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GLOSSARY 
Balancing costs: Short-term operational costs a system incurs through output 

variability and uncertainty. 
Capacity costs: Costs associated with the required capacity that enables a system to 

provide system reliability at any time. 
Capacity credit: A credit that expresses the contribution made to system reliability by 

fluctuating plants that is equivalent to the contribution of conventional thermal plant. 
The capacity credit is calculated using statistical methods. The estimation of 
capacity requirements is based on the estimates of the probability distribution of the 
difference between the available capacity on the system at any point in time and the 
instantaneous demand. The capacity credit is considered only during the highest 
peak demand periods. 

Capacity factor: The maximum output that can be obtained from a generating source, 
after planned and unplanned outages. It is expressed as a percentage of total 
installed capacity. Capacity factors for baseload thermal generators can reach up to 
85%. Wind turbines achieve capacity factors of 20% to 40%. 

Contribution to peak demand: The contribution to peak demand is defined as the 
times of 10% highest demand within a year (876 hours). 

Environmental costs: Costs that are related to CO2 emissions or waste disposal. 
Levelized cost of energy: Costs per MWh of a payment stream that has the same 

present value as total generation costs of a plant over its lifetime (including 
investment, operation and maintenance cost). 

Loss-of-load probability: The probability that a load will need to be forced to 
disconnect from the system due to insufficient generation expressed as the number 
of years per century in which load shedding will occur. 

Penetration level: The share to which wind and solar energy contributes to energy 
generation expressed as the capacity factor. 

Predictability: The predictability of wind and solar power is the difference between 
the expected and the actual generated energy.  

Price-based policy instruments: These instruments provide a stable tariff payment 
based on a purchase obligation over a defined time period. 

Quantity-based policy instruments: This instrument is a legislator mechanisms that 
provides a fixes price for a certain quantity. 

Smoothing effect: Volatile generation units that are spread out in a geographical area 
compensate each other and result in a less variable generation profile, called the 
smoothing effect. 

System security: The ability of a system to provide energy in times of extreme events. 
Variability: The variability is the variance of the power generation from one to the 

next hour.  
Volatility: Volatility is the power difference between two consecutive hours expressed 

as % of installed capacity.  
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ABBREVIATIONS 
BMU Bundesministerium für Umwelt 
CO2 Carbon dioxide 
CVaR  Conditional Value at Risk 
EF Efficient frontier 
e.g. exempli gratia (for example) 
et al. et alii 
EK Excess kurtosis 
EU European Union 
IEA International Energy Agency 
IRR Internal rate of return 
JB Jarque Bera normality test 
K Kurtosis 
LCOE Levelized cost of energy 
NPV Net present value  
O&M Operation and Maintenance 
OTP Optimal theoretical portfolio 
QQ Quantile-quantile  
R&D Research and development 
S Skewness 
UK United Kingdom 
US United States of America 
VaR  Value at Risk 
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ABSTRACT 
Although high investments need to be leveraged to increase the share of wind and 
solar energy generation, investment risk has not yet been integrated into commonly 
used approaches of renewable energy scenario development. However, to evaluate and 
reduce technological risk and associated balancing and capacity costs of increased 
renewable energy generation, such an integration of risk is a necessary step to take. 
The dissertation develops an integrated, exploratory research framework to generate 
optimal wind and solar portfolios under the evaluation of two dimensions: return and 
risk.  
 
It uses wind and solar generation and forecast data of Germany from three consecutive 
years (2010 to 2012) and applies mean-variance portfolio theory to construct four 
optimal wind and solar portfolios. The aim is to create portfolios that either minimize 
the predictability errors, volatility or levelized cost of energy or maximize the 
contribution to peak demand for a given level of risk. The methodology aligns the 
political, the technological and the investor perspective to drive towards political 
renewable energy goals. Furthermore, it broadens the levelized cost of energy 
approach by integrating wind and solar balancing and capacity costs.  
 
The results of the analysis show that: (1) a higher share of solar compared to wind 
energy decreases the risk associated with predictability errors, contribution to peak 
demand and levelized cost of energy. (2) a portfolio that holds a higher share of wind 
decreases risk related to volatility. (3) system security costs, here defined as balancing 
and capacity costs, impede the estimation of long-term levelized cost of energy. (4) 
using a dataset over several years seems to enhance the reliability of results leveling 
out high variations of individual years. 
 
This study contributes to renewable energy scenario development by integrating risk, 
to empirical wind and solar research by analyzing wind and solar distributions in 
detail, and to the LCOE method by including balancing and capacity costs to the 
analysis.  
 
The paper has important implications. Policy makers should determine the long-term 
efficiency of wind and solar portfolios by evaluating return and risk. In order to design 
efficient support schemes which include technological risk and associates costs, policy 
should jointly consider technological and investor requirements. Therefore, balancing 
and capacity should be incorporated to the level of their cost impact on long-term wind 
and solar portfolios. To create an investor friendly environment which might lead to 
additional wind and solar investments, policy makers could introduce a feed-in tariff 
with a component providing incentives for balancing or capacity properties of wind 
and solar portfolios.  
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ZUSAMMENFASSUNG 
Obwohl große Investitionen getätigt werden müssen, um den Anteil von Wind- und 
Solarenergie zu erhöhen, schenken erneuerbare Stromversorgungskonzepte dem 
Thema Investitionsrisiko kaum Beachtung. Durch die Integration der 
Bewertungsgröße Risiko könnte jedoch technologisches Risiko, hier definiert als 
Ausgleichs- und Kapazitätskosten, bewertet und reduziert werden. Diese Dissertation 
entwickelt einen integrativen, explorativen Ansatz zur Bewertung von Wind und 
Solarportfolien mit Hilfe von zwei Kriterien: Risiko und Ertrag. Diese Dissertation 
verwendet einen empirischen, deutschen Datensatz, der Erzeugungs- und 
Prognosedaten für Wind- und Solarenergie dreier, aufeinanderfolgender Jahre 
beinhaltet (2010 bis 2012). Dies bildet die Grundlage für die Anwendung der 
Portfolio-Theorie, die basierend auf dem Diversifikationseffekt bei einem gegebenen 
Risikolevel Portfolien konstruiert, die entweder den Prognosefehler, die 
Erzeugungsvolatilität, die Energiegestehungskosten minimiert oder den Beitrag in 
Zeiten der Spitzenlast maximiert. Die Methodik stimmt die politische, die 
technologische und die Investorensicht aufeinander ab, so dass zukünftig die 
Energieversorgung maßgeblich durch die tragenden Säulen Wind- und Solarenergie 
bereitgestellt werden kann. Zudem erweitert sie den Ansatz der 
Energiegestehungskosten indem sie Ausgleichs- und Kapazitätskosten integriert und 
dadurch einen Gesamtkostenansatz entwickelt. Die Analyse zeigt dass: (1) ein höherer 
Solaranteil innerhalb eines Wind- und Solarportfolios das Risiko des Prognosefehlers, 
der Energiegestehungskosten und des Beitrags zur Spitzenlast minimiert. (2) ein 
Portfolio mit einem höheren Windanteil Erzeugungsvolatilität minimiert. (3) 
Ausgleichs- und Kapazitätskosten eine Abschätzung langfristiger Gesamtkosten 
erschweren. (4) eine Datengrundlage, die sich über mehrere Jahre erstreckt Ausreiser 
einzelner Jahre glättet und somit die Belastbarkeit der Ergebnisse erhöht. Die Studie 
leistet einen Beitrag: zur Bewertung von erneuerbarer Energieszenarien, da sie diese 
durch das Kriterium Risiko erweitert; zu den Erkenntnissen im Bereich Wind- und 
Solarerzeugung indem sie empirische Datensätze analysiert. Zudem integriert sie 
Ausgleichs- und Kapazitätskosten in die levelized cost of energy Methode. Die 
wichtigsten Ergebnisse dieser Arbeit lauten: Eine langfristige politische 
Effizienzbewertung von Wind- und Solarportfolien sollten durch die Abwägung von 
Ertrag und Risiko erfolgen. Ein integrierter Ansatz, der Anforderungen aus 
technologischer und Investorensicht widerspiegelt, könnte somit die Grundlage zur 
Entwicklung politischer Rahmenbedingungen sein. Hierzu würden Ausgleichs- und 
Kapazitätskosten in Abhängigkeit ihrer Relevanz in einen Gesamtkostenansatz 
einfließen. Das Ziel einer erneuerbaren Stromversorgung wird nur erreicht, wenn trotz 
schwer einschätzbarem, technologischem Risiko, wie beispielsweise Ausgleichs- und 
Kapazitätskosten, zukünftig weitere Wind- und Solarinvestitionen getätigt werden. 
Durch regulatorische Rahmenbedingungen könnte dies ermöglicht werden, wie z.B. 
einem Einspeisetarif, der eine Komponente enthält, die Anreize für hohe 
Prognosegüte, geringe Erzeugungsvolatilität oder einen hohen Beitrag zur Spitzenlast 
bietet. 
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1 Introduction 
 
Green electricity is currently a hot topic. Increasing shares of wind and solar energy in 
many countries already contribute to a significant degree to the current energy 
portfolio. Although many countries define goals to drive towards a low carbon energy 
system, this revolutionary process does not happen overnight. Political frameworks 
that leverage high investments, secure energy system supply and provide economically 
feasible solutions are important elements for a successful implementation. Many 
studies examine wind and solar levelized cost of energy in highly penetrated wind and 
solar energy systems. However, they neglect the examination of additional risk that 
might relate to balancing and capacity and ensures short-, mid- and long-term system 
security. Such risk increases with higher shares of wind and solar energy and is likely 
to result in system security costs that are not appropriately integrated in current cost 
approaches. 
This dissertation addresses the existing research gap by developing an exploratory 
integrative concept that outlines the relationship between political, technological and 
investor risk as well as by discussing a levelized cost of energy approach that includes 
the risk of system security costs. Since risk diversification within the energy system 
has a leading role, this publication applies portfolio theory which has recently found 
many application within the energy sector. Based on wind and solar diversification 
effects the integrative concept enables the development of ideal wind and solar 
portfolios that focus not only on costs but also on risk. Of these studies which evaluate 
German wind and solar generation and forecast data, this dissertation is the first 
empirical study applying portfolio theory. 
 

1.1. Background and problem statement 

A strategic development from a carbon-intense to a low carbon energy system implies 
a replacement of the existing generation portfolio and requires the interaction of 
political, technological and investor perspectives to drive towards a common 
renewable energy goal. Energy policy is one instrument that is able to integrate 
perspectives. However, policy making is a complex, iterative process that requires 
learning from previous mistakes (Mitchell & Connor, 2004). In doing so, regulations 
are able to reflect new market conditions and thus are more likely to be successful. 
Renewable energy policy aims to reach a specific installation rate of wind and solar 
energy within a given timeframe. In addition, it needs to keep prices at low levels 
providing energy to the public as common property (Wait, 2010). The last years 
showed the success of renewable energy policy, in particular in countries that 
implemented the feed-in tariff system.  
 
Taking an energy system perspective, not only the political but also the technological 
perspective that is concerned with energy system security has to be considered.  
The current system is designed for nuclear and conventional baseload generators that 
run at the same level of operation throughout the year. However, wind and solar 
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generators have three characteristics that are very likely to change the operations of the 
current energy system in the long-term, especially in regards of system security. First, 
their generation is to a specific degree unpredictable; second, they provide volatile 
generation; and third, they contribute only to a certain degree in times of peak demand. 
The following paragraphs discuss the three technological characteristics and derive the 
impact on the current energy system. 
 
Predictability is defined as the deviation between forecast and actual power generation. 
It implicates the additional need for short-term balancing (Gross et al., 2006). The 
phenomenon occurs if an energy plant suddenly shuts up or down due to an unforeseen 
incident. The accuracy of the forecast assesses the level of required short-term 
balancing. 
 

 
Figure 1: Predictability balancing needs 
 

Wind and solar predictability research is centered around the level of forecast errors 
occurring in different time periods. Studies outline that the closer the forecast to the 
actual physical delivery the smaller the forecast error (Weber, 2010). The accuracy of 
forecast models and the resulting balancing in different timeframes have been mostly 
researched for wind energy (von Roon & Wagner, 2009). Wind energy forecast 
improved in the last decade due to advanced forecast software that includes large wind 
datasets of historical generation and weather data. The 12 to 24 hours day ahead 
forecast errors for wind still range between 30% to 40% of total production (Holttinen, 
2005) which challenges utilities to assign unit commitments to volatile wind or solar 
generation 12 to 24 hours day ahead. The standard deviation of the forecast error of 
one single wind farm is 12% , 15%, 15% and 18% for 6, 12, 24 and 36 hours ahead 
forecast (Carlsson, 2011). Based on the shortage of public available solar forecast and 
generation data such findings for solar predictability have not been published, so far.   

Differences between forecast and actual 
generation

Predictability (short-term balancing)

Demand 
level

Wind 
generation

Balancing need 
(predictability)
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However, some results show that forecasting a large geographical area is more 
accurate than forecasting one single plant mainly caused by sudden occurring clouds 
and weather changes (IEA, 2011). Nevertheless, additional forecast error research is 
needed to determine the impact of the predictability level on short-term balancing. 
This dissertation uses German hourly day-ahead forecast data.  
 
The second characteristic - volatility - has been managed on the demand side for many 
years and is a known phenomenon. It is defined as the power difference between two 
consecutive hours measured relative to the installed capacity. The need of flexible 
generators that balance the system in the mid-term is determined based on the 
frequency and the magnitude of volatility (IEA, 2011).  
 

 

Figure 2: Volatility balancing needs 
 

Introducing wind or solar power to an energy system increases the total volatility of an 
energy system (NREL, 2011). Former studies focus on wind power generation and 
optimization approaches to decrease wind volatility by spreading wind farms over a 
large area creating a smoothing effect (Holttinen, 2005; Roques et al., 2010). They 
find that less than 30 wind sites in a large area overestimate variability (Holttinen et 
al., 2011). Only little research on solar volatility has been conducted rooted in the 
shortage of available generation data. Findings show that the diurnal variability is the 
highest in June with 140 W/m2 and the lowest in December with 25 W/m2. 
Furthermore, more sites indicate a lower noon variability, especially in the summer 
time. The noon variability of one site of 250 W/m2 falls to 150 W/m2 for 12 sites in 
June, for instance (Widen, 2011). Other studies show equal to wind studies that the 
interconnection of disperse solar plants reduces variability (Mills & Wiser, 2010). To 
drive towards the goal of a higher renewable energy generation share not only wind 
but also solar volatility has to be considered (NREL, 2010). Conceptually, the question 
if a specific wind and solar portfolio minimizes volatility should be raised. The answer 
of this question is particularly important to determine the need of balancing in the mid-
term. This dissertation uses German hourly generation data to determine volatility.  
 
  

Different levels of output in different times 
schemes

Demand 
level

Wind 
generation

Balancing 
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Predictability and volatility require counterparts that balance short- and mid-term 
variability. As Kirby and Milligan (2009) as well as Katzenstein and Apt (2012) 
specify, this dissertation defines balancing to occur in the timeframe of seconds to 
minute, minutes to hours and one day. Generators that provide such short- and mid-
term balancing operate very flexible in many hours of the year (Kirby & Milligan, 
2009).  
 
Differing from balancing, capacity is defined in timespans of weeks, month and years. 
Capacity needs relate to system security in the long-term (Gross et al., 2006). 
Generators that provide capacity operate in very few hours within a year and only in 
case an energy system is close to a sudden breakdown.  
 
In addition to this, capacity is provided to maintain the certainty that a power generator 
contributes during peak demand (Crampton & Stoft, 2005). Adding fluctuating 
generators increases the risk of low contribution, particularly, in times of high demand. 
Since the reliability of the system decreases with an increasing amount of wind and 
solar power, additional capacities have to be installed.  
 

 
Figure 3: Contribution to peak demand capacity needs 

 
The capacity credit which is the indication to keep the ability of an energy system to 
perform even in times of insufficient generation has been subject of research for 
several years (Gross et al., 2006). Various methods to calculate capacity credits for 
fluctuating power generators have been proposed and used in science (Milborrow, 
1996). In general, wind and solar capacity credits are lower than conventional capacity 
credits and measured in the loss-of-load probability which varies between 6% to 30% 
highly depending on the degree of wind and solar penetration in the system (Martin & 
Diesendorf, 1980). Most of the research identified capacity credits for wind and solar 
within an energy system based on the total fluctuating penetration level. The 
evaluation of additional capacity needs is essential to determine costs related to system 
security in extreme situations as well as in times of high demand. This dissertation 
defines contribution to peak demand as power contribution during the hours within the 
highest 10% demand.  
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The degree to which these three technological characteristics can be observed is based 
on the share between wind and solar energy. Therefore, wind and solar portfolios 
determine the level of required investments related to balancing (predictability and 
volatility) and capacity (contribution to peak demand).  
 
The technological perspective of system security influences not only the political cost 
perspective but might also have an impact on the investor cost perspective since 
balancing and capacity costs might be passed through to investors. A redesign of 
policy regulations that might regulate such attempts is very likely to influences 
investors’ behaviour since it may increase or decrease investors’ risk and therefore 
their return expectation.  
 
Most researchers determine investments by the levelized cost of energy which include 
investment, fuel, fixed and variable operation and maintenance as well as 
environmental costs (Bode & Groscurth, 2006). Levelized cost of energy is a measure 
that captures the competitiveness of technologies as well as the per kilowatt-hour cost 
of building and operating a power plant. This publication acknowledges increasing 
wind and solar shares and the latest political discussions on balancing and capacity 
needs that they are very likely to evoke system security costs. Therefore, this thesis 
introduces two new elements both within the category of system security costs: 
balancing and capacity costs. Balancing is determined by the degree to which a power 
plant is flexible to increase or decrease operations in the short- as well as in the mid-
term. Capacity is the degree to which power generators contribute to power generation 
during peak demand in the long-term. These costs become more significant with an 
increasing share of renewable energies in the system (NREL, 2010) and should be 
included in integration studies (Skea et al., 2008). The consideration of costs that are 
related to infrastructure and energy transmission, e.g. grid connection costs lie beyond 
the scope of this dissertation. 
 
It is surprising that research falls short on fully integrating the technological, political 
and investor perspectives despite the fact that the relationship of the three perspectives 
is crucial to determine the success of renewable energy policy making (BDI, 2012). 
Lately, European policy makers have rather focused on meeting a renewable energy 
goal than on pursuing an efficient total energy system cost approach 
(Sachverständigenrat, 2011/2012). This dissertation therefore, develops a wind and 
solar portfolio approach that integrates all three perspectives to evaluate different wind 
and solar portfolios on technological and cost risk. 
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1.2. Theoretical foundation and methodological approach 

Portfolio theory is used to identify optimal wind and solar portfolios. In the field of 
financial securities, questions related to optimal portfolio have been studied for several 
years (Markowitz, 1952). The theory aims to maximize an expected return for any 
given level of risk. Risk reduction is attained through diversification that occurs when 
the return of two or more securities is not perfectly positive correlated.  
Within the energy sector, portfolio theory has been mainly used for conventional 
portfolio applications to calculate optimal investment portfolios in a political 
perspective maximizing return while minimizing risk (Humphreys & McClain, 1998; 
Awerbuch, 2000b). Only few approaches integrate wind and solar in their generation 
portfolio (Awerbuch & Berger, 2003; Jansen et al., 2006; Krey & Zweifel, 2006; 
Bhattacharya & Kojima, 2010). Other than optimal investment portfolio research, 
some scientists use the theory for wind deployment maximizing power generation 
output and minimizing total variability (Drake & Hubacek, 2007) or maximizing 
contribution to peak demand (Hansen, 2005; Roques et al., 2010), focusing on large 
area portfolios. These papers analyze generation portfolios from a technological 
perspective. Thus, previous existing research takes only one perspective – either a 
technological or political perspective. However, the examination of a generation 
portfolio from all perspectives, namely from a technological optimizing technological 
risk and from a political and investor optimizing economical risk seems valuable to 
successfully drive towards renewable energy goals.  
 
Most portfolio theory research focuses on wind energy although the renewable energy 
goal comprises solar as well (EREC, 2008). A lack of available solar generation data 
might be one reason why few approaches integrate solar energy in their portfolio 
research (Jansen et al., 2006; Krey & Zweifel, 2006; Bhattacharya & Kojima, 2010).  
 
A three-step approach (figure 4) is used to evaluate long-term efficient portfolios from 
a technological, political and investor perspective. Therefore, this dissertation 
determines optimized portfolios not only on output but also on risk. 
 

 

Figure 4: Three-step research methodology 
 
In the first step, a research framework is developed. The empirical evidence about 
political, technological and investor perspectives on wind and solar development as 
well as their interactions are examined. Then, the technological risk of wind and solar 
on system security is outlined before discussing the impact on total energy system 
costs. The research framework can be used to determine technological optimized 
portfolios as well as political and investor optimized portfolios including system 
security costs. 

Research Framework Portfolio Theory German Case Study
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In the second step, prior research using portfolio theory in the energy sector is 
examined before the research gaps are outlined and the overall approach and strategy 
is derived.  
 
In the third step, the research framework is applied to the case of Germany. A large 
empirical German hourly wind and solar generation1 and 12-hour forecast dataset from 
2010 to 2012 is validated by eliminating data errors, excluding unreasonable data 
values and reconstructing missing data points. The dataset that represents 
predictability, volatility and the contribution to peak demand is then analyzed in detail 
discussing probability distributions. Optimal wind and solar portfolios for the 
technological elements (predictability, volatility, contribution to peak demand) are 
constructed. Portfolio theory is used to create an efficient frontier for optimized 
political and investor portfolios maximizing inverse levelized cost of energy. Thereby, 
levelized cost of energy includes fixed, variable and fixed operation & maintenance, 
balancing and capacity costs. In the last step, it is discussed if optimized technological 
portfolios are efficient in regards to total energy system costs. 
 
1.3. Research questions 

Diversification as the concept to reduce risk has been matter of research in the 
financial sector for a long time (Bodie et al., 2011). However, the application in the 
energy sector has not been intensively discussed, e.g. for wind and solar portfolios. 
This is surprising, since the integration of different wind and solar technologies in our 
current energy system and the resulting level of risk and costs gained an increasing 
public attention in the last years. 
 
Therefore, the aim of this dissertation is to shed more light on technological and total 
system cost risk related to different wind and solar shares within a portfolio. In the first 
step, the goal is to identify optimal portfolios from the technological perspective. 
Thus, the research questions are: 
 
  

 

                                                             
1 18.000 wind power plants, 1.1 Mio. solar power plants 

 Wind and solar – technological research questions 

Balancing What is the ideal wind and solar portfolio that:  
• maximizes predictability  
• minimizes volatility 

  

Capacity What is the ideal wind and solar portfolio that:  
• maximizes contribution to peak demand 
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In the second step, this thesis calculates optimal political and investor portfolios by 
minimizing total energy system costs including balancing and capacity costs. The 
research questions is: 
 

 
Answering the questions above, this research contributes to renewable energy portfolio 
development by adding the dimension risk to the evaluation. By optimizing a total 
cost approach that integrates balancing and capacity costs it is conductive to 
portfolio theory in the energy sector. Since there have been only few applications 
using new optimization elements, the thesis shows manifold ways of the utilization of 
the theory. 
 
Moreover, the particularities of each element are discussed based on a comprehensive 
German wind and solar dataset. The dataset represents wind and solar installations 
spread over a large area in a country that holds a high share of fluctuating energies in 
the generation portfolio. This extends the knowledge within the wind and solar 
research community about wind and solar generation.  
In addition to this, the results contribute to practice by deriving several interesting 
findings for policy makers and investors. The findings assist investors to understand 
the risk of additional costs that might have to be covered by wind or solar power 
generators in the future. Assessments that are conducted for placing large investments 
in different generation technologies could use these results to price-in additional risk 
and provide security for long-term investments. 
Furthermore, the thesis offers a different approach of estimating potential changes in 
energy policy making by examining the interdependency of the fluctuating power 
generators wind and solar as well as the resulting balancing and capacity needs. Policy 
makers might use these findings to integrate technological elements such as 
predictability, volatility and the contribution to peak demand into the 
development of new policy instruments that enable the goal to progress towards a 
low carbon energy system.  
 

  

 Wind and solar – political and investor research question 

Total system costs What is the ideal wind and solar portfolio that: 
• minimizes levelized cost of energy 
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1.4. Outline 

The dissertation is composed of one introductory section and three main sections. In 
Chapter 1, the topic is introduced by discussing the background and defining the 
methodological approach to answer the defined research questions. In Chapter 2, three 
different perspectives, namely the technological, the political and the investor 
perspective on a renewable energy goal are discussed. This part closes with the 
development of the integrated research framework. Chapter 3 discusses portfolio 
theory and prior applications in the energy sector complemented by the identification 
of research gaps. Chapter 4 examines based on German data different ideal portfolios 
that either maximize predictability, minimize volatility or and the contribution to peak 
demand. An ideal portfolio that minimizes total energy system costs including 
balancing and capacity costs is calculated, as well. Chapter 5 sums up the previous 
findings, illustrates the main results and draws conclusions to issue recommendations 
for policy makers and investors. Figure 5 gives an overview of the research outline. 
 

 
Figure 5: Research outline 
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2 Formulating a research framework 
 
In the Kyoto Treaty the European Union set the target for European countries to 
decrease CO2 emissions by 20% compared to 1990 levels until 2020 (European 
Commission, 2010a). One essential pillar to meet this target is to switch from a 
carbon-intense energy generation portfolio which accounted for 38% of the EU 
emissions in 2007 to a low carbon energy generation portfolio (European Commission, 
2010b). Three specific goals are underlining this overall European target. 
 
The first target is generation risk reduction in the long-term. The risk of generating 
power is often associated with the dependency on energy imports. European imports 
increased in the last years from 40% gross energy consumption in 1980 up to 54% in 
2010 (Eurostat, 2012). Another generation risk is the indefinable risk linked to 
decommissioning and waste disposal, e.g. for nuclear power plants (Greenpeace & 
BWE, 2012).  
The second goal is a CO2 emission decrease to tackle the climate change threat. 
Several studies have shown that CO2 emissions rise the global temperature. This 
unnatural temperature effect is known as global warming and suspected to cause 
flooding, storms and other environmental disasters (European Parliament, 2006).  
The third goal is the enhancement of cost efficiency. The limited availability of natural 
resources caused a steady rise in fossil fuel prices (Eurostat, 2012). This development 
is very likely to continue which will limit the cost efficiency of power generators that 
are linked to natural resources. Hence, these technologies will not be the most cost 
efficient generation technologies in the long-term.  
The introduction of renewable energies has taken place in all European countries. 
Supported by European policy instruments and regulations renewable energies, 
especially the fluctuating generation technologies wind and solar, have experienced a 
great development within the last decades. The great renewable energy development of 
Germany which is now one of the European green energy leaders is outlines in  
figure 6. 
 

        

Figure 6: Wind and solar development 1991 to 2010  
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In 2010, Germany met already 75% of the 2020 wind and 35% of the 2020 solar 
target. The total renewable energy production in 2010 accounted for 17% of total 
electricity consumption (BMU, 2012a). Despite high installation rates in the last years, 
the long-term goal to reach 35% of total electricity consumption by renewable energies 
in 2030 and 80% in 2050 will require a continuous and persistent wind and solar 
development (BMU, 2011a). To ensure high annual installation rates and provide an 
increasing share of renewable electricity the perspectives of different stakeholders 
towards one renewable energy goal has to be taken into account. This study focuses 
solely on German wind and solar energy since the potential for other renewable 
energies such as hydro, bio and geothermal energy are unlikely to contribute to a high 
degree to the power supply within Germany (Agora Energiewende, 2012). The 
following sections outline empirical evidence on three perspectives towards renewable 
energy goals and discuss total system costs before developing the research framework. 
 
2.1. Three perspectives on the renewable energy goal  

A review process of literature on three different perspectives establishes the 
foundation of the research framework. The analysis includes the political, 
technological as well as investor perspective on wind and solar renewable energy goals 
in Germany. Publications from the political perspective are conducted by using the 
German Federal Ministry for the Environment, Nature Conservation and Nuclear 
Safety homepage. The EBSCO database is used to collect information about the 
technological and investor perspective, limiting the research to studies that are 
published in Energy Economy and Energy Policy. The analysis focuses on literature 
that concerns economic publications excluding engineering-orientated studies. Figure 
7 illustrates the three perspectives identified during the review process. 
 

 

Figure 7: Three perspectives on renewable energy goals 

 
The political perspective of meeting renewable energy goals has been defined by the 
German government through generating five benefits for society. This development 
allows society to take responsibility for the future of the children, to limit climate 
change, to maintain energy security and independence, to create additional growth as 
well as to increase public participation (BMU, 2012b).  
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The role of a government within this process is to enable a continuous progress 
towards setting objectives, for instance, by implementing market policy instruments 
either price-based e.g. the feed-in tariff system or quantity-based, e.g. the quota 
system. The design of policy instruments determines return and therefore risk 
associated with wind and solar investments (IEA, 2011). Hence, the foundation for a 
successful wind and solar deployment are wisely designed policy regulations. In the 
German market, the introduction of a price based feed-in tariff system for wind and 
solar energy shows that this support scheme enables a continuous rise of wind and 
solar power as shown in figure 8 and 9. 
 
 
 

 

 

Figure 8: German wind development 1999 to 2012 

Source: Eurostat 2012/BMU 2012a 

 
 
The German wind development is relatively stable from 1999 to 2012. In the first four 
years after the introduction of the German renewable energy law in 1999, the 
installation rates increased up to 3,2 GW in 2002. Since 2004 the annual rates vary 
between 2.0 GW and 1.5 GW. 
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Figure 9: German solar generation 1999 to 2012 

Source: Eurostat 2012/BMU 2012a 

 
Solar deployment started in 2004 with annual installation rates of about 1 GW until 
2007. Extreme high installation is identified between 2009 and 2012 with annual rates 
of 7.5 GW. In 2012, the total German installed solar power exceeds the wind power 
installation for the first time.  
 
Installation rates are positive correlated to renewable energy allocation fees which has 
led to additional costs for green energy in Germany in the last years. By 2011, these 
additional costs for wind onshore reached 2.58 Mio. Euro, for solar 6.9 Mio. Euro, 
respectively (BDEW, 2011). The discussion about an increasing additional financial 
burden passed on to end consumers has lately elicited much debate. Thus, the German 
government adjusted in 2011 and 2012 the renewable energy law by decreasing the 
feed-in tariff and limiting additional installations (Altmaier, 2012). 
 
As outlined, the goal of the political perspective is double sided. On the one hand, it 
aims to create an ideal political framework to accelerate wind and solar installations. 
On the other hand, it seeks to limit the risk of additional costs that are linked to high 
wind and solar installation rates. Therefore, politicians should drive towards balancing 
this dichotomy and start to evaluate generation portfolios more on a long-term 
perspective including risk. This might enable them to develop support schemes that 
allow financing new technologies today in order to gain a long-term benefit in the 
future. The question that is pursuit by the political perspective is “What is the ideal 
wind and solar portfolio that minimizes levelized cost of energy.” 
At the early days of wind and solar generation, the technological perspective of 
achieving renewable energy goals mainly focused on decreasing generation costs 
(Barbose et al., 2011).   
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A rapid technology development provoked by high R&D investments accelerated 
falling generation costs. In the last years, the technological perspective shifted from 
topics related to generation costs towards topics relevant to system security.  
System security can be associated with transmission lines (DENA, 2005), the 
flexibility of an energy system (IEA, 2011) and reliability during peak demand (Oren, 
2003). An increasing amount of power plants require strong transmission lines that are 
able to handle additional power generation. Although functioning transmission lines 
and associated costs lately attracted notice, this dissertation excludes costs associated 
with transmission and focuses on flexibility and reliability during peak demand, only. 
 
The discussion about flexibility within an energy system has recently started. 
Flexibility is required if electricity generation varies from the predicted energy amount 
or if generators produce different amounts of energy in consecutive hours (IEA, 2011). 
Even though, there are still enough generators that are able to balance fluctuating 
generation in the short- or mid-term either caused by low predictability or high 
volatility, there might be a shortage of flexible generators in the next decades (Skea et 
al., 2008). 
 
Based on empirical data, figure 10 shows that the times in which wind and solar 
energy were correctly predicted varied for solar as well as for wind forecast in the 
observed years (2010 to 2012). Nevertheless, in 28.7% of 8,760 hours solar power and 
in 44.3% of 8,760 hours wind power required additional system flexibility to balance 
short-term variation in 2012. 
 
 
 

 

 

Figure 10: German unpredictable wind and solar generation 2010 to 2012 

Source: EEX Transparency platform 
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In addition to the required flexibility within these hours of low predictability, mid-term 
balancing caused by volatility was needed. Figure 11 outlines that the hours of volatile 
solar generation increased from 2010 to 2012 from 3,261 to 3,808 and from 4,364 to 
4,373 for wind power generation. In these times, additional system flexibility for mid-
term balancing was required. 
 
 
 

 

Figure 11: German volatile wind and solar generation 2010 to 2012 

Source: EEX Transparency Platform 

 
Not only the risk of additional balancing caused by low predictability and high 
volatility but also the requirement of providing reliability during peak demand has 
been discussed, recently. The current overcapacity of generators is likely to decrease 
since conventional and nuclear power plants retire in the next years. This leads to 
higher risk that the energy system is unable to provide capacity during peak demand.  
Solar contributed in the range of 42% to 64% hours of peak demand compared to wind 
ranging from 99.5% to 97.6% hours (figure 12a). The contribution to peak demand is 
defined as the certainty a generator contributes for a known percentage. Figure 12b 
outlines the percentage in kilowatt-hours of wind and solar energy contribution to 
system security during the highest 10% peak demand from 2010 to 2012. The very low 
contribution in 2010 of solar might be matter to missing data or to a lower solar 
radiation year compared to average. Another reason might be a more disperse located 
solar portfolio in 2011 and 2012. The kilowatt-hours that wind and solar energy 
contributed to peak demand increased from 8.8% in 2010 to 12.3% in 2012. The 
remaining 88.7% in 2012 were generated by non-renewable energy generators. This 
said, it is clear that the certainty that wind or solar contribute for a known percentage 
to peak demand is low. The contribution varies from year to year and is related to 
weather conditions that are difficult to predict for long time horizons. 
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Figure 12a): German wind and solar capacity contribution to peak demand 2010 to 2012 

Source: EEX Transparency platform / Measure: in hours 
 

 

 

 
 

Figure 12b): German wind and solar capacity contribution to peak demand 2010 to 2011 

Source: EEX Transparency platform / Measure in MWh 

 
 
As discussed before, the challenge to cope with additional short- and mid-term 
flexibility as well as reliability during peak demand rises with an increasing share of 
fluctuating generators. The question that is pursued by the technological perspective is 
“What is the ideal wind and solar portfolio that maximizes predictability, minimizes 
volatility and maximizes contribution to peak demand.” 
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The investor perspective is embossed by investors that place wind and solar 
investments is Germany. For several years, the feed-in tariff system offered good 
returns for limited risk which attracted many investors (Lüthi & Wüstenhagen, 2008).  
 
Unplanned adjustments of regulations, e.g. in 2010 might have changed the relation 
between return and risk. Therefore, it is questionable if the investor of yesterday will 
be the investor of tomorrow. Previous investor groups might either focus on industries 
with higher return options or on less risky investments. To prevent a lack of 
investments, new investor groups might have to be identified. As outlined in figure 13 
investments increased during the stable regulatory feed-in tariff system framework but 
decreased in times of regulatory adjustments between 2010 and 2011. 
 

 

Figure 13: German renewable energy investments 2004 to 2011 

Source: BMU 2011b 

 
The analysis of the investor perspective indicates that leveraging high investments 
might be related to the design and reliability of a political regulatory framework. This 
goes in line with findings of other scientists (Bürer & Wüstenhagen, 2009). It is 
assumed that any regulatory adjustment, e.g. regulating who is responsible for 
additional balancing and capacity costs might influence an investor’s decision because 
it influences return and risk. Thus, investors should include technological risk in their 
evaluation approaches since it might lead to additional costs. The investor perspective 
should go align with the political perspective asking the research question: “What is 
the ideal wind and solar portfolio that minimizes levelized cost of energy”. 
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Ultimately, we can be sure that a long-term shift from a carbon-intense to a low carbon 
energy generation portfolio will be executed mainly based on the alignment of the 
political direction. At the same time, the progress toward such a goal will only be 
successful if all stakeholders are taken into account. Therefore, it is crucial that 
renewable energy deployment policies are designed within a technological and 
investor perspective in mind. So far, the three perspectives have been treated as 
distinct research areas but the interaction between them has not been noticed yet. 
Figure 14 summarizes the relationship between the perspectives which are discussed in 
the upcoming paragraphs. 
 
 

 

Figure 14: Interaction framework of political, technological and investor perspective 

 
First, the interchange between the political and the technological perspective is 
important in the way that policy instruments close the financial gap between the costs 
of new technologies and the market price. To construct instruments that serve as a 
catalyst to facilitate a large-scale commercialization of wind and solar energy 
(Mormann, 2012) politicians need to be aware of actual generation costs. Policy 
instruments define technological requirements that have to be met to receive financial 
support (e.g. feed-in tariff, tax credit). As an example, wind generators have to be 
technologically controlled by third parties if they want to be eligible to receive the 
feed-in tariff. The detailed knowledge about a technology and the associated 
technological risk is therefore crucial to design successful political frameworks 
(Klessmann, 2012).  
 
Second, the intensity of the relationship between the technological and the investor 
perspective determines the risk assessment of a technology. Technologies are difficult 
to evaluate for investors, especially if they are newly introduced to the market. A 
comprehensive technological understanding attracts a wider range of investors 
increasing the potential of available capital that can be leveraged. To provoke the same 
amount of investments despite higher technology risk investors commonly request 
higher return opportunities (van Giessel & van der Veen, 2004). Therefore, the key is 
to increase competition by limiting technological risk. This drives down financing 
costs, activates a large group of investors and consequently leads to a large community 
that supports wind and solar deployment. 
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Third, the investor perspective determines how fast a renewable energy goal can be 
reached. A successful shift towards a low carbon energy system depends on the ability 
to leverage investments not only from one but from several investor groups. Policy 
instruments that provide high return levels compared to the given level of risk attract 
investors. The success of the feed-in tariff system (price-based policy instrument) 
which ensures a predetermined fixed profit for power generation for a timeframe of 
twenty years, highlight the relatively low risk assumption of such a policy instrument 
(Lüthi & Wüstenhagen, 2008). Vice versa, quantity-based policy instruments that offer 
less secured returns might result in a shortage of  investments. Instruments that only 
partly regulate risk tend to limit investment opportunities to specific investor groups 
that are able to overcome price, volume and balancing risk (Mitchell & Connor, 2004). 
Surprisingly, an integrated concept that embraces all perspectives has not been 
developed. There might be several reasons. First, the relatively low share of wind and 
solar (10% to 15%) until just lately resulted in little technological risk. The required 
balancing and capacity needs caused by wind and solar energy were provided by the 
overcapacities within most of the current energy systems (Hiroux & Saguan, 2010). 
Second, most countries have experienced an excess supply of investors in the last 
decades (BMU, 2011b). One reason might have been the design of policy instruments 
that limited technological risk and enabled different investor groups to place high 
investments in wind and solar power. Despite increasing shares of wind and solar 
generation in many European countries, supply security has received some attention 
just recently. It is compelling that some authors argue that balancing and capacity costs 
will attract more notice with an increasing amount of wind and solar energy (Skea et 
al., 2008). Unregulated risk which might cover additional system balancing or capacity 
costs is likely to jeopardize the placement of future wind and solar investments 
(Mormann, 2012). 
 
The empirical literature review of the three perspectives and their interaction towards 
renewable energy goals is the foundation for the research framework of this 
dissertation. First, the political aim to attract high investments to accelerate the shift 
from a carbon-intense to a low carbon electricity generation at moderate costs is 
accepted. Second, the research shows that the political perspective is closely linked to 
the investor perspective. Therefore, achieving renewable energy goals is assumed to be 
sensitive to successful policy instruments that integrate all perspectives and enable an 
efficient renewable energy portfolio in the long-term. Third, since potential 
technological challenges increase, especially in a highly penetrated wind and solar 
generation portfolio, this dissertation acknowledges that resulting costs should be 
integrated in a research framework. This study shifts the view of single stakeholder 
towards the view of a country-level perspective and responds to the call of politicians 
to change the generation portfolio towards wind and solar power at moderate costs 
(BMU, 2009), the call to identify technological challenges related to balancing supply 
and demand (Lund, 2006) as well as investors’ requests of a stable investment 
environment (Held et al., 2006).  
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2.2. Total energy system costs for wind and solar 

Generation portfolio research mainly focuses on levelized cost of energy (LCOE) of 
different technologies including investment, fuel, fixed and variable operations and 
maintenance costs. Some studies that examine portfolios holding conventional, nuclear 
and renewable generators broaden the original approach and add environmental costs 
either defined as carbon emissions (Jansen et al., 2006; Roques et al., 2006; 
Bhattacharya & Kojima, 2010) or waste (Krey & Zweifel, 2006) to their levelized cost 
of energy approaches (discussed in detail in Chapter 3). By integrating environmental 
costs, the costs of conventional and nuclear electricity generation increase. 
 
Although wind and solar generation do not cause environmental costs, it should be 
recognized that additional balancing and capacity costs might occur. The level of 
predictability, volatility and contribution to peak demand are elements associated with 
additional system security costs. Therefore, this dissertation proposes to introduce two 
additional cost elements to the levelized cost of energy approach: balancing and 
capacity costs.  
 
Differing from prior research this dissertation focuses on the optimal share between 
wind and solar energy only and excludes a cost analysis for conventional and nuclear 
generators. Figure 15 integrates the three technological elements in the framework, 
reflects the resulting balancing and capacity costs and shows their impact on total 
energy system costs. 
 

 

Figure 15: Integrated research framework 
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Additional technological risk caused by predictability, volatility and the contribution 
to peak demand lead to balancing or capacity costs that diminish investors’ return 
conditions. Thus, investors either price in a higher risk premium which increases 
financing costs or even decide to withdraw their investment. Both reactions are 
contrary to achieve renewable energy goals. The integration of balancing and capacity 
costs into the political perspective enables governments to capture additional risk and 
establish an investor friendly environment that includes technological risk. The total 
energy system costs can be evaluated by determining the balancing and capacity costs 
of different wind and solar portfolios.  
 
The research framework is used to perform portfolio theory and develop three ideal 
technological portfolios optimizing for predictability, volatility and contribution to 
peak demand. Then, balancing and capacity costs are integrated into levelized cost of 
wind and solar energy before calculating an ideal political and investor portfolio that 
optimizes levelized cost of energy. 
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3 Portfolio theory in the energy sector 
 
Portfolio theory has been originally developed for financial securities to create 
portfolios which maximize the expected return for a given level of risk or minimize 
risk for a given level of return (Markowitz, 1952). In the past, it has found some 
applications in the energy planning sector to minimize society’s energy price risk (Bar-
Lev & Katz, 1976; Humphreys & McClain, 1998). The literature review is conducted 
using the science direct database in early 2011 searching for portfolio theory within 
the renewable energy sector (synonyms wind, solar, renewables). In addition to this, 
databases of German Universities that focus on portfolio theory have been researched. 
A total of 2,175 articles are found of which only 12 integrated either wind or solar 
energy generation in their portfolio approach. From a return perspective, the analysis 
identifies four main research streams: levelized cost of energy, net present value, 
energy output per installed capacity and internal rate of return. The following review 
of existing literature seeks to evaluate the approach of using portfolio theory to 
develop optimized wind and solar portfolios. 
 

 

Figure 16: Portfolio theory research streams 

 
3.1. Literature review 
3.1.1. Levelized cost of energy research stream 

The application of portfolio theory to determine ideal generation portfolios has been 
first used by Bar-Lev and Katz (1976). They evaluate the associated risk of generation 
portfolios of different utilities. Their regional approach shows that these portfolios are 
diversified, however characterized by high return and risk which is a result of a 
regulatory regime that encourages risk seeking. Humphreys and McClain (1998) use 
portfolio theory to evaluate the US generation mix including the generation 
technologies oil, natural gas, coal, and nuclear power. Returns are defined as British 
Thermal Units per dollar. Risk is defined as the standard deviation of normally 
distributed returns. Their approach aims to offset price volatility in the long-term and 
shows that with the inclusion of expected externality costs, natural gas would be 
favoured for the shift away from oil. Both studies contribute to the application of 
portfolio theory in a liberalised electricity market. 
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The first study that includes renewable energy generation in their portfolio approach is 
published by Awerbuch and Berger (2003). They use portfolio theory to evaluate two 
EU energy portfolios, one in 2000 and a second in 2010, to answer the question if 
these generation portfolios are cost efficient. Returns are defined as the holding period 
returns measured as the inverted levelized total costs in kWh/UScent. The levelized 
cost include fixed investment, fuel, variable and fixed operation & maintenance 
(O&M) costs. Risk is defined as the standard deviation of the return variance. 
Awerbuch and Berger (2003) evaluate in the first step a portfolio of oil, gas, coal and 
nuclear power. Next, they add wind generation to the portfolio and find wind to limit 
fuel price risk. A sensitivity analysis shows that wind within the portfolio decrease 
portfolio risk. However, the results are highly sensitive to the levelized cost of energy. 
This publication contributes in two ways. It is the first approach that defines returns by 
technology specific unit costs (Jansen et al., 2006) instead of using the weighted 
average cost of capital (WACC). This procedure is based on the argument that the 
WACC does not result in good decision making for placing investments (Awerbuch, 
2000a). Second, it is the first publication that includes renewable energies in a 
generation portfolio based on the argument that wind reduces overall risk even though 
stand-alone costs are higher (Awerbuch, 2000b).  
 
Jansen et al. (2006) apply portfolio theory to evaluate the efficiency of the Dutch 
power generation mix in 2030. The aim of this study is to gain further insights on the 
impact of CO2 price variation, gas prices, and biomass prices on the cost efficiency of 
a generation portfolio. The scientists analyze a portfolio that include gas CHP, coal, 
nuclear, wind offshore, wind onshore, solar, hydro, biogas and biomass. Returns are 
defined as levelized cost of energy measured in Euro/MWh including investment, fuel, 
variable and fixed O&M costs. They extend the approach of Awerbuch and Berger 
(2003) by adding environmental costs defined as CO2 costs. They assume normally 
distributed returns, risk is measured by the standard deviation. In the first step, the 
researchers calculate a scenario with low, in the second step a scenario with high 
renewable energy penetration before performing a sensitivity analysis. The results 
show from a social-economic perspective that risk could be robust and significantly 
reduced by renewable energies through diversification. Furthermore, they find that the 
economics of renewables are highly sensitive to gas prices. This research contributes 
by adding environmental costs to the total levelized cost of energy approach. 
 
Krey and Zweifel (2006) determine efficient frontiers for Switzerland and the US and 
evaluate the technology mix in 2003. The Swiss generation mix include conventional 
thermic, storage hydro, run of river, nuclear and solar power differing from the US 
generation portfolio holding oil, gas, coal, nuclear, hydro, bio and wind energy. 
Returns are defined as expected levelized cost of energy expressed as percentage of 
cost savings including investment, fuel, operations as well as nuclear decommissioning 
waste disposal costs. The approach assumes normally distributed returns and defines 
risk as the standard deviation. After performing cost efficient portfolios for 
Switzerland and the US, they find that in none of the countries an efficient 
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combination of generating technologies is implemented. They conclude that the 
expected returns are too low for the given risk. The main contribution of this paper is 
the integration of costs that are associated with nuclear power generation. 
 
Bhattacharya and Kojima (2010) use portfolio theory to calculate ideal cost efficient 
portfolios within the Japanese market including wind and solar generation. Their 
portfolio exists of oil, lignite, coal, nuclear, hydro, wind, solar and biomass. Returns 
are defined as the levelized cost in MWh/dollar consisting of investment, fuel, O&M 
as well as environmental costs (defined as CO2 costs). Risk is defined as the standard 
deviation. After creating the efficient frontier based on the assigned costs per 
technology the scientists perform three sensitivity analysis. Varying fossil fuel prices, 
renewable investment costs and international carbon prices show that the price 
fluctuation and not the absolute price figures are the cause of high investment risk. An 
international carbon price has a negligible effect on renewable energies and therefore 
does not decrease the renewable energy portfolio risk. Furthermore, they calculate that 
9% renewable energy penetration would result in a moderate rise of costs but in a high 
decrease of risk. The study contributes by providing interesting findings on the impact 
of sensitivities on efficient portfolios. 
 
Delarue et al. (2011) show the influence of additional wind integration costs on total 
system costs by applying portfolio theory to the Belgian market. The generation 
portfolio includes oil, gas, coal, nuclear and wind energy. Returns are defined as costs 
per produced energy unit in Euro/MWh including in the first scenario investment, fuel, 
fixed and variable O&M costs. In the second scenario additional risk that is associated 
with a lower capacity factor of wind is added to investment and fixed O&M costs. 
Risk is defined in both scenarios as the standard deviation. The results of the first 
calculation confirm former approaches. Implementing wind reduces total risk. 
However, the second calculation outlines the need and relevance of distinguishing 
between fixed and variable costs within a portfolio. It points out that system 
integration costs are relevant. Taking into account risk, which is defined as opportunity 
costs of a lower wind capacity factor limits the value of wind generation. This is the 
first publication that integrated costs associated with non-dispatchable variable power 
sources. The scientists show that further research might include risk associated with 
predictability. As discussed above, the first research stream minimizes levelized cost 
of energy for a generation portfolio including conventional as well as renewable 
energy generators. 
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3.1.2. Net present value research stream 

The second research stream is introduced by Roques et al. (2006). They argue that 
generation technologies cannot be judged by their generation costs but rather by the 
expected return and risk, whereas risk should include electricity price, CO2 and fuel 
price risk. In their study, they use UK data to generate a portfolio of natural gas 
combustion, coal and nuclear generators. They include investment, fuel, variable and 
fixed operations & maintenance as well as nuclear waste costs and define returns as 
net present values of an investment. Risk is measured by the standard deviation. The 
results show that electricity prices, CO2 and fuel prices are positive correlated and 
determine the usage of combined-cycle gas turbines. The contribution of this research 
is the introduction of a new return measurement defined as net present value. This 
publication questions if the market is able to provide incentives that result in the most 
cost efficient generation portfolio in the long-term including all energy costs.  
 
The first and the second research stream define different returns but use the 
assumption that risk is fully represented by mean and standard deviation. The third 
research stream is consistent with this assumption but follows the concept of 
diversification caused by disperse located wind farms. In these studies, returns are 
measured as energy output instead. 
 
3.1.3. Energy output per installed capacity research stream 

Hansen (2005) applies portfolio theory to the case of North Carolina to evaluate the 
contribution of disperse located wind farms on providing energy at peak demand. He 
looks at the generation of three wind farms individually and defines return as the 
capacity factor during peak hours. Based on the assumption of a normal distribution, 
he defines risk as the standard deviation. He evaluates the capacity factor in different 
seasons and finds that the ideal portfolio differs in each seasons. His results show that 
utilities need to decide in which peak period the capacity is more valuable. 
Furthermore, he outlines that his research falls short on providing insights of the 
confidential level of occurrence and the usage of data that exceeds the time period of 
one year. The research contributes to energy planning in terms of reducing volatility in 
hours of peak demand. 
 
Drake and Hubacek (2007) use portfolio theory to understand the impact of area 
widespread wind generators on volatility in the UK. They analyze four different wind 
locations and define returns as the total generated energy per installed wind capacity. 
The analysis assumes a normal distribution and defines risk as the standard deviation. 
In the first step, they create four different generation curves based on wind speed data. 
In the next step, they calculate efficient frontiers for four wind farms that maximize 
output per unit and minimize variability. Their results show that variability can be 
reduced by a given widespread dispersion of wind farm sites.   



26 

 

Furthermore, they outline that wind and solar power complement each other over the 
year but their relationship on an hourly basis is difficult to tell. This research 
contributes to energy planning by describing the risk reduction effect caused by lower 
variability of wind farms located in different areas.  
 
Roques et al. (2010) apply portfolio theory to evaluate the most efficient European 
wind portfolio in terms of energy output and contribution to peak demand. The 
analysis is based on wind generators located in Spain, Germany, Austria, Denmark and 
France. Two scenarios - one with and one without national wind resource potential and 
transmission constraints - are built to compare the efficiency of projected portfolios in 
2020 to the efficient frontier. Returns are defined as total output per installed wind 
capacity. In the first scenario, all hours of the year are examined. In the second step, 
only the 10% of hours that contribute to peak demand are included. The approach 
assumes a normal distribution and defines risk as the standard deviation. The results 
show that transmission grid constraints limit the potential diversification gains. This 
study contributes to portfolio theory by including different countries and by evaluating 
the diversification effect during peak hours decreasing variability. 
 
Rombauts et al. (2011) perform portfolio theory to shed more light on efficient wind 
portfolios including transmission constraints. The analysis considers seven wind 
locations in the Netherlands. Returns are defined as wind output per installed wind 
capacity. Risk is defined as standard deviation. In the first step, the scientists calculate 
the ideal portfolio without transmission constraints. In the second step, they construct 
an efficient wind portfolio defining risk as the hourly wind power differences after 
transmission. The results state that the lack of cross border transmission capacity 
determine the diversification effect that is generated by installing wind generators in 
different locations. In addition to this, the findings show that transmission capacity 
plays an important role in reducing risk of a variable wind power profile. 
 
As outlined above, the third research stream contributes especially to energy planning 
under the assumption of returns being normally distributed. The fourth research stream 
differs from this assumption and introduces another measurement to capture risk. 
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3.1.4. Internal rate of return research stream 

Borchert and Schemm (2007) utilize the fourth research stream and evaluate risk in 
their portfolio theory application in the Dutch market. Their research approach 
estimates risk that can be associated with investing in off-shore wind plants versus the 
risk investing in on-shore wind plants. Returns are defined as the internal rate of return 
defined as the discounted net present values of investment, fuel, fixed and variable 
O&M costs (as percentage of invested capital). Risk is measured by the Conditional 
Value at Risk (CVaR) at a confidence level of 0.95 using a Weibull distribution. The 
analysis uses data of 14 different on- and off-shore wind locations and rebuilds in the 
first step generation curves based on wind speed data. They find that if a feed-in tariff 
system is in place good wind onshore locations are more beneficial to invest in. 
Furthermore, the investment becomes even less risky by spreading it over different 
located wind onshore plants. The approach introduces a new measurement to evaluate 
risk within renewable energy portfolio theory. It calculates an efficient frontier of ideal 
investments by maximizing returns while meeting the CVaR lower than the maximal 
level of loss expectations. The study discusses the critic that in general returns are not 
normally distributed. They propose to use the CVaR since it is a measurement that is 
reliable even in the absence of a normal distribution.  
 
A paper published by Gass et al. (2011) evaluates risk for one wind site in the presence 
of wind speed uncertainty. Returns are defined as the internal rate of return computed 
from the annual free cash flows based on investment and operating expenses. Risk is 
defined as the CVaR at a confidence level of 0.9, 0.95 and 0.99 using a Weibull 
distribution. The analysis estimates long-term wind velocity for one potential wind site 
in Austria and finds that with a probability level of 0.95 the internal rate will not be 
lower than 7.6% and with a probability of 5% the internal rate will not be above 
8.98%. The main contribution of this paper is the development of a statistical 
simulation method for wind energy production to better assess wind speed uncertainty. 
Although the scientist apply the CVaR for one wind site the approach does not focus 
on optimizing a portfolio of several wind sites. 
 
Table 1 and 2 outline all publications including return measures, risk measurements 
and the information if wind or solar power has been added to a generation portfolio. 
The bold terms are the identified contributions to theory.   
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Table 1: Literature review: Mean-variance portfolio theory & energy sector 
 

 

 

 

Authors Application Return measures Risk Wind Solar 

Return: Levelized cost of energy  
Awerbuch and 
Berger, 2003 

EU 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
kWh per US cent 

Standard 
deviation  

X  

Jansen et al., 2006 Dutch 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
• Environmental (CO2) 
Euro per MWh 

X X 

Krey and Zweifel, 
2006 

Swiss & US 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
• Environmental (nuclear waste fee) 
Cost decrease (percentage) 

X  
US 

X  
Swiss 

Bhattacharya and 
Kojima, 2010 

Japanese 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
• Environmental (CO2) 
MWh per Dollar 

X  
 

X  

Delarue et al., 
2011 

Belgian 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
• Wind opportunity costs for capacity 
Euro per MWh 

X  

Return: Net present value  
Roques et al., 
2006 

UK 
Generation 
Portfolio 

• Investment 
• Fuel 
• Variable and fix O&M 
• Environmental (CO2, nuclear  

waste fee) 
ENPV (pount m/GWe) 

Standard 
deviation  

- - 

Return: Energy output per installed capacity  
Hansen 2005 US wind 

Generation 
Portfolio 

• Annual wind energy generation 
Capacity factor (output in kWh / 
installed capacity kW) 

Standard 
deviation  

X  

Drake and 
Hubacek, 2007 

UK wind 
Generation 
Portfolio 

• Annual wind energy generation 
Capacity factor (output in kWh / 
installed capacity kW) 

X  

Roques et al., 
2010 

EU wind 
Generation 
Portfolio 

• Annual wind energy generation  
• Wind energy generation during 10% 

of peak demand 
Capacity factor (output in kWh / 
installed capacity kW) 

X  
 

Rombauts et al., 
2011 

Dutch wind 
Generation 
Portfolio 

• Annual wind energy generation  
• Wind energy generation after 

transmission constraints 
• Capacity factor (output in kWh / 

installed capacity kW) 

 X  
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Table 2: Literature review: Conditional value at risk & energy sector 

The analysis of prior research allows to derive five research gaps within the renewable 
energy portfolio theory. First, very few approaches integrate wind as well as solar 
generation (table 2) and none of the discussed studies look at optimized shares 
between wind and solar. Second, although most of the publications assume a normal 
distribution of returns the discussion if there might be a misinterpretation of risk is 
neglected. Third, the application of portfolio theory based on a large Germany 
empirical dataset has never been focus of research. Fourth, the four research streams 
take only one perspective: either the technological to create ideal output portfolios or 
the political and investor perspective to create ideal cost efficient portfolios. The 
following section addresses how this dissertation closes the identified research gaps. 
 
 
3.2. Closing the research gaps 
3.2.1. The diversification effect  

The literature review states that only three out of twelve publications integrate wind 
and solar generation in their portfolio approach. This is surprising since the 
characteristics of wind and solar generation seem to be diverse. Wind generates 
throughout a year in all hours of the day with the highest generation during winter 
month. On the contrary, solar generation takes place during day times especially in the 
summer months. Therefore, this paper argues that the cornerstone of portfolio theory - 
diversification - which is a concept of investing in different assets to minimize risk for 
a given return or to increase returns for a given level of risk can be used to optimize 
wind and solar portfolios. Risk is measured by the standard deviation and the 
covariance of two assets. Covariance 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌  outlines how two assets are correlated 
to each other and is calculated as the weighted sum of the multiplied deviations 𝑟𝑟!"/𝑟𝑟!" 
of the expected asset returns 𝐸𝐸 𝑟𝑟! /𝐸𝐸 𝑟𝑟!  weighted with the probability of occurrence 
𝑝𝑝!. 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =    𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! × 𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! ×  𝑝𝑝!   
!

!!!

 

(1)  

Authors Application Return measures Risk Wind Solar 

Return: Internal rate of return  
Borchert and 
Schemm, 2007 

Dutch wind 
Generation 
Portfolio 

• Investment 
• Variable and fix O&M 
Percentage of invested capital (%) 

Conditional 
Value at 
Risk 

X  

Gass et al., 2011 Austrian wind 
site 

• Investment 
• Variable and fix O&M 
• Percentage of invested capital (%) 

 
X  
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The correlation coefficient between assets states the relationship and the degree they 
influence another. The diversification effect is measured by the correlation coefficient 
ρ.  
 

𝜌𝜌!,! =   
𝐶𝐶𝐶𝐶𝐶𝐶  (𝑟𝑟!,𝑟𝑟!)
𝜎𝜎!  ×  𝜎𝜎!  

 

(2) 
 

The value ranges from -1 (returns move in the perfect opposite direction) to +1 
(returns move perfectly in the same direction). In case there is no systematic 
relationship the quadratic relationship of the assets is not identified and therefore the 
coefficient is 0. The following figure outlines the relation between the returns of two 
assets. 
 

 
Figure 17: Correlation of positive, negative and non-related returns 

 
The risk of a portfolio is lower than the sum of the weighted risk of the same assets. 
The portfolio risk strongly depends on the covariance of the assets, whereas the 
highest diversification effect is achieved by choosing for the same expected value 
assets that are perfectly negative related (Buchner, 1981). The expected value 𝐸𝐸 𝑟𝑟!  of 
a portfolio is the sum of the weighted expected values of the different assets 𝐸𝐸 𝑟𝑟! . 
 

𝐸𝐸 𝑟𝑟! =    𝑧𝑧!   ×  
!

!!!

𝐸𝐸 𝑟𝑟!   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   𝑧𝑧! = 1  𝑎𝑎𝑎𝑎𝑎𝑎  𝑧𝑧! ≥ 0,∀  𝑖𝑖 = 1,… ,𝑛𝑛  
!

!!!

 

(3) 
The variance of the portfolio 𝜎𝜎!! are the 𝑧𝑧!!   weighted variances 𝜎𝜎!!   of each expected 
return and the weighted covariance 2𝑧𝑧!𝑧𝑧! . 
 

𝜎𝜎!! =    𝑧𝑧!!  ×𝜎𝜎!!   + 2  ×    𝑧𝑧!×𝑧𝑧!×𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑗𝑗)
!

!!!

!!!

!!!

!

!!!

 

(4) 
 

  

ρ = -1 ρ = 0ρ = 1
return X

return Y

return X

return Y

return X

return Y
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The diversification effect is able to reduce random risk. The combination of different 
assets results in a return variance room. The combination is efficient if there is no 
other combination at which either another combination represents a higher return for 
the same risk or the same return for a lower risk. All efficient combinations lie on the 
efficient frontier. In case a portfolio holds two different assets the portfolio risk can be 
expressed as: 
 

𝜎𝜎!! =   𝑧𝑧!!  ×𝜎𝜎!!   + 𝑧𝑧!!  ×𝜎𝜎!!   +   2𝑧𝑧!𝑧𝑧!𝜌𝜌!,!   (𝜎𝜎!×𝜎𝜎!)  
   

(5) 
 

A lower correlation coefficient reduces portfolio risk. In case the coefficient is -1 the 
portfolio risk could be totally eliminated.  
 

 
Figure 18: Portfolio returns (r) as function of portfolio risk (σ) 

 
The ideal portfolio which lies on the efficient frontier is determined by individual 
human behaviour towards uncertainty (Simon, 1947). Even though all investors prefer 
higher returns over lower returns (Breuer et al., 1999), their investment decision is 
based on their risk behaviour. There are three categories of risk: risk averse, risk 
seeking and risk neutral behaviour (Copeland & Weston, 1988). Risk averse investors 
prefer assets that generate at any time a secured return over taking the risk of gambling 
and the chance of higher returns. Risk seeking investors are unconcerned with volatile 
returns since they value the opportunity to generate a return above expectation higher 
than the risk of ending up with a return below expectation. A neutral investor is 
indifferent between the two options.  
 
The value of risk and return is thus weighted by the investor. The utility function 
outlines the compromise between risk and return. The function assigns to each 
expected value that is assumed to emerge at a probability 𝑝𝑝 a profit whereas the bend 
of the curve depends on the investor preference. A concave utility function U(r) 
possesses risk aversion since a secured return is preferred over a unsecured return. 
Thus, an increasing return results in a decreasing final utility.  
  

r

σ

Y

X
ρ = 1

ρ = -1
ρ = 0
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Each point between a straight line of two expected returns r1 and r2 is below the utility 
curve as illustrated in figure 19. The risk averse utility function U(r) for a share α 
within a portfolio of two assets can be describes as: 
 

𝑈𝑈(∝!!! !!∝ !!)   ≥ 𝛼𝛼𝛼𝛼 !! + 1−∝ 𝑈𝑈(!!)       

            (6) 
 
A convex utility function U(r) characterizes a risk loving investor since unsecured 
returns are preferred over secured returns. An increasing return is associated with an 
increasing final utility. Graphically, drawing a line between two returns would result in 
data points that are all above the utility function. The formula for a risk seeking 
investor is thus: 
 

𝑈𝑈(∝!!! !!∝ !!)   ≤ 𝛼𝛼𝛼𝛼 !! + 1−∝ 𝑈𝑈(!!)       

            (7) 
 
A linear utility function U(r) shows the behaviour of a risk neutral investor since there 
is no preference for one or the other option. An increasing return results in the equal 
final utility. The next graph shows a risk averse, a risk seeking and a risk neutral utility 
function.  
 

 
Figure 19: Utility functions of three different investors 
 
In terms of entrepreneurial decision making a risk seeking or risk neutral behaviour is 
rare. Investors aim to maximize their assets while facing the lowest risk (Bernoulli, 
1954) which means that the utility function outlines a rational decision making under 
uncertainty. Thus, most investors select assets that show the lowest risk for the same 
return (Neumann & Morgenstern, 1947) which is the key assumption for portfolio 
theory.  
 
To sum up, this dissertation studies the diversification effect of wind and solar energy 
only which has not been evaluated in science, so far. Going in lie with other portfolio 
research in the energy sector, investors are supposed to act risk averse which indicates 
a rational decision making under uncertainty (Breuer et al., 1999).  
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3.2.2. Risk evaluation 

As discussed in Chapter 3.1 to 3.4 three out of four research streams assume mean-
variance portfolio theory originated by Markowitz (1952) but fell short on discussing 
if the empirical distribution approximates a normal distribution or if discrepancies 
result in a misinterpretation of risk. Their approaches assume that the equilibrium in 
which investors maximize an utility function depends solely on the frequency and 
variance of returns. The degree to which returns and risk vary is measured by the 
standard deviation of returns defined as the square root of its variance (Markowitz, 
1952). This definition supposes that generated returns at capital markets are constant 
and therefore normally distributed. The characteristics of normally distributed returns 
is that in two out of three cases the return resides within the standard deviation of 
𝜇𝜇  ± 1𝜎𝜎. In ninety-five out of one hundred times, the return is within two standard 
deviations 𝜇𝜇  ± 2𝜎𝜎 as outlined in figure 20 (Dubacher & Zimmermann, 1989). The 
usage of variance as a risk measurement is appropriated in case the underlining return 
distribution is normal and symmetric while upside and downside risk are disliked by 
investors (Estrada, 2007). Based on the assumption that investors associate risk with 
the probability of earnings less than the expected return it is more intuitive and 
economic reasonable to define risk as negative deviations only (Imboden, 1983). 
 

 

Figure 20: Risk measurements (variance and semi-variance) 
 
Post-modern portfolio theory defines risk as the standard deviation of the semi-
variance to capture downside risk only (Bawa, 1975). However, it has not been applied 
within the renewable energy portfolio theory research, so far. Semi-variance assumes 
that positive deviations are additional returns instead of a threat of losses (Wittmann, 
1959) and generate useful findings in case the underlying return distribution is 
asymmetric (Fishburn, 1977).  
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Several studies find that even though the calculations are far more complex, the results 
show the same accuracy as returns being symmetrical distributed (Markowitz, 1992; 
Byrne & Lee, 2004; Grootveld & Hallerbach, 1999). Thus, this dissertation concludes 
that a semi-variance approach for wind and solar generation data is not superior to 
using a mean-variance approach. Considering the variance as a risk measurement is of 
course a simplification but valid if there are reasons for normally distributed returns, a 
quadratic utility function or an irrelevance of higher moments for an investor’s 
decision (Rubinstein, 1973). In case none of these apply, early research in the finance 
sector developed conditions that would lead to mean-variance theory being ideal 
(Elton & Gruber, 1997) either by making adjustments to the investor utility function 
(Tobin, 1958) or on alternative portfolio theory approaches including higher moments 
(Kraus & Litzenberger, 1976). Under the assumption that higher moments of the return 
distribution are relevant for investor’s decision making (Samuelson, 1970; Kraus & 
Litzenberger, 1976; Prakash & Bear, 1986) the aim of such approaches is to describe 
the return distribution in a more accurate way (Fama, 1965). Most distributions vary 
from the normal distribution in two ways. First, they are asymmetrically distributed 
(Graz et al., 2012) and second, their probability at the ends and in the middle is higher. 
 
The asymmetry of a probability distributions depends on the balance of extreme values 
and can be measured as the skewness. The skewness is the third moment of a 
distribution and zero for a standard distribution. A negative skew indicates a left 
skewed probability distribution in that the negative values dominate resulting in an 
underestimation of risk (Canela & Collazo, 2007). In case positive skew exists, the 
distribution is right skewed and the assumption of a standard deviation leads to an 
overestimation of risk. Investors prefer positive skewness of a distribution (Lai, 1991; 
Chunhachinda et al., 1997) which is consistent with decreasing the probability of large 
negative returns (Arditti, 1967). Therefore absolute risk aversion is decreased. In 
presence of high positive skewness investors are even willing to accept negative 
expected returns (Campbell & Siddique, 1999/2000). Research about skewness has 
been widely performed for stock market returns (Kim & White, 2004; Canela & 
Collazo, 2007) but has not been used for wind and solar generation data although it 
might yield valuable insights about historical distribution characteristics. 
 
The fourth moment, kurtosis, gives an indication for the probability at the ends and in 
the middle of a distribution (Ruppert, 1987). It is a measurement that describes the 
existence of extremes no matter if balanced or not and measures fat tail characteristics. 
The kurtosis of a standard distribution is zero and defined as the excess kurtosis. In 
case excess kurtosis is above zero, the distribution has fatter tails and a more acute 
peak which implies undesirable tail risk. Risk is represented by extreme values since 
the probability mass in the ends is bigger compared to a normal distribution (Balanda 
& MacGillivray, 1988; DeCarlo, 1997). Thus, the standard deviation underestimates 
the likelihood of extreme events. A negative excess kurtosis overvalues extreme events 
and indicates a lower, wider peak around the mean as well as thinner tails.  
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Some researcher argue that since kurtosis cannot be behaviourally justified it should be 
ignored (Kraus & Litzenberger, 1976; Prakash & Bear, 1986) although it might give at 
least a good indication for risk over- or underevaluation. 
 
As prior research, this dissertation assumes that returns are normally distributed based 
on the argument that a distribution with an increasing number of variables approaches 
always a normal distribution (Hackl & Katzenbeisser, 1994). Since it has been found 
that skewness and excess kurtosis are measurements that give an indication of how 
distributions differ from a normal distribution, this research project adds to the 
statistical discussion and measures skewness and excess kurtosis for all wind and solar 
distributions. Both measurements enable a more in depth discussion about the potential 
of misinterpreting risk when using mean-variance portfolio theory. Figure 21 outlines 
the four moments and the risk misinterpretation in case skewness and excess kurtosis 
differ from zero. 
 
 

 

Figure 21: Statistical measurements (moments) 

 
In addition to the method of capturing risk by higher moments, researchers propose 
probability risk measurements to optimize portfolios, e.g. the Value at Risk (VaR) 
which is a measure that refers to the expected gain-confidence limit criterion (Baumol, 
1963). It measures market risk and is based on a quantile of a distribution (Jorion, 
2001). A confidential level 1-α defines how often the command variable is below or 
above the VaR. The lower the risk seeking the higher the confidence level. The 
measurement examines one specific point of the negative deviation and defines the 
maximal loss of the worst scenario within a holding period and a confidence level of 
1-α at a defined probability α. However, the VaR does not represent the risk that can 
be associated with the extreme values that exceed the confidence level. In case the 
ends are not normally distributed this measurement does not capture the risk in an 
adequate way. Stress tests and sensitivity analysis are methods to better understand the 
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impact of the risk caused by fat tails below 1-α. Value at Risk estimates are difficult to 
predict since the data might be either time depending, asymmetric, skew or fat tailed 
(Mandelbrot, 1963). In addition to this, scientists find that the confidential level must 
be chosen carefully since if it is too small the VaR may not exist (Alexander & 
Baptista, 2002). VaR has not been discussed for wind and solar generation 
distributions. Although 1,550 articles are identified when searching the science direct 
database in late 2012, only five articles combine the energy sector and the VaR. Two 
publications discuss electricity spot prices, the third publication discusses oil prices 
and the fourth gas prices (Chan & Gray, 2006; Yau et. al, 2011; Marimoutou et al., 
2009; Thaler et al., 2005). The fifth study uses the VaR to determine biofuel 
investments (Chang et al., 2011). This dissertation assumes that based on the 
limitations of the VaR other probability measurements are likely to be better 
measurements to capture risk that might be comprised in wind and solar distribution 
tails. 
 
The Conditional Value at Risk (CVaR) is the expected loss in case the value at risk is 
exceeded (Krokhmal et al., 2001) and considers fat tails in the underlining assumption. 
The advantage over the Value at Risk is that the Conditional Value at Risk is a reliable 
risk measurement even if the distribution differs from a normal distribution. The 
measurement is asymmetric, defined as the weighted average of VaR (Rockafellar & 
Uryasev, 2000) and represents with the probability α the expected value of losses that 
are bigger than the value at risk. Experiments show that the minimization of CVaR 
leads to almost ideal VaR results for low skewed distributions. In case the return-loss 
distribution is normal the two measurements are equal (Rockafellar & Uryasev, 2000). 
Since this is likely not to be the case, the optimization of these two risk measures 
results in different portfolios since the CVaR controls losses exceeding the VaR 
(Gaivoronski & Pflug, 2000). The CVaR has one advantage over the VaR. It is the 
only coherent measure that satisfies the four properties monotonicity, sub-additivity, 
homogeneity and translation invariance (Artzner et al., 1999).  
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Figure 22: Probability measurements (VaR and CVaR) 
 
The investigation of 850 articles related to portfolio theory, CVaR and renewable 
energy on the science direct database identifies one new publication in this field. This 
research paper applies the CVaR to determine optimal day-ahead bids for wind power 
producers to optimize profit (Botterud, 2012). The result indicates that the publication 
by Borchert and Schemm (2007) seems to be the only study using the Conditional 
Value at Risk to determine optimized wind portfolios. 
 
Although this dissertation believes that the CVaR is a good probability risk 
measurement to extend the findings generated by using mean-variance portfolio theory 
it is far beyond this dissertation. The next table gives an overview of the discussed risk 
measurements and their relevance for this study. 
 
 
 Mean-Variance 

Portfolio Theory 
Semi-Variance 

Portfolio Theory 
Value at Risk Conditional Value 

at Risk 
Risk capturing Downside & upside 

risk Downside risk Downside risk Downside risk 

Risk 
measurements Standard deviation Standard deviation Value at Risk at 

1-α level 
Conditional Value 

at Risk at 1-α 
Coherent no no no yes 
Relevant to risk 
measurement yes no no yes 

In scope of this 
dissertation yes no no no 

Table 3: Overview risk measurements 
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3.2.3. Integrating three perspectives  

The framework developed in Chapter 2 suggests to integrate all three perspective 
(political, technological, investor) to address the topic that governments often tend to 
take a short-term perspective. Thereby, the value of generation technologies is derived 
solely from energy generation costs neglecting potential costs concerning system 
security in the long-term. Such costs are defined as balancing and capacity costs and 
are very likely to increase their impact on total system costs with an increasing share 
of wind and solar power in an energy system. Given that policy makers define 
progressive renewable energy goals, it is surprising that we know so little about long-
term cost efficient portfolios. Nor can we say how the share between wind and solar 
impacts the technological as well as political and investor perspective in the long-term. 
Conclusively, this dissertation adds balancing and capacity costs to the levelized cost 
of energy method to optimize wind and solar portfolios from a technological, political 
and investor perspective. 
 
 
3.3. Overall strategy and approach 

To sum up Chapter 3, this dissertation adds to theory in four ways. First, by combining 
the assets wind and solar power, this thesis responds to the call of examining the 
correlation and thus the diversification effect between wind and solar generation 
(Drake & Hubacek, 2007). Second, it is accepted that mean-variance portfolio theory 
has been a commonly used approach to identify ideal portfolios in the energy 
generation sector. This dissertation argues in line with other scientists that an 
increasing number of variables approaches always a normal distribution (Hackl & 
Katzenbeisser, 1994). In addition to this, the knowledge about wind and solar 
distributions is broadened by examining the skewness and excess kurtosis for a large 
wind and solar dataset (Hansen, 2005). This might generate details about the potential 
of risk misinterpretation using the underlying assumption of a normal distribution. 
Third, it is the first study that applies portfolio theory to a large German wind and 
solar generation and forecast data set (total of 105,120 data points). Fourth, it adds to 
the commonly used levelized cost of energy method (political and investor 
perspective) that focuses either on costs (first, second, third research stream) or on 
energy outcome per installed capacity (fourth research stream) by integrating 
balancing and capacity costs (technological perspective). This dissertation is an 
innovative, exploratory contribution to currently discussed energy policy topics. Thus, 
the definition of different risk measures should be seen as a first step in wind and solar 
portfolio theory research.  
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4 German Case Study 
 
The overall chapter is structured into three parts. First, the predictability, volatility, 
contribution to peak demand and the generation output expressed as capacity factor for 
German wind and solar generation datasets are examined for the years 2010 to 2012. 
The characteristics of the distributions of the four elements is visually and statistically 
tested. It is discussed to which degree the distributions follow a normal distribution. In 
the second part, the theoretical framework is used to develop efficient wind and solar 
portfolios that maximize predictability, minimize volatility, maximize contribution to 
peak demand and minimize total system costs. The reliability of the results is 
addressed by performing a sensitivity analysis before conclusions are drawn.  
 

 

Figure 23: Overview German Case Study 

 
 
4.1. Empirical analysis 
4.1.1. Sample 

Wind and solar generation in Germany is financially supported by the society paying 
the renewable energy allocation fee. Therefore, publishing of generation and forecast 
data is required. The empirical data of 12-hour day ahead forecast and generation in 
the time period from January 2010 to December 2012 is drawn from five different 
sources: the eex transparency platform and four databases of the German grid 
operators that are responsible for daily publishing (amprion, TransnetBW, Tennet 
TSO, 50Hertz Transmission). The sample is obtained by merging the fifteen minute 
data from the grid operators from January 2010 to June 2010 and the eex transparency 
platform data from July 2010 to December 2012. It should be noted that it is likely that 
the solar data in the timeframe January 2010 to June 2010 has been only partially 
published since central publication by law started to be required in June 2010. Based 
on the approach used by Holttinen (2005), this dissertation converts the fifteen minute 
time series into an hourly sample resulting in subsequent 26,280 data points for wind 
forecast, solar forecast, wind generation and solar generation data. Equal to other 
studies, it is argued that by evaluating historical data inferences can be made about 
recurring event-types although there is a small likeliness that actual events reappear 
(Ibbotson Associates, 1998). Therefore, the thesis states that even though the 
duplication of such events will not happen, historical variability is widely considered 
to be a good indicator for future volatility (Awerbuch & Berger, 2003). The decision if 
a portfolio is ideal or not is based on the optimal trade-off between the mean and the 
variance determining the portfolio return in the future period (Markowitz, 1952). The 
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time period for which data is collected impacts the expected single-period returns of 
the analysis. Little research has been conducted on the appropriate length of a single-
period solution (Elton & Gruber, 1997) although this is crucial to determine optimal 
portfolios. This dissertation performs a single period analysis based on a timeframe of 
three-years since the complexity of non-linear models rebuilding wind and solar 
generation patterns go far beyond this approach and should be matter to further 
research2. The determination of optimized portfolios is based on the assumption of a 
risk averse investor. Thus, optimized portfolios are assumed to be the portfolios which 
illustrate the lowest risk. This thesis includes night and day forecast and generation 
data. This method is commonly used for wind portfolio theory research. Since no solar 
portfolio theory research has been performed so far, this dissertation applies the 
method used for wind to solar energy. One may argue there are differences in the solar 
generation pattern between night and day. This would require to examine ideal night 
and ideal day portfolios or exclude night hours. Others may argue that first, the 
definition of hours which should be excluded is unclear; second, the comparison 
between 8760 data points for wind per year and only about half the data points for 
solar is a comparison of apples and pears; and third, although there might be different 
theoretically ideal day and night portfolios the energy system can drive towards one 
portfolio, only. Although this paper is aware that the pursued method is just one way 
to calculate ideal portfolios, other approaches should be matter to further research. 
 
  

                                                             
2 Critics argue that the assumption that one period models of future events replicate the past is not always true. 
Multi-period approaches aim to overcome this problem by using a sequence of single period problems 
(Steinbach, 1999). Also, non-linear approaches such as Monte Carlo simulations are used to model reality to 
calculate the likelihood of future risk and return (Binder, 1979). 
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4.1.2. Measures 

The dissertation derives from the theoretical framework four measures, namely 
predictability error [1], volatility [2], contribution to peak demand [3] and levelized 
cost of energy [4]. The first three measures are used to find ideal technological 
portfolios, the fourth measure is utilized to calculate optimal total cost portfolios. 
 
The first measure is defined as the predictability error [1] of wind and solar generation 
between 2010 to 2012. Hourly predictability is a crucial factor for short-term 
balancing risk (Delarue et al., 2011). A high predictability indicates low balancing 
costs. The predictability error is computed as the absolute error 𝑃𝑃𝑃𝑃!  between the 
forecasted values 𝑥𝑥!,! and actual generation values 𝑥𝑥!,!: 
 

∆𝑃𝑃𝑃𝑃! = (𝑥𝑥!,! −   𝑥𝑥!,!) 

(8) 
Wind and solar power is underpredicted in case the actual value is higher than the 
forecasted value. Vice versa, if the actual generation is higher than the forecast, the 
power generation is overpredicted. Both situations are assumed to be suboptimal for 
the system since they relate to balancing needs to maintain system security. The 
predictability error 𝑃𝑃𝑃𝑃! is defined as percentage of installed capacity 𝐼𝐼!  in the specific 
year: 
 

𝑃𝑃𝑃𝑃! =
∆𝑃𝑃𝑃𝑃!
𝐼𝐼!

 

 (9) 
After calculating the predictability error data set 𝑃𝑃𝑃𝑃!   for each technology, the variance 
room is created by calculating for each combination of wind and solar the average 
output and the standard deviation (formula 5). The average output is the predictability 
error, the standard deviation of the predictability error defines the risk. 
 
The second element volatility [2] is investigated for the hour to hour volatility. It is of 
interest for system security in terms of mid-term balancing (Gross et al., 2006). The 
lower the volatility either in a positive or in a negative way the lower the need for 
balancing (Katzenstein & Apt, 2012). Volatility depends on geographical conditions 
and ranges between an annual minimum and maximum value. The dataset is calculated 
by expressing delta volatility ∆𝑣𝑣! as the power difference between the generation in 𝑃𝑃! 
and the power generation in the previous hour 𝑃𝑃!!! (Holttinen, 2005): 
 

∆𝑣𝑣! =   𝑃𝑃! −   𝑃𝑃!!! 

 (10) 
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Volatility 𝑉𝑉! is expressed as the volatility delta defined as percentage of installed 
capacity 𝐼𝐼!  in the specific year: 
 

𝑉𝑉! =   
∆  𝑣𝑣!  
𝐼𝐼!   

 

(11) 
The variance room for volatility is developed by calculating the average output and the 
standard deviation (formula 5) for each combination of wind and solar. The output 
represents the volatility, the standard deviation defines the risk. 
 
The contribution to peak demand [3] is the third measure and relevant for the energy 
system since it determines the required capacity to ensure system security. A high 
contribution to peak demand results in low additional capacity needs. Peak demand is 
defined as the 10% of highest demand throughout one year (Roques et al., 2010) which 
limits the examination to the highest 876 hours. In the first step, the 876 hours of the 
highest peak demand for each year are extracted. Then, the percentage of each, wind 
and solar contribution in these peak hours is calculated.  
 
The contribution 𝐶𝐶! is computed as the power generation 𝑃𝑃! as percentage of total 
demand 𝐷𝐷!. 
 

𝐶𝐶! =   
  𝑃𝑃!  
𝐷𝐷!  

 

(12) 
The variance room for the contribution to peak demand is developed by calculating the 
average output and the standard deviation of all wind and solar portfolio combinations. 
The output is the contribution to peak demand, risk is defined as standard deviation. 
 
Differing from the technological optimized portfolios, the fourth portfolio focuses on a 
financial measurement: the levelized cost of energy [4]. The levelized cost of energy 
(LCOE) approach expresses average generation costs of a technology over its lifetime. 
Costs and expected electricity generation is discounted, potential realized prices within 
a market are ignored. The levelized cost of energy approach has been widely used to 
compare generation technologies (WEO, 2000) and appears to be a valid measure to 
determine costs in the long-term.  
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First, the annuity 𝐴𝐴𝐴𝐴 of the initial debt 𝐷𝐷 and the interest rate i over the financing time 
N is calculated as: 
 

𝐴𝐴𝐴𝐴 = 𝐷𝐷×
𝑖𝑖×(1+ 𝑖𝑖)!

(1+ 𝑖𝑖)! − 1 

 (13) 

Then, the residual annual debt 𝑅𝑅𝑅𝑅! is calculated as follows: 
 

𝑅𝑅𝑅𝑅! =   𝑅𝑅𝑅𝑅!!!   − (𝐴𝐴𝐴𝐴 − (𝑅𝑅𝑅𝑅!!!×𝑖𝑖  )) 

 (14) 
After adding the operation 𝑂𝑂!, balancing 𝐵𝐵! and capacity 𝐶𝐶! expenses for each year, 
the total life cycle costs are calculated as the sum of the expenses cash flows 
discounted with the discount rate 𝑑𝑑: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =   
𝐴𝐴𝐴𝐴 +   𝑂𝑂! + 𝐵𝐵! +   𝐶𝐶!

(1+ 𝑑𝑑)!

!

!

 

 (15) 
In the next step, the energy yield is calculated by multiplying the capacity factor  𝐶𝐶𝐶𝐶 of 
the generation plant with its system size 𝑆𝑆𝑆𝑆. The average annual capacity factor CF is 
expressed as power 𝑃𝑃 as a percentage of total installed capacity I: 
 

  𝐶𝐶𝐶𝐶 =   
𝑃𝑃
𝐼𝐼 	  

 (16) 
A degradation factor 𝑑𝑑𝑑𝑑 is integrated to include efficiency losses. The energy output is 
then discounted to the initial year as follows: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝐶𝐶𝐶𝐶×𝑆𝑆𝑆𝑆 ×(1− 𝑑𝑑𝑑𝑑)

(1+ 𝑑𝑑)!

!

!

!!!

 

 (17) 
The levelized cost of energy (LCOE) is then calculated as: 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =   
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

 (18) 
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Since the levelized cost of energy is assumed to be equal in each hour of the year, the 
wind and solar generation distribution is equal to the levelized cost of energy 
distribution. Therefore, the wind and solar generation distributions are examined by 
calculating for each hour t the power P! as a percentage of total installed capacity I! in 
the specific year: 
 

  𝐶𝐶𝐶𝐶! =   
𝑃𝑃!
𝐼𝐼!
	  

 (19) 
After calculating the capacity factor data set 𝐶𝐶𝐶𝐶!   for each technology, the variance 
room is created by multiplying the capacity factor data with the inverse levelized cost 
of energy data. Then, for each combination of different wind and solar portfolios, the 
return and the standard deviation (formula 5) is computed. Return is defined as the 
generated kilowatt-hours per Euro, the standard deviation is defined as risk.  
 
All four measurements are plotted in a histogram. In addition to this, the third moment, 
skewness 𝑆𝑆 is defined as:  
 

𝑆𝑆     =     
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!)!
!!!

!
!
 

 (20) 
When 𝑥𝑥  is the sample mean for a sample of 𝑛𝑛  values. As discussed before, the 
skewness of a normal distribution is zero. Higher values indicate a risk overevaluation 
since there is more probability mass in the downside risk. On the contrary, lower 
values underevaluate risk due to a higher probability mass in the upside risk. 
 
In the next step, the kurtosis K is computed for a sample 𝑛𝑛 for all four data series as: 
  

𝐾𝐾   =       
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

 

 (21) 
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The kurtosis of a normal distribution is three. Excess kurtosis which is zero for a 
normal distribution is defined by subtracting three from formula (15). In this paper, 
excess kurtosis EK is used to compare the dataset to the normal distribution:  
 

𝐸𝐸𝐸𝐸   =       
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

− 3 

 (22) 
Values above zero indicate that extreme events are underestimated and vice versa, 
values below zero overestimate extreme values in the tails. However, excess kurtosis 
does not give an indication if extreme values are a downside risk, a upside risk or even 
level out. 
 
After calculating skewness 𝑆𝑆 and excess kurtosis 𝐸𝐸𝐸𝐸, this publication performs the 
Jarque Bera normality test which tests whether a dataset is normally distributed. The 
statistic is based on skewness 𝑆𝑆 and kurtosis 𝐾𝐾 and is a two-sided goodness-of-fit test 
(Jarque & Bera, 1987). The test follows a chi-squared distribution with two degrees of 
freedom under the null hypothesis of a normal distribution. In case the statistic is 
below 5.99 the null hypothesis of normality can be supported at a 5% significance 
level. The statistical measure is computed as: 
 

𝐽𝐽𝐵𝐵 =    !
!
	   𝑆𝑆! + !

!
(𝐾𝐾 − 3)! 	  

 (23) 
 
where 𝑛𝑛 is the number of observations.  
 
The next four sections are organized as follows: the four statistical measurements are 
evaluated. It is determined if skewness indicates a risk misinterpretation and if excess 
kurtosis is evidence for under- or overestimating extremes in the tails. Afterwards, the 
historical distributions are plotted. This analysis uses raw data instead of log returns 
although the awareness exists that log returns might fit a normal distribution better 
(Aitchison & Brown, 1957). However, the selected proceeding simplifies to interpret 
the results. QQ-plots for each dataset are attached in appendix (C). Lastly, results are 
compared to prior publications before the findings of each sections are summarized. 
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4.1.3. German dataset of technological measures 

4.1.3.1. Wind and solar predictability error data 2010 to 2012  
The predictability error from hour to hour is of interest for system security in terms of 
short-term balancing. The wind absolute predictability error for 1-day ahead forecasts 
ranges between ±10% as illustrated in figure 24. Nevertheless, there are six times of 
high wind forecast errors. Under the visual examination these errors seem to occur 
randomly within the examined timeframe.  
 
 

 

Figure 24: German wind hourly predictability error 2010 to 2012 

 
The solar errors in figure 25 in the timeframe January to May 2010 differ compared to 
forecast errors between June 2010 to December 2012. They vary more often within a 
corridor of ± 10%. Extreme values higher than 20% are by far less than for wind 
power (excluding the data series at the beginning of 2010). As already observed for 
wind energy, extreme errors seem to occur from time to time randomly throughout a 
year.  
 
 

 

Figure 25: German solar hourly predictability error 2010 to 2012 
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The duration curves of predictability errors show that there are extreme positive errors. 
Generation is highly undervalued for both technologies. The extreme positive wind 
predictability errors are as high as 35% in 2011 but decrease in 2012 to the 2010 level 
of 25%. The maximum of negative wind error is reduced during 2010 to 2012 from -
23% to -15%. The positive solar predictability error is 35% in 2010 and is diminished 
in 2011 and 2012 to 16%. The negative value is minimized from 2010 to 2012 from -
27% to -21%. The analysis shows that all three-years excluding the beginning of 2010 
indicate equal characteristics. 
 
 

 

 

Figure 26: Duration curve - German wind & solar hourly predictability error 

 
The mean of predictability errors can either be negative or positive. Both situations are 
assumed to be equally suboptimal and therefore result in the same degree of balancing 
costs for the energy system. The wind dataset of 2010 to 2012 (26,280 data points) 
indicates a mean of -4.4*10-3 and a standard deviation of 0.041. The mean of solar data 
in this timeframe is 8.3*10-4 with a standard deviation of 0.0011. Based on the 
assumption of risk averse investors preferring minimal risk over maximal return the 
first hypotheses is formulated: 
 
 
H1: The optimal predictability error portfolio holds based on a lower solar standard 

deviation a higher share of solar compared to wind energy 
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The wind skewness of 2010 to 2012 is 0.7012. In the same timeframe, solar skewness 
is recorded to be 1.1603. Hence, risk is overestimated in both cases under the 
assumption that downside risk is worse than upside risk. Downside and upside risk of 
the predictability error data set are both disliked by investors. Thus, skewness might 
lead to a risk misinterpretation. 
 
The excess kurtosis of wind for 2010 to 2012 data is 5.36, the solar excess kurtosis is 
recorded to be almost three times higher with a value of 12.95. Therefore, wind and 
solar distributions for all years are found to be leptokurtic, thereby undervaluing 
extreme events in the tails compared to a normal distribution.  
 
To collect details about the 5% most extreme positive and negative values enhances 
the understanding of extreme events. Thus, the highest and the lowest 1,314 values are 
summed up and divided by the total number of data points (2,328). It is found that for 
wind as well as for solar predictability errors a probability mass in the upside risk 
exists (0.00079 and 0.01151). This said, more positive extremes are recorded. Figure 
27 shows the positive and the negative deviations of the most extreme ±5%.  
 

 

Figure 27: Tail analysis: predictability error ±5% of extreme values 

In the last step, the Jarque Bera test for the row data series of wind and solar reject 
normality for all years (appendix (A)). Findings by Florita et al., (2012) for 30,000 
wind locations in the United States propose the assumption of a hyberbolic 
predictability distribution. Solar error predictability distribution research is very 
limited and does not propose a specific distribution. The dissertation plots the 
probability distributions for wind and solar in figure 28 a), b).  
 
 
 
 
 
  

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 64 12
7

19
0

25
3

31
6

37
9

44
2

50
5

56
8

63
1

69
4

75
7

82
0

88
3

94
6

10
09

10
72

11
35

11
98

12
61

O
ut

pu
t (

C
ap

ac
ity

 F
ac

to
r)

Hours (5% downside & 5% upside risk)

Wind Predictability Error
Solar Predictability Error



49 

  

 

  

Figure 28a), b): Wind and solar predictability error distribution 2010 to 2012 

 
Summarized, there are three findings. First, the predictability error of wind ranges 
between ± 10%, solar ranges between ± 20%. Second, the lower standard deviation of 
solar is very likely to lead to a higher solar share in the optimized predictability error 
portfolio. Third, extreme values in the tails are small. In this dissertation, the discussed 
distributions are used to identify theoretical optimal portfolios that minimize 
predictability errors and minimize risk defined as the variability of predictability 
errors. Despite the awareness that the data does not totally fit a normal distribution 
mean-variance portfolio is used for portfolio development.  
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4.1.3.2. Wind and solar volatility data 2010 to 2012  
The hourly volatility is of interest for system security in terms of mid-term balancing. 
Figure 29 illustrates the difference from one to the next consecutive hour. Wind 
volatility ranges from 10% to -10% as percentage of installed capacity. 
 
 

 

Figure 29: German wind hourly volatility 2010 to 2012 

 
The volatility of solar in figure 30 is not as consistent as wind energy volatility. As 
expected, the visual observation indicates that the highest volatility is in summer times 
(15%), the lowest in winter times (5% to 10%). 
 
 

 

Figure 30: German solar hourly volatility 2010 to 2012 
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The duration curves (figure 31) of wind and solar from 2010 to 2012 outline that wind 
volatility in the three-years have equal characteristics. No wind volatility is recorded 
for 3,453 hours in 2010, 3,075 hours in 2011 and 2,868 hours in 2012. The 2010 solar 
duration curve differs from the 2011 and 2012 curves. The times of zero solar 
volatility is identified to be higher than for wind with 4,673 in 2010, 4,288 in 2011 and 
4,225 hours in 2012. The analysis shows that although solar energy generates in 50% 
less hours than wind, the volatility is only 25% lower. 
 
 

 

 

Figure 31: Duration curve - German wind and solar hourly volatility 

 
The mean of wind volatility (2010 to 2012) is with 1.9*10-5 twice as high as the mean 
of solar volatility of 1.0*10-5. As displayed for the first measure, both variations 
(negative and positive) are disliked since it is assumed that they result in the same 
level of mid-term balancing costs. A lower wind standard deviation (0.017) compared 
to solar standard deviation (0.043) is the foundation for the second hypothesis: 
 
 
H2: The optimal volatility portfolio holds based on a lower wind standard deviation a 

higher share of wind compared to solar energy 
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Wind and solar skewness for 2010 to 2012 are 0.0651 and 0.1668. As discussed 
before, neither downside nor upside risk is preferred. The values are likely to lead to a 
misinterpretation of risk.  
 
Excess kurtosis for wind is 3.01 and therefore, higher than excess kurtosis for solar 
(2.31). The distributions are found to be leptokurtic, thereby undervaluing extreme 
events when assuming a normal distribution in all years for both technologies. The 5% 
fat tail analysis that outlines the averaged sum of the 1,314 highest and lowest values 
shows that wind balances out with a value close to zero (6.5*10-5) compared to the 
mean of 1.9*10-5 (absolute deviation of 4.6*10-5). The solar analysis indicates a value 
of 3.44*10-3 compared to the mean of 1.0*10-6 (absolute deviation of 2.44*10-3). 
Figure 32 shows the variation in the hours of the highest and lowest 5%. 

 

 

Figure 32: Tail analysis: volatility ±5% extreme values 

 
Prior research on wind kurtosis is limited but findings that have been generated in the 
United States for solar kurtosis go in line with this study (Hodge et al., 2011). Models 
that capture wind and solar distributions are proposed in science. Goic et al., (2010), 
for instance, examine wind volatility distributions on an annual basis and analyze 
aspects of Markov chain Monte Carlo simulation to model wind volatility 
distributions. However, they find that these approaches are not adequate to model 
stochastic dependencies between wind power time series. They propose a second-order 
Markov chain Monte Carlo simulation which allows to model synthetic time series of 
aggregated wind power that closely fits original data. Although publications of annual 
solar distributions are still scare in science, Hodge et al., (2011) report that solar 
volatility distributions are significantly non-normal over timescales from 1 minute to 1 
hour. They propose an hyberbolic distribution to capture high leptokurtosis. The 
Jarque Bera test supports these findings and indicates that neither wind nor the solar 
volatility distributions fit a normal distribution (appendix (A)). 
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The probability distributions (figure 33a), b)) display that for wind and solar, the 
probability in the middle is higher in comparison to a normal distribution. Similar 
findings are identified for wind volatility by Holttinen (2005), Roques et al., (2010) 
and Goic et al., (2010) who observe distributions of other European countries. 
 
 

  

Figure 33a), b): Wind and solar volatility distribution 2010 to 2012 

 
Three outcomes of the volatility evaluation are recorded. First, the volatility of wind is 
fairly stable and ranges between ± 10%. On the contrary, solar volatility differs based 
on the season of the year. Second, the low wind standard deviation is likely to 
overbalance wind in the volatility portfolio. Third, risk comprised in the tails for wind 
and solar is small. The dissertation assumes the distributions outlined in figure 33a) 
and b) to be normal and identifies optimal minimized volatility portfolios minimizing 
the variability of volatility. 
 

4.1.3.3. Wind and solar contribution to peak demand data 2010 to 2012  
The contribution to peak demand is relevant for system security related to capacity. 
The 876 hours of peak demand are identified to occur most often between the end of 
October and the mid of March. Although they occur in different times during 2010, 
2011 and 2012 the analysis shows that wind contributes on a constant bases for about 
5% to 10% to peak demand. The highest contribution in December and January ranges 
from 30% to 35%. In 2011, wind generation contributes most often to peak demand. 
Figure 34 outlines the 8,760 hours of a year and the contribution of wind to the highest 
10% hours of peak demand. Therefore, each data point is an hour of peak demand. The 
x-axes shows in which hour of the year peak demand occurs within the system. The 
level of wind contribution is plotted on the y-axes. 
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Figure 34: German wind contribution to peak demand 2010 to 2012  

 
Solar generation contributes to peak demand for 25% in summer times. During April 
and June, the contribution is higher than observed for wind energy. Solar generates 
peak energy in the range of 0% to 10% during mid-January and mid-March as well as 
from November to December.  
 
 

 

Figure 35: German solar contribution to peak demand 2010 to 2012  

 
The duration curve of the contribution to peak demand shows that wind generates in 
all of the 876 hours, solar energy contributes only in about 600 hours. The maximum 
contribution of wind energy is 35% in all three-years; solar energy reaches this level in 
2012. Figure 36 indicates that solar contribution increases continuously from 2010 to 
2012 but wind contribution decreased in this timeframe. 
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Figure 36: Duration curve - German wind & solar contribution to peak demand 

 
The mean of wind contribution to peak demand is 0.08. Solar contribution mean is 
recorded to be 0.03. Differing from the predictability error and the volatility mean, the 
contribution to peak demand mean is always higher than zero. The higher the mean the 
lower the capacity costs. Thus, it is important to note, that a high mean is negative 
correlated with system security and therefore preferred by investors. The standard 
deviation of wind is 0.07, compared to solar risk of 0.05.  
 
The third hypothesis is formulated based on the evaluation of risk measured by the 
standard deviation:  
 
 
H3: The optimal contribution to peak demand portfolio holds based on a lower solar 

standard deviation a higher share of solar compared to wind energy 
 
 
Wind skeweness for 2010 to 2012 is 1.19, solar skewness for the same timeframe 2.20 
which leads to an overestimation of risk. Thus, the impact of skewness on risk is 
neglected. 
 
Excess kurtosis for wind 2010 to 2012 is 0.83, but solar kurtosis indicates the 
existence of fat tails with a value of 4.9. The examination of the 5% highest and lowest 
wind and solar values (expressed as the average of the sum of all 876 extremes) 
records a value of 0.134 for wind and for solar of 0.097 compared to the mean of 
0.0797 and 0.032 (absolute deviation of 0.054 and 0.065). This results in a higher 
probability mass in the upside risk. Upside risk is preferred over downside risk by 
investors since it increases the contribution of peak demand. Figure 37 shows the 
contribution to peak demand in the highest and lowest 5% of the 2010 to 2012 dataset. 
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Figure 37: Tail analysis: contribution to peak demand ±5% extreme values 

 
Testing for normality, the Jarque Bera test shows that the row data series does not fit a 
normal distribution (appendix (A)). So far, the 10% of peak demand distribution has 
not been focus of research. The times of peak demand is country specific. Clearly, the 
data outlined in figure 38a), b) is the foundation for a German case study, only. 
 

  

Figure 38a), b): Wind and solar contribution to peak demand distribution 2010 to 2012 

 
The analysis indicates that wind and solar generation contribute each with around 400 
hours to 5% of peak demand. However, the contribution of 15% to peak is more often 
(50 hours) provided by wind power. 
 
To sum up, three interesting results are assessed. First, wind energy contributes to all 
hours of peak demand in times of high contribution up to 35%. Solar contributes in 
about 600 hours highest in summer with up to 35%. Second, a lower solar standard 
deviation is likely to overbalance solar in the contribution to peak demand portfolio. 
Third, extreme values for wind and solar are comprised in the tails. Both technologies 
show a higher probability mass in the upside risk. The histograms outlined in figure 
38a), b) are the foundation to generate wind and solar portfolios that maximize the 
contribution to peak demand and minimize the variability during these hours. This 
dissertation assumes these distributions to be normal.  
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4.1.4. German dataset of political and investor measures 

4.1.4.1. Wind and solar generation data 2010 to 2012 

As figure 39 illustrates, the capacity factor of wind generation differs from hour to 
hour, month to month and year to year. The visual examination shows that the capacity 
factor of wind can reach up to 80% in winter times. Low wind generation is observed 
in Q2 of each year. 
 
 

 

Figure 39: German wind hourly capacity factor 2010 to 2012 

 
Wind generation installation rates increase from 27,209 MW in 2010 to 30,001 MW in 
2012 resulting in a total output of 45,195 GWh in 2012. The minimal and maximal 
capacity factor varies from 0.4% to 80%. The average capacity factor in 2010, 2011 
and 2012 is recorded to be 15%, 18.1% and 17.4%. Thus, the output decreases 
relatively to the installed capacity from 2011 to 2012. Table 4 represents generation 
output, installed capacity, mean-, median-, maximum-, and minimum capacity factor 
for wind and solar energy for the years 2010 to 2012. 
 
	   2010 2011 2012  2010 2011 2012 

                                   Wind Generation Solar Generation  

Generation output [GWh] 35,815 45,637 45,195  9,574 18,547 27,914 
Installed capacity [MW] 27,209 28,739 30,001  16,536 21,896 29,702 
Mean capacity factor (%) 15.0 18.1 17.4  6.6 9.7 11.0 
Median capacity factor (%) 10.8 12.8 13.0  0.1 0.3 0.4 
Maximum capacity factor (%) 79.0 79.3 80.1  52.2 59.8 74.6 
Minimum capacity factor  (%) 0.4 0.3 0.4  0.0 0.0 0.0 

Table 4: Historical wind and solar generation data 2010 to 2012 

Solar generation increases from 16,536 MW to 29,702 MW exceeding wind 
generation in 2012, although the installed capacity of wind and solar power is equal in 
2012. Based on lower operating hours, solar energy output is only 62% of wind output. 
The mean capacity factor increased from 6.6% to 11%.   
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As shown in figure 40 the variance of the solar capacity factor ranges between 0% and 
75%. Although this range is equal to the range of wind energy (0% to 80%) half of the 
values for solar are below 0.1, 0.3 and 0.4 (2010 to 2012) compared to half of the wind 
values recorded to be lower than 10.8 in 2010, 12.8 in 2011 and 13.0 in 2012. 
 
 

 

Figure 40: German solar hourly capacity factor 2010 to 2012 

 
The next figure investigates the hourly duration curves of wind and solar generation. 
All three wind duration curves show equal characteristics but the 2010 solar duration 
curve differs from the 2011 and 2012 solar duration curves. The analysis shows that 
wind generates throughout the year (8,760h) but solar generation varies from 5,028 to 
4,951 to 4,995 hours in the observed timeframe. 
 
 

 

Figure 41: Duration curve - German wind and solar hourly capacity factor 
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Wind and solar generation show seasonal and diurnal differences. The average hourly 
wind generation in Q1 and Q4 is outlined in figure 42a) and ranges from 16% to 26%. 
The average mean capacity factor in Q1/Q4 is 123%, 119% and 126% above the 
annual mean of 2010, 2011 and 2012. During night times the highest wind capacity 
factor is recorded between hour 20 and 24. The mean capacity factor of the seasonal 
pattern in Q2 and Q3 illustrated in figure 42b) are compared to the annual wind mean 
capacity factor only 78% (2010), 82% (2011) and 74% (2012). The highest capacity 
factors within a year are identified in Q1/Q4 in hour 12 to 17. 
 

 

  

Figure 42a), b): Seasonal hourly wind capacity factor 2010 to 2012  

 
 
As for wind generation, there are seasonal and especially diurnal patterns for solar 
generation. The solar mean capacity factor in Q1/Q4 is 50%, 57% and 49%, for Q2/Q3 
152%, 142% and 145% of the annual mean capacity factor 2010 to 2012. In essence, 
the seasonal difference of solar generation is higher than for wind energy. The same is 
observed for the difference within a day ranging from 0% to 24% in Q1/Q4 (figure 
43a) and from 0% to 48% in Q2/Q3 (figure 43b). Solar variation is compared to wind 
between Q1/Q4 and Q2/Q3 twice as high.  
 

  
Figure 43a), b): Seasonal hourly solar capacity factor 2010 to 2012 
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As for the contribution to peak demand, the mean can only be positive. The higher the 
mean the higher the output per installed capacity. In this context, the wind mean 
capacity factor (2010 to 2012) is 0.17. The solar mean capacity factor is about half the 
value of wind recorded to be 0.09. The standard deviation of wind (0.15) is slightly 
higher than that of solar (0.14). To compute optimized levelized cost of energy 
portfolios in Chapter 4, the dataset is multiplied by inverse levelized cost of energy. 
Under the assumption that solar generation costs are at least as high as wind generation 
costs the fourth research question is formulated as: 
 
 

H4: The optimal LCOE portfolio holds based on a lower solar standard deviation a 
higher share of solar energy compared to wind as long as the solar LCOE is below or 

equal to the wind LCOE 
 
 
The skewness of wind generation of the total dataset of 26,280 consecutive points is 
1.44 for 2010 to 2012. Therefore, risk is overestimated by supposing a normal 
distribution. The same applies to solar skewness recording a value of 1.69.  
 
Surprisingly, excess kurtosis of wind and solar is equal with a value of 1.97 and 
indicates that extreme events are underestimated. The 5% extreme value analysis is 
performed for the highest and lowest 132 values for the dataset of 2,630 data points 
(±5%). The calculated values of 0.054 and 0.065 show a higher probability mass in the 
upside risk (wind: 0.134 compared to the mean of 0.079 and solar: 0.032 compared to 
the mean of 0.032). Upside risk is preferred over downside risk since it results in 
higher output. Figure 44 outlines ±5% extreme values for wind and solar generation. 
 
 

  

Figure 44: Tail analysis: generation ±5% extreme values 
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The Jarque Bera test rejects normality for all row data (appendix (A)). The probability 
distributions for wind and solar energy are plotted in the next graphs: figure 45a) and 
46a) show the total range of wind and solar generation.  
 
Figure 45b) and 46b) illustrate the generation between 0% to 20% of installed 
capacity. The visual observation of wind is in line with other studies and finds that 
wind generation is not equal to a normal distribution (Morgan, 1995; Garcia et al., 
1998).  
 
 

  

Figure 45a), b): Wind generation distribution 2010 to 2012 

 
Although these distributions vary from the normal distribution most prior research 
discussed in Chapter 3 assumes a normal distribution for generation data. 
Nevertheless, there are other approaches to rebuilt wind generation patterns. Some 
may argue that the Weibull distribution (Morgan et al., 2011) is a widely accepted 
distribution for wind power generation. However, scientists find that the Weibull 
distribution is not able to represent all wind regimes such as e.g. times of zero wind 
speed or bimodal distributions. The approach of assuming a Weibull distribution 
appears not to be generally justified (Carta et al., 2009).  
 
 

  

Figure 46a), b): Solar generation distribution 2010 to 2012 
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Only very few studies discuss the distribution of solar power. One study smooth solar 
data by a beta probability distribution for daily sunshine duration (Ettoumi et al., 
2002). Another study discusses radiative transfer models and decomposition models. 
They find that modeling seasonal dependency corresponds with the performance of an 
annual modeling approach (Lopez et al., 2000). Nevertheless, the discussion is very 
limited and does not lead to a common understanding of wind and solar generation 
distributions. 
 
The findings can be summarized as follows: first, both technologies show a variation 
of seasonal and diurnal generation pattern but the range of the capacity factor of solar 
generation is twice as high on a seasonal and five times as high on a diurnal timeframe 
compared to wind generation. Second, under the assumption of a normal distribution 
the skewness overestimates risk for all data series and third, extreme values in the tails 
indicate probability mass in the upside risk. The distributions outlined in figure 45a), 
46a) are assumed to be normally distributed and used to calculate optimized political 
and investor portfolios described in the next section.  
 
 
4.1.4.2. Wind and solar levelized cost of energy 2012, 2020 and 2050 

As stated before, the generation data distribution is the foundation to switch from the 
technological to the financial perspective. The concept of levelized cost of energy 
(LCOE) for wind and solar power has found some applications since two decades. To 
identify reliable values, the literature review is limited to studies that have been 
published between 2009 and 2012. This timeframe is selected since wind and solar 
generation prices have gone through an extreme price decrease in this period. Wind 
turbine costs e.g. fell about one quarter from 970 to 687 Euro/kW from 2010 to 2012. 
Solar module prices dropped in the same timeframe by 60% (IRENA, 2013). Three 
major resources are used for literature review: first, reports published at wind and solar 
integration conferences in Europe from 2009 to 2012; second, literature research on 
the science direct database searching for LCOE, wind and solar; third, databases of 
German institutions that specialize in wind and solar cost development. International 
values are used to benchmark German data before this dissertation derives the 
parameters for different scenarios. 
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The results of the literature review show that most of the publications discuss wind 
LCOE. Table 5 summarizes the findings for wind LCOE calculations including time 
point and period, investment costs and financing parameters used by other scientists. 
 
 NREL, 2009* Wiser & 

Bolinger, 
2010 

Boccard, 
2010 

Delucchi & 
Jacobson, 2011 

Fraunhofer, 
2012 

Year 2009 2008 2007 2007/2008/2020 2011 
Capacity factor 
(%) 22/34/48 35/45 - 46/38/46 13 to 26 
Country US US ES, P, DE Global DE 
Lifetime 
(years)  -  20/30/30 20 
Financing 
period (years) 12/15/17 - - - 20 
Equity (%) - - - - 30 
Real discount 
rate (%) 4.2/5.8/13 - 7.5 10.4/10.4/10.3 9 
Inflation (%) - - - - - 
Interest rate 
(%) - - - - 7 
Investment 
Costs (€/kW) 

956/1,318/2,004 847 to 1,465 - 1,480/1,272/880 1,000/1,200/ 
1,400 

O&M Costs**      
  (€/MWh) a 13.1/4/2.3 8.47 - - 15 
  (€/kW/year)a - - - 23.32 - 
  (% of invest)b ≈ 1.3/0.4/0.23  2 ≈ 1.5 to 2.0 ≈ 1.5 
LCOE 
(€/MWh) 42.4/47/55.5 

34.68 to 
46.24 63.1/66.8/74.3 43.2/43.2/23 60/70/110 

Table 5: Wind LCOE publications 2009 to 2012 
Notes for table 5: Dollars are converted to Euros with an exchange rate of 1.2974. *NREL uses a finance 
structure varying the IRR of a project. **O&M costs are either expressed in Euro/MWh or Euro/kW. aMaddaloni 
et al., (2009) found O&M costs of 23.43 Euro/kW for wind installations in Vancouver (converted with an 
exchange rate of 1.3388). For comparison, all values are converted to O&M costs in % of total investment. bEIA 
(2009) indicate a value of 1.5% O&M costs of total investment for wind in the US. 
 
The wind analysis shows that the lifetime of wind is assumed to be 20 to 30 years with 
a capacity factor ranging from 15% to 48%. The financing period in Germany is 
determined to be 20 years with equity assumption of 30% and a real discount rate of 
4% to 10%. All studies disregard inflation. The debt rate in Germany is found to be 
fairly high with 4.5% compared to other countries. Wind power investment costs range 
between 847 Euro/kW to 2,004 Euro/kW, indicating an average of 1,256 Euro/kWh. 
Operation and maintenance (O&M) costs can be expressed either in Euro/MWh, 
Euro/kW per year or as % of total investment. O&M costs in Euro/MWh vary from 2.3 
up to 15. This implies on the one hand that there might be potential for improvement 
but on the other hand, the risk of high variations. On the contrary, prior research 
indicates a few ranges of O&M costs expressed as % of total investment of  
1.5% to 2%. 
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Differing from wind energy, the lifetime for solar is expected to be slightly higher with 
25 to 30 years. The real discount rates are equal to wind but the debt rate for solar is 
lower with 4.5%. Investment costs range significantly from 1,500 to 4,653 Euro/kWh 
due to different country specific learning curves in the last decades. In Germany, 
which is one of the leaders in installing solar systems, prices have fallen significantly 
in the last year. There is little research about solar O&M costs. Values are found to 
range between 9 Euro/kW and 30 Euro/kW. Solar LCOE variables are outlined in  
table 6. 
 
 
 Delucchi & 

Jacobson, 2011 
Fraunhofer, 2012 

Year 2007/2008/2020 2011 
Capacity factor 21/21/21 10 
Country Global DE 
Lifetime (years) 20/30/30 25 
Financing period (years) - 20 
Equity (%) - 20 
Real discount rate (%) 10.4/10.4/10.3 7.5 
Inflation (%) - - 
Interest rate (%) - 4.5 
Investment Costs* 
(€/kW) 

4,653/2,084/2,947 1,500/1,700/2,200 

O&M Costs   
  (€/MWh) - - 
  (€/kW/year) 9.00 30.00 
  (% of invest) ≈ 0.75% ≈ 2.5% 
LCOE (€/MWh) 432/432/230 110/140/160 

Table 6: Solar LCOE publications 2009 to 2012 
Notes for table 6: Dollars are converted to Euros with an exchange rate of 1.2974. IRENA (2013) reported 
German investment costs of 1,696 Euro/kW. LCOE are not outlined in this study for Germany. 
 

So far, wind and solar levelized cost of energy approaches include investment and 
O&M costs, but lack to integrate environmental savings related to fuel, decommission 
and waste. To properly assess the economics of wind and solar energy, one should 
include such savings (Jansen et al., 2006; Krey & Zweifel, 2006). The argument seems 
particularly appealing when comparing wind or solar to conventional generation. 
However, when comparing wind and solar only environmental savings (CO2, 
decommission, waste)  can be neglected since both technologies do not emit CO2 or 
produce waste. Although the awareness that wind and solar power are linked to 
additional balancing and capacity costs, the levelized cost of energy concept has not 
been broadened by integrating system security costs, so far. As discussed in Chapter 
2.1 and 2.2., these costs are of relevance for the energy system, especially at high wind 
and solar penetration levels. Therefore, this dissertation includes balancing and 
capacity costs in the analysis as illustrated in the integrated research framework  
(figure 15).  
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The definition of balancing costs varies among researchers. Gross et al. (2006) define 
balancing costs as costs that are caused by unpredicted variations as well as costs 
associated with the variation of demand compared to fluctuating output and the 
availability of reserve capabilities. In other words, costs of predictability errors and 
costs of variability are included in this definition. Balancing costs are assessed by the 
additional reserves needed when adding wind and solar to an energy system. They are 
country-specific and depend on the penetration of renewable energies, the degree of 
flexibility within a system, regulatory and operational differences. The definition of 
balancing by IEA (2011) relates to wind forecast, market structure and curtailment 
policy. The study states that balancing costs significantly depend on the availability of 
system flexibility. The more flexibility exists within an energy system, the lower the 
costs for additional generators providing balancing.  
 
By implication and by comparing the values observed for the first and the second 
definition of balancing, both definitions are similar. Table 7 outlines the identified 
studies and balancing costs at different wind penetration levels. 
 
 

Balancing costs (€/MWh) 
Wind penetration level 

10% 20% 30% 45% 

Milborrow, 2001 (US) 2.89 - - 3.7 
Ilex and Strbac, 2002 (UK) - 3.01 3.24 - 
MacDonald, 2003 (UK) - 2.31 - - 
Dale et al., 2003 (UK) - 3.12 - - 
Gross et al., 2006 (UK) - 2.89 - - 
Skea et al., 2008 (UK) - 2.31-3.47 - - 
IEA, 2011 (US) 2.54 2.54  3.85  - 
IEA, 2011 (Schweden) 0.61 0.77 - - 
IEA, 2011 (Finland) 2.16 3.08 - - 
IEA, 2011 (DE) 2.46 - - - 
Average balancing cost (€/MWh) 2.13 2.61 3.55 3.7 

Table 7: Balancing costs 2001 to 2011  
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The average balancing costs in Euro/MWh including predictability errors and volatility 
costs are 2.13 for 15% penetration, 2.61 for 20% penetration, 3.55 for 30% penetration 
and 3.7% for 45% penetration. The values state that the higher the penetration level the 
higher the balancing costs.  
 
Besides the definition of Gross et al. (2006) and IEA (2011), Katzenstein & Apt 
(2012) contribute by a research paper that discusses variability costs. They focus on 
mid-term balancing caused by variability and exclude costs related to predictability. 
Their optimization model provides ancillary services including load following and 
regulation in times of wind variability. The analysis is carried out for 20 locations in 
the US in the years 2008 and 2009 (calculated for three different capacity factors). 
Variability costs are defined in relation to wind capacity factors. Table 8 shows the 
results and states that most often an increase of capacity factor results in a decrease of 
variability costs. 
 
 

Variability Costs (€/MWh) 
Capacity factor	  

30% 35% 45% 

Katzenstein & Apt, 2012 (US)    
  Year 2008 9.26 8.33 8.68 
  Year 2009 4.63 4.05 3.7 
Average variability costs (€/MWh) 6.94 6.19 6.19 

Table 8: Variability costs 2008 to 2009 

 
Costs in 2008 are higher than in 2009 which is a result of lower ancillary services price 
levels in 2009 compared to 2008. Differing from expectations that variability costs are 
lower than balancing costs (since variability costs exclude costs related to 
unpredictability) the analysis shows that variability costs are higher at least in this 
research focusing on the US energy system. The average values are by far higher with 
6.94 and 6.19 Euro/MWh for a wind penetration level of 30% and 35% to 45%. One 
may argue that the reliability of one publication that uses the variability method is not 
as high as balancing cost estimates of ten studies. With respect to this argument, this 
dissertation uses the average balancing costs outlined in table 7 for the following 
calculations. 
 
To determine long-term costs related to capacity, two main methods to calculate 
capacity needs are found. The first method is an assessment of an overall change in 
system costs that arise from additional capacity requirements (Gross et al., 2006). This 
approach estimates the capacity needed to maintain the same level of system security 
while adding wind and solar power. One may challenge this view by arguing that this 
method decreases the operation hours of conventional power plants. Therefore, some 
researchers propose to link the costs of fluctuation to stand-by reserves instead. This 
stand-by generators operate in peak-times when wind and solar power are absent  
(Ilex & Strbac, 2002).   
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The second stream links costs to the back up or capacity reserve that would be 
required closing the gap between the capacity credit of wind or solar and the capacity 
credit of conventional power generators that would provide the same amount of 
energy. The capacity credit is a measure that outlines the amount of load that is 
provided by wind and solar with no increase in the loss-of-load probability of an 
energy system. 
 
Both approaches are likely to generate the same findings since the system reliability 
costs of fluctuation are the fixed costs of energy-equivalent conventional plants (Gross 
et al., 2006). Table 9 illustrates the results of nine studies that calculate wind capacity 
costs. The average capacity costs are higher than the costs for balancing and range 
from 4.16 to 4.57 Euro/MWh for an increasing penetration level from 10% to 20%.  
 
 

Capacity costs (€/MWh)  
Wind penetration level 

10% 20% 

Gross et al., 2006 (UK) - - 
  Capacity credit 20% 5.51 5.58 
  Capacity credit 30%  2.82 3.84 
Ilex and Strbac, 2002 (UK) - 3.01 
MacDonald, 2003 (UK) - 5.21 
Dale et al., 2003 (UK) - 4.51 
Skea et al., 2008 (UK) - 3.47-5.79 
Boccard, 2010 (DE) - 4.4 
Boccard, 2010 (ES) - 5.6 
Boccard, 2010 (P) - 4.1 
Average capacity costs (€/MWh) 4.16 4.57 

Table 9: Capacity costs 2006 to 2010 

Neither balancing nor capacity cost studies discuss solar system security costs in 
detail. This dissertation assumes for the benchmark scenario that wind balancing and 
capacity costs are on an annual average basis equal to solar balancing and capacity 
costs. The cost increase is supposed to follow a linear trend line related to the total 
wind and solar penetration within the energy system. The assumptions of the 
benchmark scenario are drawn due to the lack of solar balancing and capacity data. 
Therefore, the resulting costs of wind and solar predictability, volatility and 
contribution to peak demand costs are treated in an equal way in this dissertation. 
However, the empirical research performed in this chapter showed that this is very 
likely to be not the case.  The historical data showed that wind and solar cause 
different balancing or capacity needs. The determination of solar balancing and 
capacity costs are especially important for short- and mid-term costs. Furthermore, 
they are relevant to find ideal wind and solar portfolios in terms of levelized cost of 
energy. This dissertation uses sensitivities to examine the impact of varying wind and 
solar balancing and capacity costs. Nevertheless, the research gap of solar balancing 
and capacity costs at different penetration levels should be addressed and is further 
discussed in Chapter 5. 
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This dissertation derives from empirical studies the input parameters outlined in table 
10 and defines three benchmark scenarios for the year 2012, 2020 and 2050. Financial 
and energy cash flows which are computed by using formula (13) to (18). Next, they 
are discounted to the real levelized cost of energy excluding inflation. Return is 
defined as the inverse real levelized cost of energy. 
 
 
 Scenario 2012 

(1 = real LCOE) 
Scenario 2020 
(2 = real LCOE) 

Scenario 2050 
(3 = real LCOE) 

 Solar Wind Solar Wind Solar Wind 
Penetration Levela 20 20 50 50 80 80 
Capacity factorb 10 18 12 20 12 20 
Lifetime (years)c 25 20 25 20 25 20 
Degradation (% of year 1) 0.2  0.2  0.2  
Financing period (years)d 20 20 20 20 20 20 
Equity (%)e 20 20 20 20 20 20 
Real interest rate (%)f 7 9 6 9 6 9 
Inflation (%)g 0 0 0 0 0 0 
Debt rate (%)h 4.5 4.5 4.5 4.5 4.5 4.5 
Investment Costs (€/kW)i 1500 1500 1000 1200 800 1000 
O&M Costs (€/MWh)j 30 15 28 15 28 15 
Balancing Costs (€/MWh) 2.61 2.61 3.95 3.95 4.50 4.50 
Capacity Costs (€/MWh) 4.57 4.57 5.11 5.11 5.39 5.39 
Real LCOE (€/MWh) 148.7 91.7 96.6 74.1 86.0 66.6 
Real return (kWh/ct)l 0.067 0.109 0.104 0.135 0.116 0.150 

Table 10: Wind and solar LCOE assumptions and results 
Notes for table 10: aPenetration level is increased up to 80% of total energy generation in 2050. Based on the 
penetration level, balancing and capacity costs are derived. bCapacity factor for solar increased slightly over the 
years due to technological development e.g. tracker. The same applies to wind based on turbine optimization and 
higher hub heights. cWind and solar lifetimes are derived from Fraunhofer (2012) values. dFinancing period is 20 
years. eEquity is based on expert interviews assumed to be 20% for wind and solar. fReal interest rates are 
assumed to slightly decrease due to technology saturation and lower risk over the defined time period. gInflation 
is excluded to calculate the real LCOE and included for determining the nominal LCOE. hSolar and wind debt 
rate are derived from Fraunhofer (2012). iInvestment costs are assumed to decrease for wind and solar. jO&M 
costs are expressed in Euro/MWh under the assumption that O&M costs are linked to the generated MWh and 
not to the installed kW. kReturn is defined as the inverse of the LCOE. 
 
 
Three findings are outlined for this section: first, levelized cost of energy decreases for 
wind and solar from 2012 to 2050. Second, wind LCOE in all years is lower than the 
solar LCOE. Third, balancing costs vary with the penetration level of wind and solar. 
For wind, they range from 2 to 4 Euro/MWh compared to wind capacity costs ranging 
from 4 to 5 Euro/MWh. It is assumed that solar balancing and capacity costs are equal 
for the benchmark scenario. 
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4.2. Portfolio development and testing of hypothesis 

The mean-variance portfolio analysis calculated in this section depends on different 
objective functions defining variables to quantify return and risk. This dissertation 
defines based on literature research and practical experience four functions: 
maximizing predictability, minimizing volatility, maximizing contribution to peak 
demand and minimizing total system costs. Risk is in all calculations defined as the 
variability of the objective functions. Ideal portfolios for each function are defined as 
the portfolio with the lowest risk relative to its return since investors are assumed to be 
risk averse. The following sections are structured as follows: 
First, the covariance and the correlation coefficient of wind and solar in the different 
years is calculated and outlined in detail in appendix (B). Second, the historical 2010 
to 2012 efficient frontier is computed and used as a benchmark (26,280 consecutive 
data points). This efficient frontier enables to identify the optimal theoretical wind and 
solar portfolio for risk averse investors. Third, a sensibility analysis is performed. 
 
 
4.2.1. Technological optimized portfolios 

4.2.1.1. Optimal predictability error portfolios 
The objective function in this section determines optimal portfolios (the share between 
wind and solar within a portfolio) that minimize predictability per installed unit of 
installed capacity. The function minimizes hourly variability of the forecast error. 
Thus, it aims to limit the need of short-term balancing when adding wind and solar to 
the energy system. Formula (8) and (9) are used to calculate the data series for the 
predictability error before calculating the covariance and the correlation coefficient 
with formula (1) and (2). The correlation coefficient of wind and solar data from 2010 
to 2012 is negative related with -0.00147. Negative correlation indicates the existence 
of potential to reduce forecast error variability. Figure 47 shows the theoretical 
efficient frontier for wind and solar power portfolios for 2010 to 2012. 
 

 

Figure 47: Ideal predictability error portfolios based on 26,280 data points  

Timeframe: 2010 to 2012 
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The frontier is constructed by computing the minimal standard deviation (risk) for any 
given level of average predictability error (return). The optimization model illustrates 
the combinations that are possible when varying the proportion of wind and solar 
power.  
 
The result of the optimization approach supports the postulated relationship between 
the standard deviation and the share within a portfolio. As expected, hypothesis 1 is 
supported resulting in an optimal theoretical wind and solar portfolio that consists of 
40% wind and 60% solar. The mean of this portfolio is -0.00125, the standard 
deviation is 0.02577. This portfolio is likely to occur at a probability of 2σ within the 
range of -0.02702 and 0.02451 (appendix (D)). 
 

4.2.1.2. Optimal volatility portfolios 
In this section, optimal theoretical volatility portfolios are constructed. The data series 
is calculated with formula (10) and (11). More precisely, portfolios are computed by 
minimizing volatility and minimizing the variability of volatility. The goal is to reduce 
the need for mid-term balancing either in a positive or a negative way. After 
calculating the covariance and the correlation coefficient the 2010 to 2012 data 
indicates a low correlation between wind and solar of 0.097. This indicates potential 
for risk reduction. The volatility efficient frontier is illustrated in figure 48. 
 

 

Figure 48: Ideal volatility portfolios based on 26,280 data points 

Timeframe: 2010 to 2012 
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than the solar share. The result supports hypothesis 2 and determines that the optimal 
theoretical combination that minimizes risk holds 90% wind and 10% solar energy. 
The mean is -0.000003 with a standard deviation of 0.016. With a probability of 2σ the 
optimized portfolio ranges between -0.01660 and 0.01659.  
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4.2.1.3. Optimal contribution to peak demand portfolios 
This section uses an objective function that computes for any level of contribution to 
peak demand the minimum standard deviation. The goal is to maximize for system 
reliability, especially in times of high demand levels. Using the correlation coefficient 
between wind and solar of -0.1082, this dissertation calculates based on formula (12) 
the dataset for the contribution to peak demand. The efficient frontier of 2010 to 2012 
is constructed and plotted in figure 49. 
 
 

 

Figure 49: Ideal contribution to peak demand based on 26,280 data points 

Timeframe: 2010 to 2012 

 
Hypothesis 3, which assumes a higher share of solar in the portfolio is confirmed by 
the optimization model. The optimal theoretical wind and solar portfolio that 
minimizes risk consists of 35% wind and 65% solar energy. The mean is reported to be 
0.04871 with a standard deviation of 0.04030. The results ranges from 0.00841 to 
0.08901 within the probability of 2σ (appendix (D)). 
 
 
4.2.2. Sensitivity analysis of technological optimized portfolios 
This section assesses the sensitivity of the results. First, the timeframe of three-years 
which is the foundation for the analysis is reduced to one year data. For each year 
(2010, 2011 and 2012) optimal portfolios are constructed. In the second step, the 
historical German wind and solar portfolios that hold a wind share of 62% in 2010, 
57% in 2011 and 50% in 2012 are compared to the efficient frontier of these years  

4.2.2.1. Sensitivity analysis for predictability error portfolios 
The analysis distinguishes between 2010, 2011 and 2012 and illustrates in figure 50 
the three optimal theoretical efficient frontiers (EF). The calculations show that the 
optimal theoretical risk level of each year varies from lowest risk (0.022) to highest 
risk in 2010 (0.03). In all three-years, the optimal theoretical portfolio overestimates 
generation.  
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The optimal wind share ranges from 20% to 30% (2011) to 50% (2010). As expected, 
the results are sensitive to the selected timeframe. Longer timeframes level out 
extreme values that might occur in a single year. Table 11 outlines the optimal 
portfolio for 2010, 2011 and 2012. 
 

Ideal Predictability Error Portfolios	   Solar Wind 

Wind & Solar 2010 50% 50% 
Wind & Solar 2011 70% 30% 
Wind & Solar 2012 65% 35% 

Table 11: Ideal predictability error portfolios for 2010, 2011, 2012 

 

 

Figure 50: Ideal predictability error portfolios based on 8,760 data points 

Timeframe: 2010, 2011 and 2012 

 
Comparing the historical German wind and solar portfolios to the efficient frontiers of 
these years is evidence for potential improvements. At the same level of risk, a lower 
predictability error in 2010 (-0.0032 to -0.0018) and 2012 (-0.0022 to 0.0018) could 
have been achieved by increase the share of solar power from to 38% to 65% in 2010 
and from 50% to 75% in 2012. The range of the results being in the 2σ spread shows 
that the range decreased from 2010 ( -0.03 to 0.03) to 2012 (-0.024 to 0.019). The 
visual illustration is plotted in appendix (D). 
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4.2.2.2. Sensitivity analysis of volatility portfolios 
The implications of the efficient frontiers (EF) constructed in figure 51 are 
straightforward: first, the range of risk level in the three-years is small (0.015 to 
0.018). Second, the efficient frontier of 2010 shows positive volatility on the contrary 
to 2011 and 2012 identifying negative volatility. Third, the range within the three-
years of optimal portfolios in 2010, 2011 and 2012 varies for only 10%. Differing 
from expectations, the three different annual datasets result in the same optimal 
portfolio. Thus, the selected timeframe for the ideal volatility portfolio seems not to be 
as sensitive to the results as e.g. the timeframes selected for predictability errors. Table 
12 shows the optimal 2010, 2011 and 2012 portfolio. 
 

Ideal Volatility Portfolios	   Solar Wind 

Wind & Solar 2010 20% 80% 
Wind & Solar 2011 10% 90% 
Wind & Solar 2012 10% 90% 

Table 12: Ideal volatility portfolios for 2010, 2011, 2012 

 

 

Figure 51: Ideal volatility portfolios based on 8,760 data points 

Timeframe: 2010, 2011 and 2012 

 
Surprisingly, all portfolios are on the efficient frontier. However, the risk level of the 
portfolios could have been decreased by adding wind energy to the portfolio. Risk in 
2010 could have been decreased from 0.017 to 0.015, in 2011 from 0.023 to 0.016 and 
in 2012 from 0.028 to 0.018. The range of the results within 2σ is lower than found for 
predictability errors and increases slightly from -0.015 to 0.015 in 2012 to -0.019 to 
0.019 in 2012 (appendix (D)).   
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4.2.2.3. Sensitivity analysis of contribution to peak demand portfolios 
The sensitivity analysis of the contribution to peak demand implies three findings. 
First, the risk variation of the optimal theoretical portfolios is high ranging from 0.015 
to 0.045. Second, it appears that there are high differences between the optimal 
portfolio in the three-years holding a wind share of 5% in 2010, 28% in 2011 and 53% 
in 2012. Lastly, the selected timeframe is sensitive to compute the optimal portfolio. 
Taking a longer timeframe (> 1 year) seems to enhance the reliability of the results. 
Table 13 illustrates the ideal 2010, 2011, 2012 portfolios. 
 

Ideal Contribution To Peak Portfolios	   Solar Wind 

Wind & Solar 2010 95% 5% 
Wind & Solar 2011 72% 28% 
Wind & Solar 2012 47% 53% 

Table 13: Ideal contribution to peak demand portfolios for 2010, 2011, 2012 

 

 

Figure 52: Ideal contribution to peak demand based on 8,760 data points  

Timeframe: 2010, 2011 and 2012 

 

The visual observation shows that the historical 2010, 2011 and 2012 portfolio lie on 
the efficient frontier. The actual 2012 portfolio is close to the optimal theoretical 
portfolio. Nevertheless, the risk of the 2010 and 2012 portfolio could have been 
decreased by adding solar to the portfolio resulting in a minimized standard deviation 
of 0.015 (compared to 0.043) and 0.039 (compared to 0.048). The results being in the 
2σ range increases significantly over the years from 0.001 to 0.003 in 2010 to 0.019 to 
0.108 in 2012 (appendix (D)). 
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4.2.3. Political and investor optimized portfolios 

4.2.3.1. Optimal LCOE portfolios – real vs. nominal  
This section differs from the previous ones in that it focuses on a financial 
measurement and defines the ideal portfolio to be the most cost efficient solution. The 
fourth objective function therefore aims to minimize total system costs and their 
variability. To assess optimal theoretical portfolios (OTP) the 2010 to 2012 data 
generation series is multiplied with the inverse real and nominal levelized cost of 
energy. The goal is to maximize the inverse levelized cost of energy to find the ideal 
portfolio from the political and investor perspective. The correlation coefficient of 
wind and solar is -0.1505 which indicates potential for risk reduction. The 
optimization model calculates in the first place the efficient frontier of 2012 for real 
(Scenario 1) and nominal (Scenario 1b) inverse levelized cost of energy displayed in 
figure 53. The real wind LCOE in 2012 is 91.7 Euro/MWh, the solar LCOE is 148.7 
Euro/MWh. The nominal wind LCOE is higher with a value of 95.5 Euro/MWh and a 
solar value of 156.84 Euro/MWh. 
 
 

 
Figure 53: Ideal real and nominal LCOE portfolio based on 8,760 data points 2012  

 
The findings supports hypothesis 4 which assumes a higher solar share in case solar 
LCOE is higher or equal to wind LCOE. The optimal theoretical real LCOE portfolio 
holds 28% wind, the nominal LCOE a slightly higher share of 32% wind. The analysis 
seems to indicate higher risk (0.0079 vs. 0.0075) for the real LCOE. The results are in 
the range of 2σ slightly lower for the real LCOE portfolio (0.0096 to 0.0175) than for 
the nominal LCOE portfolio (0.01405 to 0.0216). To reduce complexity, this 
dissertation limits further analysis to the real LCOE which calculates without inflation.  
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4.2.3.2. Optimal LCOE portfolios – real LCOE for 2012, 2020 and 2050 
The discussion in this section focuses on identifying the optimal theoretical LCOE 
portfolios in the long-term. The LCOE forecast in section 4.1.3.3 is multiplied with the 
generation data series. The 2012 scenario (Scenario 1) has already been calculated in 
section 4.2.3.1. Optimal 2020 theoretical portfolios are constructed under the 
assumption of a wind LCOE of 74.1 Euro/MWh and a solar LCOE of 96.6 Euro/MWh 
(Scenario 2). Scenario 3 which computes ideal 2050 portfolios is developed by using a 
wind LCOE of 66.6 Euro/MWh and a solar LCOE of 86.0 Euro/MWh. Table 14 
outlines the mean, the standard deviation of inverse wind and solar LCOE as well as 
the specific share of the optimal portfolios. 
 
	   Scenario 2012 

(OTP 1 = real LCOE) 
Scenario 2020 
(OTP 2 = real LCOE) 

Scenario 2050 
(OTP 3 = real LCOE) 

 Solar Wind Solar Wind Solar Wind 
Mean 0.006 0.0184 0.009 0.023 0.010 0.025 
Standard deviation 0.010 0.0161 0.015 0.020 0.016 0.022 
Ideal portfolio 72% 28% 63% 37% 64% 36% 
Table 14: Mean and standard deviation of Scenario 1, 2, 3s 

 
 

 

Figure 54: Ideal real LCOE portfolios based on 8,760 data points for 2012, 2020, 2050 

 
Hypothesis 4 is supported for all three-years since within the ideal portfolio the solar 
share exceeds the wind share. The optimal portfolio share of wind grows over the 
years from 28% to 37% to 35%. The risk level increases from 0.008 to 0.0125 from 
2010 to 2012. At the same time, potential returns increase from 0.01 to 0.015. 
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4.2.4. Sensitivity analysis of political and investor optimized portfolios 

4.2.4.1. Sensitivity analysis for balancing and capacity costs for LCOE portfolios 
The sensitivity analysis varies balancing and capacity costs for solar power. This is 
justified by the limited availability of literature investigating this topic (IEA, 2011). To 
determine balancing costs in the first step, solar generation is observed. This takes 
place during day times only, which limits required balancing needs to these hours. 
Therefore, solar is not assumed to cause higher balancing costs than wind. On the 
contrary, solar capacity costs are very likely to be higher than for wind since solar will 
not be able to provide capacity during night times. In addition to this, wind contributes 
twice as much as solar. Differing from the benchmark scenarios (Scenario 1-3), this 
sensitivity analysis expects solar capacity costs to be twice as high as wind capacity 
costs. Solar capacity costs are assumed to be 10.97 Euro/MWh for 2012, 13.93 
Euro/MWh in 2020 and 16.87 Euro/MWh in 2050. These values are average costs 
over the timespan of one year. Costs in a specific hour might be higher or lower than 
outlined in figure 55. 
 
 

 

Figure 55: Wind and solar balancing and capacity costs 

 
The input solar LCOE is 155.09 Euro/MWh in 2012, 105.98 Euro/MWh in 2020 and 
97.45 Euro/MWh in 2050. The optimization model finds that higher solar capacity 
costs strengthen the support for hypothesis 4. The results are sensitive to balancing and 
capacity costs. Twice as high solar capacity costs result in a 5% lower wind share in 
2020 and 2050 portfolio compared to Scenario 2 and 3. 
 
 
	   Scenario 4: 2012 Scenario 5: 2020 Scenario 6: 2050 

 Solar Wind Solar Wind Solar Wind 
Mean 0.006 0.0184 0.008 0.023 0.009 0.025 
Standard deviation 0.009 0.0161 0.014 0.020 0.014 0.022 
Ideal portfolio 72% 27% 67% 33% 66% 32% 
Table 15: Mean and standard deviation of Scenario 4, 5 ,6 
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4.2.4.2. Sensitivity analysis for wind investment costs for LCOE portfolios 
The following sensitivity analysis varies the installation costs per kW for wind. 
Installation costs are selected since their impact on levelized cost of energy is 
significant (Fraunhofer, 2012). Wind installation costs are assumed to be higher than 
in the benchmark scenario with 2,000 Euro/kW in 2012, 1,700 Euro/kW in 2020 and 
1,500 Euro/kWh in 2050. The wind levelized cost of energy is 114.86 Euro/MWh in 
2012, 94.96 Euro/MWh in 2020 and 87,45 Euro/MWh in 2050. The optimization 
model indicates that in all years the standard deviation decreases which leads to a 
higher share of wind within the portfolio. The share of wind is higher compared to the 
benchmark scenarios (OTP 1, OTP 2, OTP 3): 9% in 2012, 11% in 2020 and 11% in 
2050. Nevertheless, this sensitivity analysis further supports hypothesis 4.  
 
 
	   Scenario 7: 2012 Scenario 8: 2020 Scenario 9: 2050 

 Solar Wind Solar Wind Solar Wind 
Mean 0.006 0.0147 0.008 0.019 0.010 0.019 
Standard deviation 0.010 0.0129 0.013 0.015 0.016 0.017 
Ideal portfolio 63% 37% 52% 48% 53% 47% 
Table 16: Mean and standard deviation of Scenario 7, 8 ,9 

 
The sensitivity analysis for solar balancing and capacity costs and the sensitivity 
analysis for wind installation costs show the same results as outlined in the empirical 
section 4.1.4.1. Multiplying the hourly data set with defined inverse levelized cost of 
energy changes the standard deviation of the solar and the wind data set and therefore 
results in different portfolios. In case the wind LCOE is higher (100%) than the solar 
LCOE (<100%), the share of wind within the portfolio increases. For instance, if the 
solar LCOE is 10% lower than the wind LCOE the standard deviation of wind is 7% 
lower than the solar standard deviation. This leads to a higher share of wind compared 
to the portfolio in which the LCOE of both technologies is equal. On the other hand, if 
the wind LCOE is lower (e.g. 80%) than the solar LCOE (e.g. 100%), the wind 
standard deviation is 29% higher than the solar standard deviation. Thus, solar power 
exceeds the wind share within the optimal portfolio. 
 
 
Wind LCOE (%) 100 100 100 100 100 100 100 100 100  
Solar LCOE (%) 90 80 70 60 50 40 30 20 10  
Wind Stdv / Solar Stdv (%) -7 -17 -28 -38 -48 -59 -69 -79 -90  
Wind LCOE (%) 100 90 80 70 60 50 40 30 20 10 
Solar LCOE (%) 100 100 100 100 100 100 100 100 100 100 
Wind Stdv / Solar Stdv (%) 3 15 29 48 72 107 158 244 417 933 
Table 17: Wind standard deviation in % compared to solar standard deviation 
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4.2.5. Technological, political and investor optimized portfolio 

This section discusses the integration of the optimal portfolio from a technological, 
political and investor perspective. The model used in section 4.2.1. optimized 
portfolios from a technological perspective (namely, predictability error, volatility, 
contribution to peak demand) to hold a share of 35%, 90% and 40% wind, 
respectively. Looking at the levelized cost of energy efficient frontier plotted in figure 
56, one may conclude there is no optimal solution from the technological perspective 
based on the argument that the three different optimized portfolios lie on different 
points on the frontier. The ideal technological predictability portfolio overweighs solar 
energy based on the lower standard deviation of 0.0011. The lower standard deviation 
is related to a better predictability especially during night times in which forecast and 
actual generation are equal. Extremes within a large portfolio can be observed only 
very few times compared to wind. The optimal theoretical volatility portfolio identifies 
a portfolio that holds a small share of solar. The high solar standard deviation of 0.043 
outlines that the volatility defined as the generation difference from one to the next 
hours is higher than for wind. For solar generation, this occurs almost every hour from 
night to day generation (hourly increase) and from day to night generation (hourly 
decrease). Additionally, solar energy generation shows two extremes: the highest 
generation during noon hour and the zero generation during night times. Although the 
generation of wind energy varies, the degree to which it hourly differs in the observed 
timeframe is by far lower than for solar. 
 
 

 

Figure 56: Ideal LCOE 2050 efficient frontier based on 26,280 data points (2010 to 2012)  

 
The ideal contribution of peak demand portfolio outlines that although solar 
contributes less kilowatt-hours it contributes on a more constant basis (solar standard 
deviation of 0.05). Less extremes of solar contribution are observed. The LCOE 
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theoretical optimized portfolio identifies a portfolio in that solar overweighs wind 
energy. Solar energy including balancing and capacity costs is assumed to be more 
expensive than wind energy. This results in a lower solar standard deviation (table 17). 
Surprisingly, as outlined above two out of three optimized technological portfolios 
(predictability, contribution to peak demand) propose a wind share of 35% to 40%. 
Furthermore, the analysis finds that the long-term optimized political and investor 
LCOE portfolio in 2050 lies within this range and suggests a share of 37% wind 
energy. 
 
On the contrary, the portfolio that minimizes volatility differs significantly from the 
others and recommends a composition of 90% wind and 10% solar energy with the 
underlying assumption of volatility being commonly defined as the difference from 
one to the next hour. One may now argue in two ways: first, volatility should not be 
related to consecutive hours but related to the variation of the load. This said, only 
hours in which the volatile generation changes from one to the next hour in the 
opposite direction compared to the load are countable hours of volatility. Therefore, in 
case the load and the generation both increase in one hour, this hour would not count 
to the hours of volatility. On the other hand, if the load decreases and the generation 
increases or vice versa the hour would count as volatility. Computing volatility defined 
related to load shows that the optimal portfolio still holds a share of 65% wind. 
Second, one may outline that hours of zero solar generation (nighttime) should not be 
included into the analysis since these hours are not volatile. Nevertheless, the question 
of the timeframe which should be excluded can be raised since solar energy starts to 
generate during summer times around 5am and during winter times around 7am. 
Others may argue that excluding night hours of solar energy leads to a different solar 
data set and should not be compared to a 24-hours wind data set. In addition to this, 
the advantage that solar energy is not volatile during night hours would not be valued. 
Calculating the optimal volatility portfolio by using a historical data set that excludes 
night hours (7pm to 6am) shows that the results do not vary compared to the analysis 
including night hours. 
 
The three technological portfolios are not evaluated on a financial basis. Thus, it is 
assumed that the higher the predictability error and volatility the higher the likeliness 
of additional balancing costs. Furthermore, the higher the contribution to peak demand 
the lower the likeliness of additional cost. The question if this is the case in a real 
market is not addressed in this dissertation and should be matter to further research. 
 
It appears that a portfolio that holds a share of 37% wind is preferred by a risk averse 
investor from a predictability error, contribution to peak demand and LCOE 
perspective. However, the investor should be aware that this portfolio is not the 
portfolio with the lowest risk related to volatility. Therefore, the assumption that less 
volatility causes less balancing costs should be examined in detail based on real 
market conditions. This might enable investors to evaluate the financial impact of 
volatility.   
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4.3. Conclusion 

This dissertation combines wind and solar energy and identifies that investing in both 
technologies decreases risk. Four objective functions are used to determine optimal 
wind and solar portfolios that are [1] minimizing predictability errors, [2] minimizing 
volatility, [3] maximizing contribution to peak demand and [4] minimizing levelized 
cost of energy. This publication borrows an optimization approach to reduce the 
variability of the objective functions and provides with the underlying model 
assumptions of normally distributed returns reliable and valid insights into German 
wind and solar portfolios. A German hourly three-year wind and solar dataset for 
generation and forecast demonstrates the usefulness of mean-variance portfolio theory 
for wind and solar portfolio development. Several relevant insights to the current 
policy debate are determined: 
 
First, it is shown that the empirical German portfolios of 2010 and 2012 are far from 
the predictability efficient frontier of these years (figure 50). By investing in portfolios 
that lie on the efficient frontier, there could have been large benefits minimizing the  
predictability error. From a volatility and contribution to peak demand perspective, the 
empirical German portfolios lie on the efficient frontier but indicate a high level of 
risk. This might have been decreased by investing in another combination of wind and 
solar power. The results are a first indication that early wind and solar investors did 
not include technological risk in their investment decision since there has been no 
financial impact on their investment, so far. These findings are important for policy 
makers to evaluate former policy regulations from an investor risk perspective. 
 
Second, this study finds that each optimization model recommends another 
composition of wind and solar energy being the ideal portfolio as illustrated in figure 
57. Surprisingly, three out of four models propose a share of wind between 35% and 
40%. These findings are relevant to the policy debate on supporting the ideal long-
term portfolio not only from a technological optimization approach linked to system 
security but also from a cost efficiency approach. 
 
 

 
Figure 57: OTP Predictability error, volatility, contribution to peak, LCOE  
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Third, the results show that from an optimized theoretical predictability error 
perspective the solar share is higher than the wind share. This can be interpreted by the 
lower standard deviation which means that solar power is predicted more precisely 
over the three-year time period. Such findings are not surprising since during night 
time the predictability error for solar is most often close to zero (figure 28b). On the 
contrary, the optimized theoretical volatility portfolio advices to hold a higher share of 
wind. Although wind volatility takes place in more hours than solar volatility (figure 
11), the standard deviation indicates that the hourly variation of solar during the day 
times (figure 43 a), b)) is on average higher than the daily wind variations from one to 
the next hours. These two objective functions can be interpreted as optimizing for 
balancing costs. Policy makers should therefore determine which objective is more 
relevant to decrease balancing costs in the long-term. Regulations might drive 
investments towards efficient predictability error or volatility wind and solar 
portfolios. 
Fourth, the contribution to peak demand portfolio prefers solar over wind power. A 
lower solar standard deviation shows that although wind contributes in more hours 
within the year (figure 12) the variation of the level to which wind contributes is 
higher than for solar power (figure 38 a), b)). This objective function takes into 
account optimizing for capacity costs. Thus, the political perspective should consider 
if this function is relevant in the long-term. In case this applies, the paper suggests to 
develop regulations that support efficient contribution to peak demand portfolios. 
Fifth, the approach of optimizing levelized cost of energy prefers solar power over 
wind power as long as solar levelized cost of energy is equal or below wind LCOE. 
Although solar power generates in less hours of the year, the lower solar standard 
deviation (figure 46) indicates that the level of generation is more consistent in the 
three-year time period. The fifth objective function can be used to determine the 
relevance of total system costs. Policy should wisely follow the wind and solar 
levelized cost of energy development to determine cost efficient long-term portfolios. 
The level of balancing and capacity costs might limit potential of levelized cost of 
energy efficiency gains but also create constraints optimizing for predictability error, 
volatility or contribution to peak demand portfolios.  
Finally, integrating all perspectives is essential to develop conditions that lead 
investors to continue investing in wind and solar power. Ambitious policies might 
consider introducing incentives to support schemes, such as a feed-in tariff with an 
additional component that incorporates balancing and capacity portfolio effects. In 
case such regulations would be implemented, this dissertation suggests for a risk 
averse investment a portfolio that holds between 35% to 40% wind. This would 
optimize (a) potential balancing risk based on predictability, (b) capacity risk based on 
the contribution to peak demand and be the optimal long-term cost efficient portfolio 
including balancing and capacity costs (c). The results should be considered as 
recommendations derived from an exploratory approach that identifies ideal wind and 
solar portfolios based on mean-variance portfolio theory.  
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5 Final discussion, implications and further research 
 
5.1. Summary of results 

The results that have been identified in this exploratory research approach challenge 
previous findings that focus on technological feasibility of energy systems. These 
publications mostly determine portfolios based on levelized cost of energy integrating 
geographical constraints of potential wind and solar locations (FVEE, 2010; ewi et al., 
2010; Greenpeace, 2010; Klaus et al., 2010; Nitsch et al., 2010; Hey et al., 2011). The 
scope of their approaches is not to determine the optimal share between wind and solar 
including investor risk, e.g. defined as standard deviation but analyze the feasibility of 
a total renewable energy generation system including all renewable energy sources as 
well as storage. They illustrate that future renewable energy systems in 2050 might be 
likely to hold a share of 52% to 80% wind power (as % of installed capacity). The 
underlying assumptions in their studies are the goal of a 100% renewable energy 
system, a lower wind LCOE than solar LCOE and the availability of low-priced 
storage capacity. The high share of wind in their results is mostly based on the 
assumption of costs being the only measurement that determines the future energy 
mix. 
Differing from other methods, this dissertation examines risk defined as standard 
deviation of wind and solar characteristics: predictability, volatility and the 
contribution to peak demand. In the next step, the standard deviation of levelized cost 
of energy is observed. This research argues that an evaluation of a long-term cost 
efficient portfolio should not only include return but also the effect of risk. With this 
underlying assumption, the dissertation treats return and risk as equally important and 
identifies for three (predictability error, contribution to peak demand, LCOE) 
optimized portfolios that risk is minimized for a wind share of 35% to 40% and for one 
ideal portfolio (volatility) for a share of 90% wind. 
 
 
5.2. Theoretical contribution 

The presented research study contributes in five areas. First, to portfolio theory in the 
energy sector; second, to literature developing future renewable energy scenarios for 
2050; third, to literature assessing empirical wind and solar distributions; fourth, to the 
levelized cost of energy method; and lastly to the political and investor perspective.  
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5.2.1. Contribution to portfolio theory in the energy sector  

With respect to portfolio theory it is the first time, optimized wind and solar portfolios 
have been developed. Prior research rather focused on either integrating a renewable 
energy source into a conventional generation portfolio or optimizing the output of 
several disperse located wind generators. Although existing literature focuses on 
LCOE or generation output per installed capacity, neither volatility or predictability 
has been observed in this ways. 
 

5.2.2. Contribution to renewable energy scenario development 

One of the major contribution of this work is that the foundation of the research 
framework seeks to integrate three different perspectives on one renewable energy 
goal: the political (1), the technological (2) and the investor perspective (3). It 
summarizes in detail the perspectives and outlines their interaction. The developed 
research framework combines the elements of the perspectives and advances current 
approaches by integrating risk. Risk is defined by variability. The findings add to one 
dimensional renewable energy scenario development and indicate that integrating risk 
to the analysis changes results, significantly. 
 
 
5.2.3. Contribution to empirical wind and solar research 

With respect to the empirical large sample of German wind and solar generation and 
forecast data of three consecutive years (2010 to 2012), it is shown that distributions 
vary from year to year. It is the first time that a study examines skewness and kurtosis 
for wind and solar distributions for a dataset of a whole country. The insights 
contribute to wind and solar distribution research and their relationship (Drake & 
Hubacek, 2007). The existence of skewness and kurtosis challenges the assumption of 
a normal distribution drawn by prior research that calculates optimized generation 
portfolios.  
 
 
5.2.4. Contribution to LCOE method 

This dissertation derives based on the integrated framework the assumption that technological 
characteristics of wind and solar result in additional system security costs. Some literature 
argue that volatility and predictability create balancing costs (Skea et al., 2008). Others point 
out that a lower contribution to peak demand results in additional capacity required to 
maintain the same level of system reliability (Gross et al., 2006). Although existing 
approaches integrate environmental costs (Jansen et al., 2006; Bhattacharya & Kojima, 2010) 
for conventional generators, the introduction of system security costs has not been used, so 
far. Therefore, this dissertation integrates balancing and capacity costs in the LCOE approach.  
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5.2.5. Contribution to political and investor perspective 

In essence, the results of the analysis enables to broaden the discussion of how to reach a 
specific renewable energy goal. First, it shows not only that an integrated framework is 
important but also that elements within the framework influence each other and might 
generate differing results. Second, it raises the awareness that potential additional balancing 
and capacity costs might occur due to higher wind and solar penetration levels. Regardless of 
the financial burden for investors or society, it is essential to incorporate them into total 
system costs to maintain system reliability. Third, not only costs should be regarded when 
leveraging high wind and solar investments but also risk. Regulatory frameworks that transfer 
high risk towards investors might lead to financial gaps. Thus, the design of political 
instruments to enable investments in wind and solar energy have to provide the right level of 
return and risk. Not only theoretical contributions but also practical values are comprised in 
the results. Investors, for instance, might not be aware that balancing and capacity costs 
caused by wind and solar generation might play a role for future investments. New 
regulations might provide e.g. incentives in case low technological risk is caused by wind and 
solar installations. The next section draws implications for policy makers and investors.  
 
 
5.3. Implication for policy maker 

This dissertation points out three implications for policy makers. They are mainly derived 
from the integrated research framework: 
 
1. Use an integrated framework to determine long-term wind and solar portfolios. 
The first point refers to the finding that the political, the technological and the investor 
perspectives influence each other. Thus, it is essential that all perspectives are considered and 
aligned in order to reach common renewable energy goals. 
 
2. Be aware that the least short-term cost portfolio might not be the least long-term cost 
portfolio. 
The second recommendation is consistent with the findings for LCOE portfolios. The 
changing optimal share over time indicates that the long-term cost efficient portfolio differs 
from the short-term ideal portfolio, mainly based on the level of wind and solar LCOE. 
 
3. Provide a stable investment environment to reach renewable energy goals. 
The last recommendation is related to balancing and capacity costs. Regulations that do not 
clearly state who might be responsible to compensate the costs for additional system security 
costs imply risk for investors. This might negatively impact the investment behavior 
jeopardizing the ability to reach renewable energy goals.  
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5.4. Implication for investors 

Four implications are drawn for the investor perspective. They relate to risk and the 
interaction between technological characteristics and system security costs. Four principles 
are derived: 
 
1. Pick the energy investment portfolio not only based on potential return but also on risk. 
This implication relates to the finding that the results differ from approaches taking into 
account levelized cost of energy only. It appears that changing the view towards a two 
dimensional approach that includes return and risk generates other results.  
 
2. Use long-term data to evaluate risk. 
The second implication is related to the finding that the results based on annual data varies 
from the results based on three-year data. Hence, longer timeframes are able to balance out 
individual years that indicate extreme variation. The larger the dataset the better the 
evaluation of risk.3 
 
3. Track regulations related to balancing and capacity costs. 
The third recommendation relates to the finding that balancing and capacity costs are sensitive 
to the ideal investment portfolio. The level of system security as well as the relation between 
wind and solar balancing and capacity costs are relevant to determine the lowest risk 
portfolio.  
 
4. Track the development of investment costs. 
The fourth point is based on the finding that investment costs are sensitive to LCOE and 
determine the share of the specific renewable energy source within the portfolio. In addition 
to this, ongoing technological development might lead to essential price changes within the 
industry resulting in different optimized long-term portfolios. 
 
 
  

                                                             
3 Risk is defined as the standard deviation of output 
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5.5. Limitations and further research 

This dissertation applies portfolio theory in the energy sector for one specific country, namely 
Germany. On the one hand, the large dataset provides an ideal context for detailed empirical 
analysis covering wind and solar generation and forecast for three consecutive years. On the 
other hand, the generalization of the exploratory results is only partially applicable to other 
settings (e.g. different times). Datasets of other countries might show different generation and 
forecast characteristics, effects generated by disperse locations or differing potential related to 
both geography and the age of the generation park. Thus, this work is seen as starting point 
for further research. One might use other datasets and test the applicability of the framework 
to other country-specific settings. 
 
Moreover, the dataset captures a timeframe of three-years (2010 to 2012). As shown before, 
the reliability of the results in the long-term increases with longer timeframes. Further studies 
could add to reliability by collecting generation and forecast data over longer timeframes and 
assess if results change. This might lead to insightful details related to the assumption of the 
distributions following the central limit theorem. In addition to this, one may examine the 
results by using a daytime data set or a nighttime data set only. This might lead to different 
results and generate detailed information about daily impacts. The same might be performed 
for seasonal data sets (e.g. summer, winter). 
 
Within the selected timeframe, high installation rates of solar energy have been observed. An 
interesting observation might be a detailed analysis of the impact of the annual increasing 
solar energy production on results. Furthermore, the relevance of annual varying weather 
conditions in 2010 to 2012 might generate interesting findings. 
 
In this dissertation, mean-variance portfolio theory has been used to find optimal wind and 
solar portfolios. Additional studies might expand this approach by integrating additional 
renewable energy generators e.g. biomass, hydro power or geothermal. Thus, a theoretical 
optimal portfolio that includes renewable power generation only could be created. 
 
Using portfolio theory under the assumption of a normal distribution is one major limitation 
of this study. As discussed in the empirical section, all distributions vary from the normal 
distribution. Hence, one potentially fruitful area for research might concern the measurement 
of risk. One could add to the analysis by integrating a third measurement such as skewness 
(Kim & White, 2004; Canela & Collazo, 2007) or by using proposed distributions such as the 
Weibull distribution for wind generation (Borchert & Schemm, 2007) or a hybobolic 
distribution for solar forecasting (Hodge et al., 2011). Moreover, scientists might develop 
complex simulations that reconstruct wind and solar generation and forecast data. Another 
approach of capturing risk is an assessment based on different risk measures. One may argue 
that risk of loss measurements e.g. VaR or CVaR are another way of risk investigation and 
generate additional findings when evaluating risk (Borchert & Schemm, 2007; Gass et al., 
2011). This would uncover the level of risk misinterpretation generated by using the 
assumption of normally distributed data.  
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The positive and the negative variance of the technological elements predictability and 
volatility are assumed to result in the same level of balancing costs. Thus, they are treated as 
equally unfavorable for the energy system. Further research might tag a price (e.g. based on 
market conditions) to the level of positive and negative variance of predictability and 
volatility. By doing so, the technological measurements used in this dissertation for 
predictability and volatility would be transferred into financial measures. Thus, portfolios that 
would use inverse balancing costs as return could be computed. The same method could be 
used to calculate ideal contribution to peak demand portfolios that define return as capacity 
costs. By assigning capacity costs to the level of contribution to peak demand the 
technological portfolios would be transferred into financial portfolios. 
 
The levelized cost of energy method has been extended by integrating balancing and capacity 
costs. Since integration costs related to grid connection and transmission are out of scope, 
these input variables might be added to a total cost calculation in the future. In doing so, the 
impact of grid and transmission costs on levelized cost of energy might be revealed. 
 
Balancing and capacity costs are assumed to increase over time based on the penetration level 
of wind and solar power. However, it indicates that research within this area is very limited. 
The assumptions drawn in this dissertation are just a starting point for further research. It is 
shown that balancing and capacity costs have an impact on the optimal wind and solar 
portfolio in the long-term. Thus, it is essential to assess balancing and capacity costs for wind 
and solar energy separately related to the penetration level of each generation source and 
under a country-specific energy system. Such an approach is likely to decreases the 
uncertainty level of pricing in unconfirmed system security costs. Further analysis might 
investigate the level of balancing and capacity costs on a short-term or a mid-term bases e.g. 
minutes or hours. This would lead to more detailed results based on hourly simulations. 
 
The development of optimal LCOE cost portfolios is drawn under the assumption of different 
wind and solar penetration levels. In 2050, the supposed penetration level is 80% derived of 
the German defined renewable energy goal. An interesting follow up research could assess if 
80% is the ideal level for wind and solar compared to conventional generators.  
 
Overall, it appears that this integrated work combining several perspectives and 
methodologies is one of the first attempts to evaluate renewable energy goals not only based 
on costs but also in terms of risk. It is very likely that different input datasets might yield 
contradictory results. Thus, this dissertation should not only be regarded as a portfolio theory 
study in the energy sector but also as a starting point calling for further elaboration on 
integrated energy research. 
  



89 

 

APPENDIX 
Appendix A 
 

 

 Obs. Mean Variance S.Dev. Skewness Ex. Kurtosis JB 

Wind Predictability Error 2010 
8,760 -0.0087 0.0018 0.0426 0.2262 3.6025 4.8116*103 

Wind Predictability Error 2011 
8,760 0.0023 0.0018 0.0421 1.2121 7.5893  2.3168*104 

Wind Predictability Error 2012 
8,760 -0.0067 0.0013 0.0357 0.6360 3.2531 4.4532*103 

Wind Predictability Error 2010 - 2012 
26,280 -0.0044 0.0016 0.0406 0.7012 5.3671 3.3695*104 

Solar Predictability Error 2010 
8,760 0.0078 0.0018 0.0421 1.8732 9.9918 4.1563*104 

Solar Predictability Error 2011 
8,760 -0.0057 7.6905*10-4 0.0277 -1.1066 9.3371 3.3590*104 

Solar Predictability Error 2012 
8,760 4.1081*10-4 7.2061*10-4 0.0268 -0.3560 9.5649 3.3578*104 

Solar Predictability Error 2010 - 2012 
26,280 8.3294*10-4 0.0011 0.0334 1.1603 12.9570 1.8973*105 

 

 

𝑆𝑆   =       
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!)!
!!!

!
!
            𝐸𝐸𝐸𝐸   =       

1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

− 3 

Table 18: Wind and solar predictability error statistics  
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Appendix A 
 
 

 
 

       

 Obs. Mean Variance S.Dev. Skewness Ex. Kurtosis JB 

Wind Volatility 2010 8,760 3.1393*10-5 2.5411*10-4 0.0160 0.0402 3.7736 5.1999*103 

Wind Volatility 2011 8,760 -2.1005*10-5 2.9784*10-4 0.0173 0.0139 2.6548 2.5728*103 

Wind Volatility 2012 8,760 -1.9406*10-5 3.5245*10-4 0.0188 -3.6849 126,76 5.6106*106 

Wind Volatility 2010 - 2012 26,280 1.9113*10-5 2.8843*10-4 0.0170 0.0651 3.0128 9.9574*103 

Solar Volatility 2010 8,760 3.8813*10-6 0.0011 0.0325 0.1690 3.3038 4.0256*103 

Solar Volatility 2011 8,760 2.6256*10-6 0.0021 0.0462 0.1702 1.7692 1.1847*103 

Solar Volatility 2012 8,760 3.4247*10-6 0.0024 0.0487 0.1503 1.6255 997.3611 

Solar Volatility 2010 - 2012 26,280 1.0274*10-6 0.0019 0.0430 0.1668 2.3123 5.9766*103 
 
 

𝑆𝑆   =     
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!)!
!!!

!
!
      𝐸𝐸𝐸𝐸   =       

1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

− 3 

 

Table 19: Wind and solar volatility statistics 
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Appendix A 
 
 

 
 

       

 Obs. Mean Variance S.Dev. Skewness Ex. Kurtosis JB 

Wind Contribution 2010 8,760 0.0777 0.0047 0.0685 1.2050 0.8148 235.6926 

Wind Contribution 2011 8,760 0.0896 0.0059 0.0754 0.9825 0.0818 141.0109 

Wind Contribution 2012 8,760 0.0717 0.0037 0.0610 1.3881 1.8818 412.8991 

Wind Contribution 2010 - 2012 26,280 0.0797 0.0047 0.0689 1.1969 0.8318 703.7866 

Solar Contribution 2010 8,760 0.0097 2.3763-4 0.0154 2.1825 4.8355 1.5454*103 

Solar Contribution 2011 8,760 0.0353 0.0021 0.0457 1.4670 1.3523 380.5129 

Solar Contribution 2012 8,760 0.0510 0.0045 0.0668 1.5066 1.4850 414.2406 

Solar Contribution 2010 - 2012 26,280 0.0320 0.0026 0.0506 2.1996 4.9077 4.7602*103 
 

 

𝑆𝑆   =     
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!)!
!!!

!
!
      𝐸𝐸𝐸𝐸   =       

1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

− 3 

 

Table 20: Wind and solar contribution to peak demand statistics 
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Appendix A 
 

 

 

 Obs. Mean Variance S.Dev. Skewness Ex. Kurtosis JB 

Wind Generation 2010 8,760 0.1503 0.0018 0.1338 1.5905 2.7907 6.5358*103 

Wind Generation 2011 8,760 0.1813 0.0251 0.1585 1.2622 1.1415 2.8014*103 

Wind Generation 2012 8 760 0.1737 0.0219 0.1480 1.4986 2.1809 5.0149*103 

Wind Generation 2010 - 2012 26,280 0.1684 0.0219 0.1480 1.4498 1.9689 1.3451*104 

Solar Generation 2010 8,760 0.00661 0.0117 0.1083 1.7700 2.2926 6.4925*103 

Solar Generation 2011 8,760 0.0967 0.0219 0.1481 1.4982 1.0975 3.7168*103 

Solar Generation 2012 8,760 0.1073 0.0270 0.1642 1.5275 1.2622 3.9881*103 

Solar Generation 2010 - 2012 26,280 0.0900 0.0205 0.1432 1.6863 1.9704 1.6706*104 
 

 

𝑆𝑆   =     
1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!)!
!!!

!
!
      𝐸𝐸𝐸𝐸 =     

1
𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!

!!!

(1𝑛𝑛 (𝑥𝑥! − 𝑥𝑥)!!
!!! )!

− 3 

 

Table 21: Wind and solar generation statistics 
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Appendix B 
 

 

 

Covariance Predictability 
Error Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 

2010-2011 
Wind 2010 1.000000            

Wind 2011 0.000051 1.000000          

Wind 2012 0.000113 0.000014 1.000000        

Solar 2010 0.000016 -0.000048 0.000001 1.000000      

Solar 2011 -0.000022 0.000035 0.000009 -0.000180 1.000000    

Solar 2012 0.000020 -0.000011 0.000015 -0.000030 0.000069 1.000000  

Wind & Solar  

2010 - 2012       -0.000002 

Covariance Volatility Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 
2010-2011 

Wind 2010 1.000000       

Wind 2011 0.000039 1.000000      

Wind 2012 0.000028 0.000043 1.000000     

Solar 2010 0.000036 0.000063 0.000081 1.000000    

Solar 2011 0.000072 0.000059 0.000103 0.001239 1.000000   

Solar 2012 0.000096 0.000119 0.000107 0.001308 0.001961 1.000000  

Wind & Solar  

2010 - 2012 

      0.000067 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =    𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! × 𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! ×  𝑝𝑝!   
!

!!!

 

Table 22: Covariance predictability error & volatility  
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Appendix B 
 

 

 

Covariance Contribution to 
peak demand Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 

2010-2011 
Wind 2010 1.000000            

Wind 2011 0.000063 1.000000          

Wind 2012 -0.000453 0.000276 1.000000        

Solar 2010 0.000110 -0.000047 -0.000110 1.000000      

Solar 2011 0.000082 -0.000439 -0.000263 0.000292 1.000000    

Solar 2012 0.000384 -0.000712 -0.000285 0.000411 0.001929 1.000000  

Wind & Solar  

2010 - 2012       -0.000230 

Covariance Generation Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 
2010-2011 

Wind 2010 1.000000            

Wind 2011 0.000521 1.000000          

Wind 2012 -0.000579 0.001107 1.000000        

Solar 2010 -0.001530 -0.001285 -0.001251 1.000000      

Solar 2011 -0.000744 -0.003008 -0.001977 0.013447 1.000000    

Solar 2012 -0.001203 -0.001520 -0.002756 0.014834 0.021269 1.000000  

Wind & Solar  

2010 - 2012       -0.0022278 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋,𝑌𝑌 =    𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! × 𝑟𝑟!" − 𝐸𝐸 𝑟𝑟! ×  𝑝𝑝!   
!

!!!

 

Table 23: Covariance contribution to peak demand & generation  
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Appendix B 
 

 

Corr.Coeff. Predictability 
Error Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 

2010-2011 
Wind 2010 1.000000            

Wind 2011 0.009474 1.000000          

Wind 2012 0.074101 0.009362 1.000000        

Solar 2010 0.008764 -0.027165 0.000697 1.000000      

Solar 2011 -0.018257 0.029963 0.008804 -0.154739 1.000000    

Solar 2012 0.017708 -0.009737 0.016035 -0.026960 0.092231 1.000000  

Wind & Solar  

2010 - 2012       -0.001473 

Corr.Coeff. Volatility Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 
2010-2011 

Wind 2010 1.000000            

Wind 2011 -0.002945 1.000000          

Wind 2012 0.091652 0.133524 1.000000        

Solar 2010 0.069205 0.113051 0.132344 1.000000      

Solar 2011 0.096953 0.073778 0.119444 0.827629 1.000000    

Solar 2012 0.123310 0.141630 0.117278 0.828569 0.873225 1.000000  

Wind & Solar  

2010 - 2012       0.089963 

𝜌𝜌!,! =   
𝐶𝐶𝐶𝐶𝐶𝐶  (𝑟𝑟!,𝑟𝑟!)
𝜎𝜎!  ×  𝜎𝜎!  

 

Table 24: Correlation coefficient predictability error &volatility  
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Corr.Coeff. Contribution to 
peak demand Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 

2010-2011 
Wind 2010 1.000000            

Wind 2011 0.013463 1.000000          

Wind 2012 -0.114453 0.057736 1.000000        

Solar 2010 0.104677 -0.043974 -0.122007 1.000000      

Solar 2011 0.046381 -0.127524 -0.104146 0.725465 1.000000    

Solar 2012 0.144292 -0.160790 -0.069973 0.675493 0.827074 1.000000  

Wind & Solar  

2010 - 2012       -0.066029 

Corr.Coeff. Generation Wind 2010 Wind 2011 Wind 2012 Solar 2010 Solar 2011 Solar 2012 Wind & Solar 
2010-2011 

Wind 2010 1.000000            

Wind 2011 0.024386 1.000000          

Wind 2012 -0.029032 0.047203 1.000000        

Solar 2010 -0.104768 -0.074880 -0.078013 1.000000      

Solar 2011 -0.037253 -0.128161 -0.090197 0.838344 1.000000    

Solar 2012 -0.054305 -0.058403 -0.113373 0.833983 0.874435 1.000000  

Wind & Solar  

2010 - 2012       -0.105073 

𝜌𝜌!,! =   
𝐶𝐶𝐶𝐶𝐶𝐶  (𝑟𝑟!,𝑟𝑟!)
𝜎𝜎!  ×  𝜎𝜎!  

 

Table 25: Correlation coefficient contribution to peak demand & generation  
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Appendix C4 
 

 

  
 

 

 

 

 

 

 

 
Figure 58: Wind & Solar Predictability Errors QQ-plots 2010, 2011   
                                                             
4 These plots were developed in cooperation with Sina Marquardt  
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Figure 59: Wind & Solar Predictability Errors QQ-plots 2012, average 2010-12  
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Figure 60: Wind & Solar Volatility QQ-plots 2010, 2011   
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Figure 61: Wind & Solar Volatility QQ-plots 2012, average 2010-12  
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Figure 62: Wind & Solar Contribution to peak demand QQ-plots 2010, 2011  
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Figure 63: Wind & Solar Contribution to peak demand QQ-plots 2012, average 2010-12  
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Figure 64: Wind & Solar Generation QQ-plots 2010, 2011  
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Figure 65: Wind & Solar Generation QQ-plots 2012, average 2010-12 
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Figure 66: Optimized technological portfolios with results ranging in 2σ 

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

O
ut

pu
t (

C
ap

ac
ity

 F
ac

to
r)

Predictability Error
2010                          2011                          2012

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

O
ut

pu
t (

C
ap

ac
ity

 F
ac

to
r)

Volatility
2010                          2011                          2012

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

O
ut

pu
t (

C
ap

ac
ity

 F
ac

to
r)

Contribution to peak demand
2010                          2011                          2012



106 

 

REFERENCES 
Agora Energiewende. 2012. 12 Thesen zur Energiewende - Ein Diskussionsbeitrag zu 

den wichtigsten Herausforderungen im Strommarkt. http://www.agora-
energiewende.de/fileadmin/downloads/Agora_Impulse_12_Thesen_zur_Energiewe
nde_Kurzfassung_web.pdf 2012 [January 02, 2012]. 

Aitchison J, Brown JAC. 1957. The Lognormal Distribution. (Cambridge University 
Press). 

Alexander GJ, Baptistab AM. 2002. Economic implications of using a mean-VaR 
model for portfolio selection: A comparison with mean-variance analysis. Journal 
of Economic Dynamics & Control 26: 1159-1193. 

Altmaier P. 2012. Hintergrundpapier - Verfahrensvorschlag zur Neuregelung des 
Erneuerbaren-Energien-Gesetzes. 
http://www.bmu.de/files/pdfs/allgemein/application/pdf/ verfahrensvorschlag_eeg-
reform_2012_bf.pdf [October 10, 2012]. 

Arditti FD. 1967. Risk and the required return on equity. The Journal of Finance 22: 
19-36. 

Artzner P, Delbaen F, Eber J-M, Heath D. 1999. Coherent Measures of Risk. 
Mathematical Finance 9(3): 203–228.  

Awerbuch S. 2000a. Getting it right: The Real cost Impacts of a Renewables Portfolio 
Standard. Public Utilities Fortnightly. 

Awerbuch S. 2000b. Investing in photovoltaics: risk, accounting and the value of new 
Technology. Energy Policy 28: 1023–1035. 

Awerbuch S, Berger M. 2003. EU Energy Diversity and Security: Applying Portfolio 
Theory to Electricity Planning and Policy-Making. (International Energy Agency. 
Paris). 

Balanda KP, MacGillivray HL. 1988. Kurtosis: A critical review. American 
Statistician 42: 111-119. 

Bar-Lev D, Katz S. 1976. A Portfolio Approach to Fossil Fuel Procurement in the 
Electric Utility Industry. Journal of Finance 31(3): 933-47. 

Barbose G, Darghouth N, Wiser R, Seel J. 2011. Tracking the Sun IV. An historical 
summary of the installed cost of photovoltaics in the united states from 1998 to 
2010. (Lawrence Berkley National Laboratory). 

Baumol WJ. 1963. An expected gain-confidence limit criterion for portfolio selection. 
Management Science 10: 174-182. 

Bawa, VS. 1975. Optimal rules for ordering uncertain prospects. Journal of Financial 
Economics 2: 95-121. 

Bhattacharya A, Kojima S. 2010. Power sector investment risk and renewable energy: 
A Japanese case study using portfolio risk optimization method. Energy Policy 
press doi:10.1016/j.enpol.2010.09.031. 

BDEW. 2011. Sitzung der Arbeitsgemeinschaft Energiebilanzen am 16. Dezember 
2011. Entwicklungen in der Stromwirtschaft 2011. Erneuerbare Energien und das 
EEG: Zahlen, Fakten, Grafiken. https://bdew.de/internet.nsf/id/ 



107 

 

3564E959A01B9E66C125796B003CFCCE/$file/BDEW%20Energie-
Info_EE%20und%20das%20EEG%20(2011)_23012012.pdf [December 15, 2012]. 

BDI. 2012. BDI warnt vor Kosten der Energiewende. Handelsblatt. 
http://www.handelsblatt.com/unternehmen/industrie/atomausstieg-bdi-warnt-vor-
kosten-der-energiewende/7364738.html [November 11, 2012]. 

Bernoulli D. 1954. Exposition of a New Theory on the Measurement of Risk. 
Econometrica 22(1): 23-36. 

Binder K. 1979. Monte Carlo Methods in Statistical Physics. (Springer. Berlin). 
BMU. 2009. Electricity from renewable energy sources. What does it cost? 

http://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/ 
brochure _electricity_costs_bf.pdf [January 18; 2012]. 

BMU. 2011a. Das Energiekonzept der Bundesregierung 2010 und die Energiewende 
2011. Stand September 2010. http://www.bmu.de/fileadmin/bmu-import/files/pdfs/ 
allgemein/application/pdf/energiekonzept_bundesregierung.pdf [January 15; 2012]. 

BMU. 2011b. Erneuerbare Energien. Innovationen für eine nachhaltige 
Energieerzeugung. 8. Aktualisierte Auflage. http://www.erneuerbare-
energien.de/fileadmin/ee-
import/files/pdfs/allgemein/application/pdf/ee_innovationen_energiezukunft_bf.pdf 
[January 12; 2012]. 

BMU. 2012a. Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2011. 
Grafiken und Tabellen. 

BMU. 2012b. Die Energiewende. Zukunft made in Germany. 
http://www.bmu.de/files/pdfs/allgemein/application/pdf/broschuere_energiewende_
zukunft_bf.pdf [October 5, 2012]. 

Boccard N. 2010. Economic properties of wind power - A European assessment. 
Energy Policy 38: 3232-3244. 

Bode S, Groscurth H. 2006. Zur Wirkung des EEG auf den Strompreis. HWWA 
Discussion Paper: 348. 

Bodie Z, Kane A, Marcus A, Perrakis S, Ryan P. 2011. Investments, Chapter 5: 
Introduction to Risk, Return, and the Historical Record. (The MacGraw-Hill 
Companies. New York). 

Borchert J; Schemm R. 2007. Einsatz der Portfoliotheorie im Asset Allokations-
Prozess am Beispiel eines fiktiven Anlageraumes von Windkraftstandaorten, 
Zeitschrift für Energiewirtschaft 12/2007. 

Botterud A, Wang J, Bessa RJ, Keko H, Miranda V. 2012. Risk Management and 
Optimal Bidding for a Wind Power Producer. IEEE. 

Breuer W, Gürtler M, Schuhmacher F. 1999. Portfoliomanagement – Theoretische 
Grundlagen und praktische Anwendungen (Gabler Verlag, Wiesbaden). 

Buchner R. 1981. Die Planung von Gesamt-Kapitalanlagen (Portefeuilles) und der 
Effekt der Markowitz-Diversifikaktion. Wirtschaftswissenschtliches Studium 
7/1981. 

Bürer MJ, Wüstenhagen R. 2009. Which renewable energy policy is a venture 
capitalist's best friend? Empirical evidence from a survey of international cleantech 
investors. Energy Policy 37(12): 4997-5006. 



108 

 

 
Byrne P, Lee S. 2004. Different risk measures: Different portfolio compositions? 

Journal of Property Investment & Finance 22(6): 501-511. 
Campbell RH, Siddique A. 1999. Autoregressive conditional skewness. Journal of 

Financial and Quantitative Analysis 34: 465-487. 
Campbell RH, Siddique A. 2000. Conditional skewness in asset pricing tests. The 

Journal of Finance 55: 1263-1295. 
Canela MA, Collazo EP. 2007. Portfolio selection with skewness in emerging market 

industries. Emerging Markets Review 8: 230–250. 
Carlsson F. 2011. Future Wind Power Forecast Errors, Need for Regulating Power, 

and Costs in the Swedish System. 10th int’l workshop on large-scale integration of 
wind power and on transmission networks for offshore wind power plants (Aarhus, 
Denmark 2011). 

Carta JA, Ramı´rez P, Vela´zquez P. 2009. A review of wind speed probability 
distributions used in wind energy analysis Case studies in the Canary Islands. 
Renewable and Sustainable Energy Reviews 13(2009): 933-955. 

Chan KF, Gray P. 2006. Using extreme value theory to measure value-at-risk for daily 
electricity spot prices. International Journal of Forecasting 22: 283-300. 

Chunhachinda P, Dandapani K, Hamid S, Prakash A.J. 1997. Portfolio selection and 
skewness: Evidence from international stock markets. Journal of Banking and 
Finance 21(2): 143-167. 

Copeland TE, Weston JF. 1988. Financial Theory and Corporate Policy. Addison-
Wesley. 

Crampton P, Stoft S. 2005. A Capacity Market that Makes Sense. Electricity Journal 
18: 43-54. 

DENA. 2005. Energiewirtschaftliche Planung für die Netzintegration von 
Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020. (Berlin). 

DENA. 2012. dena-Netzstudie II – Integration erneuerbarer Energien in die deutsche 
Stromversorgung im Zeitraum 2015 – 2020 mit Ausblick 2025. 
http://www.offshore-wind.de/page/uploads/media/Ergebniszusammenfassung 
_dena-Netzstudie_II.pdf [December 25, 2012]. 

DeCarlo L. 1997. On the Meaning and Use of Kurtosis. Psychological Methods 2(3): 
292-307. 

Delucchi MA, Jacobson MZ. 2011. Providing all global energy with wind, water, and 
solar power, Part II: Reliability, system and transmission costs, and policies. Energy 
Policy 39(2011): 1170-1190. 

Delarue E, de Jonghe C, Belmans R, d’Haeseleer W. 2011. Applying portfolio theory 
to the electricity sector. Energy versus power. Energy Economics 33: 12-23. 

Drake B, Hubacek K. 2007. What to expect from a greater geographic dispersion of 
wind farms? - a risk portfolio approach. Energy Policy 35: 3999-4008. 

Dubacher R, Zimmermann H. 1989. Risikoanalyse schweizerischer Aktien: 
Grundkonzepte und Berechnungen. 
http://www.fmpm.org/files/1989_01_Zimmermann_Dubacher%20II.pdf [October 
25, 2012]. 



109 

 

Elton E, Gruber MJ. 1997. Modern portfolio theory - 1950 to date. Journal of Banking 
& Finance 21: 1743-1759. 

Energy Information Administration (EIA). 2009. Annual Energy Outlook 2009. DOE/ 
EIA-0383(2009). US Department of Energy (Washington, DC) 
/www.eia.doe.gov/oiaf/aeo/index.htmlS [March 7, 2013]. 

Dale L, Milborrow DJ, Slark R, Strbac G. 2003. A shift to wind is not unfeasible - 
Total Cost Estimates for Large-scale Wind Scenarios in UK. Power UK 109: 17-25. 

Estrada J. 2007. Mean-semivariance behavior: Downside risk and capital asset pricing. 
International Review of Economics and Finance 16: 169-185. 

Ettoumi FY, Mefti A, Adane A, Bouroubi MY. 2002. Statistical analysis of solar 
measurements in Algeria using beta distributions. Renewable Energy 26: 47-67. 

European Commission. 2010a. Communication from the commission to the European 
parliament, the council, the European economic and social committee and the 
committee of the regions. Brussels. http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0265: FIN:en:pdf. 
[February 5, 2012]. 

European Commission. 2010b. EU Energy in figures 2010, CO2 Emissions by Sector. 
Working paper (Brussels). http://ec.europa.eu/energy/publications/doc/ 
statistics/ext_co2_emissions_by_sector.pdf [February 5, 2012]. 

European Parliament. 2006. Policy Department Economic and Scientific Policy. 
Climate Change and Natural disasters: Scientific evidence of a possible relation 
between recent natural disasters and climate change. (IP/A/ENVI/FWC/2005-35). 
http://www.ecologic.eu/download/projekte/800-
849/849/FC_2/Brief_CC_and_natural_disasters_scientific_evidence_of_relation_Ja
n_2006_EP_version.pdf [April 5, 2012]. 

Eurostat. 2012. Energy production and imports. 
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Energy_production_
and_imports [August 05, 2012]. 

EREC. 2008. Renewable Energy Technology Roadmap 20% by 2020. Brussels. 
http://www.erec.org/newssingleview/browse/5/article/hot-off-the-press-the-erec-
renewable-energy-technology-roadmap-20-by-
2020.html?tx_ttnews%5BbackPid%5D=297&cHash=c54d4c576c847c498cbea801a
a7d8761 [September 15, 2012]. 

Ewi. 2010. Prognos GWS 2010: Energieszenarien für ein Energiekonzept der 
Bundesregierung. Projekt Nr. 12/10. Lindenberger D, Lutz C, Schlesing M. 
http://www.bmu.de/files/pdfs/allgemein/application/pdf/energieszenarien_2010.pdf 
[September 18, 2012]. 

Fama EF. 1965. Portfolio analysis in a stable Paretian market. Management Science 
11: 409-419. 

Fishburn PC. 1977. Mean-risk analysis with risk associated with below-target returns. 
The American Economic Review: 116-126. 

Florita AR, Hodge BM, Milligan M. 2012. Wind Power Forecasting Error Frequency 
Analysis for Operational Power System Studies. 11th int’l workshop on large-scale 



110 

 

integration of wind power and on transmission networks for offshore wind power 
plants. (Lisbon, Portugal). 

Fraunhofer. 2012. Studie Stromgestehungskosten erneuerbare Energien, Fraunhofer-
Institut für solare Energiesysteme ISE 
http://www.ise.fraunhofer.de/de/veroeffentlichungen/veroeffentlichungen-pdf-
dateien/studien-und-konzeptpapiere/studie-stromgestehungskosten-erneuerbare-
energien.pdf [January 5, 2013]. 

FVEE (Forschungsverbunds Erneuerbare Energien). 2010. Energiekonzept 2050. Eine 
Vision für ein nachhaltiges Energiekonzept auf Basis von Energieeffizienz und 
100% erneuerbaren Energien. 
http://www.fvee.de/fileadmin/politik/10.06.vision_fuer_nachhaltiges_ 
energiekonzept.pdf [July 9, 2011]. 

Gaivoronski AA, Pflug G. 2000. Value at Risk in Portfolio Optimization: Properties 
and Computational Approach. Working Paper 00/2 (Norwegian University of 
Science and Technology). 

Garcia A, Torres JL, Prieto E, de Francisco A. 1998. Fitting wind speed distributions - 
a case study. Solar Energy 62(2): 139-144. 

Goic R, Krstulovi J, Jakus D. 2010. Simulation of aggregate wind farm short-term 
production variations. Renewable Energy 35: 2602-2609. 

Graz H, Günther S, Moriabadi C, Schulte J. 2012. Portfolio-Management: Theorie und 
Anwendung. (5. überarbeitete Auflage. Frankfurt School Verlag. Frankfurt). 

Greenpeace. 2010. Klimaschutz: Plan B 2050. Energiekonzept für Deutschland. 
http://www.greenpeace.de/fileadmin/gpd/user_upload/themen/klima/Screen_E_stud
ie_energiekonzept_final_ORC.indd.pdf [July 09, 2011]. 

Greenpeace, BWE. 2012. Was Strom wirklich kostet. (Überarbeitete und aktualisierte 
Auflage). 

Gross R, Heptonstall P, Anderson D, Green T, Leach M, Skea J. 2006. The Costs and 
Impacts of Intermittency, An Assessment of the Evidence on the Costs and Impacts 
of Intermittent Generation on the British Electricity Network, 
http://www.ukerc.ac.uk/content/view/258/852S [July 03, 2012]. 

Grootveld H, Hallerbach W. 1999. Variance vs downside risk: Is there really that 
much difference? European Journal of Operational Research 114: 304-319. 

Hansen L. 2005. Can wind be a firm resource?. Duke environmental law & policy 
forum 15: 341-381. 

Hackl P, Katzenbeisser W. 1994. Statisik für Sozial- und Wirtschaftswissenschaften. 
(München. Wien. Oldenbourg). 

Hey C; Simon C; Baron M; Bohm S; Budde J; Dahms H. 2011: Wege zur 100% 
erneuerbaren Stromversorgung. Sondergutachten. Sachverständigenrat für 
Umweltfragen (SRU). 
http://www.umweltrat.de/SharedDocs/Downloads/DE/02_Sondergutachten/2011_S
ondergutachten_100Prozent_Erneuerbare.pdf?__blob=publicationFile [January 14, 
2011]. 



111 

 

Gass V, Strauss F, Schmidt J, Schmid E. 2011. Assessing the effect of wind power 
uncertainty on profitability. Renewable and Sustainable Energy Reviews 15(2011): 
2677-2683. 

Held A, Haas R, Ragwitz M. 2006. On the success of policy strategies for the 
Promotion of electricity from renewable energy sources in the EU. (Report 
Produced for DG TREN). 

Hiroux C, Saguan M. 2010. Large-scale wind power in European electricity markets: 
time for revisiting support schemes and market design. Energy Policy 38: 3135-
3145. 

Hodge BM, Hummon M, Orwig K. 2011. Solar ramping distributions over multiple 
timescales and weather patterns. 1st International Workshop on Integration of Solar 
Power into Power Systems. (Aarhus, Denmark). 

Holttinen H. 2005. Hourly wind power variation in the Nordic countries. 
Wind Energy 8(2): 173-195. 

Holttinen H, Kiviluoma J, Estanqueiro A, Gomze-Lazaro E, Rawn B, Dobschinski J, 
Meibom P, Lannoye E, Aigner T, Wan YH, Milligan M. 2011. Variability of load 
and net load in case of large scale distributed wind power. 10th int’l workshop on 
large-scale integration of wind power and on transmission networks for offshore 
wind power plants (Aarhus, Denmark). 

Humphreys H, McClain K. 1998. Reducing the impacts of energy price volatility 
through dynamic portfolio selection. The Energy Journal 19(3): 107-131. 

IAE. 2008. Launching an Energy Revolution in a time of Economic Crisis. IAE 
Publication 2009.  http://www.iea.org/publications/freepublications 
/publication/name,3835,en.html [March 2, 2012]. 

Ibbotson Associates. 1998. Stocks, Bonds Bills and Inflation 1998 Yearbook. 
(Chicago). 

IEA. 2011. Harnessing variable renewables, a guide to the balancing challenge 
(IEA Publications, May 2011). 

ILEX Energy Consulting, Strbac G. 2002. Quantifying the system costs of additional 
renewables in 2020. 
http://www.dti.gov.uk/energy/developep/080scar_report_v2_0.pdf [March 7, 2013]. 

Imboden C. 1983. Risikohandhabung: Ein entscheidungsbezogenes Verfahren. (Paul 
Haupt Verlag, Bern/Stuttgart). 

IRENA. 2013. Renewable Power Generation Costs in 2012: An Overview. 
http://irena.org/DocumentDownloads/Publications/Overview_Renewable%20Power
%20Generation%20Costs%20in%202012.pdf [March 7, 2013]. 

Jarque CM, Bera AK. 1987. A test for normality of observations and regression 
residuals. International Statistical Review 55: 163-172. 

Jorion P. 2001. Value at Risk: The new benchmark for managing financial risk (2nd 
edition, New York: McGraw-Hill). 

Jansen JC, Beurskens L-WM, van Tilburg X. 2006. Application of portfolio analysis to 
the Dutch generating mix Reference case and two renewables cases: year 2030 - SE 
and GE scenario. (Energy research Centre of the Netherlands). 



112 

 

Katzenstein W, Apt J. 2012. The cost of wind power variability. Energy Policy 51: 
223-243. 

Kim TH, White H. 2004. On more robust estimation of skewness and kurtosis. 
Finance Research Letters 1: 56-73. 

Klaus T; Vollmer C; Werner K; Lehmann H; Müschen K. 2010: 2050: 100%. 
Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Umweltbundesamt. 
http://www.umweltdaten.de/publikationen/fpdf-l/3997.pdf [July 09, 2011]. 

Klessmann C. 2012. Increasing the effectiveness and efficiency of renewable energy 
support policies in the European Union. (Dissertation, University Utrecht, the 
Netherlands). 

Kraus A. Litzenberger R. 1976. Skewness preference and the valuation of risky assets. 
Journal of Finance 21(4): 1085-1100. 

Krey B, Zweifel P. 2006. Efficient Electricity Portfolios for Switzerland and the 
United States. University of Zurich. SOI Working Paper No. 0602. 
http://www.soi.unizh.ch/research/wp/wp0602.pdf [January 2, 2011]. 

Krokhmal P, Palmquist J, Uryasev S. 2001. Portfolio Optimization with Conditional 
Value-at-Risk objective and constraints. 

Lai TY. 1991. Portfolio selection with skewness: A multiple-objective approach. 
Review of Quantitative Finance and Accounting 1(3): 293-305. 

Lopez G, Rubio MA, Batlles FJ. 2000. Estimation of hourly direct normal from 
measured global solar irradiance in Spain. Renewable Energy 21: 175-186. 

Lund H. 2006. Large-scale integration of optimal combinations of PV, wind and wave 
power into the electricity supply. Renewable Energy 31(4): 503-515. 

Lüthi S, Wüstenhagen R. 2008. Effective deployment of photovoltaics in 
Mediterranean countries: balancing policy risk and return. Paper presented at the 
DEMSEE2008 International Conference on Deregulated Electricity Market Issues 
in South-Eastern Europe. (Nicosia, Cyprus). 

MacDonald M. 2003. The Carbon Trust & DTI Renewables Network Impact Study 
Annex 4: Intermittency Literature Survey & Roadmap. (London) 
http://www.thecarbontrust.co.uk/carbontrust/about/publications/Annex4.pdf [March 
7, 2013]. 

Maddaloni JD, Rowe AM, van Kooten GC. 2009. Wind integration into various 
generation mixture. Renewable Energy 34: 807-814. 

Mandelbrot B. 1963. The Variations of Certain Speculative Prices. Journal of Business 
36: 394-‐419. 

Marimoutou V, Raggad B, Trabelsi A. 2009. Extreme Value Theory and Value at 
Risk: Application to oil market. Energy Economics 31: 519-530. 

Markowitz H. 1952. Portfolio selection. Journal of Finance 7(1): 77-91. 
Markowitz H. 1992. Portfolio Selection – Efficient Diversification of Investments  

(2. Auflage, New York). 
Martin B, Diesendorf M. 1980. The capacity credit of wind power: a numerical model. 

Proc. 3rd Int. Symp. on Wind Energy Systems. Copenhagen. Cranfield UK: BHRA 
Fluid Engineering: 555-564. 



113 

 

Mencia J, Sentana, E. 2009. Multivariate location-scale mixtures of normals and 
mean-variance-skewness portfolio allocation. Journal of Econometrics 153:105-
121. 

Milborrow D. 1996. Struggling With Capacity Credit Definitions.  
Windstats Newsletter 9(2). (Knebel, Denmark). 

Milborrow D. 2001. Penalties for intermittent sources of energy. Working Paper for 
PIU Energy Review http://www.pm.gov.uk/files/pdf/Milborrow.pdf [March 7, 
2013]. 

Milligan M, Kirby B. 2009. Calculating Wind Integration Costs: Separating Wind 
Energy Value from Integration Cost Impacts. National Renewable Energy 
Laboratory. NREL/TP-550-46275. 

Mills A, Wiser R. 2010. Implications of Wide-Area Geographic Diversity for Short-
Term Variability of Solar Power. LBNL-3884E. (Lawrence Berkeley National 
Laboratory). http://eetd.lbl.gov/ea/emp/reports/lbnl-2855e.pdf [December 5, 2012]. 

Mitchell C, Connor P. 2004. Renewable energy policy in the UK 1990–2003.  
Energy Policy 32: 1935-1947. 

Morgan EC, Lackner M, Vogel RM, Baise LG. 2011. Probability distributions for 
offshore wind speeds. Energy Conversion and Management 52: 15-26. 

Morgan VT. 1995. Statistical distributions of wind parameters at Sydney, Australia. 
Renewable Energy 6(1): 39-47. 

Mormann F. 2012. Enhancing the investor appeal of renewable energy. 42: 681. 
Environmental law. 

Neumann J, Morgenstern O. 1947. Theory of Games and Economic Behavior. 
(Neumann/Morgenstern, Princeton). 

Nitsch J, Pregger T, Scholz Y, Naegler T, Sterner M, Gerhardt N. 2010. Leitstudie 
2010. Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien 
in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. 
http://www.bmu.de/files/pdfs/allgemein/application/pdf/leitstudie2010_bf.pdf [May 
23, 2011]. 

NREL, Cory K, Schwabe P. 2009. Wind levelized cost of energy: a comparison of 
technical and financial input variables. NREL/TP-6A2-46671. 
http://www.nrel.gov/docs/fy10osti/46671.pdf [March 7, 2013]. 

NREL. 2010. Western Wind and Solar Integration Study. 
http://www.nrel.gov/docs/fy10osti/47434.pdf [September 10, 2010]. 

NREL. 2011. Variability of Renewable Energy Sources. 
http://www.nrel.gov/electricity/transmission/variability.html [October 6, 2012]. 

Oren SS. 2003. Ensuring Generation Adequacy in Competitive Electricity Markets. 
Policy and Economics. (University of California Energy Institute, UC Berkeley). 
http://escholarship.org/uc/item/8tq6z6t0 [February 3, 2012]. 

Prakash AJ, Bear RM. 1986. A simplifying performance measure recognizing 
skewness. Financial Review 21(1): 135-144. 

Rockafellar RT, Uryasev S. 2000. Optimization of Conditional Value-at-Risk. Journal 
of Risk 2: 21-41. 



114 

 

Rombauts Y, Delure E, D’Haeseleer W. 2011. Optional portfolio-theory-based 
allocation of wind power: Taking into account cross-border transmission-capacity 
constraints. Renewable Energy 36: 2374-2387. 

Roques FD, Newbery Nuttall W. 2006. Fuel mix diversification incentives in 
liberalized electricity markets: a mean-variance portfolio theory approach. Energy 
Economics 30 (4): 1831-1849. 

Roques F, Hiroux C, Saguan M. 2010. Optimal wind power deployment in Europe - A 
portfolio approach. Energy Policy 38: 3245-3256. 

Rosenblatt. 1956. A central limit theorem and a strong mixing condition. Mathematics 
42. 

Rubinstein ME. 1973. The fundamental theorem of parameter-preference security 
valuation. Journal of Financial and Quantitative Analysis 8. 

Ruppert, D. 1987. What is kurtosis? American Statistician 4: 1-5. 
Sachverständigenrat. Jahresgutachten 2011/12. Klimapolitik der Europäischen Union. 

http://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/download/ 
ziffer/z403_z430j11.pdf [September 10, 2012]. 

Samuelson P. 1970. The fundamental approximation of theorem of portfolio analysis 
in terms of means, variances and higher moments. Review of Economic Studies 37: 
537-542. 

Simon H. 1947. Administrative Behavior - A Study of Decision-Making Processes in 
Administrative Organizations. (New York, London). 

Short W, Packey D, Holt T. 1995. A Manuel for the economic evaluation of energy 
efficiency and renewable  energy technologies. (National Renewable Energy 
Laboratory). 

Skea J, Anderson D, Green T, Gross R, Heptionstall P, Leach M. 2008. Intermittent 
renewable generation and the cost of maintaining power system reliability. IET 
Generation Transmission Distribution 2(1): 82-89. 

Steinbach MC. 1999. Markowitz Revisited: Single-Period and Multi-period Mean-
Variance Models. Working Paper. (Konrad-Zuse-Zentrum für Informationstechnik 
Berlin, SC-99-30, Aug). 

Thaler M, Grabec I, Poredos A. 2005. Prediction of energy consumption and risk of 
excess demand in a distribution system. Physica A 355: 46-53. 

Tobin J. 1958. Liquidity preference as behavior toward risk. Review of Economic 
Studies 25: 65-86. 

van Giessel JF; van der Veen G. 2004. Policy instruments for a sustainable innovation. 
http://www.technopolis-group.com/resources/downloads/reports/483_phase2.pdf 
[December 6, 2012]. 

von Roon S, Wagner U. 2009. The interaction of Conventional Power Production and 
Renewable Power under the aspect of balancing Forecast Errors. 10th IAEE 
European Conference. http://www.ffe.de/publikationen/veroeffentlichungen/254-
the-interaction-of-conventional-power-production-and-renewable-power-under-the-
aspect-of-balancing-forecast-errors [March 12, 2010]. 

Wait A. 2010. Investment in clean technologies as a public good: a discussion paper 
prepared for the Clean Energy Council. (University of Sydney, Australia). 



115 

 

Weber C. 2010. Adequate intraday market design to enable the integration of wind 
energy into the European power systems. Energy Policy 38: 3155-3163. 

Widen J. 2011. Modeling and Statistical Analysis of the Variability of Large-Scale 
Solar Power in High-Latitude Power Systems. 1th International Workshop on 
Integration of Solar Power into Power Systems. (Aarhus, Denmark 2011). 

Wiser R, Bolinger M. 2010. 2009 Wind Technologies Market Report. (Lawrence 
Berkeley National Laboratory). /http://eetd.lbl.gov/ea/emp/reports/lbnl-3716e.pdfS 
[March 07, 2013]. 

Wittmann W. 1959. Unternehmung und unvollkommene Information – 
Unternehmerische Voraussicht - Ungewissheit und Planung. (Westdeutscher 
Verlag, Köln/Opladen). 

Yau S, Kwon RH, Rogers JS, Wub D. 2011. Financial and operational decisions in the 
electricity sector: Contractportfolio optimization with the conditional value-at-risk 
criterion. Int. J. Production Economics 134: 67-77. 

  



116 

 

Curriculum Vitae 
Valerie Speth 

Education 
2010 – 2013 HSG – University of St.Gallen, St.Gallen, Switzerland 
  Institute for Economy and the Environment  

Ph.D. in Business Administration/ Strategy Management 
2002 – 2008 University of Stuttgart, Stuttgart, Germany 
  Institute for Industrial Manufacturing and Management 
  Dipl.-Ing. Mechanical Engineering / Technology Management 
2006 – 2007 Duke University, Durham, United States 
  Fulbright Scholarship 
  M.E.M Master of Engineering Management 
 
Professional Experience 
Since 2010 juwi technologies, Wörrstadt, Germany 
  Head of Corporate Development / Renewable Energy Sector 
2008 – 2009 Accenture, Frankfurt, Germany 
  Strategic Management Consultant / Resources 
2005 – 2008 Internships at: 
  Duke Climate Change Policy Partnership 

Porsche A.G. / Daimler Chrysler Fleetboard 
 
Non for Profit 
Since 2009 Tropica Verde e.V., Frankfurt, Germany 
  Financial Vice President / Environmental Sector 
 
Selection of Publications 

11/2012:  11th Int. Workshop on Large-Scale Integration of Wind and Solar 
Power – Lisbon  
Integration through portfolio approach: Maximizing wind and solar 
predictability based on German market data 2010-2012 (WIW12-049)  

09/2012: 12th IAEE European Energy Conference – Venice  
The impact of wind and solar on peak and off-peak prices – evidence 
from two year price analysis 

11/2011:  6th Int. Renewable Energy Storage Conference – Berlin  
A decentralized approach towards direct renewable energy delivery  

08/2011:  Associated EU Energy Consultants Summer Camp – Meisenheim  
Renewable Energy and Market Integration – The EU perspective 

 
Languages 
German mother tongue 
Englisch fluent 


	1
	2
	3

