defined as portfolio risk. Liquidity is 
considered in terms of the probability of conversion of an investment into cash 
(turnover) without any significant loss in value. 

Some advantages of the proposed integrated AHP-MCGP approach are as follows: 

1. The AHP-MCGP allows investors to set multiple financial goals corresponding 
to their requirements. 

2. Each financial goal can be cut to multiple aspiration levels to better suit human 
perceptions   such   as   “the   more   the   better”   or   “the   less   the   better.”   With   the 
flexibility of this function, AHP-MCGP will help to find the asset allocation 
that  is  closest  to  the  investor’s  requirements. 

3. AHP-MCGP is more realistic, compact and easily implemented in decision 
making as a simple mathematical problem. 

The chapter is organized as follows. In Section 3.2, we present a multiobjective 
programming model of portfolio selection. In Section 3.3, we describe our research 
methodology. In Section 3.4, a real-life portfolio selection problem is considered to 
show the effectiveness and applicability of the proposed methodology. This section 
also includes a discussion of the results obtained. Finally, in Section 3.5, we present 
our concluding observations. 
 

3.2 The Portfolio Selection Problem 
In this section, we formulate a portfolio selection problem as an optimization problem 
with multiple objectives. We assume that investors allocate their wealth among n
assets offering random rates of return. We introduce some notation as follows: 

ir  : the expected return of the i -th asset, 

ix  : the proportion of total funds invested in the i -th asset, 

iy  : the binary variable indicating whether the i -th asset is contained in the 

portfolio or not, i.e., 
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1, if -th asset is contained in the portfolio
0, otherwisei

i
y  ®

¯
 

12
ir  : the average 12-month performance of the i -th asset,  

36
ir  : the average 36-month performance of the i -th asset,  

itr  : the historical return of the i -th asset over the past period t ,  

iu  : the maximal fraction of the capital budget allocated to the i -th asset, 

il  : the minimal fraction of the capital budget allocated to the i -th asset. 

 
 

3.2.1 Objectives 
•   Short-term return 

The short-term return of the portfolio is expressed as follows: 

12
1

1
( ) ,

n

i i
i

f x r x
 

 ¦  

where
12

12
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1
12i it

i
r r

 
 ¦ , 1,2,...,i n . 

•   Long-term return 

The long-term return of the portfolio is expressed as follows: 

36
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( ) ,

n

i i
i

f x r x
 

 ¦  

where
36

36

1

1
36i it

i
r r

 
 ¦ , 1,2,...,i n . 

•   Risk 

The semi-absolute deviation of return of the portfolio below the expected return over 
the past period t , 1,2,...,t T  can be expressed as 
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Therefore, the expected semi-absolute deviation of return of the portfolio 

1 2( , ,..., )nx x x x below the expected return becomes 
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We use ( )w x to measure portfolio risk. 

•   Liquidity 

For any asset, liquidity may be measured with the help of the turnover rate defined as 
the ratio between the average stock traded on the market and the tradable stock (shares 
held by public) of that asset (Gupta et al., 2008). The liquidity of the portfolio is 
expressed as follows: 

4
1

( )
n

i i
i

f x L x
 

 ¦
 

 
3.2.2 Constraints 
•   Capital budget constraint on the assets: 

 1
1

n

i
i

x
 

 ¦ . 

•   Maximal fraction of the capital that can be invested in a single asset: 

 ,i i ix u yd 1,2,...,i n . 

•   Minimal fraction of the capital that can be invested in a single asset:  

 ,i i ix l yt 1,2,...,i n . 

The maximal and minimal fractions of the capital budget allocated to the various assets 
in the portfolio depend on a number of factors. For example, one may consider 
price/value relative of the asset vis-à-vis the average of the price/value of all the assets 
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in the chosen portfolio, the minimal lot size that can be traded on the market, the past 
behavior of the price/volume of the asset, information available about the issuer of the 
asset and trends in the industry of which it is a part. In other words, investors refer to a 
host of fundamental and technical analysis factors affecting the company and the 
industry. Because investors differ in their interpretations of the available information, 
they may allocate the same overall capital budget differently. The constraints 

corresponding to lower bounds il and upper bounds iu on the investment in individual 

assets (0 , 1, , )i i i il u l u id d d �  are included to avoid a large number of very small 

investments (lower bounds) and, at the same time, to ensure a sufficient diversification 
of the investment (upper bounds) (Gupta et al., 2008, 2010). 

•   Number of assets held in a portfolio: 

 
1

n

i
i

y h
 

 ¦  

where h is the number of assets that the investor chooses to include in the portfolio. Of 
all the assets from a given set, the investor would pick up the ones that are likely to 
yield the desired satisfaction of his preferences. It is not necessary that all the assets 
from a given set are configured into the portfolio. Investors differ with respect to the 
number of assets that they can effectively manage in a portfolio (Gupta et al., 2008, 
2010). 

•   No short selling of assets: 

0ix t ,   1,2,...,i n . 

 
3.2.3 The Decision Problem 
The constrained multiobjective portfolio selection problem is formulated as follows: 

 (P1) 12
1

1
max ( )
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 ¦ , (3.1) 

  
1
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y h
 

 ¦ , (3.2) 

  i i ix u yd ,    1,2,..., ,i n  (3.3) 

  i i ix l yt ,    1,2,..., ,i n  (3.4) 

  0ix t ,   1,2,..., ,i n  (3.5) 

  {0,1}iy � ,    1,2,..., .i n  (3.6) 

In order to eliminate the absolute-valued function in (P1), we transform the problem 
into the following form: 
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  and Constraints (3.1)-(3.6).  
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The problem (P2) is a multiobjective linear programming problem. There are several 
efficient methods to solve this problem. 
 

3.3 The Proposed Integrated AHP-MCGP Method 
This study integrates AHP and MCGP as a new method to solve the problem of asset 
allocation. The AHP method with a pair-wise comparison technique is used to measure 
the relative weights of each goal. Using these weights as coefficients of the goals in 
the objective function of MCGP, we can easily obtain the optimal asset allocation. 
First of all, we use AHP approach to obtain the relative weights of each goal. Second, 
the MCGP method is utilized to obtain the optimal asset allocation. 
 
3.3.1 Modeling Relative Weights of Goals via AHP 
We measure the relative weight of each goal per investor preferences using AHP. The 
first step in the process of AHP is to define the various asset allocation goals. Second, 
the opinions of investors are collected by face-to-face interviews and then their 
judgment is drawn up into a matrix of pair-wise comparisons between individual asset 
allocation goals using a nine-point (1-9) scale. Third, the normalization of the 
geometric mean method is used to determine the relative weight of each goal. Finally, 
the consistency of the matrix is checked by calculating the Consistency Ratio (Saaty, 
2000). 
 
3.3.2 Portfolio Selection Model based on Multi-choice Goal Programming 
Here, we formulate a multiobjective portfolio selection problem based on multiple 
aspiration levels of investors to determine a satisfying portfolio selection strategy. We 
assume that investors indicate multiple aspiration levels. 

•   Multi-choice goal programming 

Goal programming (GP) is an analytical multiple objective decision-making approach 
designed to address decision-making problems in which targets have been assigned to 
all attributes and where the decision-makers are interested in minimizing the non-
achievement of a particular goal (Liao, 2009). GP was first introduced by Charnes and 
Cooper (1961) and was further developed using various types of methods, such as 
Lexicographic GP, Weighted GP and MINMAX GP. (Romero, 2001). GP can be 
expressed as follows: 
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w d d� �

 
�¦  

 subject to ( )i i i if x d d g� �� �  ,  1,2,..., ,i n   

  , 0i id d� � t ,    1,2,..., ,i n   

  ,x F�  

where iw is the weight attached to the i -th goal; F  is a feasible set; x  is an element of 

F ; ( )if x is the linear function of the i -th goal; ig is the aspiration level of the i -th goal; 

id� and d�
� are the positive and negative deviation attached to the i -th goal 

| ( ) |i if x g� .The above model is a multiple goal model. 

Although GP is capable of handling decision problems involving multiple goals, if these 
goals can be achieved from some aspiration levels, it becomes a MCGP problem (Chang, 
2007). The MCGP allows the decision-maker to set multi-choice aspiration levels for each 
goal to avoid the underestimation of the decision. The rapid development of MCGP has 
led to an enormous diversity in models and methods. However, few studies have explored 
using MCGP to address real-life problems, such as supplier selection and location 
selection, that involve conflicts of criteria. In fact, the conflicts between criteria and the 
incompleteness of information make it very difficult for decision-makers to build a 
reliable mathematical model for the representation of their preference. 

According to Chang (2007), a MCGP problem can be stated in the following model: 

min 1 2
1

| ( ) or or ...or |
n

i i i i im
i

w f x g g g
 

�¦  

subject to x F�    ( F  is a feasible set) 

where ( 1,2,..., ; 1,2,...., )ijg i n j m   is the j -th aspiration level of the i -th goal,

1 1ij ij ijg g g� �d d ; all other variables are defined as in GP. 

The MCGP can be expressed by the following mixed binary achievement function: 
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f x d d g S B� �

 
� �  ¦ ,  1,2,..., ,i n  (3.7) 

  , 0,i id d� � t 1,2,..., ,i n  

  x F�    ( F is a feasible set), 

where ( )ijS B represents a function of binary serial number attached to multi-choice 

aspiration levels, ijg ; other variables are defined as in GP. The above model involves 

multiplicative terms of binary variables on the right-hand side of equation (3.7), which 
makes it difficult to implement when the problem size gets large and it is not easily 
understood by industrial participants. 

In order to solve the problem of multiplicative terms of binary variables on the right-
hand side of equation (3.7), a new idea of upper ,max( )ig  and lower ,min( )ig  bounds of 

the i -th aspiration level, iy , was introduced by Chang (2008), where iy  is the 

continuous variable ,min ,maxi i ig y gd d . In other words, Chang (2008) employed a 

continuous variable, iy , with a range of interval values to replace multiplicative terms 

of the binary variable,
1

m

ij ij
j

g S
 
¦ , with a range of discrete values on the right-hand side 

of equation (3.7). The MCGP can be reformulated as the following two alternative 
MCGP-achievement functions (Chang, 2008): 

The  first  case,  “the  more  the  better,”  is  formulated  as 

 min  
1

( ) ( )
n

i i i i i i
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w d d e eD� � � �

 
� � �¦  

 subject to ( )i i i if x d d y� �� �  ,  1,2,..., ,i n  (3.8) 

  ,maxi i i iy e e g� �� �  ,  1,2,..., ,i n  (3.9) 

  ,min ,max,i i ig y gd d  

  , , , ,i i i id d e e� � � � 1,2,..., ,i n  

  x F�    ( F is a feasible set), 
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where id� and id�  are the positive and negative deviations attached to the i -th goal 

| ( ) |i if x y� in equation (3.8); ie� and ie� are the positive and negative deviations 

attached to ,max| |i iy g� in equation (3.9); iD  is the weight attached to the sum of the 

deviation of ,max| |i iy g� ; all other variables are defined as in MCGP. 

The second case, “the  less  the  better,”  is  formulated  as 

 min  
1

( ) ( )
n

i i i i i i
i

w d d e eD� � � �

 
� � �¦  

 subject to ( )i i i if x d d y� �� �  ,  1,2,..., ,i n  (3.10) 

  ,mini i i iy e e g� �� �  ,  1,2,..., ,i n  (3.11) 

  ,min ,max,i i ig y gd d  

  , , , ,i i i id d e e� � � � 1,2,..., ,i n  

  x F�    ( F is a feasible set), 

where id�  and id� are the positive and negative deviations attached to the i -th goal 

| ( ) |i if x y� in equation (3.10); ie� and ie�  are the positive and negative deviations 

attached to ,min| |i iy g�  in equation (3.11); iD  is the weight attached to the sum of the 

deviation of ,min| |i iy g� ; all other variables are defined as in MCGP. 

Based on the above discussion, we formulate the multi-choice portfolio selection 
problem as 

 (P3) 1 1 1 2 2 2 3 3 3 4 4 4min ( ) ( ) ( ) ( )w d e w d e w d e w d e� � � � � � � �� � � � � � �  
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  3 3 3 min ,risky e e r� �� �   (3.17) 
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  and Constraints (3.1)-(3.6), 
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4e� and 4e� are the positive and negative deviations attached to 4 max| |y L�  in equation 
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4 max| |y L� . 

It may be noted that the values of 12 12
min max,r r , 36 36

min max,r r , min max,risk riskr r  and minL , maxL may 
be given by the decision-maker based on his/her experience or may be obtained by 
solving the following single goal portfolio problem as follows: 

 12 12
min

1
min , subject to Constraints (3.1)-(3.6).

n

i i
i

r r x
 

 ¦  (3.20) 

 12 12
max

1
max , subject to Constraints (3.1)-(3.6).

n

i i
i

r r x
 

 ¦  (3.21) 

 36 36
min

1
min , subject to Constraints (3.1)-(3.6).

n

i i
i

r r x
 

 ¦  (3.22) 

 36 36
max

1
max , subject to Constraints (3.1)-(3.6).

n

i i
i

r r x
 

 ¦  (3.23) 

 1 1
min

1

( ) ( )
min , subject to Constraints(3.1)-(3.6).

2

n n

it i i i it iT
i irisk

t

r r x r r x
r

T
  

 

� � �

 
¦ ¦

¦ (3.24) 



Asset Portfolio Optimization: Analytical Hierarchy Process and Multi-choice Goal Programming 77 

 

 1 1
max

1

( ) ( )
max , subject to Constraints (3.1)-(3.6).

2

n n

it i i i it iT
i irisk

t

r r x r r x
r

T
  

 

� � �

 
¦ ¦

¦ (3.25) 

 min
1

min , subject to Constraints (3.1)-(3.6).
T

i i
t

L L x
 

 ¦  (3.26) 

 max
1

max , subject to Constraints (3.1)-(3.6).
T

i i
t

L L x
 

 ¦  (3.27) 

It is important to mention that, in order to solve the models proposed in equation (3. 
24) and equation (3. 25), we eliminate the absolute-valued function on the same line as 
discussed in Section 3.2.3. 
 
3.3.3 Research Framework 
Fig. 1 illustrates the detailed procedure of the proposed integrated AHP-MCGP 
approach for the portfolio selection problem. 
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Figure 3.1: An integrated AHP-MCGP procedure for portfolio selection 
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3.4 Numerical Illustration: Results and Analysis 
To demonstrate the usefulness of the proposed AHP-MCGP approach for portfolio 
selection, a real-life empirical study done for the imaginary investor on the data set 
extracted from the National Stock Exchange (NSE), Mumbai, India, is provided here. 
We have selected 20 assets listed on the NSE to form a population from which we 
attempt to construct portfolios. 
 
3.4.1 Calculation of AHP Weights 
In the AHP computation, we consider three types of investors, namely, return seekers, 
safety seekers and liquidity seekers. The reason for considering three types of investors 
is based on the understanding of investor behavior provided by Gupta et al. (2010). 
The relative weights of the four criteria, i.e., short-term return, long-term return, risk 
and liquidity, for the three types of investors are provided in Tables 3.1-3.3. Because 
the value of CR is less than 0.1 for all the three cases, the judgments are acceptable. 

Table 3.1: Pair-wise Comparison Matrix of the Four Criteria for Return Seekers 

 Short-term return Long-term return Risk Liquidity Weights 

Short-term return 1 0.5 2 3 0.27714 

Long-term return 2 1 3 4 0.46582 

Risk 0.5 0.33333 1 2 0.16107 

Liquidity 0.33333 0.25 0.5 1 0.09597 

CI = 0.01316, RI = 0.89, CR = 0.01479 

 

Table 3.2: Pair-wise Comparison Matrix of the Four Criteria for Safety Seekers 

 Short-term return Long-term return Risk Liquidity Weights 

Short-term return 1 0.5 0.33333 2 0.17067 

Long-term return 2 1 0.5 2 0.25962 

Risk 3 2 1 3 0.44952 

Liquidity 0.5 0.5 0.33333 1 0.12019 

CI = 0.02778, RI = 0.89, CR = 0.03121 
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Table 3.3: Pair-wise Comparison Matrix of the Four Criteria for Liquidity 
Seekers 

 Short-term return Long-term return Risk Liquidity Weights 

Short-term return 1 0.5 1 0.5 0.16468 

Long-term return 2 1 1 0.5 0.23413 

Risk 1 1 1 0.33333 0.17460 

Liquidity 2 2 3 1 0.42659 

CI = 0.02822, RI = 0.89, CR = 0.03171  

 
3.4.2 Asset Allocation 
The 20 financial assets form the population from which we attempt to construct a 
portfolio comprising 8 assets. The reason for constructing a portfolio of 8 assets is 
based on the understanding of investor behavior provided a survey that shows that 
portfolio diversification by investors lies in the narrow range of 3-10 assets (Gupta et 
al., 2005). Table 3.4 provides the data corresponding to expected short-term return, 
expected long-term return, risk and liquidity. It may be noted that the average returns 
used in this study are the average of the averages, that is, the average monthly returns. 
The monthly returns are based on the daily returns. We use the average 36-month 
performance of the asset as the expected return in the calculations. Liquidity of the 
assets is measured using the respective turnover rates. 

Using the data given in Table 3.4, we solve the single goal portfolio problems (3.20)-

(3.27) to obtain the lower bound value 12
minr and upper bound value 12

maxr  for the short-

term return goal; the lower bound value 36
minr  and upper bound value 36

maxr  for the long-

term return goal; the lower bound value min
riskr and upper bound value max

riskr  for the risk 

goal; and the lower bound value minL and upper bound value maxL  for the liquidity 

goal. Table 3.5 presents the computational results 
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Table 3.5: The Lower-Upper Bound Solution Payoff Matrix 

 12
minr  12

maxr  

Short-term return 0.07583 0.34449 

 36
minr  36

maxr  

Long-term return 0.18228 0.36896 

 min
riskr  max

riskr  

Risk 0.0837161 0.24493 

 minL  maxL  

Liquidity 0.00041 0.00418 
 

We now present the computational results. 

•       Case 1 for return seekers 

We incorporate the relative weights and lower and upper bound values of the four 
criteria, i.e., short-term return, long-term return, risk and liquidity, from Table 3.1 and 
Table 3.5, respectively, into the model (P3) to identify the optimal allocation. For this 
purpose, the model is coded and solved using LINGO 12.0 software (Schrage, 2006) 
on a Pentium dual-core 1.40 GHz computer with 3 GB RAM. The computational result 
is summarized in Table 3.6. Table 3.7 presents the proportions of the assets in the 
obtained portfolio. 

•   Case 2 for safety seekers 

We incorporate the relative weights and lower and upper bound values of the four 
criteria from Table 3.2 and Table 3.5, respectively, into the model (P3) to identify the 
optimal allocation. The computational result is summarized in Table 3.6. Table 3.7 
presents the proportions of the assets in the obtained portfolio. 

•   Case 3 for liquidity seekers 

We incorporate the relative weights and lower and upper bound values of the four 
criteria from Table 3.3 and Table 3.5, respectively, into the model (P3) to identify the 
optimal allocation. The computational result is summarized in Table 3.6. Table 3.7 
presents the proportions of the assets in the obtained portfolio. 
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Table 3.7: The Proportions of the Assets in Obtained Portfolios for Case 1, Case 2 
and Case 3 

 Assets 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

Case 1 0 0 0.02 0 0.35 0.025 0 0 0 0 

Case 2 0 0 0.02 0 0.34431 0 0 0 0 0.026 

Case3 0 0 0.02 0 0.4 0 0 0 0 0 

 Assets 

 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 

Case 1 0.04 0 0 0.27862 0 0 0.023 0 0.01 0.25338 

Case 2 0.04 0 0 0.21351 0 0 0.03218 0 0.024 0.3 

Case 3 0.04 0 0 0.19585 0 0.27915 0.023 0.032 0.01 0 

 

A comparison of the solutions for the three cases listed in Table 3.6 highlights that, if 
investors are return seekers, they will obtain a higher level of expected return in 
comparison to liquidity seekers and safety seekers, but this finding supposes a higher 
risk level. If investors are safety seekers, they will obtain a lower level of risk in 
comparison to liquidity seekers and return seekers, but this finding supposes accepting 
a medium level of expected return. If investors are liquidity seekers, they will obtain a 
higher level of liquidity in comparison to return seekers and safety seekers, but this 
finding supposes a lower return level. 

The previous analysis of the various decision situations from the standpoint of investor 
preferences demonstrates that the portfolio selection models developed in this chapter 
discriminate between investor types. Thus, it is possible to construct portfolios with 
reference to the diversity of investor preferences. 
 

3.5 Conclusion 
In real-life portfolio selection, problems are complex in nature. In fact, the conflicts of 
objectives and the incompleteness of available information make it almost impossible 
for investors to build a reliable mathematical model for representation of their 
preferences by considering a single aspiration level for each goal. Also, in some 



Asset Portfolio Optimization: Analytical Hierarchy Process and Multi-choice Goal Programming 85 

 

situations, investors would like to make a decision on the problem, with a goal that can 
be achieved from some specific aspiration levels (i.e., one goal mapping many 
aspiration levels). In order to overcome this problem, the present study developed the 
AHP-MCGP method to assist investors in finding an optimal asset allocation 
according to their preferences in terms of the aspiration levels. Using AHP, we have 
measured the relative weights of the four criteria, namely, short-term return, long-term 
return, risk and liquidity, for a given investor type. These relative weights are then 
implemented into each goal using MCGP for the portfolio selection problem. With 
different investment purposes, investors can set multiple aspiration levels for each 
financial goal using MCGP to find the most suitable asset allocation. 

Compared with previous methods, the main advantage of the proposed method is that 
it not only provides flexibility to the investors to describe their preferences, but it also 
can  set  multiple  goals  with  multiple  aspiration   levels  corresponding   to   the   investors’  
requirements. Setting multiple aspiration levels for financial goals can avoid 
neglecting the still suitable assets that may be omitted due to the strict single aspiration 
level. The flexibility of incorporating multiple aspiration levels into portfolio selection 
problems can be viewed as a decision aid to help investors achieve better asset 
allocations. 

The findings of this chapter highlights the ability of the proposed portfolio selection 
approach in yielding optimal portfolios based on the understanding of commodity 
markets and their linkages. 
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