
Lightweight Process Modelling

Methodology, Language, and Tools

DISSERTATION

of the University of St. Gallen,

School of Management,

Economics, Law, Social Sciences

and International Affairs

to obtain the title of

Doctor Oeconomicae

submitted by

Stephan Florian Schnabel

from

Germany

Approved on the application of

Prof. Dr. Beat Schmid

and

Prof. Dr. Reinhard Jung

Dissertation no. 4044

The University of St. Gallen, School of Management, Economics, Law, Social

Sciences and International Affairs hereby consents to the printing of the present

dissertation, without hereby epressing any opinion on the views herein expressed.

St. Gallen, May 21, 2012

The President:

Prof. Dr. Thomas Bieger

i

Acknowledgements

Many people have strongly supported my efforts in writing this dissertation thesis. I

highly appreciate their fruitful discussions, inspiration, and inputs.

Firstly, I would like to thank my PhD supervisors, Prof. Dr. Beat F. Schmid and Prof.

Dr. Reinhard Jung. They provided the basis to conduct my research at the University

of St. Gallen (HSG) in an applied manner. The inspirational discussions with them

have guided my research and this thesis.

I’d like to thank the team of the Institute of Media and Communication Management

(MCM) at the University of St. Gallen. The MCM provided an atmosphere where I

could consequently follow my research ideas. I appreciate the feedback that influenced

my dissertation thesis.

Further, I would like to thank the team of the SAP Research CEC St. Gallen. In

particular, I would like to thank Dr. Jürgen Vogel and Dr. Oliver Christ who guided

me in applying the research work to industrial scenarios and the research project

SOA4All. I am as well thankful to the team of the research project SOA4All who

created a very constructive and collaborative research environment for the core topic

of this thesis.

I am highly grateful to my family: to my girlfriend Melina Wittmann for her grate

energy and continuous support, to my parents Rainer and Ingrid Schnabel, and to my

brother Marc Schnabel.

Florian Schnabel, 21.05.2012

ii

Table of Contents

TABLE OF CONTENTS ... II

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

ACRONYMS... XIII

MANAGEMENT SUMMARY ... XIV

1 INTRODUCTION .. 1

1.1 Current Situation and Motivation ... 1

1.2 Research Questions and Objectives.. 5

1.3 Target Users .. 6

1.4 Research Methodology... 6

1.4.1 Design Science Guidelines ... 6

1.4.2 The Design Science Research Process ... 8

1.5 Outline .. 9

2 RESEARCH FRAME ... 11

2.1 Terms and Definitions.. 11

2.1.1 Process .. 11

2.1.2 Service ... 11

2.1.3 Modelling .. 14

2.1.3.1 Models and the Model Term .. 14

2.1.3.2 Model Type .. 15

2.1.3.3 Definition of Model .. 16

2.1.4 Semantics .. 16

2.2 End-User Empowerment .. 16

2.3 Bottom-Up ... 19

iii

2.4 Business Process Management.. 21

2.4.1 Business Process Management ... 21

2.4.2 Business Process Modelling ... 23

2.4.2.1 Process Modelling Languages .. 25

2.4.2.2 Structuring Unstructured Processes ... 27

2.4.3 Business Process Execution ... 29

2.5 Semantic Technologies .. 30

3 PROBLEM STATEMENT, REQUIREMENTS, AND APPROACH 37

3.1 Problem Statement .. 37

3.2 Requirements ... 40

3.3 Approach .. 45

3.4 Research Context .. 48

3.4.1 The Research Project SOA4All .. 48

3.4.2 Integration into SOA4All .. 50

3.4.3 Implementation of the LPM Design .. 53

3.5 Fulfilment of Requirements and Conclusion... 53

3.5.1 Fulfilment of the LPM Approach Requirements 54

3.5.2 Fulfilment of LPML Requirements ... 57

4 LIGHTWEIGHT PROCESS MODELLING PRINCIPLES....................... 63

4.1 The LPM Metamodel ... 64

4.2 Abstraction Layers for the LPM Metamodel .. 66

4.2.1 Benefits of Abstraction .. 66

4.2.2 Structuring the Abstraction and Applying it to LPM 67

4.2.2.1 Canonical Format .. 69

4.2.2.2 Graphical Representation ... 74

4.2.2.3 Design Rules for LPML Process Models... 77

4.3 Semantic Annotations ... 78

4.3.1 Benefits of Semantic Annotations .. 79

iv

4.3.2 Structuring Semantic Annotations.. 79

4.3.3 Applying Semantic Annotations to LPM.. 80

4.3.4 Semantic Annotations in the LPML Metamodel 81

4.4 Context-Awareness ... 84

4.4.1 Benefits of Context-Awareness .. 84

4.4.2 Structuring Context .. 85

4.4.3 Applying Context to LPM .. 87

4.4.4 Context-Awareness in the LPML Metamodel.. 90

4.5 Reuse through Patterns and Templates .. 94

4.5.1 Benefits of Patterns and Templates .. 94

4.5.2 Structuring Patterns and Templates ... 95

4.5.3 Applying Patterns and Templates to LPM.. 96

4.5.4 Patterns and Templates in the LPML Metamodel 98

4.6 Goals as Abstract Service Descriptions ... 99

4.6.1 Benefits of Goals.. 99

4.6.2 Structuring Goals ... 100

4.6.3 Applying Goals to LPM .. 101

4.6.4 Abstract Service Descriptions in the LPML Metamodel 103

4.7 Data Flow Support .. 105

4.7.1 Benefits of Data Flow Support ... 106

4.7.2 Structuring Data Flow Support ... 106

4.7.3 Data Flow Support for LPM ... 107

4.7.4 Data Flow Connectors in the LPM Metamodel ... 109

4.8 Conclusion ... 113

5 THE LIGHTWEIGHT PROCESS MODELLING SOLUTION 117

5.1 Design Process for Creating Executable Process Models............................. 117

5.1.1 Step 1 – Process Modelling .. 119

5.1.2 Step 2 – Process Model Compilation and Semantic Annotations 123

v

5.1.3 Step 3 – Semantic-based Service Search .. 125

5.1.4 Step 4 - Service Binding .. 126

5.1.5 Step 5 – Service Composition and Data Flow Generation 126

5.1.6 Step 6 - Transformation into a currently executable language 128

5.2 Modelling and Executing LPML Processes ... 129

5.2.1 Tooling Interface .. 129

5.2.2 Process Editor .. 130

5.2.3 Composition Component... 133

5.2.4 Execution Engine ... 136

5.3 Conclusion ... 138

6 LPM IN THE PUBLIC SECTOR .. 141

6.1 Introduction.. 141

6.1.1 The Public Sector as a Target Market for LPM ... 141

6.1.2 Current Situation in Typical Public Sector Organisations 142

6.1.3 Potential Users in the Public Sector .. 143

6.1.4 Need for Action .. 143

6.2 The LPMS in the Public Sector .. 143

6.2.1 The EU Services Directive as public sector scenario 143

6.2.2 User Roles... 144

6.2.3 Context Information ... 145

6.2.4 Process Modelling ... 145

6.2.5 Services and Annotations .. 149

6.3 Required Functionalities to Processes and Services....................................... 156

6.4 LPML and Tool Customizing .. 157

6.5 Business Aspects... 158

6.6 Conclusion ... 160

7 EVALUATION ... 163

vi

7.1 Evaluation Metrics ... 165

7.2 Proceeding for Empirical Evaluation .. 168

7.2.1 Workshops .. 170

7.2.2 Survey .. 171

7.3 LPM Evaluation Results .. 175

7.3.1 LPM Approach to Compose Services ... 176

7.3.2 LPML Correctness .. 186

7.3.3 Completeness and Expressiveness of the LPML 187

7.3.3.1 Ontological Completeness ... 188

7.3.3.2 Pattern-based Analysis of the LPML .. 191

7.3.4 Adaptability and Extensibility .. 194

7.3.5 Usability .. 195

7.4 Risks ... 200

7.5 Conclusion ... 201

8 CONCLUSION AND OUTLOOK ... 203

8.1 Reflection on the Artefact.. 203

8.2 Generalisation of Findings ... 204

8.3 Evaluation of Original Assumptions... 205

8.4 Research Contribution .. 206

8.5 Future Work .. 206

8.5.1 Organizational Structure ... 206

8.5.2 Processpedia ... 207

9 ANNEX ... 209

9.1 Public Sector Process Models and Services .. 209

9.1.1 LPML model of the process “Registration of a business” 209

9.1.2 Ontology Sample File.. 221

9.2 Evaluation Workshops ... 224

vii

9.3 Evaluation Survey ... 226

10 BIBLIOGRAPHY .. 233

viii

List of Figures

Figure 1: How LPM supports the user in creating an application

implementing a process .. 4

Figure 2: Application of the Design Science Process according to

Peffers et al. .. 8

Figure 3: Leveraging the wisdom of the crowds with EUD (Quinn,

2005) ... 17

Figure 4: LPM approach to create an executable process model 46

Figure 5: LPM Metamodel... 65

Figure 6: Languages and representations for LPM .. 67

Figure 7: The abstraction principle implemented in the process editor..................... 68

Figure 8: Complete LPML Metamodel .. 70

Figure 9: Parts of the LPML metamodel that are relevant for the

graphical abstraction .. 71

Figure 10: Metamodel of the graphical representation layer....................................... 75

Figure 11: Graphical LPML representation... 76

Figure 12: Data area supporting the user in entering additional

information.. 76

Figure 13: Gateway logic in the LPML.. 78

Figure 14: View on semantic annotations in the metamodel of the

canonical LPML format .. 82

Figure 15: Simplified Meta Model of the Context Driver Principle

according to (Stuhec & Crawford, 2007) ... 87

Figure 16: Example of an invoice processing process at business level

(Schnabel, Born et al., 2009).. 88

Figure 17: Context-aware Business Process Model... 90

Figure 18: Sample of an ontological dimension.. 93

Figure 19: LPM tool support for data mapping ... 108

Figure 20: Process modelling and compilation ... 118

file:///C:/Users/Florian/Documents/120513_Dissertation_FlorianSchnabel.docx%23_Toc324686364

ix

Figure 21: How the design process is derived from the approach as

presented in Figure 4 ... 119

Figure 22: Activity modelling and service binding... 120

Figure 23: Process modelling performed by the user... 121

Figure 24: Proceeding to specify semantic annotations in the Process

Editor ... 122

Figure 25: Gateway modelling in the LPM design process .. 123

Figure 26: Automatically generated according code of the canonical

process model for the graphical process model ... 124

Figure 27: Automatically generated according code for the semantic

annotation .. 125

Figure 28: Data flow modelling .. 127

Figure 29: Data area and drawing area of the SOA4All process editor 133

Figure 30: Sample process “register a new business” .. 146

Figure 31 : Sample part of the process "Registration of a business" 147

file:///C:/Users/Florian/Documents/120513_Dissertation_FlorianSchnabel.docx%23_Toc324686375
file:///C:/Users/Florian/Documents/120513_Dissertation_FlorianSchnabel.docx%23_Toc324686376

x

List of Tables

Table 1: Application of the design science guidelines to this thesis 7

Table 2: Design Science process according to (Rossi & Sein, 2003)

and (Peffers et al., 2008)... 8

Table 3: Definitions of the term "Service" ... 11

Table 4: Literature criteria for the service definition ... 13

Table 5: Problem statement in the context of BPM.. 39

Table 6: Relation of requirement categories to the problem statement 40

Table 7: Technical requirements for the LPMS .. 41

Table 8: Individual requirements for the LPMS ... 42

Table 9: Organisational requirements for the LPMS.. 43

Table 10: Economic requirements for the LPMS ... 44

Table 11: Requirements for the LPML .. 45

Table 12: Main steps to create an executable process model through

the LPM approach .. 47

Table 13: Fulfillment of technical requirements through SOTA................................. 54

Table 14: Fulfillment of individual requirements through SOTA 55

Table 15: Fulfillment of organisational requirements through SOTA 56

Table 16: Fulfillment of economic requirements through SOTA................................ 56

Table 17: Elements of the LPM metamodel .. 65

Table 18 : Description of Process .. 72

Table 19: Description of ProcessElement and its children.. 72

Table 20: Symbols of the graphical modelling layer.. 77

Table 21: Elements for semantic annotations .. 83

Table 22: Distinction between patterns and templates ... 95

Table 23: Overview of service discovery types based on goals.................................. 102

Table 24: Strategies of matching services to goals... 103

Table 25: Service and goal description .. 104

xi

Table 26: Elements for the data flow handling .. 113

Table 27: Enhancement tasks for the LPMS as parametric design............................. 135

Table 28: Roles in the public sector ... 144

Table 29: Activity "Find citizen in CRM".. 148

Table 30: Citizen in CRM exclusive fork gateway ... 148

Table 31: Find citizen in CRM flow... 149

Table 32: Deriving semantic annotations from requirements and

constraints ... 150

Table 33: Description of the activity precondition in RDF based on

WSMO-Lite .. 151

Table 34: Functional classification of the sample activity "Find citizen

in CRM" ... 152

Table 35: Simple query for goal discovery based on functional

classification ... 153

Table 36: Refined query for service discovery based on goal

description... 154

Table 37: Public sector requirements to the LPM language and tools 156

Table 38: LPM language and tools implementing the public sector

requirements ... 157

Table 39: Roles Involved in the process delivery platform ... 159

Table 40: Evaluation methods in this thesis .. 163

Table 41: Overview of evaluation structuring ... 165

Table 42: Evaluation metrics for the LPMS .. 166

Table 43: Special evaluation metrics for the LPML... 168

Table 44: Research Questions (RQ) as stated in section 1.2....................................... 171

Table 45: Survey hypotheses ... 172

Table 46 : 5-point Likert scale as applied in this thesis ... 173

Table 47: Software experience of surveyed users .. 173

Table 48: BPM experience of surveyed users ... 174

xii

Table 49 : Favourite modelling languages or tools of respondents............................ 174

Table 50: Evaluation of technical metrics ... 176

Table 51: Evaluation of individual metrics ... 178

Table 52: Evaluation of organisational metrics .. 181

Table 53: Evaluation of economic metrics.. 182

Table 54: Evaluation of the LPML correctness.. 186

Table 55: Mapping the BWW representation model to the LPML 189

Table 56: Control-flow patterns based on workflow systems..................................... 192

Table 57: Control-flow patterns based on EAI systems .. 193

Table 58: LPM language and tool evaluation according to public

sector requirements.. 194

Table 59: LPM evaluation based on usability heuristics (Nielsen,

1993) ... 195

xiii

Acronyms

AI Artificial Intelligence

API Application Programming Interface

BPEL Business Process Execution Language

BPD Business Process Diagram

BPDM Business Process Definition Metamodel

BPM Business Process Modelling

BPMN Business Process Modelling Notation

BPMS Business Process Management Systems

EAI Enterprise Application Integration

EPC Event-Driven Process Chain

EUC End-User Computing

EUD End-User Development

GAMP Generally Accepted Modelling Principles

IS Information System

IT Information Technology

LPM Lightweight Process Modelling

LPML Lightweight Process Modelling Language

LPMS Lightweight Process Modelling Solution

PS Public Sector

RDF Resource Description Framework

REST Representational State Transfer

RIA Rich Internet Application

SEE Semantic Execution Environment

SWS Semantic Web Services

WfMS Workflow Management System

WSDL Web Service Definition Language

WSMO Web Service Modelling Ontology

WS-BPEL Web Service Business Process Execution Language

YAWL Yet Another Workflow Language

xiv

Management Summary

Currently, modelling and executing processes requires a high level of expertise in

business and IT rendering existing process modelling languages and tools unsuitable

for the non-experienced business user. However, the business users build the majority

of information workers and deciders. By non-experienced business users, users are

referred to that are 'not casual, novice, or naive', but have got strong domain-specific

business skills. Concerning IT, they have computational needs, but limited IT

knowledge and no interest in becoming an IT professional.

This thesis addresses the need for a process modelling solution that the business user

might use in a lightweight way. In this sense, the term lightweight concerns the user

interaction and means easy to understand in the context of the modelling language and

easy to deploy, implement, and execute in a tooling context. However, in order to

realize a lightweight user access, sophisticated backend solutions are needed.

The objective of this thesis is to define the design of a framework for Lightweight

Process Modelling (LPM) targeting the business user. This comprises three major

components. Firstly, a design principles framework, structured by the LPM

metamodel, for artefacts supporting the business user in modelling and executing

processes is defined. The second component is a process modelling language defining

syntax and semantics. The language has two representation layers. One for abstract

business processes for documentation, communication, and collaboration purposes for

business users. The second layer is a canonical representation format for process

execution. The two abstraction layers are based on the LPM metamodel. The third

component comprises a technical architecture and tools that support the business user

in modelling, deploying, and executing the process models. This comprises prototype

specifications for both front- and back-end tools, such as a process editor and an

execution engine. Furthermore, a design process is built defining the interactions of the

tools in order to enhance abstract processes by execution details.

By describing LPM and creating the artefact of a Lightweight Process Modelling

Solution (LPMS), this thesis follows the design science research methodology.

xv

Zusammenfassung

Die gleichzeitige Modellierung und Ausführung von Prozessen erfordert momentan

ein hohes Mass an Fach- und IT-Wissen. Existierende Sprachen und Tools sind damit

für unerfahrene Fachanwender wenig geeignet. Fachanwender bilden jedoch die

Mehrheit an Informationsarbeitern und –entscheidern in Unternehmen. Unerfahrene

Fachanwender sind in diesem Zusammenhang aber keine Gelegenheitsanwender, neue

oder naive Anwender. Sie haben ein grosses, domänenspezifisches Fachwissen. Und

spezifische Bedürfnisse an die IT, jedoch nur beschränktes Wissen und kein Interesse

daran, ein IT-Experte zu werden.

Diese Dissertation adressiert das Bedürfnis für eine Prozessmodellierungslösung, die

der Fachanwender leichtgewichtig nutzen kann. Der Begriff leichtgewichtig bezieht

sich hierbei auf die Nutzerinteraktion und bedeutet leicht zu verstehen in bezug auf

eine Modellierungssprache und einfach zu implementieren, einzusetzen und

auszuführen in bezug auf Werkzeuge. Um jedoch einen leichtgewichtigen

Nutzerzugang zu realisieren, sind komplexe Lösungen im Hintergrund erforderlich.

Das Ziel der Dissertation ist, das Design eines Rahmenwerks für leichtgewichtige

Prozessmodellierung (LPM) für Fachanwender zu definieren. Dies umfasst drei

Hauptkomponenten. Zum einen ein Rahmenwerk für Designprinzipien, das durch das

LPM-Metamodell strukturiert wird. Dieses Rahmenwerk wird für Artefakte definiert,

die den Fachanwender bei der Modellierung und Ausführung von Prozessen

unterstützen. Die zweite Komponente stellt eine Prozessmodellierungssprache mit

definierter Syntax und Semantik dar. Die Sprache enthält zwei Repräsentationsebenen,

eine für abstrakte Geschäftsprozesse für die Dokumentation, Kommunikation und den

Austausch unter Fachanwendern und die zweite für eine kanonische Darstellung zur

Ausführung von Prozessen. Beide Ebenen basieren auf dem LPM-Metamodell. Die

dritte Komponente beinhaltet eine technische Architektur und Werkzeuge, die den

Fachanwender bei der Modellierung, beim Deployment und bei der Ausführung von

Prozessmodellen unterstützen. Dies umfasst prototypische Spezifikationen für Front-

und Backend-Werkzeuge, wie einen Prozesseditor und eine Laufzeitumgebung.

Zusätzlich wird ein Designprozess definiert, der die Interaktionen der Werkzeuge

beschreibt, um abstrakte Prozesse mit Informationen für die Ausführung zu erweitern.

Die Ausarbeitung der LPM und die Beschreibung des Artefakts der Leichtgewichtigen

Prozessmodellierungslösung (LPMS) folgt der Design Science als

Forschungsmethodik.

1

1 INTRODUCTION

This section introduces the topic of Lightweight Process Modelling (LPM). Hence,

section 1.1 covers a description of the current situation and motivation of this thesis.

Section 1.2 formulates the research questions and objectives. The section 1.3 addresses

the research methodology, namely the application of the design science to this thesis.

Lastly, section 1.5 presents the outline of the thesis.

1.1 CURRENT SITUATION AND MOTIVATION

Business Process Modelling (Williams, 1967) aims at documenting, communicating,

analysing, and supporting collaboration between people, often in a business

environment. According to Gartner, processes need to be visible to potentially change

and improve them (M. Cantara, 2009). In addition, Gartner states that process models

form the base for an effective collaboration between business users, business leaders,

and IT. Process models serve as well as documentations for auditing or compliance

procedures.

Another purpose of process models is to automate processes within an existing

infrastructure. According to a Gartner Report (Plummer & Hill, 2009), the design of

business systems will be more and more subject to composition and BPM replacing

traditional application development. In order to abstract process logic from application

logic, Business Process Management Systems (BPMS) (Chang, 2005) allow for the

definition and execution of processes by invoking underlying applications or services.

BPM has two main purposes

- Documentation of processes

- Automation of the process execution

2

A study
1
 about BPM adoption and usage can be found in (Palmer, 2009). According to

this study, the motivation for moving to a BPM architecture is manifold. Besides the

utilization of existing infrastructure and software assets in proprietary languages,

exposed as services, the use of internal development resources, a faster time to market

through reduced deployment time, lower deployment costs through ease of application

integration, lower IT support staff costs through on-going application support levels,

and hence, lower total cost of ownership are key to the introduction of a BPM solution.

In figures, the study revealed that the respondents expect a higher reuse of existing

resources (21% of the respondents), lower maintenance costs (19%), faster product

development (19%), and freeing up IT resources for other initiatives (16%). Further,

this study revealed that many organisations will invest in BPMS training and skills

development (27%) and process modelling (19%). Currently however, Microsoft Visio

is by far the process modelling tool with the largest number of implementations

(Norton, Blechar, & Jones, 2010).

The aforementioned fact that composition and BPM are replacing traditional software

development is strongly related to a shift from development within the IT departments

to a collaborative approach involving business experts, modellers, analysts,

developers, and architects (Plummer & Hill, 2009). Process models are the means of

communication between those stakeholders. Hence, according to Plummer and Hill,

model-driven approaches are becoming the primary method to develop and maintain

software.

Currently, modelling executable processes requires expertise in both business and IT.

This renders existing BPMSs and process modelling languages unsuitable for the

business user. However, business users build the majority of information workers and

deciders. Gartner (Blechar, 2007) and Forrester (Richardson, Moore, & Nicolson,

2009) also state that current tools for business process analysis are not suitable for

business users. By business user, information workers are referred to that are 'not

1
 The study was conducted by a consortium of Transformation & Innovation, BPM.com, and Workflow

Management Coalition

3

casual, novice, or naive' (Nardi, 1993) but have got strong domain-specific business

skills. Concerning IT they have computational needs but limited IT knowledge and no

interest in becoming an IT professional (Nardi, 1993; Quinn, 2005). Furthermore, they

usually do not model processes. An example of a typical information worker is a travel

agent interacting with customers as well as multiple information systems in order to

make reservations.

The business user might also be named non-experienced user or non-technical user.

Due to the lack of knowledge, reuse of existing process models is low. Proprietary

model representations are created by using office tools, such as Microsoft PowerPoint.

These models are neither interchangeable nor executable. Often, there is no common

understanding of business process models and the terminology used (Blechar, 2007;

Mendling & Recker, 2008). In addition, users have difficulties in delivering process

models at a certain quality level and commit typical modelling errors (Koehler &

Vanhatalo, 2007). A study conducted by Namoune et al. (Namoune, Wajid, &

Mehandjiev, 2009) revealed that although 80% of the participants had been interested

in service composition, there had been significant fears about creating errors in process

modelling. Furthermore, in the study, composition problems of business users could be

clearly revealed. The surveyed users agreed on frequent frustration in the context of

service complexity, compatibility, and composition. Process changes are mostly driven

by the business making it difficult to keep the IT in synchronisation with these

business changes (M. Cantara, 2009).

Current BPMSs

- Provide documentation functionality for business users

- Provide process execution functionality for IT experts

- Leave a gap between process documentation and process execution

A simple way for users to understand business processes is a key success factor to

encourage for taking ownership of the process and making process changes (Rosser,

2008). This speeds up process management and lowers costs since experts are only

needed in few cases.

The described challenges clearly formulate a need for Lightweight Process Modelling

(LPM) implementing a process modelling solution that the business user might use in

a lightweight way, so required for knowledge expression in general in (Lillehagen &

Krogstie, 2008). In this sense, the term lightweight concerns the user interaction and

means intuitively, abstractly represented, and easy to understand in the context of

4

process modelling and easy to deploy, implement, and execute processes in a tooling

context. The process modelling solution should follow the trend of business user

enablement similar to the end-user programming paradigm described in (MIT, 1993)

in order to cope with these challenges.

Figure 1: How LPM supports the user in creating an application implementing a

process

Figure 1 visualizes the support through LPM on a high level. The user needs to create

an application that implements a process model. He therefore models the process.

Afterwards, the LPM technologies automatically search for and return services to be

bound to the abstract activities in the process model. In the final step, the found

services are automatically composed according to the process model.

In order to realize a lightweight user access, sophisticated backend solutions are

needed. In particular, the deployment aspect of the lightweightness is important for

users or organisations without runtime capabilities.

A need for allowing the business user to document and execute processes

has been identified

User has to create an

application

implementing a

process model

Automatic search

for services to be

assigned to

process steps

Automatic composition of

services according to

process model

5

1.2 RESEARCH QUESTIONS AND OBJECTIVES

As described in the introductory section, there’s a need to specify the design of a

solution enabling non-IT-savvy business users to model and execute their processes in

a lightweight way.

The following Research Questions and Objectives are addressed by this thesis. The

thesis aims at answering those questions by describing the design for a solution. The

goal of the thesis is not to specify a product-like solution.

Which design principles and meta artefacts are appropriate for LPM supporting the

business user in modelling and executing processes?

Hereby the research objective is to define a metamodel for LPM design principles,

the LPM metamodel. This metamodel for design principles is applied to according

artefacts, such as a process modelling language and supporting tools.

How should a solution for LPM be designed that enables business users to model

executable processes?

The according research objective is to define the design of the Lightweight

Process Modelling Solution (LPMS) targeting the business users.

How should artefacts, such as a language and tools, for the LPMS look like?

The objectives targeted by this research question are twofold:

The first objective is to create a Lightweight Process Modelling Language (LPML)

defining syntax and semantics for the representation of process logic. The

language should allow for the representation of abstract business processes for

documentation, communication, and collaboration purposes for business users.

Further, a representation format is required that might be used to execute process

models. The language should balance its expressive power with conceptual

simplicity and clarity targeting business users.

The second objective is to create the design of the technical architecture and tools

for the LPMS that support the business user in deploying and executing the

process models. This comprises a design process defining the user and machine

interactions in order to model and enhance abstract processes by execution details.

Furthermore, both front- and back-end tools are required, such as a process editor

and an execution engine.

How does the LPMS including the LPML reflect these design principles?

6

The objective of this question is to describe the language elements implementing

the LPM metamodel.

1.3 TARGET USERS

The target users addressed by LPM are end-users. They might be differentiated

according to their IT-skills. The following user types have been identified, in

accordance to Schnabel et al. (Schnabel, Born et al., 2009):

1. IT experts: Users that have a significant IT education or significant experience

in developing and using software. In the context of this thesis, these IT experts

have experience in service programming and usage as well.

2. Business users: Users who have strong business knowledge in other domains

than IT. These users use IT systems to support their work and to achieve their

work objectives. Concerning IT, they have computational needs but limited IT

knowledge and no interest in becoming an IT professional (Nardi, 1993; Quinn,

2005). In the public sector use case described in section 1, these users are

mainly civil servants and town-hall administrators.

3. Casual business users: These users are neither expected to be IT experts nor

experts of another business domain. Even if they were experts in any way, they

would use the LPMS for purposes that are not related to their main line of work.

These users might be seen as the lowest common denominator profile.

1.4 RESEARCH METHODOLOGY

The goal of this thesis is to develop a metamodel, a language, and tools for LPM. This

is a design-oriented goal aiming at the development of an artificial artefact (Simon,

1969). In contrast to behavioural science describing existing phenomena, the design

science covers the prescription of artefacts (Hevner, March, Park, & Ram, 2004;

March & Smith, 1995). Therefore, the design science is applied as research

methodology in this thesis.

1.4.1 Design Science Guidelines

A framework of seven design science guidelines is presented in (Hevner et al., 2004).

In the following Table 1, these guidelines are applied to the research work of this

thesis.

7

Table 1: Application of the design science guidelines to this thesis

DS Guideline Description Application in this thesis

Design as an

artefact

“Design-science research

must produce a viable

artefact in the form of a

construct, a model, a
method, or an

instantiation” (Hevner et

al., 2004; March & Smith,

1995).

LPM and the LPMS are defined as a

design artifact. Besides the LPM

metamodel, a language and tools for

implementing the LPM design
principles are presented.

Problem

Relevance

Describe important and

relevant business

problems.

Existing BPM solutions to both model

and execute processes are not suitable

for business users.

Design

evaluation

“The utility, quality, and

efficacy of a design

artefact must be rigorously

demonstrated via well

executed evaluation

methods” (Hevner et al.,

2004).

Evaluation of LPM and the LPMS

based on the requirements, such as

technical integration, usability,

suitability for collaborative modelling,

modelling time, or training effort.

Research

Contribution

Describe new and

interesting contributions.

LPM and the LPMS allow business

users to model and execute business

processes without specifying detailed

execution information.

Research

Rigour

Potential scientific

methodologies to apply:

Case studies, literature

research, action research

Research rigour is guaranteed through

literature research and a case study for

applying the LPMS to the area of the

Public Sector.

Design as a

search process

Means (set of actions and

resources

This thesis is written in the context of

the research project SOA4All
2
. Further,

a public sector use case is built around

the LPMS.

2
 See www.soa4all.eu

8

Ends (goals and

constraints on the solution)

Simplicity and usability, graphical

abstraction, automated service

discovery, composition, and execution.

Laws (uncontrollable

forces in the environment)

It is assumed that semantically

described service interfaces exist and

might be discovered in the web.

Communication

of research

Present research work to

both technology- and

business-oriented people.

LPM is part of the project work in

SOA4All. Various deliverables, a

scientific conference publication, and a

SAP Whitepaper have been published.

1.4.2 The Design Science Research Process

Figure 2: Application of the Design Science Process according to Peffers et al.

Various approaches exist to implement the design science guidelines in a research

process (Hevner et al., 2004; March & Smith, 1995; Nunamaker, Chen, & Purdin,

1991; Peffers, Tuunanen, Rothenberger, & Chatterjee, 2008; Rossi & Sein, 2003) .

Figure 2 depicts the application of the Design Science Process according to Peffers et

al. (Peffers et al., 2008) to this thesis. In the following Table 2, the research processes

of Rossi and Sein (Rossi & Sein, 2003) and of Peffers et al. (Peffers et al., 2008) are

applied to this thesis.

Table 2: Design Science process according to (Rossi & Sein, 2003) and (Peffers et

al., 2008)

Process Phase Addressed by this thesis

Identify a need (Rossi &

Sein, 2003)

Identify problem and

See section 1.1 (Current situation and motivation) and

3.1 (problem statement): Existing BPM solutions are too

complex for business users.

LPM

Principles,

Language,

and Tools

Public Sector

Use Case

Focus

Group,

Surveys,

Workshops

9

motivate (Peffers et al.,

2008)

Define objective of a

solution (Peffers et al.,

2008)

See section 1.2: Define an environment for LPM

targeting the business user

Build (Rossi & Sein, 2003)

Design & Development

(Peffers et al., 2008)

See section 1 (Lightweight Process Modelling

Principles) and section 1 (Lightweight Process

Modelling Solution).

Demonstration (Peffers et

al., 2008)

See section 1 about a use case of the LPMS in the public

sector.

Evaluate (Rossi & Sein,

2003) and (Peffers et al.,

2008)

See section 1 about the LPM evaluation.

Learn and theorize (Rossi

& Sein, 2003)

The work of this thesis contributes to the research project

SOA4All that is part of the European FP7 Research

Program. Further, section 1 covers aspects of the learn-
and-theorize phase.

Communication (Peffers et

al., 2008)

LPM is the main work in the research project SOA4All

comprising deliverables as the means of communication.

Further, a scientific publication and a SAP Whitepaper

have been published.

1.5 OUTLINE

This thesis is organised as follows. Section 2 gives an overview of related work that is

basic to the specification of LPM and the LPMS. The problem statement, the

requirements to LPM, an overview of the LPM approach, the research context, and the

coverage of parts of the LPM through existing solutions are subject to section 1. The

design principles for LPM, the LPM metamodel, and the implementation of the LPM

metamodel in the LPML are covered by Section 1. In Section 1, the LPMS is

described in detail, comprising the design process to create executable process models

and according tools. This section reveals how the user is supported through LPM. How

LPM and the LPMS are used in practice in a use case is subject to Section 1. Section 1

reports the evaluation of LPM and the LPMS. Finally a conclusion and an outlook are

given in Section 1.

11

2 RESEARCH FRAME

This section presents basic theories, methodologies, and technologies that influence

the LPM environment. Firstly, terms and definitions for this thesis are presented in

section 2.1. This comprises the relevant terms in the context of process, service,

modelling, and semantics. Afterwards, the trend of end-user empowerment (section

2.2), bottom-up approaches to distribute IT technology (section 2.3), business process

management (section 2.4), and semantic technologies (section 2.5) are introduced.

According to the Design Science guidelines, this section covers the Research

Contribution guideline.

2.1 TERMS AND DEFINITIONS

2.1.1 Process

In this thesis, a process is defined according to Green and Rosemann (P. Green &

Rosemann, 2000; M. Rosemann, Sedera, & Sedera, 2001) as “a self contained,

temporal and logical order (parallel or serial) of those activities, that are executed for

the transformation of a business object with the goal of accomplishing a given

task”. This definition is based on the definition of Davenport (Davenport, 1993) who

states that “a process is simply a structured, measured set of activities designed to

produce a specified output for a particular customer or market. It has a specific order

of activities across time and place, with a beginning and an end and clearly identified

inputs and outputs with a structure of action.”

2.1.2 Service

In this section, a definition of the term service is presented. Firstly, various definitions

based on literature are listed. Afterwards, the common parts of these definitions are

analysed in order to create a definition valid for this thesis. Table 3 lists the definitions

found in literature.

Table 3: Definitions of the term "Service"

Source Definition

(Brown & Cantor,

2006; High, Kinder,

& Graham, 2005)

A service encapsulates a set of resources that can

execute a repeatable task within a process. Services are

described by their behavior and interfaces. The service

consumer rarely has visibility to the resources; rather,

12

the consumer invokes the service through the service

interface.

(Plummer, 2005) In SOA, a service is a modular piece of software

(service provider) with a well-described interface that

can be activated by another modular piece of software

(service consumer). The service consumer doesn’t need
to understand the technological implementation of the

service provider. This implies the concept of "loose

coupling" (that is, the service provider can be changed

without forcing the service consumer to be changed as

well). In this sense, the provider and consumer are

loosely coupled, rather than tightly, as in monolithic

software architecture leading to a more-modular system

that can be changed readily.

(W3C Web Services

Architecture Working
Group, 2004)

A service is an abstract resource that represents a

capability of performing tasks that form a coherent
functionality from the point of view of providers’

entities and requesters’ entities. To be used, a service

must be realized by a concrete provider agent.

A Web service is a software system designed to support

interoperable machine-to-machine interaction over a

network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by

its description using SOAP-messages, typically

conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards.

(Böhmann,

Junginger, & Krcmar,

2003)

[A service is] the application of business and technical

expertise to enable organizations to create, manage,

optimize or access information and business processes.

(OASIS, 2005) [A service is] a behaviour or set of behaviours offered

by one entity for use by another according to a policy

and in line with a service description.

Table 4 covers the analysis of the criteria for the service definitions. An „X“ in the

according cell means that the criteria is mentioned in the definition. A comment will

be presented, if the criteria are modified or extended.

http://www.w3.org/TR/ws-gloss/#providerentity
http://www.w3.org/TR/ws-gloss/#providerentity
http://www.w3.org/TR/ws-gloss/#requesterentity
http://www.w3.org/TR/ws-gloss/#provideragent

13

Table 4: Literature criteria for the service definition

Criteria

(B
r
o

w
n

 &
 C

a
n

to
r
,

2
0

0
6

;
H

ig
h

 e
t

a
l.

,
2

0
0

5
)

(P
lu

m
m

e
r
,

2
0

0
5

)

(W
3

C
 W

e
b

 S
e
r
v

ic
e
 A

r
c
h

it
e
c
tu

r
e
 W

o
r
k

in
g

G
r
o

u
p

,
2

0
0

4
)

(B
ö

h
m

a
n

n
 e

t
a

l.
,

2
0

0
3

)

(O
A

S
IS

,
2

0
0

5
)

(D
o

st
a

l,
 J

e
c
k

le
,
M

e
lz

e
r
, &

 Z
e
n

g
le

r
,
2

0
0

5
)

(Z
im

m
e
r
m

a
n

n
,

K
r
o

g
d

a
h

l,
 &

 G
e
e
,

2
0

0
4

)

Encapsulated,

modular piece

of software

X X

Set of resources
X

Abstract

resource

Service provider

performs a task
X X X X X

Within a

process

X

Creation,

management

,
optimization

, and access

to processes

 X X

Services is

characterised by

its behaviour

X X

Interface
X

Well-

defined
X

No visibility for

service

consumer
X

User

doesn’t

have to

understan

d the

technical

implemen

14

tation

User calls

service (human

or machine) X

Interface

activated

through

further

software

 X X X

Lose coupling X

Application of

technical and

business

expertise

 X

In line with

service

definition

 X

Based on the criteria extracted out of the definitions listed in Table 3 and Table 4, this

thesis uses the following service definition:

“A service is a modular piece of software that is encapsulated behind an interface and

performs a specific task. It is offered by a service provider and called by a service

consumer. Various services are coupled loosely.”

2.1.3 Modelling

According to Brockhaus (Brockhaus, 2002), in computer science, modelling is the

proceeding of transforming a real scenario into a model. The model is an image of an

object or of an object area that emphasizes the essential characteristics and dismisses

aspects that are not considered relevant (Brockhaus, 2002). Like in computer science,

modelling has an important role in information management. A definition of modelling

in information management can be found in Winter (Winter, 2003). According to

Winter, modelling is the proceeding of constructing an image of real or virtual

scenarios that is based on the perception of the modeller and is influenced by the

modelling purpose.

2.1.3.1 Models and the Model Term

The results of the modelling procedure are models that are images of real or virtual

scenarios, influenced through perception and purpose (Schütte, 1998). The model term

is characterised by three main attributes. These cover the image attribute, the reduction

attribute, and the pragmatic attribute (see (Thomas, 2005) based on (Stachowiak,

1973)). The image attribute covers the fact that models are always images or

15

representations of natural or artificial originals. The fact that a model covers only

relevant aspects is addressed by the reduction attribute. The pragmatic attribute refers

to the fact that models might not always be assigned unambiguously to their originals.

The model term can be characterised according to their nature (Thomas, 2005). The

axiomatic model term represents the semantic or empirical interpretation of a formal

system of axioms. The image-oriented model term is widely spread. Main

characteristic is the image of the objective real world into a subjective model. The

image-oriented model term builds the foundation for process modelling that is

described in detail in section 2.4.2. The last model term is the construction-oriented

model term. This term is based on the assumption that the real world is not objectively

existent and tangible but bound to subjects. A model cognition and creation is not built

through the imaging of a reality part but through construction. In terms of

construction-orientation, starting point is a problem definition that is structured

through the creation of models in order to facilitate the solution process (Bretzke,

1980; Rieper, 1992; Schütte, 1997; Thomas, 2005).

2.1.3.2 Model Type

Models are assigned to model types. Winter (Winter, 2003) differentiates various

dimensions that support the structuring of models. An as-is-model represents existing

scenarios. In contrast, a target model or a reference model represents desirable or

recommended scenarios. A further dimension covers the degree of specialisation of a

model. Generic models are valid in a plethora of application contexts whilst specific

models are only valid in a certain context. The third dimension describes the

abstraction level of the components. Detail or view models concentrate on specific

parts. Aggregation models compose multiple aspects.

In terms of syntax and semantics, models are categorized into informal, semi-formal,

and formal models. Informal models mostly lack unambiguous description syntax.

Semi-formal models follow a specific syntax, however do not follow concrete

construction rules of a formal theory. For formal models, the semantics is well -

defined, besides the definition of the syntax. An example of formal models are Petri-

net-models (Peterson, 1981; Petri, 1962).

The last dimension specifies the dynamicity of models. Static models concentrate on

one state, comparatively static models comprise multiple states. Lastly, dynamic

models allow for the modelling of flows.

16

2.1.3.3 Definition of Model

In this thesis, a model is a representation of a real world scenario. This representation

is an image of the real world, reduced, pragmatic, and has a specific modelling

purpose.

Modelling is the proceeding of creating a model.

2.1.4 Semantics

Semantics is “the study or science of meaning in language” (TheFreeDictionary,

2011). According to “The Free Dictionary” it is further “the meaning or the

interpretation of a word, sentence, or other language form”. In computer science,

semantics is not restricted to the meaning of words, but is as well applicable to the

meaning of languages and their artefacts. Hence, in this thesis, semantics is valid for

all artefacts in the context of LPM.

2.2 END-USER EMPOWERMENT

An increasing need for knowledge-intensive work and quick changing user

requirements and environments require an effective IT support for users’ tasks and

processes. Further, managing high quality and competitive knowledge forms the basis

for individual action and hence, for effective enterprises in the global competition

(Wiig, 2004).

With the emergence of distributed computing, applications are more and more

developed by the people that directly need it (Brancheau & Brown, 1993). As a result,

end-user computing (EUC) emerged allowing people outside the information systems

department to adapt and use information technology in order to develop their own

applications. A definition of Brancheau and Brown (Brancheau & Brown, 1993) is

referred to describe end-user computing: “End-user computing is defined as the

adoption and use of information technology by personnel outside the information

systems department to develop software applications in support of organizational

tasks.” Another term for EUC is End-User Development (EUD) that is considered as

homonymous to EUC in this thesis.

Early approaches of EUC started in the early 1970s. However, not until the late 70s

and early 80s, EUC had been seen as a solution to organizational problems with

traditional software development (Brancheau & Brown, 1993; Canning, 1981a, 1981b;

Martin, 1982; McLean, 1979).

17

EUC

- Promises to enable business users to create software

- Promises to overcome the shortage of IT experts

- Is a trade-off between user training costs and the benefits of closing the
gap between business and IT

EUC promises to reduce the applications development backlog and to overcome the

shortage of IT experts (Brancheau & Brown, 1993). The large majority of the typical

workforce of an organization is enabled to participate in development and composition

tasks (see Figure 3). Even if a single user is only able to contribute a small part, the

composition of these parts might produce significant results. For Lillehagen and

Krogstie, EUC is a prerequisite to the active management of enterprise knowledge

including the BPM area (Lillehagen & Krogstie, 2008). The authors describe a

Knowledge Management Architecture to make knowledge explicit through modelling

approaches. Further, the authors see a lack of tools for inexperienced modellers, a lack

of scientific methodologies, and a lack of dynamic visual languages as main

shortcomings of actual enterprise modelling approaches. They intend to enable users to

create and maintain personnel working environments.

Figure 3: Leveraging the wisdom of the crowds with EUD (Quinn, 2005)

An overview of early EUC approaches can be found in literature (Brancheau &

Brown, 1993; Powell & Moore, 2002). In addition, an overview of later EUC

approaches has been published by Spahn et al. (Spahn, Dörner, & Wulf, 2008). The

18

motivation for EUC is a balance of benefits and costs (Fischer, Giaccardi, Ye,

Sutcliffe, & Mehandjiev, 2004; N. Mehandjiev, Sutcliffe, & Lee, 2006; A. Sutcliffe,

2005; A. G. Sutcliffe, Lee, & Mehandjiev, 2003; Wulf & Jarke, 2004). Hard-coded

software is often limited in supporting heterogeneous and changing tasks in a flexible

way due to development, installation, and configuration time.

The benefits of EUC are more effective job executions, higher development speed,

higher flexibility, more local control, and an avoidance of frequent misunderstandings

between business and software specialists. However, costs have to be taken into

account, such as selecting appropriate technology, installation and training costs, user

guidance, and programming and debugging (Fischer et al., 2004; A. Sutcliffe, 2005).

These costs have to be regarded on the individual level as well as the trade-off

between cognitive costs of programming and the benefit of achieving a better fitting

result (Blackwell, 2002). Non-cognitive costs, such as a loss of personnel time, are

recognised as well in literature (A. G. Sutcliffe et al., 2003). Furthermore, issues about

control sharing between IT and business departments might occur (Brancheau &

Brown, 1993). However, the responsibility shift cannot only be seen as an IT issue but

as political, social and cultural issues associated with the users (McBride & Wood-

Harper, 2002). A list of benefits and risks of EUC and of supporting actions can be

found in a report published by Mehandjiev (N. Mehandjiev et al., 2006).

In the area of BPM, the need for end-user development is agreed as well. A shift from

the enterprise view of processes to address the needs of an individual acting in

multiple processes is foreseen. This is called the “process of me” in Genovese et al.

(Genovese, Comport, & Hayward, 2006) or “activity-centric process” in Hill et al. (C.

Hill, Yates, Jones, & Kogan, 2006). An approach for deriving processes from task

management is discussed in literature as well (Riss, Rickayzen, Maus, & van der

Aalst, 2005; Stoitsev & Scheidl, 2008; Stoitsev, Scheidl, Flentge, & Muehlhaeuser,

2008). To base process models on users’ tasks results in consistent, real-life compliant

process models. These approaches derive process models based on users’ tasks for

scenarios where a global process structure does not exist, such as for search processes.

The challenge is to make these unstructured processes executable. LPM promises to

contribute to this challenge by providing means for knowledge workers – the business

users in this thesis - to model and execute those processes in a user-friendly way.

Hereby, the basic process models might be derived from task structures as described

above and then enhanced via LPM to make the process models executable.

A study about the extent and the attitude towards the costs and benefits of EUC has

been performed by Mehandjiev (Nikolay Mehandjiev, 2008). Vogel et al. summarised

19

the main results of the study (Vogel et al., 2009). In this study, business users of large

client companies of the SAP AG
3
 and of non-technical divisions of SAP have been

surveyed, in total, 133 respondents participated in the survey.

A result of the study revealed that the surveyed business users are already performing

various EUC activities. 75% of the respondents claimed familiarity with typical EUC

functionalities, such as creating rules for filtering or forwarding emails. Furthermore,

only 2% of the business users with almost no programming experience indicated that

they hadn’t performed any EUC activities.

Another study result has been that the targeted business users trust in the fact that

benefits from EUC outweigh its costs. Therefore, the balance of risk and cost

expectations against the benefit expectations has been surveyed. The obtained result

reveals a value of 0.92 in a -4 to +4 scale. Furthermore, the study revealed that the

respondents expect to be able to perform the needed EUC activities (average value of

0.92 on a -2 to +2 scale).

To conclude, the benefits of end-user development mostly outweigh the potential risks

which lead to the decision to follow an end-user empowerment approach in this thesis.

2.3 BOTTOM-UP

In a bottom-up approach

- The workforce is playing the key role in a decision process

- A software solution might be leveraged to become a mainstream solution

Besides approaches for end-user empowerment discussed in the previous section, the

paradigm of bottom-up theories influences the LPMS. Basically, in a bottom-up

approach, the workforce is playing the key role rather than the top management in a

tool purchase or usage decision.

3
 See www.sap.com for more information on the SAP AG

http://www.sap.com/

20

A key success factor for an IT solution targeting business users is the acceptance

amongst the target group. Current BPM solutions are focusing a small group of IT or

BPM experts. However, in order to leverage the full potential of BPM and to become a

mainstream solution, those users have to be focused that possess the business and

process knowledge. In order to raise acceptance, the LPMS has to provide value for

those users rather than for the management.

An example of a successful bottom-up approach is the business model of

Salesforce.com
4
. The provided SaaS model is cheap enough that middle management

might consume the provided services within the limits of their own budgets. In

contrast, traditional software models covering the whole functionality stack are very

expensive and require the approval of the top management. Hence, Salesforce.com

solutions slowly penetrate entire organisations through a bottom-up approach. Another

example is Skype
5
, an IP phone provider. Although blacklisted in a couple of

companies Skype is used by the employees and provides value to them. In

consequence, Skype might benefit from the additional user base that might be used for

advertising. As well, Google
6
 increases its user base through the provisioning of a

large amount of storage space for its email service Gmail
7
. Often, companies provide

less storage space leading employees to use their Gmail accounts for business emails.

A larger user base might leverage advertisement incomes for those companies , such as

Skype and Google.

As aforementioned, the LPMS envisages providing value to the business users. By

achieving a high acceptance amongst the business users, significant business

opportunities might arise for the provider of the LPMS. Furthermore, the acceptance

degree of the overall set of processes within an organisation will increase since the

processes are directly modelled by those users who execute them.

4
See www.salesforce.com

5
 See www.skype.com

6
 See www.google.com

7
 See www.gmail.com

21

2.4 BUSINESS PROCESS MANAGEMENT

2.4.1 Business Process Management

Process management theories base the management of an organisation on its core

processes. A definition of a process has been stated in section 2.1.1. Business Process

Management (BPM) (Elzinga, Horak, Chung-Yee, & Brunner, 1995) has its roots in

Business Process (Re)Engineering (Davenport, 1993; M. Hammer, 1990; M. Hammer

& Champy, 1993; Michael Hammer & Champy, 1994; M. Hammer & Stanton, 1999;

Jablonski & Bussler, 1996) and Workflow Management (Allen, 2001; Hollingsworth,

1995) that is focused on the use of software to run processes. Armistead et al.

(Armistead, Machin, & Pritchard, 1997) formulate questions of what is Business

Process Management:

“Firstly, is it a series of tools and techniques for improving the performance of

business processes whether they be categorised as operational, support or directions

setting. Or is it a way of integrating the management of the whole organisation?

Secondly, if business process management is the latter, how can it be made to work?

Finally, is it a tool for organisational design which needs to be understood by only a

few within the organisation?”

In this thesis, the latter scope is clearly recognized. With methods, techniques, and

software, BPM includes a broader scope than workflow management to support the

handling of processes (van der Aalst, ter Hofstede, & Weske, 2003). BPM is more a

kind of management discipline and covers the main aspects of business operations

(Zairi, 1997). As is described in this thesis, BPM concerns not only a few expert

people within an organisation but all kinds of information workers.

BPM is a management discipline covering

- Process documentation

- Automation of process execution

An early summary of BPM literature is provided by (Lee & Dale, 1998). Van der Aalst

et al. further define a BPM lifecycle comparing workflow management to BPM. This

lifecycle comprises four phases: process design, system configuration, process

enactment, and diagnosis. Whilst workflow management concentrates on parts of the

design, system configuration, and parts of the enactment phase, the BPM covers all

phases.

22

BPM is characterised by various main principles that can be found in literature

(Michele Cantara et al., 2009; Lee & Dale, 1998; Zairi, 1997) and are summarised in

the following.

- Customer focus through the linkage of key activities in horizontal processes.

- Quality focus through well-defined procedures that ensure discipline and

consistency. Processes are made visible and hence explicit to business and IT people

through common models and languages. Further, the quality of each individual process

is measured and monitored to ensure a specific service delivery level.

- Business models have to be in line with process execution. Both models and

execution systems should allow for the quick adaptation to changing requirements and

environments.

- BPM has to be implemented as a continuous approach to improve and optimize

procedures and end-to-end processes within and across organisations including

partners, suppliers, and customers. Further, an objective is to increase competitiveness.

- Culture change and not only implementation of process-aware systems.

- Integration of process activities, measurement methodologies, rule management,

content integration and collaboration

- Empowering business users and analysts to manipulate business process models and

instances

The automation of processes is subject to workflow management. A workflow is “the

computerised facilitation or automation of a business process, in whole or part ”

(Hollingsworth, 1995). Allen (Allen, 2001) further extends this definition by including

the passing of documents, information, or tasks between participants according to

procedural rules. Workflows typically describe coarse-grained activities and

applications (Alonso, Casati, Kuno, & Machiraju, 2004). Workflow Management

Systems (WfMS) allow for the processing of workflows (Allen, 2001). According to

Allen, a WfMS is defined as “a system that defines, creates and manages the execution

of workflows through the use of software, running on one or more workflow engines,

which is able to interpret the process definition, interact with workflow participants

and, where required, invoke the use of IT tools and applications”.

According to a Gartner report (Plummer & Hill, 2009), applications will be more and

more replaced by orchestrations of data, processes, and services. In order to explicitly

abstract process logic from application logic, Business Process Management Systems

(BPMS) (Chang, 2005) allow for the definition and execution of processes by

invoking underlying applications or services. A BPMS might be seen as an evolution

of the definition of a WfMS.

23

2.4.2 Business Process Modelling

As described in section 1.2, the goal of this thesis is to describe the design of a

solution enabling business users to model and execute processes. Therefore, an

executable process modelling language is required comprising a graphical abstraction

the business user might understand. Further, the language has to allow for the

specification of semantic annotations. In the following, a general introduction to

business process modelling is given. Afterwards, existing process modelling languages

are investigated in terms of their suitability for business users, ability to include

execution information, and ability to include semantic annotations.

Business Process Modelling (Williams, 1967) has been introduced in order to

document, communicate, analyse, and support collaboration in pursuit of business

needs (Davis, 2001; Harrington, 1991). Scholz-Reiter and Stickel (Scholz-Reiter &

Stickel, 1996) emphasise in their definition the transformation of knowledge about

business systems into process models. Explicit process models might be required for

quality objectives or compliance. Another purpose of process models is to automate

processes within an existing infrastructure. Van der Aalst and van Hee (van der Aalst

& van Hee, 2004) see the definition and selection of appropriate tasks as part of

workflow modelling. The authors suppose a task library where the tasks might be

taken from. In this thesis, the selection of tasks is performed in the web which requires

more sophisticated mechanisms. Furthermore, van der Aalst and Hee see sequencing

of the tasks to satisfy dependencies, allocation of resources and agents to the tasks,

scheduling of tasks considering concurrency, and validating and verifying the model as

part of workflow modelling.

Business process modelling

- Serves for the documentation of processes

- Allows for automation through executable process models

- Might be structured through functional, operational, behavioural,
organizational, and informational perspectives

A model has to provide information about activities, who is performing those

activities, when and where the activities are performed, how they are executed, and the

data elements manipulated by the activities (Giaglis, 2001). Process models might be

differentiated according to the following perspectives defined by Jablonski and Bussler

in the Mobile Framework (Jablonski & Bussler, 1996) and refined by Curtis et al.

(Curtis, Kellner, & Over, 1992).

24

- The functional perspective describes what process elements (activities) are being

performed.

- The operational perspective describes which operations are supported.

- The behavioural perspective describes when activities are performed (sequence or

parallel) as well as aspects of how they are performed through feedback loops,

iteration, decision-making conditions, entry and exit criteria, etc.

- The organizational perspective represents where and by whom activities are

performed, the physical communication mechanism used to transfer entities, and the

physical media and locations used to store entities.

- The informational perspective represents the information entities (data) produced or

manipulated by a process and their interrelationships.

Business Process Modelling is a part of enterprise modelling. An approach for a

business modelling framework has been developed by Lo and Yu (Lo & Yu, 2008).

Like enterprise modelling, process modelling has to cope as well with the balance of

allowing freedom degrees and a reasonable degree of quality. This balance is

described by the term “Generally Accepted Modelling Principles” (GAMP) (J. Becker,

Rosemann, & Schütte, 1995; Scheer, 1998). The GAMPs cover principles for

correctness, relevance, efficiency, clearness, comparability, and systematic structure.

In this thesis, these principles are applied to the creation of the LPML and the

according Process Editor. The editor has to make sure that only correct models might

be created, that the creation is efficient, that the models are clear in order to be

executable, and follow a systematic structure. The principles of relevance and

comparability are subject to the process models themselves and less to the modelling

language and tools.

A need for supporting the creation of correct, sound, meaningful, and

commonly understandable process models could be identified.

However, creating sound models is not sufficient to enable an alignment and a

common understanding of processes as well as to create a homogeneous set of

processes on the same granularity level within an organisation. Meaningful,

understandable, and maintainable process models have to be created. Born et al. (Born,

2009; Born et al., 2009) describe a proceeding for the alignment of process models.

The proceeding is based on a common naming convention for process elements and a

business term repository containing activity names and descriptions in order to reveal

their relations. The goal is to enforce the users applying the naming convention and to

use the terminology provided by the repository. In particular, business users benefit

25

from a quick understanding of process models with terminology that is common in

their context. By implementing these aspects, further, a context-driven

recommendation system might be implemented. Section 4.4 covers context-awareness

of the LPMS.

Since the LPMS deals with services, the process modelling procedure might be seen as

a service composition task. In general, three approaches exist to compose services:

Modelling the control flow, modelling the data flow, and modelling through an

assisted approach. The assisted approach provides a composition template and

supports the user in selecting services from a predefined list. Wajid et al. (Wajid,

Namoune, & Mehandjiev, 2010) compared these three approaches of service

modelling by business users through a modelling workshop. The result of the

workshop revealed that users liked the assisted approach best. Although the author of

this thesis agrees to the workshop result to provide an assisted modelling approach, the

LPMS has to keep flexibility in order to model and execute any kind of processes.

Hence, the LPMS primarily focuses on supporting the user in modelling data and

control flow. However, for a specific domain, it is reasonable to provide an existing set

of services and support the user in selecting one of them.

2.4.2.1 Process Modelling Languages

The user interface of BPM is a process modelling language allowing the user to

orchestrate tasks and activities in a process structure. The language should provide a

graphical abstraction layer and an executable format, such as formats for workflow

modelling. The basis for workflow modelling are Petri nets (Pankratius & Stucky,

2005). Petri nets are a formal workflow modelling language and allow for the creation

of a workflow model out of various models in terms of algebraic operations . The

formal notation of Petri nets might be used to define other formal workflow notations.

This section starts with an overview of graphical process modelling languages.

Afterwards, executable process modelling languages are described.

Graphical process modelling languages

Currently, a couple of graphical process modelling languages exist, an overview is

provided by Ko et al. (Ko, Lee, & Lee, 2009). The most important languages for LPM

are described in the following. A common language for documenting process models

is the Event-Driven Process Chain (EPC) (G. Keller, Nüttgens, & Scheer, 1992;

Richter-von Hagen & Stucky, 2004; Scheer, 2001; Staud, 2001). EPCs are a semi-

formal notation for the enterprise and process modelling. They allow for the graphical

documentation of the control flow, concurrency, conditional splits, joins, and loops,

26

data flow, involved organization units, and information systems. The explicit

documentation of the data flow however, is only provided if the control flow is equal

to the data flow between these artefacts (Jablonski, Böhm, & Schulze, 1997). In detail,

EPCs comprise functions as active components transforming objects from a start state

into an end state and events as passive components revealing system states and

business conditions. Furthermore, EPCs contain connecting operators, process

interfaces, hierarchical functions, and further object types, such as external persons,

organizational units, or swim lanes (Hoffmann, Kirsch, & Scheer, 1993; Klein, F., &

A.-W., 2004; Richter-von Hagen & Stucky, 2004; Staud, 2001). EPCs do not comprise

specific information for the execution of process models. In order to execute the EPC

models, these have to be transformed into an executable process modelling language.

For this thesis, EPCs are not considered as real alternative due to the lack of execution

focus.

The most common languages that are related to process automation are the Yet

Another Workflow Language (YAWL) (van der Aalst & ter Hofstede, 2005) and the

Business Process Modelling Notation (BPMN) (OMG, 2006).

YAWL is a business process modelling language founded on workflow patterns and

Petri nets (van der Aalst & ter Hofstede, 2005; van der Aalst, ter Hofstede,

Kiepuszewski, & Barros, 2003). The goal of YAWL is to provide an intermediate

language for various workflow systems. Hence, the foundation on Petri nets which

allows for better performance for executing state-based workflow patterns. YAWL has

a formal semantics and comprises a graphical syntax supporting higher-level

modelling activities. YAWL is implemented in the so called YAWL System as

described in van der Aalst et al. (van der Aalst, Aldred, Dumas, & ter Hofstede, 2004).

The main purpose of BPMN models is to facilitate the communication between

domain analysts and the strategic decision-making (Jorg Becker, Rosemann, &

Kugeler, 2003; J. C. Recker, Indulska, Rosemann, & Green, 2005). BPMN models are

also used as a basis for specifying software system requirements and providing input

to software development projects.

The modelling procedure in BPMN is performed with a small set of graphical

elements, in particular, flow objects, connecting objects, swimlanes, and artefacts

enabling the stakeholders to construct a Business Process Diagram (BPD). BPMN

itself is not executable. To execute the process models the BPMN models have to be

transformed into an executable language.

27

Executable process modelling languages

A commonly used executable process modelling language for service orchestration is

the Web Service Business Process Execution Language (WS-BPEL) (OASIS, 2006).

The services are integrated into the process model by referencing their Web Service

Definition Language (WSDL) (Christensen, Curbera, Meredith, & Weerawarana,

2001) service descriptions. WS-BPEL combines the features of a block structure

language with those for directed graphs. Both abstract and executable processes might

be modelled in WS-BPEL. An abstract, non-executable process is a business protocol

specifying the message exchange behaviour between different parties. The internal

behaviour for the involved parties is not covered. An executable process specifies the

execution order between a number of activities constituting the process, the partners

involved in the process, the messages exchanged between these partners, and the fault

and exception handling.

In order to make BPEL independent of the Web Service Standards
8
 including WSDLs,

an extension mechanism has been defined called BPEL-Light (Jörg Nitzsche, van

Lessen, Karastoyanova, & Leymann, 2007b). Therefore, new elements have been

defined replacing those elements that reference to WSDL-based elements or elements

referencing WSDL interfaces. Another BPEL extension mechanism is BPEL4SWS

(Jörg Nitzsche, van Lessen, Karastoyanova, & Leymann, 2007a). This BPEL dialect

defines references to goals defined by the Web Service Modelling Ontology (WSMO)

(Roman, Lausen, & Keller, 2006) and to interfaces described in OWL-S (W3C,

2004b).

2.4.2.2 Structuring Unstructured Processes

One objective of the LPMS is to increase the amount of explicitly structured processes.

This helps organisations in managing effectively and efficiently their core

competencies and the according support tasks. Unstructured processes mostly evolve

8
 See www.w3.org

28

around stakeholder communication, such as email exchange (Ukelson, 2009). Gartner

(Michele Cantara et al., 2009) further details the definition:

“Unstructured process describes work activities that are complex, nonroutine

processes, predominantly executed by an individual or group highly dependent on the

interpretation and judgment of the humans doing the work for their successful

completion.”

According to a Gartner Hype Cycle (Michele Cantara et al., 2009), the management of

unstructured processes is one of the more important topics within the next 5 -10 years.

Common areas that need to be structured in terms of explicit processes comprise

regulatory and compliance processes, exceptions and escalation processes, decision

implementation processes, audit processes, and complex project management

processes (Ukelson, 2009). Various approaches exist to structure unstructured

processes, such as process mining or deriving process models from task structures.

Stoitsev et al. (Stoitsev & Scheidl, 2008; Stoitsev et al., 2008) present an approach of

deriving processes from task management. The authors propose to generate weakly-

structured process models from data on personal task management. These process

models are then transferred to process designers or software developers that transform

the process models into executable models. The approach assumes the involvement of

IT experts that execute the tasks. However, the LPMS envisages the direct enabling of

business users to model and execute processes.

Unstructured processes might be made explicit through task management,

mashups, or the LPMS

Another emerging approach of structuring unstructured processes is the generation of

screenflows through mashup technologies (Benslimane, Dustdar, & Sheth, 2008;

Hoyer et al., 2009; Hoyer & Stanoevska-Slabeva, 2009). The mashup technologies

focus on the data flow between services and are complementary to a process modelling

solution. An integration of mashup technologies into the LPMS is however not

performed in this research work. Further, approaches exist using Artificial Intelligence

(AI) technologies to derive processes (Blythe, Deelman, & Gil, 2003; Madhusudan,

Zhao, & Marshall, 2004). The approach of Madhusudan et al. for example, uses task

pre- and postconditions to develop plans to fulfil a business need. Later, these plans

are transformed into workflow models.

29

2.4.3 Business Process Execution

As already introduced at the beginning of section 2.4, the automation of processes is

subject to workflow modelling. Workflow Management Systems (WfMS) allow for

the processing of workflows (Allen, 2001), Business Process Management Systems

(BPMS) (Chang, 2005) are an evolution of WfMSs and allow for the definition and

execution of processes by invoking underlying applications or services.

Traditional WfMSs have got a couple of characteristics that make the use in the

service context difficult. Such characteristics comprise expensive software licenses,

complex installation and operation, or long development cycles to automate real

business processes (Alonso et al., 2004). Alonso et al. further criticize that WfMSs had

to provide an according necessary runtime environment, such as a complete

middleware platform. Thus, WfMSs became heavyweight platforms that had been

difficult to operate and maintain. Lastly, WfMSs had been most useful with predefined

processes in a specific structure that had often already been implemented by

conventional middleware.

In the meantime, WfMSs had mostly been renamed to BPMSs and acquired flexibility.

This thesis refers to the following definition of flexibility given by Regev et al.

(Regev, Bider, & Wegmann, 2007): “Flexibility is the capability to change without

loss of identity”. Further, Regev et al. define business process flexibility as the

capability of a process to adjust to environmental changes by adjusting only aspects of

a process that are impacted by these changes while keeping the rest of the process

stable.

However, the terms WfMS and BPMS are treated differently in literature. Whilst a

couple of BPM experts don’t see any difference (e.g. (Gadatsch, 2005)) others

distinguish the scope of WfMSs and BPMSs (e.g. (Chang, 2005; J. B. Hill, Cantara,

Kerremans, & Plummer, 2009)). Often, a BPMS is seen as an extension to a WfMS

through providing functionality for process design and improvement besides the pure

execution. Gartner (J. B. Hill et al., 2009) defines a BPMS as an “integrated collection

of software technologies that enables the control and management of business

processes”.

Recently, web-based BPMSs avoiding heavy-weight installation and a complex

runtime environment have emerged. These solutions are often offered as services and

allow for the integration of services from the cloud. For example, Lombardi Blueprint

offers a BPM solution for process design and documentation as a web-based tool

(Lombardi-BPM, 2010; Richardson et al., 2009). The processes modelled through

30

Lombardi technology are in line with the Business Process Definition Metamodel

(BPDM) (J. H. Frank, Gardner, Johnston, White, & Iyengar, 2004; OMG, 2004) and

might be transformed into an executable process modelling language. Furthermore,

Appian and Cordys offer technologies for process modelling and execution as a

service (Appian, 2010; Cordys, 2010). Both use BPMN as modelling language,

however, requiring the user to have both business and IT skills.

An environment for process execution requires a set of modelling abstractions that

support potential system failures. Alonso et al. (Alonso et al., 2004) present forward

recovery, backward recovery, exception-handling languages, and deadlines as means

to support system failures. Since this thesis focuses on the holistic design of the LPMS

with a special emphasize on the language, the process execution environment is not

described in detail.

2.5 SEMANTIC TECHNOLOGIES

In this section, semantic technologies and their application to the web and to services

are described. Further, semantic annotations are introduced that describe services from

a semantic perspective. For this thesis the following definition of semantic annotations

is valid: Semantic annotations are well-structured and categorized metadata that

describe an artefact. The semantic annotations support the discovery and composition

of services in processes.

Key requirements

- The LPMS uses semantic annotations for service discovery and
composition in processes

- The according process modelling language has to provide elements to
handle these semantic annotations.

In order to interoperate with web services, the service provider and user agree on a

common interface that is in most cases decided by the provider. This interface

provides information about messages to be exchanged. The service user then has to

understand the interface description given by the provider. For the syntactical interface

description commonly agreed standards exist, such as XML Schema and WSDL. XML

schema describes the message types while WSDL specifies the operations to exchange

messages and detailed message serialization information. However, the syntactic

information is not sufficiently precise to always ensure a common understanding of

how the service works and what the service details mean. In particular, for a machine-

31

to-machine communication the syntactic descriptions are not sufficient. Furthermore,

the human users are often not capable to give precise syntactic descriptions of the

services. Existing semantic descriptions are mostly unstructured on web sites

describing the web services.

Semantic annotations

An approach to bridge the gap between business specification and execution details, to

support the provisioning of execution-related information for services, and to enable a

machine-to-machine communication is to attach semantic annotations to process

elements. These annotations provide information about discovery, composition, and

execution of services. Furthermore, semantic activity descriptions allow for the

definition of requirements rather than specifying concrete services. These annotations

are thus more intuitively understandable for business users. In this thesis, this approach

of using semantic annotations is followed. Rolland et al. (Rolland, Kaabi, & Kraiem,

2007; Rolland & Kaabi, 2007) have already described an approach of defining

intuitive semantic service descriptions rather than technically oriented functional

descriptions. The service composition however, is defined in a declarative way. In this

thesis, the semantic service descriptions are used to describe activities that are part of a

well-defined process-order. Current process modelling languages, e.g. BPMN, allow

only for the rudimentary provisioning of semantic annotations through text

annotations.

Currently, REST and WSDL/SOAP services are wide-spread syntactic description

standards for service interfaces. In order to add semantic information, the interfaces of

REST services might be described by hRESTS (HTML for RESTful services)

(Kopecky, Vitvar et al. 2009) in order to ensure machine-readability. Like WSDL,

hRESTS is a service description language and structures the information that is mostly

provided in an unstructured manner in HTML on web sites. A description language for

hRESTS can as well be found in Kopecky et al. hRESTS uses tags to mark

information relevant for the service API, such as tags for the entire service description,

for the HTTP methods, the operations, or the input and output.

In order to integrate semantic annotations in hRESTS descriptions, MicroWSMO has

been defined (Kopecky, Vitvar et al. 2009). MicroWSMO defines annotations for

hRESTS as SAWSDL annotations do for WSDL (W3C, 2007a). MicroWSMO

annotations are based on the WSMO-Lite ontology that is described below. This

ensures that the annotations of RESTful services and WSDL/SOAP services can be

mapped.

32

Ontologies

Metadata provide semantic information for resources they are attached to. In order to

structure this metadata, ontologies provide a schema for the metadata. This thesis

refers to Gruber (Gruber, 1992) for a definition of ontologies: “An ontology is a

specification of a conceptualization”. Gruber details this statement as follows. An

ontology is a formal specification of the objects, concepts, other entities, and

relationships that might exist for an agent or a community of agents. In the context of

AI and as well in the context of BPM, the ontology is a set of representational terms.

Definitions associate the names of entities in the common knowledge space, such as

classes, relations, functions, or other objects, with human-readable text explaining the

meaning of the text. Furthermore, formal axioms are associated that constrain the

interpretation and use of these terms. In other words, according to Gruber, an ontology

is the statement of a logical theory. Hence, by basing semantic annotations on an

ontology, a common understanding is ensured.

An existing ontology and hence, a conceptual model for semantically describing Web

Services is WSMO. WSMO provides information about functional and behavioural

aspects of web services. It is based on techniques on logics and knowledge

representation. Service capabilities describe aspects for service discovery and

composition, while interface and choreography information specify how to bind a

discovered service.

Two ontologies for WSDL-based services, WSMO-Lite (Vitvar, Kopecky, & Fensel,

2008), and for REST services (Fielding, 2000), MicroWSMO (Kopecky, Vitvar,

Fensel, & Gomadam, 2009), are complementary to WSMO. The Business Process

Modelling Ontology (BPMO) (Dimitrov, Simov, Stein, & Konstantinov, 2007)

provides a framework for describing processes by ontologies. BPMO is based on

WSMO. However, BPMO doesn’t support reasoning about state changes and temporal

behaviour, variable semantics are neither supported. Parts of the full-fledged BPMO

framework are used in order to attach semantic concepts to the LPML. In order to keep

the LPML really lightweight, semantic annotations are used mainly for activities and

the process as a whole.

Grounding

The semantic information of SWS doesn’t contain any invocation information. This

information is given through WSDL, XML, or REST data and has to be figured out

through a grounding mechanism (Kopecky, Moran, Vitvar, Roman, & Mocan, 2007).

The grounding is implemented in order to transform the invocation-relevant

33

information from a semantic description language into XML and WSDL, respectively

REST. The syntactic service descriptions in terms of XML and WSDL and the

semantic descriptions in terms of WSMO or in another language respectively in REST

and MicroWSMO are linked. A corresponding lowering (from an ontology description

language to XML-based data) and a lifting mechanism (from XML-based data to an

ontology description language) implement the grounding. The lifting and lowering

schemas have to be predefined.

It is assumed that existing service descriptions in WSDL contain references to

semantic descriptions through SAWSDL annotations (W3C, 2007a). Further, the

information contained in WSDL and XML might be lifted in order to be described in a

semantic annotation language, such as the Resource Description Framework (RDF)

(W3C, 2004c). In SAWSDL, the modelReference attribute references domain-specific

ontologies. The lifting mechanism is implemented through the liftingSchemaMapping

attribute and the lowering mechanism through the loweringSchemaMapping attribute.

Various notations exist to formalize ontologies, such as RDF, RDFS (W3C, 2004d),

OWL (W3C, 2004a), and WSML (WSMO-Working-Group, 2008). RDF represents

entities and binary relationships between entities. The entities might be identified by a

unique identifier. Two entities and a relationship between them are called a triple in

RDF. To visualize an RDF structure, the source entity of the relationship might be

represented as subject, the relationship as predicate, and the target entity as object.

RDFS defines the primitives to describe classes, instances, and relationships and

restricts RDF to a formal notion of meaning. This might be seen as the part of RDF

that is common to all other accounts of meaning.

Reasoning

Often, the explicitly given semantic descriptions are not sufficient to gather all

required information. Reasonners have been developed to overcome this issue and

derive some information from existing knowledge. Reasoning is based on a formal,

logical system and uses the meaning of facts. An example for such a logical system is

the description logics. Two main categories of reasoning exist, the deductive and

inductive reasoning. Deductive reasoning covers aspects that follow from given facts.

Inductive reasoning covers deriving a reliable generalization from existing

observations. Reasoning is closely related to semantic technologies and hence to

semantic annotations of services used in this thesis. The user however, doesn’t get in

touch with reasoning functionalities. Reasoning works in the background according to

decidability and complexity constraints.

34

Reasoning for BPM

The reasoning for BPM is mostly based on AI planning technologies. An overview of

AI planning can be found in Russell and Norvig (S. J. Russell & Norvig, 2003). AI

planning has as well been used for designing software at higher abstraction levels,

such as process modelling (Linden, 1991). Blythe et al. (Blythe et al., 2003) have

proposed an approach using AI planning for workflow management. According to

Blythe et al., a declarative specification of a process model might be seen as a plan to

fulfil a business need. Madhusudan et al. (Madhusudan et al., 2004) propose an

approach to reason about interactions between pre- and postconditions of tasks to

develop plans that are equivalent to process models.

Semantic Execution Environment (SEE)

In order to process SWS, Semantic Execution Environments (SEE) have been

specified. The SEEs support functionalities for the (semi-)automated discovery,

selection, composition, mediation, execution, and monitoring of SWS (Pedrinaci,

Grenon, Galizia, Gugliotta, & Domingue, 2010). The current approaches on SEEs are

closely coupled to WSMO forming the theoretical model. Two reference

implementations currently exist, WSMX (Cimpian, Moran, Oren, Vitvar, & Zaremba,

2005) and IRS-III (IRS, 2010).

Orchestration of SWS

Barricelli et al. describe an approach to create workflows through the semantic

orchestration of web services. (Barricelli et al., 2010). The authors describe how a

common understanding of business and IT experts might be supported through

semantic descriptions of services. Furthermore, in their work, there has been created

an editor visualizing the workflows and the according semantic annotations. In this

thesis, a similar approach about process modelling is proposed. However, the goal is to

directly enable the business users to model executable processes themselves instead of

making their process knowledge explicit to be used by IT developers.

Another approach using case-based reasoning has been proposed by Madhusudan et al.

(Madhusudan et al., 2004). This approach uses text query mechanisms to find

appropriate cases from a repository. Semantic technologies are used to adjust, modify,

or compose existing cases to fulfil different requirements. The cases are described by

preconditions, postconditions, and applicable tasks. The described approach focuses on

case representation and retrieval. The composition of cases or included tasks however,

is not yet investigated.

35

To conclude, the existing semantic technologies are sufficient to achieve the goals of

the LPMS. In particular, WSMO and its related ontologies, WSMO-Lite and Micro-

WSMO provide means to support the instantiation of process steps with services

through discovery and selection functionalities.

37

3 PROBLEM STATEMENT, REQUIREMENTS, AND APPROACH

After having introduced basic theories, methodologies, and technologies, this section

starts with the problem statement in section 3.1. In section 3.2, the requirements for the

envisaged solution approach are presented that are derived from the problem

statement. Afterwards, the LPM approach is presented in section 3.3. This approach

describes how the business user might create executable process models without

getting in touch with execution details. Section 3.4 is dedicated to the research context

of this thesis that is the research project SOA4All (SOA4All, 2010). SOA4All not only

embeds the LPM topic but implements as well important technologies that are

necessary for the functioning of LPM. The section closes with a summary of the

fulfilment of the requirements for the LPM approach and in particular, for the LPML

through existing approaches in section 3.5.

According to the Design Science guidelines, this section covers again the Research

Contribution guideline. In terms of the Design Science phases, the phase of the need

identification is covered.

3.1 PROBLEM STATEMENT

To model and execute processes multiple languages and technologies exist. On the one

hand, languages exist to design processes for business purposes. These process models

are created by business users mostly. On the other hand, languages and technologies

exist for process execution. These languages are mostly too complicated for the

average business user. A lack of a coherent approach allowing business users to model

and execute processes has been identified.

The creation of executable processes might be seen as application development. The

means and tools to create those processes are applications that allow for the

development of other applications and that have to fit to the users’ skills. The

problems that are described in the following, are categorized according to their

affiliation to application development, application use, limitation of Information

Technology (IT) resources, and the cognitive gap between business and IT. These

categories apply in general to the support of the business through IT. In particular, for

process modelling and execution these issues occur which is described after the

introduction of the problem categories.

38

Application development

Systems and applications have to adapt to environments that change often and in short

timeframes. Applications have to avoid long release cycles and build the capability to

adjust quickly to those changing environments (Lieberman, Paterno, & Wulf, 2006).

However, currently, application adaptations are often done in long release cycles.

Systems cannot easily be tailored for heterogeneous user groups. And, a trend appears

revealing that software development is more and more shifted from traditional

application development to composition of existing pieces of software. In particular,

applications that implement a process are more and more compositions of existing

software functionalities. However, systems allowing for the coherent process and

application composition from the business to the execution level do rarely exist.

Application use

An IT system should be tailored for various user groups according to a level of

complexity that meets their skills (MacLean, Carter, Loevstrand, & Moran, 1990). The

better the system functionality fits to users’ needs, the better the users are satisfied.

Since users’ needs are often heterogeneous, the fit is a trade-off between generality

and specialisation. Sutcliffe (A. Sutcliffe, 2005) summarises that as follows: “The user

motivation to accept an end-user development technology will be inversely

proportional to product complexity and variability in the user population.”

Furthermore, for cost and time reasons, the adaptation procedure should be done by

the business user that needs that kind of change in order to optimally meet the user

requirements (Lieberman et al., 2006; A. Sutcliffe, 2005). Hereby, the knowledge of a

large number of business users should be made explicit through user-friendly building

blocks and interfaces, such as Mashups (Hoyer & Stanoevska-Slabeva, 2009). Current

applications mostly address only one user group requiring specific usage skills.

Limitation of IT resources

Software development and adaptations are often done by the IT department which is

time consuming and costly. The large amount of business users is not enabled to create

software or to support at least the software development process. Due to the lack of

appropriate means for software development dedicated to business users, the creative

energy of those business users is not used. In particular, for execution-oriented process

modelling, the IT department has to be involved mostly.

39

Cognitive gap between business and IT

Table 5: Problem statement in the context of BPM

Problem

statement

Application to BPM

Application

development

Existing business process modelling stacks comprising a graphical

abstraction for business users and a formal, executable format

require manual, sophisticated, and error-prone transformation

mechanisms.

Application

use

Current BPM suites and tools either target business users or IT

experts

Limitation of

IT resources
- Business process models, in particular executable process models,
are developed by the IT department.

- The transformation from an abstract process model into an
executable model is performed by IT experts

Cognitive gap

between

business and

IT

- Current BPM solutions for process execution – both languages
and suites – require a high level of expertise in business and IT.

- Business process modelling languages contain elements that are
not easily understandable for business users.

- There’s no common understanding of business process models
and the terminology used.

- Modelling errors occur.

- Due to the lack of common understanding reuse of process models
is low.

- The business knowledge is not made explicit in process models,
the wisdom of the crowds is not used.

Still, misunderstandings might occur between business people and IT experts

developing and maintaining applications. Malone calls this the “cognitive distance”

between designing and using an application (Malone, Lai, & Fry, 1992). While the

development of an application requires knowledge in formal theories and models, the

simple use requires a much lower level of formality (Morch & Mehandjiev, 2000).

Hence, people that have got the business knowledge often lack the skills to develop an

according application or at least to communicate on a formal level. This produces a

gap between the business specification and the application development. Overall,

there’s often a bad fit between systems and the requirements of the users leading to

low user satisfaction (A. Sutcliffe, 2005).

40

These general issues occur as well in the area of Business Process Management. Table

5 reveals the problem statements applied to the BPM context.

3.2 REQUIREMENTS

The goal of this thesis is to provide a design principles framework, the design of a

language, and of tool specifications allowing the business user to model and execute

processes. This results in the objective to design the LPMS and in particular, the

LPML. The target group is thus people that have computational needs but limited IT

knowledge and no interest in becoming an IT professional (Nardi, 1993; Quinn, 2005).

The requirements to the LPMS might be categorized into technical, individual,

organisational, and economic requirements. Technical requirements refer to the

technical design of the LPMS. Individual requirements focus on the single user whilst

organisational requirements concentrate on the interplay of the users. The economic

requirements cover the economic perspective on the LPMS. Table 6 assigns these

requirement categories to the problem statement.

Table 6: Relation of requirement categories to the problem statement

Relation of requirement

categories to the problem

statement

Requirements

Technical Individual Organisa-

tional

Economic

Application development ●

Application use ● ●

Limitation of IT resources ● ●

Cognitive gap between

business and IT
● ● ● ●

Table 7, Table 8, Table 9, and Table 10 present the requirements according to the

category. The column “source” at the right hand side of these tables assigns the

requirements to their relation to the problem statement. General requirements are

applied as well to all artefacts in the context of a modelling solution. The general

requirements to a modelling solution are based on literature on conceptual models,

reference models, modelling languages and methods, and domain-specific languages.

A summary of these requirements can be found in literature (Kurpjuweit, 2009). This

thesis mainly requires aspects described for modelling languages and methods that are

41

based on literature (Brinkkemper, Saeki, & Harmsen, 1999; U. Frank, 1998;

Greiffenberg, 2003; Kiper, Howard, & Ames, 1997; Paige, Ostroff, & Brooke, 2000;

Remme, 1997; Sinz, 1998; Zelewski, 1996). These aspects cover syntactic and

semantic correctness, consistency, suitable abstraction and granularity, simplicity,

understandability, stability, longevity, cost-effectiveness, and transformability. These

requirements are integrated into the following description of the requirements for the

LPMS.

From a business and technical perspective, the LPMS should mainly comprise a

coherent design process of creating executable process models. Further, it should be

capable of integrating heterogeneous services and of handling semantic annotations.

On an individual level, the main requirement is to provide process modelling

functionality for a broader user-base. Hence, the LPMS should be designed according

to the principles of usability and simplicity. The LPMS should provide various

abstraction views on process models allowing for keeping the business user free from

execution details, such as service binding and composition. The main requirements on

organisational level cover the suitability of the LPMS to be used to perform the users’

tasks and the fit to the existing IT infrastructure and to the organisation. The economic

requirements concern mainly cost savings, freeing IT experts from business modelling

tasks, and reusing the LPM infrastructure as well as process model parts. Enabling

business users to model and execute their processes themselves reduces overall

modelling costs by decreasing the workload for expensive IT experts. By providing

process information in a language the user might understand, the degree of reuse of

process models increases.

Table 7: Technical requirements for the LPMS

Requirement

Source

A
p

p
li

c
a

ti
o

n

d
e
v

e
lo

p
m

e
n

t

A
p

p
li

c
a

ti
o

n
 u

se

L
im

it
a

ti
o

n
 o

f
IT

r
e
so

u
r
c
e
s

C
o

g
n

it
iv

e
 g

a
p

b
e
tw

e
e
n

 b
u

si
n

e
ss

 a
n

d

IT

Design of a consistent BPM language stack comprising a

graphical abstraction and an executable layer for process

models. The abstract layer has to provide sufficient

●

42

information for service discovery and selection. The

executable layer has to provide sufficient information for

service selection and composition.

Definition of a consistent design process creating an

executable process model in various steps. For each step

the actions, the needed input, the output, and the
performer have to be aligned.

●

Handling of semantic information: Semantic

informations provide a common understanding between

users and users, users and machines, and machines and

machines.

 ●

Integration of heterogeneous services ●

Service selection, binding, replacement, and adaptation

at various stages (design time, runtime, and in-between)
●

Table 8: Individual requirements for the LPMS

Requirement

Source
A

p
p

li
c
a

ti
o

n

d
e
v

e
lo

p
m

e
n

t

A
p

p
li

c
a

ti
o

n
 u

se

L
im

it
a

ti
o

n
 o

f
IT

r
e
so

u
r
c
e
s

C
o

g
n

it
iv

e
 g

a
p

b
e
tw

e
e
n

 b
u

si
n

e
ss

 a
n

d

IT

Provide executable BPM functionality suitable for

business users that fits into the existing environment. The

functionality requirement is based on (Hevner et al.,

2004) and (Moody & Shanks, 1994)

 ●

Increase number of users by people without IT

knowledge: Current existing BPM solutions address IT

experts.

 ●

Usability, simplicity and understandability: Provide a

simple and understandable BPM solution for business
users. Further, usability, simplicity, and

understandability are general requirements to software

solutions (U. Frank, 1998; March & Smith, 1995; Paige

et al., 2000).

 ● ●

Provide various abstraction views in order to keep the

user free from execution details. Generally, a modelling
 ●

43

language should comprise several abstraction layers in

order to be usable by heterogeneous user groups (Paige

et al., 2000).

Facilitate information search: Current process models

and its elements are often not unambiguous.
 ●

Facilitate taking process ownership: Avoid that users

hesitate of taking the process ownership due to a lack of

understanding.

 ●

Table 9: Organisational requirements for the LPMS

Requirement

Source

A
p

p
li

c
a

ti
o

n

d
e
v

e
lo

p
m

e
n

t

A
p

p
li

c
a

ti
o

n
 u

se

L
im

it
a

ti
o

n
 o

f
IT

r
e
so

u
r
c
e
s

C
o

g
n

it
iv

e
 g

a
p

 b
e
tw

e
e
n

b
u

si
n

e
ss

 a
n

d
 I

T

Increase the number of users according to their task

duties: Keep modelling experts and IT experts free from

performing modelling tasks for business users.

 ● ● ●

Achieve community acceptance and suitability for

collaborative modelling: In order to foster the use of the

wisdom of the crowds, the LPMS has to be accepted by

the modelling community.

 ● ● ●

44

Table 10: Economic requirements for the LPMS

Requirement

Source

A
p

p
li

c
a

ti
o

n

d
e
v

e
lo

p
m

e
n

t

A
p

p
li

c
a

ti
o

n
 u

se

L
im

it
a

ti
o

n
 o

f
IT

r
e
so

u
r
c
e
s

C
o

g
n

it
iv

e
 g

a
p

b
e
tw

e
e
n

 b
u

si
n

e
ss

 a
n

d

IT

Generality and applicability to various scenarios: In

order to be reused, the LPMS has to be applicable to

various settings. In general, a software solution has to be

designed to achieve generality (March & Smith, 1995).

 ●

Increase degree of reuse: Foster reuse of process models

and its parts in order to avoid modelling from scratch.
 ● ●

Reduce modelling time: Reduce modelling time through

an intuitively understandable modelling language, tool

support, and reuse of models and its parts.

 ● ● ●

Lower needed expertise and training effort ● ● ●

Utilization of existing infrastructure and software assets:

Integrate existing assets in order to avoid costly

procurements (Palmer, 2009). In the LPM setting, this

means the ability to integrate heterogeneous services.

 ● ●

Use of internal development and support resources and

avoiding high workload for IT resources: Enable

business users to model and execute processes

themselves. Further, establish problem solving

mechanisms for business users. This will free resources

of the IT department to be spent for other initiatives

(Palmer, 2009).

 ● ●

Faster time to market: Achieve faster time to market

through quicker process modelling, deployment, and
execution (Palmer, 2009).

 ●

Lower initial application integration costs: Easy

integration of existing assets (Palmer, 2009).
 ●

The requirements to the LPML cover correctness, completeness, and expressivity,

adaptability and extensibility, efficiency and effectiveness, and usability. Table 11

45

presents the requirement according to the categories. As part of the usability

requirements, different abstraction views are an important aspect for freeing users

from execution details. The various LPML views however, should be based on a

common canonical format of the process models in order to guarantee a model

coherency without sophisticated transformation mechanisms and potential loss of

information. Graphical symbols on the abstract level should be simple. The LPML

should be further extendable in order to adjust to specific domains or environments.

Furthermore, the integration of metadata should be allowed in order to provide

machine-readable documentation. Other general requirements to modelling languages,

such as stability and longevity, are not considered important in this thesis describing

the design of the LPML.

Table 11: Requirements for the LPML

Requirement category Requirement Source

Correctness Syntactic correctness Literature

Semantic correctness Literature

Uniqueness and canonical, exchangeable

format

Literature

Coherency of different layers Literature

Completeness and

expressiveness

Ontological completeness LPM

Pattern-based completeness LPM

Use case scenario coverage LPM

Adaptability and

Extensibility

Optional extensions and adaptations Literature

3.3 APPROACH

In this thesis, LPM is introduced seeking to lower the entrance barrier for business

users to model processes. It is investigated how business users might be enabled to

express activity requirements rather than to specify services and be kept free from

execution details. Figure 1 in section 1.1 depicts an application scenario how the user

is supported to perform a task. The user expresses the task to be fulfilled in terms of a

process model. Afterwards, services that might be bound to the steps in the process

model are automatically retrieved. Lastly, an executable process is created through

composing the retrieved services.

46

In order to realize such scenarios, the process models created by the user have to

contain sufficient information in order to allow for automatic search for services and

composition of those services. The process models have to be enhanced step by step to

generate executable process models. In the following, these required enhancement

steps are described. Hereby, actions the user has to perform and actions that are

automatically performed by tools are differentiated.

Figure 4: LPM approach to create an executable process model

Gil (Gil, 2006) proposes an approach comprising three steps to create executable

workflows using templates. The first step is to define workflow templates that are

data- and execution-independent specifications of computations. In the following

second step, workflow instances are created specifying the data needed on an activity

level. In addition, the data flow is specified. However, the second step is still

execution-independent. In the final step, the executable workflows are created by

assigning resources that exist in the execution environment.

In this thesis, a similar approach is followed. The business user defines a series of

activities, the functionality of each activity, and the control-flow between them. In the

following, the further steps needed in order to instantiate the activities with services

1a) User creates an abstract

process model

2) Compilation of graphical

process model and semantic

information

3) Semantic-based search

for services to instantiate

activities

1b) Provide semantic

information for activity and

process annotation

4) Bind services to activities

5) Compose services and

generate data flow

Process

Modelling

Process Model

Enhancement

Service Binding &

Process Execution

Service

6) Translate final model into

executable language

Conversation SelectGoodsConversation = new ConversationImpl();

Goal SelectGoodsGoal = new GoalImpl();

Service SelectGoodsService = new ServiceImpl();

SelectGoodsService.setServiceReference();

SelectGoodsConversation.addService(SelectGoodsService);

Activity SelectGoods = new ActivityImpl();

SelectGoods.setName("Select goods");

SelectGoods.setOperation();

SelectGoods.setStartElement(false);

SelectGoods.setEndElement(false);

SelectGoods.setConversation(SelectGoodsConversation);

SelectGoods.setHumanTask(false);

process.addProcessElement(SelectGoods);

// Input/Output

Parameter SelectGoodsParameter = new ParameterImpl();

SemanticAnnotation SelectGoodsAnnotation = new SemanticAnnotationImpl();

SelectGoodsAnnotation.setReferenceURI(targetNamespaceURIPrefix +

"SelectGoodsParameter");

/SelectGoodsAnnotation.setType(AnnotationType.Precondition);

SelectGoodsParameter.addSemanticAnnotation(SelectGoodsAnnotation);

SelectGoods.addOutputParameter(SelectGoodsParameter);

47

and hence, make the processes executable, is presented. This procedure is performed

in six steps as depicted in Figure 4 and described in Table 12.

The following steps have to be performed to achieve an executable process model:

Table 12: Main steps to create an executable process model through the LPM

approach

Step Activity Needed artefacts Created and

described in

1a Graphically modelling

processes in a language
the business user

understands.

A language for LPM integrating

semantic annotations

See section 4

and 5.1 of this
thesis

1b Providing semantic

information for activity

and gateway
specifications

A language for LPM integrating

semantic annotations.

Means to support the user in
providing semantic annotations,

e.g. through a separate data area

in the process editor, templates

to fill, existing requirements and

constraints to click on

See section 4

and 5.1 of this

thesis

2 A Process Editor

compiles and transforms

the graphical model into

a textual model

Functionality compiling the

graphical model into a textual

model

Implemented in

SOA4All and

summarized in

section 5.2.2

The activity and gateway
specifications given by

the user and context

information are compiled

into formal, ontology-

based semantic

annotations for

functional classification,

preconditions,

postconditions, non-

functional properties.

Common ontologies to be
referenced by semantic

annotations

Implemented in
SOA4All and

summarized in

section 3.4.2

3 Search for services to

instantiate the activities

Semantically described services

Common ontologies to be

referenced by semantic

annotations

A public service repository

A service search engine

Implemented in

SOA4All and

summarized in

section 3.4.2

48

4 Select services based on

semantic annotations and

preferences

Functionality to select services

from results

Implemented in

SOA4All and

summarized in

section 5.2.3

5 Compose services and

generate data flow

Component to map the data flow Implemented in

SOA4All and

summarized in

section 5.2.3

6 Translation of the

process model into an

executable language,

such as BPEL

Process translation and

execution engine for LPML

processes

Implemented in

SOA4All and

summarized in

section 5.2.4

To summarize, the contribution of this thesis to the steps of creating an executable

process model covers the approach as a whole and the process modelling language, the

LPML.

Those parts that are prerequisites for the LPM approach are described in the following

section 3.4. Especially, section 3.4.2 describes the parts that are developed in the

context of the project SOA4All.

3.4 RESEARCH CONTEXT

3.4.1 The Research Project SOA4All

This thesis has been created in the context of the research project SOA4All. In the

following, SOA4All is introduced and revealed how this thesis is integrated into the

research work.

The FP7 research project SOA4All funded by the European Commission “aims at

realizing a world where billions of parties are exposing and consuming services via

advanced Web technology: the main objective of the project is to provide a

comprehensive framework that integrates complementary and evolutionary technical

advances (i.e., SOA, context management, Web principles, Web 2.0 and semantic

technologies) into a coherent and domain-independent service delivery platform”

(SOA4All, 2010).

The project is based on the following main building blocks, taken from the SOA4All

web site (SOA4All, 2010):

49

- SOA as the emerging dominant paradigm for application development which

abstracts from software to the notion of service.

- Context management, i.e., adapting services to meet local environmental constraints,

organizational policies and personal preferences.

- Web principles to scale SOA to a world-wide Web communications infrastructure.

- Web 2.0 as a means to structure human-machine cooperation in an efficient and

cost-effective manner.

- Semantic Web technologies to automate service discovery, mediation and

composition.

The main research objectives of SOA4All are as follows:

- Definition and implementation of a service web architecture to bring web services

and SOA to a web scale. This comprises a framework for defining an architecture for

web services, approaches for grounding semantic web services (SWS) into existing

syntactical description standards and protocols, a service bus as infrastructural

backbone, and a test-bed to validate the research results.

- Specification and implementation of a user interface allowing business users to

manage web services. The user interface blurs the differentiation between service

providers and consumers by providing methods and functionality for the provisioning,

composition, bundling, consumption, and analysis of services.

- Provisioning of service annotation and reasoning functionality. This allows for

improving service discovery and composition by using semantics to reach a common

understanding of service descriptions. In more detail, the objective comprises the

specification of lightweight versions of existing semantic description frameworks, a

scalable reasoning system, and an ontology instantiation and mapping to ontology tag

clouds.

- Specification and implementation of a framework for managing and applying

context information to adapt services and processes.

- Definition and implementation of a service discovery functionality allowing for the

retrieval of services that fulfil the users’ requirements. This comprises a service

crawler to collect service information that is distributed in the web, a service discovery

tool to find the appropriate services, and an RDF access to crawled data.

- Definition and implementation of tools enabling automatic service and process

construction. This comprises the definition of a lightweight process modelling

language and tools allowing the business user to model and execute processes based

on service compositions.

50

In addition, SOA4All targets at validating the research objectives in use cases as

business proof of concept. SOA4All aims as well to contribute to standardization

efforts and train business users to benefit from the developed concepts and tools.

This thesis has been created in the context of task 6.3 of the work package 6, Service

Construction, of the project SOA4All. This work package covers the creation of a

modelling language and tools for process model adaptation and execution allowing

business users to model and execute processes. In particular, the task 6.3 deals with the

specification of a “Lightweight, Context-aware Process Modelling Language”. This

language specification has resulted in the LPML which is the main subject to this

thesis. I lead the task 6.3 in the SOA4All project and have been the architect and

responsible of the LPML. Hence, my contributions had been the specification of the

principles for lightweight process modelling, the LPML metamodel comprising all

LPML elements, the design process to model and execute a process, and the evaluation

of these research results. I contributed as well to the tools for process modelling,

adaptation and execution, however, the main work for the tools had been done by

project partners. I had further been responsible for applying the research results related

to lightweight process modelling to the public sector use case. The use case itself had

been specified in another work package in the SOA4All project.

3.4.2 Integration into SOA4All

This section describes the artefacts that are needed for the functioning of the LPM

approach and that have been developed in the context of the SOA4All project. Those

artefacts that are part of the LPM approach and have been developed in SOA4All are

described in section 5.2.

Ontologies:

A prerequisite for the functioning of LPM, and hence the steps 2 and 3 as described in

section 3.3, is that services not only are semantically described but that the semantic

annotations refer to ontologies as well. And again a prerequisite is the existence of a

global ontology or the existence of multiple ontologies that can be mapped to each

other.

Currently, most of the services either lack completely a semantic description or lack a

reference to a common ontology. The research objectives in SOA4All address these

shortcomings by providing means to facilitate the semantic description of services and

by defining ontologies the services might refer to.

51

In SOA4All, a couple of ontologies have been defined. These ontologies are described

on the SOA4All website (SOA4All, 2010) and summarized in the following.

- SOA4All Functional Classifications ontology. This ontology defines concepts for

the functional classification of services. It comprises two parts, namely a formal

specification of the NEXOF-RA functional view and SOA4All-specific extensions that

cover functionalities for tools defined in SOA4All and processing semantic

information.

- SOA4All Execution ontology. This ontology is a set of ontologies representing

concepts for annotating SOA4All web services with execution-related information.

- Further ontologies for auditing logs that supports recommendations for the users, for

describing contextual information (applying contextual information to LPM is

described in section 4.4), or for eGovernment (see section 1 for an eGovernment

scenario for LPM).

Besides the SOA4All ontologies, general ontologies for describing services exist, such

as WSMO, WSMO-Lite, Micro-WSMO, or hRESTS (see section 2.5 for more

information on these ontologies). Further, the ontology yellow pages
9
 list existing

ontologies of other areas.

Semantically described services:

Another prerequisite for step 3 of the LPM approach (see section 3.3) is the existence

of semantically described services that are publicly available. Currently, most of the

services are only described syntactically through WSDL/SOAP descriptions. Semantic

descriptions of the web services on the web sites are mostly unstructured. As

introduced in section 2.5, semantic description formats exist to structure the semantic

information. In order to increase the number of semantically described services, in the

project SOA4All, editors for service providers to describe their services have been

developed. SWEET (Semantic Web sErvice Editing Tool) is an editor for supporting

the semantic annotation of web APIs and RESTful services. A description can be

9
 See http://wg.sti2.org/semtech-onto/index.php/The_Ontology_Yellow_Pages

52

found in Maleshkova et al. (Maleshkova, Pedrinaci, & Domingue, 2010). We can

expect that the amount of semantically annotated services will increase significantly

through tools, such as SWEET.

Service repository

In order to make the services publicly available, a service repository has to exist. In the

context of the project SOA4All, IServe
10

 has been developed as a global service

repository. IServe is able to deal with heterogeneous annotation mechanisms, such as

SAWSDL, WSMO-Lite, MicroWSMO, and OWL-S. The repository therefore

abstracts these annotation mechanisms through the use of a Minimal Service Model

that describes services in RDF. IServe provides a functionality to automatically

generate the RDF statements based on the Minimal Service Model. These RDF

statements are exposed as linked data. Hence, semantic web services might be

published in an interoperable format.

Service discovery

Besides browsing or searching in a service repository, web services might be searched

in the web. An existing web service search engine
11

 is provided by SEEKDA.

Currently, more than 28000 WSDL-described services from more than 7000 providers

are crawled, indexed, monitored, and categorized. Seekda allows for the search by

tags, keywords, and various categories, such as country or provider.

Reasoning

The main feature of a reasoner in the context of LPM is the resolution of the semantic

annotations. The resolution of the semantic annotations is needed for binding goals

and services to activities and for composing services in terms of data flow mappings.

The reasoning has to be supported for various ontologies, such as WSMO, WSMO-

Lite, Micro-WSMO, or domain-specific ontologies. Furthermore, the reasoning has to

support various representation formats. In the context of SOA4All, various reasoners

10
See (http://iserve.kmi.open.ac.uk/) for more information

11
 See (http://webservices.seekda.com/browse) for more inhe formation

http://iserve.kmi.open.ac.uk/
http://webservices.seekda.com/browse

53

have been developed. For example, IRIS
12

 is an extended reasoning engine for rule-

based languages, ELLY
13

 is a reasoner for entailment and satisfiability checking of

ELP knowledge bases, and WSML2
14

 is a modular framework comprising validation,

normalization, and transformation algorithms allowing for translating ontology

descriptions in WSML to underlying reasoning engines (SOA4All, 2010).

3.4.3 Implementation of the LPM Design

Besides the LPM design, SOA4All comprises as well the implementation of the

LPMS. This thesis has been written in the early design phase of the SOA4All project

and describes the LPM design as the first research step. The following step, the

prototypical implementation of the LPM design in terms of the LPMS, has been

performed later in the project. At the point in time when the thesis had been written,

the prototype hasn’t been implemented yet and hence, there’s no information about its

realization. However, the envisaged prototypical implementation reveals the relevance

and usability of the LPM design.

3.5 FULFILMENT OF REQUIREMENTS AND CONCLUSION

In section 2, basic theories, concepts, and state-of-the-art technologies have been

presented. For the LPM approach, the following Table 13, Table 14, Table 15, and

Table 16 in section 3.5.1 indicate for each requirement the fulfilment through state-of-

the-art (SOTA) technologies. The column on the right hand side indicates the

contribution to the research community according to the design science guideline

(Hevner et al., 2004). Section 3.5.2 covers the fulfilment of LPML requirements

through existing languages and technologies.

12
 See http://iris-reasoner.org/ for more information

13
 See http://elly.sourceforge.net/ for more information

14
 See http://tools.sti-innsbruck.at/wsml2reasoner/ for more information

http://iris-reasoner.org/
http://elly.sourceforge.net/
http://tools.sti-innsbruck.at/wsml2reasoner/

54

3.5.1 Fulfilment of the LPM Approach Requirements

Table 13: Fulfillment of technical requirements through SOTA

Requirement
Fulfillment through

SOTA

Contribution to the research

community

Design of a
consistent BPM

language stack

Not yet covered by
existing approaches

Creation of a new, consistent BPM
language stack comprising an abstract

graphical layer and a canonical

format.

Definition of a

consistent design

process

Not yet covered by

existing approaches

Definition of a new design process

specifying how to generate an

executable process out of abstract

semantic service and process

information. The design process

further indicates how to free the user

from providing execution information
through new principles, such as

abstraction and the usage of semantic

annotations.

Handling of

semantic

annotations

Reuse and adjust

concepts of semantic

technologies

Reuse of approaches applying

semantic annotations to entities in

process modelling. The new thing is

the definition of semantic annotations

that might be handled by business

users and that are relevant to discover,

select, and compose services.

Integration of

heterogeneous

services

Partly covered by

existing approaches,

not yet covered for

service orchestration in

processes

Definition of a new, abstract service

description allowing for the

integration of heterogeneous services,

such as SWS, WSDL, or REST

services.

Service selection,

binding,

replacement, and

adaptation at

various stages

Partly covered for

design time and

runtime, not yet for

dynamic selection of

the stage

Provisioning of new means and

semantic descriptions to select, bind,

replace, and adapt services at

modelling time, design time,

deployment time, and runtime.

55

Table 14: Fulfillment of individual requirements through SOTA

Requirement
Fulfillment through

SOTA

Contribution to research

community

Provide executable

BPM functionality

suitable for business

users

Not yet covered by

existing approaches

The design of a new process

modelling solution for business users

is provided. This comprises user

support through new design

principles, such as abstraction,

semantic annotations, context-

awareness, reuse, abstract service

descriptions, and data flow support.

Increase number of

users by people

without IT

knowledge

Not yet covered by

existing approaches

Usability, simplicity

and

understandability

Not yet covered by

existing approaches

The process modelling solution is

built according to principles of

usability, simplicity, and

understandability newly targeting

business users.

Provide various

abstraction views

Not yet covered by

existing approaches

The process modelling solution for

business users provides new,
consistent layers, namely a graphical

abstraction and a canonical format of

the process model. In addition, a new

concept for abstract service

descriptions is provided.

Facilitate

information search

Not yet covered by

existing approaches

The process modelling solution for

business users allows for the

definition and provisioning of new

semantic annotations and for context-
awareness to support the information

search.

Facilitate taking

process ownership

Requirement to

integrate user support

in the LPMS

Through new support means to create

understandable processes, the

business users are encouraged to take

the process ownership.

56

Table 15: Fulfillment of organisational requirements through SOTA

Requirement
Fulfillment through

SOTA

Contribution to research

community

Increase number of

users according to

task duties

Not yet covered by

existing approaches

The design of a new process

modelling solution for business users

is provided. This comprises user
support through new design

principles, such as abstraction,

semantic annotations, context-

awareness, reuse, abstract service

descriptions, and data flow support.

Achieve community

acceptance,

suitability for

collaborative

modelling

Not yet covered by

existing approaches

Table 16: Fulfillment of economic requirements through SOTA

Requirement
Fulfillment through

SOTA

Contribution to research

community

Generality and

applicability to

various scenarios

Covered by most

existing approaches

The design of an extensible process

modelling solution for business users

is provided applying new principles

of abstraction, context-awareness, and

reuse to achieve generality.

Increase degree of

reuse

Partly covered by

existing approaches for

case-based reasoning

A new design principle to increase the

reuse of process models is defined.

Reduce modelling

time

Requirement to

integrate user support

in the LPMS

Through abstraction, context-

awareness, reuse, and data flow

support the user saves time in

modelling executable processes and

reduces the training effort.
Lower needed

expertise and

training effort

Requirement to

integrate user support

in the LPMS

Utilization of

existing

infrastructure and

software assets

Use of service

technologies

This thesis provides no significant

contribution to the improvement of

service technologies.

Use of internal
development and

support resources

and avoid high

workload for IT

resources

The LPMS follows an
approach of end-user

empowerment

The design of a new process
modelling solution for business users

is provided. This comprises user

support through new design

principles, such as abstraction,

semantic annotations, context-

57

Faster time to

market

The LPMS follows an

approach of end-user

empowerment

awareness, reuse, abstract service

descriptions, and data flow support.

Lower initial

application

integration costs

Use of service

technologies

This thesis provides no significant

contribution to the improvement of

service technologies.

To conclude, there’s currently no coherent BPM solution, the business user might deal

with in order to model and execute processes. In this thesis, an approach of attaching

semantic annotations to process elements is followed. The semantic annotations are

intuitively understandable by the user and might be easily provided. In the backend,

these semantic annotations are used in order to bind services to process elements and

orchestrate them. In the following section the design principles for supporting the user

in modelling executable business processes is presented.

3.5.2 Fulfilment of LPML Requirements

In this section, the fulfilment of LPML requirements through existing languages and

technologies is checked. In particular, this comprises a critical view on graphical

process modelling languages in terms of complexity for business users and executable

process modelling languages in terms of flexibility.

A graphical process modelling language for business users

Key requirements

A graphical process modelling language for the LPMS has to

- be usable and understandable by business users

- provide sufficient information for service discovery and selection

With respect to the target user group of LPM, a process modelling language has to be

provided that copes with the tension of allowing for familiarity and simplicity for

business while providing expressiveness and semantic precision for the process

execution (Silver, 2009). Hence, a minimal set of BPM language elements is defined.

This set comprises only elements the business user might understand. As a study by

Recker and Dreiling revealed, a user understanding one process modelling language

will easily understand another one (J. Recker & Dreiling, 2007). Hereby, any structural

differences between the languages, such as between EPCs and BPMN, do not matter

according to Recker and Dreiling. The study did not show any results about creating

process models and about modelling execution-related aspects, though. This is another

58

aspect to be regarded in this thesis. In the following, the previously introduced

languages YAWL and BPMN are considered with respect to business users.

YAWL criticism

Specifying process models in YAWL requires high expertise in IT and formalisms.

According to Havey (Havey, 2005), YAWL targets the support of complicated

patterns that are rarely used rather than to facilitate modelling, provide expressiveness,

system integration capabilities, and business analyst savvy. Recker and Dreiling state

that YAWL seems to be a suitable language from an academic perspective, however,

due to the required expertise, misses acceptance and application by a broad user base

(J. Recker & Dreiling, 2007). In this thesis, as well, the target users are not supposed

to have that kind of knowledge. Hence, using the YAWL formalism is not appropriate

for the business users.

BPMN criticism

Like YAWL, BPMN as well is too complicated for the target users. An analysis of

BPMN models revealed that only 20% of its vocabulary is regularly used (zur

Muehlen & Recker, 2008). Another study by Recker (J. Recker, 2008) revealed that

36% of respondents only use the core BPMN set to create their process models, that

37% use an extended set of BPMN symbols, and that the remaining 27% use the whole

bunch of symbols and expressiveness. These studies clearly revealed the gap between

the BPMN surface and the expressiveness in the backend. While BPMN has only the

three shapes activity, gateway, and event on the graphical modelling level, the

expressiveness and precision for execution purposes allows for a myriad of subtypes of

each. The subtypes are distinguished by detailed graphical aspects, such as border

style, the symbols inside, and the placement in the diagram. Hence, although the

surface seems to be rather simply usable it is complex (Silver, 2009).

Recker (J. Recker, 2008) further states that a formal education for BPMN is required.

Currently only about 14% of the BPMN modellers took part in a training. In addition,

in his work, a statistics is provided indicating the uselessness of certain symbols.

Furthermore, the event concept is criticised due to too much different types that are

difficult to understand from a user perspective (J. Recker, 2008; J. Recker, Indulska,

Rosemann, & Green, 2008). Although BPMN has been created to close the gap

between describing and executing processes, in practice the models often lack the

execution focus (Silver, 2009). Recker (J. Recker, 2008) states in his study that about

half of the users model processes for documentation purposes. To document and

describe processes with a language dedicated for execution overstrains business users.

59

And BPMN doesn’t provide any support for translating the process documentation into

execution aspects.

To summarize, like YAWL, the BPMN formalism is not suitable for the business users

targeted in this thesis. Even creating an additional abstraction layer on top of YAWL

or BPMN reducing the myriad of symbols and simplifying the modelling proceeding,

is not an appropriate approach. At the end of the day, the user has to provide

information about execution details he is not capable to provide. The user requires

rather support in translating semantic information about business needs into execution

details. Therefore, a language is needed that is able to understand this semantic

information and translate it into execution information.

An executable process modelling language for business users

Key requirements

An executable process modelling language for the LPMS has to

- be usable and understandable by business users

- allow for the management of semantic annotations

- provide sufficient information for service selection and composition

In order to account for the expressiveness and semantic precision regarding execution

requirements, the aforementioned minimal set of language elements is not sufficient in

order to build executable processes. Stein et al. (Stein, Kuehne, & Ivanov, 2009) see

this as the semantic gap between business requirements and the technical

implementation. To enhance the minimal set with execution details, tooling support is

needed. Thus, the minimal language element set has to be extended by elements the

tools might manipulate for gathering execution details. In the following the existing

process modelling languages BPMN and BPEL are investigated with respect to the

mentioned purpose. Since YAWL is already too complicated on the graphical process

modelling layer, as well the execution aspects are not regarded as an option to be

reused or extended in this thesis.

In order to support the user in creating executable processes, various approaches exist.

The goal is to automate as many of the transformation steps as possible in order to

avoid error-prone, time-consuming, and cost-intensive manual mappings (Stein et al.,

2009). One approach is to specify the models in EPCs or BPMN and then transform it

into BPEL. Various approaches exist to transform EPCs into BPEL code (Fötsch,

Speck, & Hänsgen, 2005; Stein & Ivanov, 2007; van der Aalst & Lassen, 2005;

Ziemann & Mendling, 2005). As well, for the transformation of BPMN into BPEL a

60

couple of approaches exist. The approaches are however often limited in terms of

complexity reduction, transformation power, or transformation processing (Stein et al.,

2009). Furthermore , the transformation approaches might be classified according to

the transformation implementation strategy (Mens, Czarnecki, & Gorp, 2005), the

level of abstraction (Visser, 2001), or the refinement strategy (Czarnecki, Eisenecker,

Glueck, Vandevoorde, & Veldhuizen, 2000; Greenfield, 2004). For example, Gao

(Gao, 2008) proposes an approach to map BPMN to BPEL through a two-phase

transformation comprising the application of a static token flow analysis to parse

BPMN models into sub-flows and the transformation of the subflows to BPEL, based

on a pattern. Roser et al. (Roser, Lautenbacher, & Bauer, 2007) propose a framework

to generate workflows.

However, currently, there's no method that is able to transform all kinds of EPC or

BPMN models into BPEL code due to structural differences of EPC respectively

BPMN and BPEL. While EPCs and BPMN are graph-structured, BPEL is block-

structured. Although approaches have been described for the transformation of graph-

structured into block-structured languages (Mendling, Lassen, & Zdun, 2005; Ouyang,

Dumas, ter Hofstede, & van der Aalst, 2007), issues still remain. Silver (Silver, 2008)

describes interleaved flows and attached events as examples of where BPMN code

cannot be transformed easily into BPEL code. And even for simple models that might

be transformed, the specification of the transformation script again requires high

experience in IT.

For these difficulties in transforming BPMN models to BPEL models, an approach

including a closer model transformation is favoured in this thesis. A transformation

risks the loss of information and errors during the transformation. Hence, extending

BPMN by elements supporting the user in providing execution information is not an

option for this thesis.

To summarize, there exists no process modelling language that allows for supporting

the business user both in modelling and executing processes. This thesis proposes the

use of semantic annotations to gather information from the user that might be used for

process execution.

An execution environment for the LPMS

The LPMS aims at keeping the business user free from execution details while

modelling yet executable processes. Hence, the user specifies abstract descriptions of

the process steps. The process steps are then instantiated with services. In order to

cope with changing requirements the instantiation of the process steps has to be

61

dynamic, flexible, and adaptable. In the following, existing technologies are

investigated in terms of the suitability for the LPMS.

Key requirements

An execution environment for the LPMS has to allow for

- handling semantic annotations

- the dynamic selection, replacement, and adaptation of services.

As aforementioned, BPEL is the de-facto standard as process execution language.

Hence, BPEL engines have come up being able to execute BPEL processes. A BPEL

process works fine within a closed environment where services are harmonized.

However, in the heterogeneous, open web the configuration and composition of

services require more sophisticated mechanisms. Services are difficult to find.

Different data types have to be aligned syntactically and semantically. Further, flexible

process and service instantiation is required in order to achieve more flexibility in case

of changing requirements or failures. In this thesis, it is envisaged to allow for

selecting, binding, and replacing services during modelling, deployment, and

execution.

Rao and Su (Rao & Su, 2005) provide a survey of existing approaches to dynamically

and flexibly compose web services. Furthermore, Andrikopoulos et al. (Andrikopoulos

et al., 2008) provide an overview of all areas related to the engineering of service-

based applications with particular focus on the capability to dynamically adapt to

different scenarios. An example adaptation mechanism is provided by Brogi and

Popescu (Brogi & Popescu, 2007) that adapt existing services to changing client

requests. In general, the adaptation approaches are mainly based on Artificial

Intelligence (AI) techniques. Those approaches to reason about web services are

applied by the LPMS. However, the reasoning procedure is not described in detail in

this thesis. It is referred to the work performed in the project SOA4All for further

information.

An approach by Casati et al. (Casati, Ilnicki, Jin, Krishnamoorthy, & Shan, 2000) is

the eFlow solution providing a number of features in order to support service and

process specification and management. This comprises a service composition

language, events and exception handling, ACID (atomicity, consistency, isolation, and

durability) service-level transactions, security management, and monitoring tools.

According to the authors, the eFlow model allows for specifying processes that

automatically configure themselves at run-time according to the user needs and

62

features of services that are available in the web. However, the selection mechanism is

based on predefined selection rules. Furthermore, well-defined service descriptions

and mapping rules have to be defined in advance. Even for the so called generic nodes

serving as service templates for a set of similar services, the list of services and their

descriptions have to be specified. The LPMS requires an even more dynamic selection

in an environment where selection rules and service descriptions are not available and

mapping rules are created on the fly.

To implement some of the aforementioned requirements for the LPMS through BPEL

engines, Colombo et al. (Colombo, Di Nitto, & Mauri, 2006) have developed SCENE,

a BPEL engine supporting dynamic binding and self-adaptation disciplined through

rules.

Finally, similar to YAWL and BPMN, the execution details in BPEL are hard to

understand for non-IT-experts. The same applies to SCENE that requires high effort

spent by system integrators in defining adaptation rules.

To summarize, currently there exists no execution environment supporting the user in

providing execution information, dynamically adapting processes, and dynamically

selecting and replacing services.

63

4 LIGHTWEIGHT PROCESS MODELLING PRINCIPLES

The aim of LPM is to simplify the work of a process designer by hiding technical

aspects, performing automatic optimizations, allowing for the late binding of concrete

services, and substituting services at runtime. In this section, the core design principles

of LPM are described that implement this user support. These design principles

comprise abstraction, semantic annotations, context-awareness, patterns and templates,

goals, and data flow support. The patterns, templates, and goals support the user in

modelling the control-flow of its processes. The data flow aspect highlights the

process model from a data exchange perspective. Semantic annotations and context

might be applied to both the control and data flow perspective. The design principles

are formalized and structured by the LPM metamodel that describes the necessary

elements for LPM and their relations.

For example, through LPM, the user is supported in specifying process steps not as

operations bound to concrete services but as a set of requirements. The requirements

express desired functionalities and characteristics and are described according to a

shared conceptualization, such as an ontology. This ensures a common understanding

of the descriptions.

As aforementioned, this section specifies the LPM metamodel in section 4.1 and its

implementation in two abstraction layers of the LPML. For both abstraction layers a

specific metamodel is defined and presented in section 4.2.2.1 for the canonical format

of the LPML and in section 4.2.2.2 for the graphical representation. Since both

abstraction layers are based on the LPM metamodel, the equivalence of the two LPML

metamodels is guaranteed. While the canonical format comprises sufficient

information for process execution through tools, the graphical layer takes into account

the targeted business users. The automatic process enhancement for execution and the

processing of the canonical format through tools is described in section 1. An

evaluation of the usability of the graphical LPML layer with respect to business users

is covered by section 7.3.5.

The LPML comprises new process modelling concepts for the LPM design principles

that realize the business user support and are not yet implemented in existing process

modelling languages. Selected concepts of existing process modelling languages, such

as the Business Process Modelling Notation (BPMN) (OMG, 2006) and the Web

Service Business Process Execution Language (WS-BPEL) (OASIS, 2006)

complement the LPML.

64

For each design principle, the benefit, the structure, the application to LPM, and the

implementation in the LPML is described. Hereby, the implementation in the two

abstraction layers of the LPML is detailed. Parts of the description of the design

principles have already been published in Schnabel et al. (Schnabel, Born et al., 2009).

The LPML metamodel describes the elements, their properties, the relationships

between each element and the constraints applicable in their usage. Some elements of

the LPML are not provided directly by the process designer but might be derived

automatically by tools exploiting predefined semantic annotations of services and

goals.

For the LPML metamodel of the canonical format, the element descriptions are

presented in tables comprising information about the elements included, the attributes

or literals, a potential reference to a context file, and semantic annotations.

This section starts with the presentation of the LPM metamodel in section 4.1.

Afterwards, the design principles for LPM are described in detail. These principles are

abstraction (section 4.2), use of semantic annotations (section 4.3), context-awareness

(section 4.4), patterns and templates (section 4.5), goals (section 4.6), and data

connectors (section 4.7).

In the context of the Design Science, this section covers the first part of the design of

the solution comprising constructs and the conceptualisation.

4.1 THE LPM METAMODEL

This section presents the LPM metamodel comprising the artefacts that are needed for

modelling and executing processes in a lightweight way and the relations between

those artefacts. The metamodel contains elements implementing the LPM design

principles. Figure 5 depicts the LPM metamodel. The following Table 17 gives an

overview of the elements and references the sections where those elements are

described in detail.

65

Figure 5: LPM Metamodel

Table 17: Elements of the LPM metamodel

Metamodel element Description Described in detail

in section

Process Container of all process elements 4.2.2.1

Process Element ProcessElement is a generic construct

for the abstraction of flows, gateways,

and activities.

4.2.2.1

Control Flow Control Flow is an association of two

process elements determining the

sequence of those elements

4.2.2.1

Data Flow Association of two process elements

in terms of output and input data

4.7

Activity Unit of work in a process 4.2.2.1

Start Element Starts and instantiates the process 4.2.2.1

End Element Ends the process 4.2.2.1

Service Instantiation of an activity 4.6

Goal Kind of category for an activity 4.6

Process

Element

GoalService

Exclusive

Gateway

Parallel

Gateway

Pattern /

Template

Start

Element

End

Element

Contextual

Information

Control

Flow

Data Flow

Gateway

0..2

2

2..n

0..2

Graphical

Representation

0..n 0..n

1..n

1..n1..n

1..n
1

1

1

1

0..n

0..n

0..n

1

0..n

0..n

0..n

0..n0..n

0..n0..n

0..n

0..n

0..n

0..2
2

1

1

1

1

1

1

1

1

1

1

Binding

Attribute
Binding

0..1

1

1..n

1..n

Activity

0..1

0..1

Process

0..n

0..n

Semantic

Annotation

0..n

0..n

2

0..2

0..n

0..n

0..1

0..1

1

0..n

66

Binding Specification of binding a service and

a goal to an activity

4.6

Binding Attribute Attributes to characterize the binding 4.6

Gateway Represents a process split or merge

according to a specific condition.

4.2.2.1

Exclusive Gateway Gateway for the fulfilment of exactly

one condition

4.2.2.1

Parallel Gateway Two or more conditions might be

fulfilled and the according flows

followed

4.2.2.1

Semantic Annotation Semantic information for various

elements

4.3

Pattern / Template Predefined process parts to be reused

as a whole

4.5

Contextual

Information

Container for environment

information

4.4

Graphical

Representation

Element specifying the graphical

symbolization in a process editor

4.2.2.2

4.2 ABSTRACTION LAYERS FOR THE LPM METAMODEL

4.2.1 Benefits of Abstraction

In order to keep the business user free from execution details, a specific abstracted

view of the process model has to be implemented. Hence, besides a canonical format

for the machine communication, a format has to be provided that the business user is

able to cope with. This is in line with the requirement to create a new, consistent BPM

language stack comprising an abstract graphical layer and a canonical format. Further,

the requirement to include various abstraction views is addressed. If required, any IT

experts might manually manipulate the process models in the canonical representation.

Thus, the LPM process models contain the necessary information for machine

communication and can simultaneously be read by business users.

The presented LPM approach is based on a common metamodel for all representation

formats. This common metamodel has been presented in the previous section.

67

4.2.2 Structuring the Abstraction and Applying it to LPM

Figure 6: Languages and representations for LPM

LPM mainly comprises two abstraction layers that are represented through the LPML

(see Figure 6). The graphical abstraction layer is the modelling interface for the user to

model its processes, relies on the ability to design process models and their elements

with a minimal set of information, contains additional rendering information, and is

represented by the upper layer in Figure 6. It is designed for non-modelling experts, is

kept very simple, and abstracts from sophisticated execution aspects. The graphical

abstraction layer is described in detail in 4.2.2.2. A specific process editor designed for

the LPML has been implemented. The middle layer in Figure 6 contains the canonical,

executable representation of the process model that is semi-automatically created from

the abstract model. The canonical layer is presented in detail in section 4.2.2.1. Since

the graphical and the canonical LPML layers both use the common LPM metamodel,

the compilation and rendering of the process models to transform one model to the one

on the other layer might be easily implemented. An existing implementation of the

transformations can be found in (Pavlov et al., 2010). A formalism for the compilation,

rendering, and transformation might be based on a graph transformation formalism.

Two models (seen as two graphs) need to be homomorphically equivalent. However,

this formalism is not described in detail in this thesis. The LPM design process in

section 5.1 describes how the graphical process model is enhanced by execution

information. The lower layer in Figure 6 covers the representation in BPEL that is a

currently executable language. The model transformation from the LPML model into a

BPEL model is covered by section 5.1.6.

Graphically abstracted

LPML

Canonical layer of the

LPML

<LPML>

<process>

<activity>…</activity>

<gateway>…</gateway>

</process>

</LPML>

CompilationRendering

Existing executable

language (BPEL)

<BPEL>

<sequence>

<receive>…</receive>

<invoke>…</invoke>

</sequence>

</BPEL>

Model transformation

LPM Metamodel

Process

Element

GoalService

Exclusive

Gateway

Parallel

Gateway

Pattern /

Template

Start

Element

End

Element

Contextual

Information

Control

Flow

Data Flow

Gateway

0..2

2

2..n

0..2

Graphical

Representation

0..n 0..n

1..n

1..n1..n

1..n
1

1

1

1

0..n

0..n

0..n

1

0..n

0..n

0..n

0..n0..n

0..n0..n

0..n

0..n

0..n

0..2
2

1

1

1

1

1

1

1

1

1

1

Binding

Attribute
Binding

0..1

1

1..n

1..n

Activity

0..1

0..1

Process

0..n

0..n

Semantic

Annotation

0..n

0..n

2

0..2

0..n

0..n

0..1

0..1

1

0..n

Based on

Based on

68

The abstraction principle provides views on processes for

- Business users

- Machine communication

The canonical format of the LPML as the ground layer is rather complex. The user

only sees the abstract graphical model and gets guided through wizards to extend these

models by information that is used to make the processes executable. This information

is mainly given through semantic annotations that are described in the following

section. Besides the elements for the graphical representation, the canonical layer

comprises elements to process this information in terms of semantic annotations that is

given by the user. In order to complete the abstract model with necessary execution

details, components for composition, optimization, and execution have been specified.

The user however, only gets in touch with them indirectly through a process editor in

case additional information is needed. A composition component instantiates unbound

activities and goals with patterns, templates, or services. The composer has additional

optimization functionality with respect to both functional and constraints in terms of

service quality. Finally, the process models represented in the LPML are executed by a

specific execution engine. Since the abstract graphical process (upper layer in Figure

6) is just a representation format of the canonical layer, no model transformation is

needed.

Figure 7: The abstraction principle implemented in the process editor

Figure 7 depicts how the abstraction principle is implemented in a process editor. On

the right hand side, a standard drawing area is provided where users might create,

Data area Drawing area

69

modify, or view their process models. The drawing area represents the abstract

graphical process model comprising simple symbols, such as a start element, an end

element, activities, and flows to connect the elements. On the left hand side , the data

area is provided serving as editor to specify elements and provide information

necessary to make the processes executable. The data inserted directly instantiates the

canonical format without any graphical representation. As aforementioned, the

information to make processes executable is given in terms of semantic annotations. In

the next section these semantic annotations are described.

4.2.2.1 Canonical Format

Figure 8 depicts the LPML metamodel of the canonical format. The elements of the

metamodel are introduced in the following sections. The metamodel is represented by

an UML class diagram. However, the metamodel might be represented as well in Java

notation. The metamodel instances, the concrete process models, might be represented

as well both in UML and Java notation. An example of a process model in Java

notation can be found in section 9.1.1. A formalism to reveal that the LPML

metamodel of the canonical format is based on the LPM metamodel might be shown

by a graph transformation formalism. The two models (seen as two graphs) need to be

homomorphically equivalent.

70

Figure 8: Complete LPML Metamodel

71

Figure 9: Parts of the LPML metamodel that are relevant for the graphical

abstraction

The core elements of the LPML metamodel are those elements that are relevant for the

graphical abstraction layer. Figure 9 depicts a view on those elements that are

introduced in the following.

Process represents the container of process elements. Processes have a special

association to exactly one start element. This start element represents the entry point

into the process. Further, processes are associated to exactly one end element

representing the entity that performs the callback in case the process has terminated.

The start element is invoked by external callers and triggers the whole process. The

process might be encapsulated and published as a service. It is described in detail in

Table 18.

In addition the attributes isPattern and isTemplate are included. These two attributes

define whether a process is a pattern or a template. In these two cases the process does

not necessarily contain a start and an end element. The support for patterns and

templates is described in detail in section 4.5.

72

Table 18 : Description of Process

Process

Elements included All elements might be included. A process necessarily

contains one start and one end activity.

Attributes ID, isPattern, isTemplate, patternLocation,

templateLocation, startElement, endElement

Association ProcessElement, SemanticAnnotation

Reference to context file Yes

Semantic Annotation functionalClassification, nonFunctionalProperty,

precondition, postcondition, metadata,

contextualInformation

ProcessElement is a generic construct for the abstraction of flows, gateways, and

activities. Table 19 covers its description and most of its children. The children

described here are the basic elements for structuring the process through the control

flow. ProcessElement contains common attributes and is part of the process. Each

ProcessElement is connected to another through a source and a destination association

characterized by a Flow. In addition, ProcessElement and its children refer to the

according context file.

Table 19: Description of ProcessElement and its children

Related Elements Attributes Semantic annotations

ProcessElement

Part of: Process ID,

templateReference,

patternReference

Not applicable

Children: Activity, Flow,

Gateway, Connector

Association: SemanticAnnotation

Activity

Parent: ProcessElement name, operation,

startElement,

endElement,

humanTask,

synchronous

functionalClassification,

nonFunctionalProperty,

precondition,

postcondition, metadata,

requirement, constraint,
contextualInformation,

selectionCriteria,

replacementCondition

Children: Goal, Service

Association: Conversation,

Connector, Parameter

73

Flow

Parent: ProcessElement condition Not applicable

Gateway

Parent: Process Element condition, split Not applicable

Children: ExclusiveGateway,

ParallelGateway

Exclusive Gateway

Parent: Gateway Not applicable

Parallel Gateway

Parent: Gateway Not applicable

Flow is an association of two process elements, the source and the destination element,

except the flow itself. An additional aggregation between Flow and ProcessElement

describes the amount of incoming or outgoing flows a process element has. Flow

might represent both control and data flow. Furthermore, a flow might comprise a

condition determining when to follow a flow.

Gateway is a ProcessElement that represents a process split or merge according to a

specific condition. It might be a ParallelGateway or an EclusiveGateway. An inclusive

gateway element is not explicitly supported. This element might be replaced by a

combination of exclusive and parallel gateways. Furthermore, an exclusive gateway

comprises a default outgoing flow in case no condition is satisfied. The first outgoing

flow drawn by the user is taken as default flow. It has no condition and is the last flow

taken if none of the other flows are evaluated to “true”. Concerning the condition

satisfaction in an exclusive gateway, various options might be implemented. The

easiest solution is to follow the first flow the condition of which is satisfied. The user

gets displayed the order of the flows. Hence, it is transparent which condition is

evaluated to true and which flow is thus followed. However, some scenarios require

firstly evaluating the matching of all flows to the condition and then follow the flow

that meets best the condition. This kind of condition might be seen as global condition

and is represented by the condition attribute in the gateway.

Activity is a ProcessElement that specifies the execution of a unit of work. An activity

serves as a placeholder for expressing requirements and constraints and is instantiated

by an optional goal and a service. However, the user's point of view abstracts from the

instantiation.

74

The graphical process models created by the user serve for documentation purposes. In

order to make these abstract process models executable the design principles as

described in this section 1 have to be applied and thus, the process elements have to be

enhanced by additional information. Activities have to be instantiated by goals and

services. Further, conditions for gateways and those flows connected to a gateway

have to be defined. In the following, the LPML elements that are responsible for the

automatic background enhancement of the user's process model elements are

presented. The required information is semi-automatically provided by composition

tools and by the user.

4.2.2.2 Graphical Representation

In order to be easily understandable for the business user the LPML needs to be

simple, abstract, and hide technical aspects. Hence, on the abstract LPML level there

are only a number of elements visible. The according view on the LPM metamodel is

visualized in Figure 10. Except the Process and ProcessElement, all elements have an

association to the GraphicalRepresentation element. The GraphicalRepresentation

comprises layout information and is specific to the implementation of a Process Editor.

An example of according layout information might be read in the documentation of the

SOA4All Process Editor (Pavlov et al., 2010).

75

Figure 10: Metamodel of the graphical representation layer

The implementation of the graphical LPML layer in the Process Editor is depicted by

Figure 11. The graphical symbols are given for the start element, the end element,

activities, and the connections between those elements. The description of the symbols

is addressed by Table 20. The user graphically creates his process by adding a start

element, an end element, a couple of activities and by connecting these elements

through flows. From a mathematical point of view, a process model is a directed

graph.

For activities the user sets names and provides general information about requirements

and constraints, often in natural language. In further steps, these process models and

their elements are semi-automatically enhanced by information needed for execution

purposes. However, these enhancements are not visualized in the process model view.

Rather, a data area is provided supporting the user in entering the needed information.

The data area is depicted by Figure 12.

Process

Element

Start

Element

End

Element

Control

Flow

Gateway

0..2

2

2..n

0..2

Graphical

Representation

1

1

1

1

0..n

0..n

0..n

0..n

1

1

1

1

1

1

1

1

1

1

Activity

Process

76

Figure 11: Graphical LPML representation

Figure 12: Data area supporting the user in entering additional information

Start and end
symbols

Activities
representing services

Control flow
connectors

The Language for

Lightweight Process

Modelling (LLPM) comprises

basic modelling elements

• Start and end symbols

• Activities

• Connectors

77

Table 20: Symbols of the graphical modelling layer

Symbol on the

graphical layer

Graphical

representation

layer element

Creation, and hence LPM metamodel

instantiation, of the following elements, the

according attributes, the according semantic

annotations, and the according associations

Activity - Process Element

- Activity

- Goal

- Service

- Parameter

Start element - Process

- Process Element

- Activity (Start element attribute is set to
“True”)

End element - Process Element

- Activity (End element attribute is set to
“True”)

Control flow - Flow

Gateway - Gateway

- Exclusive / Parallel Gateway

4.2.2.3 Design Rules for LPML Process Models

Design rules help to reduce any hurdles hindering the business user to create process

models with the LPMS. It has to be made sure that the models the user creates might

eventually be executed. Therefore, some general modelling design rules are presented

the user has to stick to in order to provide sound process models. This is as well

valuable to avoid deadlocks during process execution. Potential deadlocks should

already be avoided at modelling time. The following rules apply to LPML models:

- A process model might contain multiple activities and gateways that are connected

through the control flow

- Any control flow is connected to a source and a destination. The source and

destination might be an activity, a gateway, a start element, or an end element

78

- An activity has exactly one incoming edge and exactly one outgoing edge.

- In the graphical abstraction of the LPML, an activity might contain an implicit

gateway.

- For gateways, split and join gateways are differentiated in order to specify the

incoming and outgoing edges.

- A split gateway has exactly one incoming edge and two or more outgoing edges.

- A join gateway has two or more incoming edges and exactly one outgoing edge.

- The LPML allows a gateway only to have incoming or outgoing connectors of the

same kind. This means, a combination of AND, OR, and XOR in one gateway mustn’t

exist. Figure 13 depicts this design rule using a simple modelling sample.

- Any process model has exactly one start node and one end node.

- The control flow is a path from the start node to the end node. The process model

has to make sure that all control flow branches are eventually merged before the end

symbol.

Figure 13: Gateway logic in the LPML

The mentioned design rules are needed in order to avoid deadlocks. Further, it has to

be made sure that deadlocks aren’t caused by missing elements. If the control flow is

split, it will have to be made sure that it eventually is merged at a later point in the

process.

4.3 SEMANTIC ANNOTATIONS

As described in the motivation section, the business users as target users of LPM often

have difficulties in providing information to make processes automatically executable.

Task 4

Task 3

Task 2 AND
Condition Types:

Task 1 Task 5

AND

AND

XOR

AND

XOR

AND

OR

XOR

Task 4

Task 3

Task 2 AND

Task 1 Task 5

AND

AND

AND

AND

AND

79

Further there is no common understanding of business process models and the

terminology used (Blechar, 2007; Mendling & Recker, 2008).

4.3.1 Benefits of Semantic Annotations

In order to bridge the gap between business specification and execution details and to

support the provisioning of execution-related information for processes and services,

semantic annotations are attached to processes and its elements. These annotations

mainly have to be provided by the user. They are more intuitively understandable for

business users and allow for the definition of requirements rather than specifying

concrete execution information. As well, properties and parameters might be modelled

independently of objects through referencing semantic annotations representing these

properties and parameters (Lillehagen & Krogstie, 2008). Reuse of processes and

fragments might be supported through semantic tags (Hornung, Koschmider, &

Lausen, 2008). The semantic annotations provide information about discovery,

composition, and execution of processes and services.

Semantic annotations

- Provide a semantic meaning for processes and services

- Reference a common knowledge model

- Provide information about process and service discovery, composition,
and execution

4.3.2 Structuring Semantic Annotations

LPM encourages enriching process models with semantic annotations. Semantic

annotations complement the syntactic description of processes and their modelling

elements by providing a semantic meaning and a reference to a common knowledge

model, such as an ontology. Semantic annotations for software are expressions

formulated in a common description language, such as RDF. The linkage of

annotations to an ontology facilitates to automatically read and process the

annotations. In addition, human users might use annotations to share descriptions and

hence, foster a better understanding amongst users. Annotations support a sort of

automation during both modelling and execution of processes. Annotations might also

be used to check the fulfilment of requirements and constraints.

Madhusudan et al. (Madhusudan et al., 2004) propose an approach to add semantic

annotations to processes – named cases in Madhusudan et al. – in order to support

case-based reasoning. The authors define tags for the procedural structure, input,

output, preconditions, postconditions, resource type, and ranking. In this thesis, a

80

similar approach is followed. However, the LPMS not only needs declarative

annotations for entire processes but as well for activities. Furthermore a broader set of

predefined annotation types is needed.

4.3.3 Applying Semantic Annotations to LPM

The LPMS annotations are ontology-agnostic. Hence, they might reference concepts

described by different ontologies, such as WSMO, WSMO-Lite, Micro-WSMO, or

OWL-S. Reasonners properly interpret those annotations to instantiate goals by

services, to discover, or to compose services. Business users might use annotations to

describe the entire process and activities with the following aspects:

- Requirements: Might be used to specify a domain-specific scope for the process and

other global requirements. For activities, requirements describe the functional

classification of desired services.

- Constraints: Have restrictive or negative implications, limiting the scope or

acceptable functionality for entire processes and activities. As requirements,

constraints might be used to derive the functional classification of activities.

- Non-functional properties: May specialize the process and activity behaviour

according to factors such as dependability, reliability, performance and ability for

transactions. Other examples to characterize the activity instantiation with services are

the location of services, the price, or security parameters.

- Metadata: Support additional information such as author, creation date, versions,

and revisions. Metadata might be applied to entire processes as well as activities.

Further, metadata supports the customization of the LPMS to a specific domain.

- Logical expressions: Gateways comprise logical expressions in order to select an

outgoing flow. Furthermore flows might be annotated by logical expressions in order

to specify when to follow this flow.

- Functionality-based annotations: Related to activities these annotations might

reference functional classifications, preconditions and postconditions and inputs and

outputs. The functional classifications comprise dimensions for the classifications and

are categorized into three high-level classifications, the operational, designation, and

extensible classifications. The latter is a general dimensional construct allowing for

extending the set of dimensions by domain-specific dimensions.

The activities that are described by semantic annotations for the aforementioned

categories form the basis for the discovery of services. A discovery engine might

directly read these annotations provided in a semantic description language and match

them to existing service descriptions in order to find fitting services. Another option is

81

to first lower the semantic annotations to XML and then feed this XML description

into a discovery engine.

4.3.4 Semantic Annotations in the LPML Metamodel

The semantic annotations might be provided in a user-friendly way in natural language

or through keywords and in the preferred terminology. The annotations are easily

entered through the annotator in the process editor as depicted in section 5.1.1 and

section 5.2.2. These annotations can be in principle optionally attached to any process

element including the process itself. However, for some process elements, the

annotations are mandatory. The user has to provide annotations for the following

process elements:

Process: annotations are used to describe the functional classification, non-functional

properties, preconditions, postconditions, and metadata. These annotations are valid in

a global scope and have precedence over annotations of the process modelling

elements.

Activity: Annotations are mainly used to describe the following aspects. These

annotations are used to map goals and services to activities and to compose services.

- Functionality and category, e.g. create invoice or send invoice

- Input and output data

- Non-functional properties, such as price for sending an invoice or availability of a

send service. Further non-functional properties support optimization of processes and

self-healing features at runtime.

- Preconditions, e.g. a valid order has to exist before an invoice can be created

- Postconditions, e.g. an acknowledgement has to exist after an invoice has been sent

- Metadata serving as additional information such as process author or privacy.

- Gateway/Flow: Annotations are used to describe conditions in flows or in exclusive

gateways. The evaluation of the conditions determines the selection of the appropriate

flow.

- Parameter: Activities have placeholders for input and output parameters. Both are

semantic annotations, the input parameter is of type precondition, the output parameter

of type postcondition.

In case the user has specified requirements and constraints to describe the process or

activities, these might be used to derive semantic annotations. The requirements and

constraints are translated into ontology-based semantic service and goal annotations,

e.g. WSMO annotations for goals, WSMO-Lite annotations for Web Services, or

82

Micro-WSMO annotations for REST services. The translation is semi-automatically

performed by the composition component. The degree of automation hereby depends

on the IT-related quality of the users’ requirement and constraint descriptions. In the

following, the metamodel elements of the canonical LPML format for handling the

semantic annotations are described. In the graphical LPML layer, the semantic

annotations are not explicitly handled through symbols.

SemanticAnnotation is the class for all types of annotations for process elements. It

contains the reference to the annotation file in case of an existing ontological

annotation. This is represented by the attribute referenceURI. In case the annotation is

newly created it is represented by the attribute expression. Any annotation is of a

certain type AnnotationType. For the element descriptions provided by the user the

types of requirement and constraint are used.

AnnotationType enumerates the potential annotation types. It is limited to annotations

for functional classification, non-functional properties, preconditions, postconditions,

metadata, conditions, requirements, constraints, selection criteria, replacement

condition, and contextual information.

Figure 14: View on semantic annotations in the metamodel of the canonical

LPML format

Parameter: The relation of inputParameter and outputParameter of an activity is

specified by the Parameter element.

83

Figure 14 depicts the metamodel elements that are relevant for the concept of semantic

annotations. Table 21 provides a detailed description of the elements needed in order

to attach semantic annotations to the process elements.

Table 21: Elements for semantic annotations

Element Related elements Attributes/Literals

Semantic

Annotation

Association: Process,

ProcessElement,

AnnotationType, Parameter

ID, referenceURI, expression

Children:

ReplacementCondition,

SelectionCriteria

Annotation Type Association:

SemanticAnnotation

functionalClassification,

nonFunctionalProperty,

precondition, postcondition,

metadata, condition,

requirement, constraint,

selectionCriteria,

replacementCondition,

contextualInformation

Parameter Association:

SemanticAnnotation,

Connector, Activity

type

Resolving semantic annotations

The semantic annotations are resolved at different stages of the process modelling and

execution. How semantic annotations are resolved for discovering services is

described in section 5.1 and in section 5.2.3. Further, the annotations are used at

runtime to execute the processes. If a semantic annotation has to be resolved, the

process will call a service representing a conceptual layer. This layer comprises a

reasonner that is able to transform the semantic annotations into queries, to resolve the

queries, and to discover a suitable service fulfilling the needs. Afterwards, the

conceptual layer calls this service. The conditions in gateways and flows are mostly

evaluated at execution time. A condition references a query, such as a SPARQL query,

or other formal condition expressions. At runtime, the query is evaluated by a

reasonner. According to the reasonner response, the decision is made which flow to

follow.

84

Languages for semantic annotations

Potential languages for semantic annotations are RDFS and WSML axioms. RDFS is

suitable for process fragment descriptions, context, and domain-specific knowledge

while WSML is appropriate for axioms and logical expressions that can’t be expressed

with RDFS.

4.4 CONTEXT-AWARENESS

4.4.1 Benefits of Context-Awareness

Applications for service composition and business process modelling have to react

dynamically and flexibly to changes in the environment (Maamar, Benslimane, &

Narendra, 2006; Michael Rosemann & Recker, 2006). Currently, the environment of

the user and the systems is often not explicitly considered, for example the location,

language, legal issues, or financial regulations (Pedrinaci et al., 2010; Michael

Rosemann, Recker, & Flender, 2008; zur Muehlen, 2004). This leads to a limitation of

the system capabilities.

For example, web services are a widespread option for the implementation of global

service compositions through a simple request-response pattern. However, some

situations require flexibility or autonomy in order to dynamically select operations or

to dynamically participate in composite services or processes. Hence, services are

required that are able to assess their current capabilities, commitments, and

environment before participating in any composition (Maamar et al., 2006).

Furthermore, processes have to be flexible and adaptable and the adaptation time has

to be decreased (Michael Rosemann & Recker, 2006). Any changes in the

environment might require the integration of filter mechanisms that allow for the

dynamic adaptation of processes. A cause-effect relationship between the need for

process flexibility and the impact on the process has to be increasingly considered

(Michael Rosemann & Recker, 2006; Michael Rosemann et al., 2008).

A design principle of LPM is to overcome this limitation and take explicitly into

account information about the user, the application, and their environment, the so

called context. Context is further described as an application capability of discovering

and responding to changes in the environment (Maamar et al., 2006). In this thesis, the

following definition of context is used according to Dey (Dey, 2001):

“Context is any information that can be used to characterize the situation of an entity.

An entity is a person, place or object that is considered relevant to the interaction

85

between a user and an application, including the user and the application

themselves.”

In order to adjust the services and processes to the environment, the contextual

information has to be gathered, e.g. through heuristic classification, and the relevant

information has to be identified. Various context-aware applications have been

developed, overviews can be found in literature (Lillehagen & Krogstie, 2008;

Pedrinaci et al., 2010).

Context-Awareness

- Ensures the consideration of the process and service environment

- Allows for the adaptation of processes and services to specific
environments

However, according to Pedrinaci et al., most of the applications have been built for

specific environments and lack a broad applicability in various domains. Therefore,

frameworks have to be built that systematically support the adaptation of services and

processes to contexts. In more detail, the framework has to support the modelling of

contextual information and a solution for context adaptation. Maamar et al. (Maamar

et al., 2006) discuss the suitability of context-awareness for a semantic mapping of

web services. Often, an issue arises if different syntactic types do not match. This is

important for LPM since the modelled processes are orchestrations of services. Three

major issues are subject to the discussion: The deployment of context-aware web

services, the contextualisation of web service compositions, and the conciliation of

web service contexts. Through the use of context, the semantic meaning and the value

of the syntactic types might be determined in order to achieve an automated, correct

mapping. In the following, these issues are addressed in terms of service orchestrations

in processes.

4.4.2 Structuring Context

It is assumed that context is a kind of information that is available or might be derived

or extracted from data. The context might be represented as an object in a space. This

space comprises dimensions or parameters representing a domain of values allowed

for a specific context attribute, such as “time” or “location” (Lenat, 1998; Padovitz,

Loke, & Zaslavsky, 2004; Saidani & Nurcan, 2007; Zaslavsky, 2002). In order to

gather context knowledge out of context information, the search space has to be

reduced (Pedrinaci et al., 2010). In the context of BPM, Rosemann et al. (Michael

Rosemann et al., 2008) have built a metamodel of context perspectives based on the

86

work performed by zur Muehlen (zur Muehlen, 2004). This metamodel integrates

context into the traditional workflow perspectives introduced by Jablonski and Bussler

(Jablonski & Bussler, 1996).

Ontologies might be used to handle context information for various purposes. One

purpose is to express and structure relevant context information. Another purpose is to

create contextual knowledge out of context information (Pedrinaci et al., 2010).

Bouquet et al. (Bouquet, Fausto, Van Harmelen, Serafini, & Stuckenschmidt, 2003)

structure the context based on ontologies. According to the authors, an ontology is

contextualised in case the contents are kept local and not shared with other ontologies.

The relation to other ontologies is described in explicit mappings. Bouquet et al. have

further constructed OWL-C as specification language for context. This thesis slightly

modifies this proposed distinction between ontologies and context. The term context is

used in a broader sense. In the sense proposed by Bouquet et al., context is similar to a

domain ontology of this thesis.

Pedrinaci et al. (Pedrinaci et al., 2010) propose an umbrella ontology and a set of

dimension ontologies as core part to structure context information. A dimension has

structural and logical aspects. It describes aspects, such as quantities, units, and the

conversion between units. Structural aspects describe the characteristics of the values

included. In a dimension, the included values might be ordered or grouped. In contrast,

the logical aspects cover the relative complexity and the relative convertibility. By

relative complexity values are referred to that are obtained through an operation on

values of other dimensions, such as a conjunction of two values, building a new value.

Convertibility applies to the combination of values given in different units.

Besides ontologies, a context model might use the Core Components Technical

Specification (CCTS) (UN-CEFACT, 2003) as a context base. The CCTS focuses on

context for data modelling. The purpose of the CCTS is to provide a common semantic

base and structure for data. Context-awareness is implemented by the concepts

Business Contexts and Business Information Entities. Business contexts are grouped

into eight context categories: Business Process, Product Classification, Industry

Classification, Geopolitical, Official Constraints, Business Process Role, Supporting

Role, and System Capabilities.

87

Figure 15: Simplified Meta Model of the Context Driver Principle according to

(Stuhec & Crawford, 2007)

Figure 15 depicts an example of a context model based on the simplified meta model

of a context-driver approach (Stuhec & Crawford, 2007). The model is drawn in a

UML class diagram notation.

Any process artefact is associated to one business context that comprises various

context units. The context units are related to context categories that are adopted from

CCTS.

4.4.3 Applying Context to LPM

Depending on the application scenario and domain, different contextual information

might be relevant for LPM. Saidani and Nurcan (Saidani & Nurcan, 2007) propose a

context model organised according to the categories location, time, resource, and

organisation. Further relevant context categories might comprise information about

gender (Male/Female), country, language, season, weather, family, hobbies, company,

user-ID, name, or affiliations. Rosemann et al. (Michael Rosemann et al., 2008)

propose an onion model for context classification and typing that structures context

into an immediate, internal, external, and environmental layer. Tan (Tan, 2007)

introduces a context framework for B2B collaborations. According context dimensions

are the user, company, time, and location. In their work, context is used to match

suitable services to realize the cross-organisational business processes. Lechner et al.

(Lechner, Schmid, Schubert, & Zimmermann, 1998) define various profiles that

characterize a participant in a community, such as user profile, content profile,

community profile, system profile, session profile, transaction profile, and case-based

profile. Since LPM builds the foundation for community-driven process modelling and

execution, these profiles might be used as context as well. A tool using context

information has to define for any of them where the information comes from, e.g. from

the user or from other sources.

An overview of context-adaptation in the BPM area can be found in (Ko et al., 2009).

The application to web service composition is manifold. For example, Rosemann et al.

88

(Michael Rosemann et al., 2008) propose to align the contextualisation of processes

with the overall goal of the process. The context-awareness allows for late binding,

processes might be adapted based on context information, or process structures or the

naming of elements might be proposed based on the context. Further usage scenarios

concern the filtering of artefacts or the proposition of reference processes from other

business domains (Schnabel, Born et al., 2009). Context-awareness for the LPMS

means that any artefact of the process model is linked to the context. An artefact is

only valid in that context. For the entire process and each element the context has to be

identified and relevant information derived from the contextual information.

According to (Saidani & Nurcan, 2007) this might be seen as definition of the context

value range. The implementation is then chosen that fits best this value range. Further,

it has to be defined how a process or an activity reacts on contextual information.

Figure 16: Example of an invoice processing process at business l evel (Schnabel,

Born et al., 2009)

The design time and runtime for process modelling and execution in the context of

LPM cannot be clearly differentiated. Hence, context information might influence

process modelling and execution at design time and runtime. This differentiates the

context-awareness of LPM from other existing approaches. In the following, the

motivation for context-awareness and the application to LPM is presented.

 Billing – Sales departmentInvoice Processing – Financial department

Request

For

Invoicing

Create

Invoice

Invoice

Created

Post

Invoice

Invoice

Posted

Customer

Data

Accounting

Manager

Accounting

Manager

Sales

Orders

Outgoing

goods

Invoice

responsible

responsible

Bill is

requested

Bill

Creation

Bill is

created

Sending of

a bill

Bill is sent

Client

Information

Payroll

Manager

Payroll

Manager

Customer

Orders

Outgoing

goods

Bill

responsible

responsible

Role Event Resource Activity flow

Input

Output

Input

Output

89

Process models might be seen as a container for processes of the same nature (Rolland,

1998). Hence, the processes are instantiations of the process model. These

instantiations might occur in various settings and contexts. Processes in the same

context might build an additional context container that is part of the process model

(Schnabel, Born et al., 2009). Figure 16 defined in the thesis of Matthias Born and

depicted in Schnabel et al. (Schnabel, Born et al., 2009) visualizes an example of an

invoice process model in two different contexts. The models use the notation of Event -

Driven Process Chains (EPC).

On the left hand side in Figure 16, a typical invoice process of a financial department

is depicted while on the right hand side an invoice process of the sales department is

presented. Both departments are using their own terminology to describe the process

artefacts. Often, the labelling of artefacts doesn’t follow any naming conventions

(Mendling & Recker, 2008). In order to achieve a better understanding of process

models and hence increase the level of reuse, a common terminology is helpful.

Hereby, reuse might increase in two dimensions. Reuse across process models means

reusing parts of that model, e.g. activities. By applying common naming conventions

the meaning of the activities gets unambiguous and it might be used in other models as

well. Reuse of structural dependencies means using a set of connected process

elements, e.g. a set of activities or a role that is linked to an activity. In Figure 16, in

the financial department the linked role is called “Accounting Manager” while in the

sales department the same role is called “Payroll Manager”.

The introduction of context-awareness of process models and its elements allows for

the creation of standardized, consistent, and understandable labels and descriptions of

process model artefacts. This increases the reuse of these process artefacts. The labels

and descriptions are based on common ontologies or dictionaries and linked to a

specific context. Hence, reusing insufficient business artefacts and terminology might

be avoided (Schnabel, Born et al., 2009). An insufficient terminology might be words

having the same spelling and pronunciation but different meanings (homonyms) or

words having the same spelling but different pronunciation and different meanings

(heteronyms) (Schnabel, Born et al., 2009).

Another aspect is to adjust the sequence of activities according to the context. An

example on how to adapt a process model structure to the context is visualized in

Figure 17. The example is taken from Schnabel et al. (Schnabel, Born et al., 2009) and

the dissertation thesis of Matthias Born. The upper process model is valid in the

context C1, the lower model in C2 differentiating from C1. The process in C2

comprises an additional activity A4. According to the principle of context-awareness

90

the process model is only stored once. For any activity the valid context is specified.

Furthermore, the artefacts responsible for the process structure, such as source or

destination references, connectors, or pre- and postconditions are related to specific

contexts. Hence, the process structure might be adjusted to the context.

Figure 17: Context-aware Business Process Model

In a tooling setting for process modelling, the user might either specify the context or

the context is set automatically by using information, such as the user profile or the

tooling environment.

As aforementioned and shown in the example above, the context-awareness might be

applied to various scenarios in BPM. LPM focuses on three of them. Context is used to

dynamically discover, select, bind, and compos services, to label process artefacts

according to a common understanding, and to adjust the structure of processes.

4.4.4 Context-Awareness in the LPML Metamodel

The context defines the environment a process artefact is used in. The LPMS uses

context information in three ways to support the user. First usage is to support the

discovery, selection, binding, and composition of services in order to instantiate the

abstract activities modelled by the user. Further, the naming of activities and the

process structure might be adjusted based on the context.

Instantiating activities based on context information

In order to support the activity instantiation, the context-awareness is implemented by

the LPMS similar to an approach proposed by Ardissano et al. (Ardissano, Furnari,

Goy, Petrone, & Segnan, 2007). Ardissano et al. propose a Context-aware Workflow

Execution (CAW) comprising the following artefacts. For each artefact the relation to

the LPMS is described.

- An abstract representation of the workflow that might include abstract activities

hiding context-dependent properties.

91

Through the abstraction principle and the according separation of activity descriptions

and their instantiation with services, the LPMS relies on the same foundational

principles. A process model is created using the graphical elements of the LPML.

Some properties of the process elements don’t necessarily have to be specified by the

user. These properties are filled by context information.

- An assignment of abstract activities with its implementations. The implementations

differ according to the context.

In contrast to the CAW, the LPMS does not necessarily have predefined

implementations for an activity. The context information rather supports the discovery,

selection, binding, and composition of services in order to instantiate activities.

- An explicit declaration of conditions determining the selection of the context -

dependent process part at execution time.

This is in line with the LPM tools – the process editor, the discovery engine, the

composition component, and the execution engine – that have implemented rules to

react on specific context values.

To process the context information the proceeding of Ardissano et al. (Ardissano et al.,

2007) is used as a basis and modified for the purposes of the LPMS. As

aforementioned, in the work of Ardissano et al., the process adaptation according to

the context is only possible at runtime. The execution engine therefore, interacts with

other components to retrieve the context-dependent implementations from a

knowledge base and read the applicability conditions for the implementations. Then, a

specific implementation is bound to the abstract activity. The LPMS however, uses

context information both at design time and runtime. Pedrinaci et al. (Pedrinaci et al.,

2010) describe how the context information is processed to invoke services. This

thesis adjusts this approach to process modelling. After identifying the dimensions

attached to the process elements, a context reduction gains context knowledge out of

the context information. This content knowledge might be used for a service

classification framework. The classification framework might then be used for

discovering, selecting, binding, executing, replacing, or adapting services in a process.

Process elements reference business entities to align their labels

The second approach to use context information is to support the naming of activities

as described in (Schnabel, Born et al., 2009). Every process element is linked to a

business entity that has an unambiguous semantic meaning and is stored in a specific

repository. As well, every business entity is linked to a specific business context. The

92

business entity comprises various terms that are based on a dictionary or an ontology

and make the business entities understandable for human users. In the context of the

LPMS, a process element might be named using one of the terms of the related

business entity. An example is the naming of an activity sending a purchase order. The

business entity might be named “Send Order”. The according terms could be “send

purchase order” or “Send PO”. In order to base the terms on a common understanding,

existing dictionaries are used, such as Wordnet.

In the sample process depicted in Figure 16 in section 4.4, a potential invoice

processing in the financial department and in the sales department is shown. In the

example, the creation of an invoice represented by an activity is named differently in

the two departments. The names are “Create Invoice” in the financial department and

“Bill Creation” in the sales department. However, both activities have the same

meaning. Hence, both activities refer to the same business entity in the associated

repository. In addition, the terms of the business entity might be restricted to a specific

context. For example, the term “bill” might be restricted to the sales context.

Another option for the alignment of activity names is to reference to ontological

descriptions. These descriptions provide relations of concepts that might be used for

relating activity names in different contexts.

Adjusting the process structure to the context

The third approach of context-awareness is the structuring of processes. This approach

is as well described in Schnabel et al. (Schnabel, Born et al., 2009). Through the

attachment of context information to a process element it might be indicated whether

an element is valid in a given context. The context file hence contains a validity entity.

This mechanism allows for the dynamic and flexible adaptation of process models.

Attach context reference to process elements

In this thesis, any process model is linked to a context file. Therefore in the metamodel

of the canonical LPML format, a semantic annotation of the type

ContextualInformation referencing the location of the context file is attached to the

process element. In the graphical LPML layer, contextual information is not explicitly

depicted, since this layer should be kept simple. The context file comprises a set of

context dimensions the service, process, or process element is sensitive to. In addition,

the context file identifies the business entity used for adapting the naming of activities.

93

Figure 18: Sample of an ontological dimension
15

Representation of context information

The representation of context information is independent of the usage through naming

or process structure adaptation or through support for the instantiation of activities.

In a formal way, the context might be represented in various formats. A simple

approach is the representation as mathematical set. A predefined set comprises various

values, e.g. a set of industries comprises the values finance, automotive, or

telecommunications. The set attached to a process element comprises those values the

process element is valid in. However, the sets and its values have to be predefined. A

more flexible approach is based on ontologies. By using an ontology, the context

information might be modelled as dimension. Any ontological goal or service

description is then linked to the user’s context information dimension, such as

location, or language. In order to further structure the context information a hierarchy

of ontologies is developed comprising one umbrella ontology and dimension

ontologies. The dimension ontologies are based on this umbrella ontology. Pedrinaci et

al. (Pedrinaci et al., 2010) assign general aspects of web services and temporal aspects

15
 See www.soa4all.eu for more information

http://www.soa4all.eu/

94

to the umbrella ontology, whilst aspects, such as quantity, unit, or the conversion, are

described by a dimension ontology. Figure 18 depicts a sample of an ontological

dimension. The sample file is written as WSMO-based ontology in WSML notation.

Currently, WSMO is extended by elements for context information by the SOA4All

project team.

4.5 REUSE THROUGH PATTERNS AND TEMPLATES

4.5.1 Benefits of Patterns and Templates

A pattern is „the abstraction from a concrete form which keeps recurring in specific

nonarbitrary contexts“ (Riehle & Zuellighoven, 1996). This definition has been

created in the context of software development. Patterns provide independence from

any implementation technology and from domain-specific settings (van der Aalst, ter

Hofstede, Kiepuszewski et al., 2003). To apply patterns to the context of BPM, van der

Aalst et al. is referred to (van der Aalst, ter Hofstede, Kiepuszewski et al., 2003). The

authors state, that patterns address business requirements in terms of workflow

constructs but are independent of specific workflow languages.

Patterns might accelerate the designing of process models, reduce their modelling

time, foster reuse of processes and its parts, and improve the modelling quality by

simply being instantiated or customized (Gschwind, Koehler, & Wong, 2008; N.

Russell, Arthur, van der Aalst, & Mulyar, 2006; van der Aalst, ter Hofstede,

Kiepuszewski et al., 2003). An early approach for reusing processes and parts based on

case-based reasoning is described in (Kim, Suh, & Lee, 2002) and (Madhusudan et al.,

2004).

Patterns allow for a more effective communication within communities and provide

better conciseness leaving less space for ambiguities (Buschmann, Henney, &

Schmidt, 2007; Gschwind et al., 2008; Medicke & McDavid, 2004; Tran, Coulette, &

Dong, 2007). Patterns might range from very simple to very complex and cover the

behaviour that might be captured within most business process models. LPM

encourages the reuse of known process patterns in order to support the modelling of

the control flow perspective on different business domains. The crucial point in

applying patterns to LPM is that the targeted business users often don’t understand the

patterns. The patterns have to be applied in the background, hence, the user doesn’t

necessarily have to be aware of this application. Anyway, the pattern application

should support the users in modelling their processes.

95

Patterns and templates

- Allow for reusing processes and parts of it

- Ensure the soundness of process parts

4.5.2 Structuring Patterns and Templates

The workflow patterns as defined by van der Aalst et al. (van der Aalst, ter Hofstede,

Kiepuszewski et al., 2003) are used as process patterns in order to support modelling

the control flow perspective. Besides the control flow patterns, patterns for the data

flow, resources, and exception handling exist. In this thesis, the control flow patterns

are focused. The proposed proceeding of applying these patterns to support modelling

might be transferred to other kinds of patterns as well.

The workflow patterns from van der Aalst et al. might be complemented by more

coarse-grained sets of process elements. Further, context or business information

might enrich these sets. Therefore, workflow templates combine workflow patterns,

cover a certain business functionality and might be valid in a specific context. Table

22 specifies the distinction between patterns and templates valid in this thesis.

Table 22: Distinction between patterns and templates

In this thesis the following distinction between patterns and templates is defined:

Patterns:

- Comprise a set of process elements describing a certain behaviour

- Are in line with the workflow and data flow patterns defined in (van der Aalst, ter
Hofstede, Kiepuszewski et al., 2003)

Templates:

- Might include one or more patterns

- Might be enriched with context information

- Might be enriched by business information

Workflow templates might cover almost complete processes, however, the templates

do not contain a start and an end element. The processes composed by one or more

workflow templates are guaranteed to be functionally and syntactically sound. A

definition of soundness of Gschwind et al. (Gschwind et al., 2008) is considered: “By

soundness of a process model, we mean the absence of deadlocks and lack of

synchronization.” Even for unstructured processes, the application of patterns

according to predefined rules guarantees soundness of processes (Gschwind et al.,

2008). Certain workflow templates might be enriched with specific information in

order to be applicable to different business domains. In order to identify a pattern or a

96

template in a process model any process element is annotated in order to indicate the

assignment to a pattern or a template.

4.5.3 Applying Patterns and Templates to LPM

In this thesis, three different scenarios are considered to apply process patterns and

templates. In the first scenario the user might browse a repository to retrieve patterns

and templates. This supports the user in avoiding modelling from scratch. The second

scenario is the refinement of activities with patterns or templates, the third scenario is

the completion of processes according to patterns and templates. In all scenarios, the

users benefit from the support to model sound processes.

Reuse existing patterns and templates

The workflow templates are defined by users and stored in a template repository. Once

business processes are modelled through the LPML, workflow templates and process

patterns might be incorporated as first class modelling elements. As workflow

templates are sound process parts, it is also possible to model novel processes by

simply instantiating and customizing a template. A collection of sample process

patterns can be found in (Malone, Crowston, & Herman, 2003).

A process editor for LPM has to implement a functionality that makes the patterns and

templates visible in a process. Furthermore, the patterns have to be explained to the

user. Semantic annotations are provided explaining the functionality of the pattern and

the consequences of applying the pattern.

Madhusudan et al. (Madhusudan et al., 2004) have proposed an approach to reuse

patterns through retrieval based on case-based reasoning. The authors state that

standards for template representations and associated ontologies, formal guidelines for

reuse of these templates, rules for their instantiation or modification, and procedures

for their composition into complex workflows are currently non-existent. This thesis

defines semantic annotations for the use, integration, and instantiation of patterns and

templates.

Refine activities through patterns and templates

Another application scenario of patterns and templates is the refinement of process

elements. Gschwind et al. (Gschwind et al., 2008) describe an approach of applying

patterns during the process modelling to edges. The authors differentiate three

scenarios on how to insert patterns into an existing workflow, the application of a

pattern to a single edge, to two edges, and to a set of edges. For any scenario the

authors define how to support the user in applying patterns correctly.

97

In this thesis this approach is slightly modified. The refinement is not applied to edges

but to activities. Hence, unbound activities of the abstract LPML layer might be

resolved by tools, such as the composition tool, and be replaced by suitable patterns or

templates. This resolution is achieved by matching the semantic annotations of the

activity against the semantic annotations that describe available workflow templates in

a template repository. Hereby semantic annotations about functionality, non-functional

properties, input and output data, and preconditions and postconditions are analysed.

Through the refinement mechanism the user is able to express an abstract activity

instead of a detailed subprocess.

The recommendation of process patterns and templates to refine activities is

implemented as a two-step proceeding. First, by analysing the information in the

already existing activities, patterns are checked that might potentially be

recommended. In the second step, the similarity of the found patterns to the existing

activity description is checked.

In this second step, the recommender service calls another service to measure the

similarity of the found patterns. This similarity measurement service returns similarity

values for each pattern. Based on these values, the recommender service selects the

pattern with the highest similarity value and returns the recommendations. A

recommendation is given for every pattern retrieved in the first step. The

recommendation comprises the original process model, the modified process model

based on the recommendation, a numeric value indicating the quality of the

recommendation, information about the applied pattern, and the recommendation type.

A process editor for LPM has to implement a wizard in order to guide the user through

the correct application of the pattern. This wizard guides the user in applying the

pattern in a step-by-step manner and explains the consequences of the pattern

integration.

Completion of processes with patterns and templates

The third application scenario covers the completion of processes with patterns and

templates. This is the most complicated option of applying patterns. Since the business

user is not expected to be able to select fitting patterns, this step has to be performed

automatically. Hereby, tools have to understand the semantics of the modelled process

as well as the trade-off of applying the pattern (Kircher, 2007). In this thesis, the

patterns are not automatically applied but proposed through a recommendation

mechanism in order to support the user in modelling sound processes. The

recommendation mechanism proposes the next modelling activities stepwise. It is

98

important for users to provide support in small steps the user might understand. It

might rather confuse the user if a complete pattern would be automatically applied.

As aforementioned, Madhusudan et al. (Madhusudan et al., 2004) have proposed an

approach to reuse process models through case-based reasoning. In their work, the

authors describe the tagging of cases, the storage, and the retrieval using a similarity

algorithm. This proceeding builds the basis for the proposed retrieval of process

patterns and templates described in this thesis.

As described above, for the activity refinement the recommendation to complete

processes is as well implemented in a two-step proceeding. After analysing the

existing part of the process model patterns are retrieved that potentially might

complete the process. In the second step as well, the similarity of the found patterns is

compared to the existing process part.

The first step of retrieving potentially fitting patterns is controlled by a recommender

service. This service queries the pattern repository service to retrieve available process

patterns. The retrieved process patterns already roughly match the requirements

formulated in the query. This limits the set of retrieved patterns in order to reduce the

following effort to measure the similarity to the modelled process. The second step is

performed identically to the proceeding for the activity refinement.

Similarity measurement

The similarity measurement of process patterns to activities and to process parts is an

important step for the quality of the recommendations. Ehrig et al. (Ehrig,

Koschmider, & Oberweis, 2007) describe an approach to semi-automatically detect

synonyms and homonyms of process element names. A prerequisite for their work is

that the element names are based on ontologies. Following the approach of Ehrig et al.,

this thesis measures similarity on a syntactic level based on the edit distance, on a

linguistic level based on the senses of terms, and on a structural level evaluating the

context of a term or an element. However, the similarity measurement is not a core

part of this thesis. Hence, the work performed by Ehrig et al. is referred for a more

detailed analysis.

4.5.4 Patterns and Templates in the LPML Metamodel

In the context of the LPMS, process patterns and templates are not executable since

they miss a start and an end element. Hence, there’s no syntactic invocation

description defined. This makes the traditional discovery based on the syntactic

description impossible. Like processes, the patterns and templates are described

99

semantically in order to make them retrievable. In addition, annotations of type

metadata are provided describing the use, integration, and instantiation for users

searching manually for patterns and templates in a repository.

The activity refinement through patterns and templates and the process completion

recommendation makes as well use of the semantic annotations. The annotations of

activities and existing process parts are compared to the annotations of patterns and

templates in order to select the appropriate one. The comparison might be based on all

annotation types, such as functional categorization, non-functional properties, input

and output data, or preconditions and postconditions.

In order to identify a pattern or a template in a process model, any process element is

annotated in order to indicate the assignment to a pattern or a template. Templates and

patterns are similar to processes as their descriptions are stored in a common

repository and might be referenced by a URI. Patterns and templates are indicated in

the metamodel of the canonical LPML format. There’s no explicit symbolization in the

graphical LPML layer. In order to distinguish between processes, templates, and

patterns, two annotations are added to the process element. The flag isTemplate is set

to true, if a template is described. The flag isPattern is set to true, if a process pattern

is described. Furthermore, a reference patternLocation and templateLocation is added

as attribute indicating the URI of the pattern respectively template. In order to indicate

whether a process element belongs to a pattern or a template the attributes

templateReference and patternReference are included in the ProcessElement.

The Process Editor implements a functionality that makes the patterns and templates

visible in a process. This functionality uses the flags isPattern and isTemplate. The

semantic annotations explaining the functionality of the pattern and the consequences

of applying the pattern to the user rely on the annotation type metadata.

4.6 GOALS AS ABSTRACT SERVICE DESCRIPTIONS

4.6.1 Benefits of Goals

Process activities are often directly bound to services or operations at design time. For

the business users targeted by LPM, the service functionality and binding might be

difficult to understand. Further, it might be difficult to decide what kind of services to

bind, e.g. a WSDL or a REST service. Rather, a construct is needed that states the

users’ perspective, abstracts from the implementation, specifies a kind of service

category, and expresses the user’s needs in terms of desired outputs or environment

100

changes. This construct is called a goal. The definition of goals in this thesis is as

follows: Goals are unbound activities, provide requirements to services, and represent

categories of services. Goals are bound to a particular service either later at design

time or at runtime by a discovery engine and composition tools. This keeps the process

models more flexible and agile. Goals support users in modelling the control flow

perspective. The goal definition of this thesis differs from the traditional definition in

the literature, where goals are defined for the entire process (Kueng & Kawalek, 1997;

Neiger & Churilov, 2004a, 2004b).

Goals

- Formulate process and service requirements, rather than concrete
technical specifications

- Are more intuitively understandable for business users

4.6.2 Structuring Goals

Goals describe from a client’s perspective a set of web services that would potentially

fulfil the user’s needs. In terms of the WSMO specification, a goal has the same

characteristics as a service description. These characteristics describe importing

ontologies, mediators used, non-functional properties, capabilities, and interfaces. The

capabilities comprise among others preconditions, assumptions, postconditions, and

effects. Hereby, assumptions and effects describe the state of the world before and

after the execution of a service. The preconditions and postconditions describe the

information space of the service before and after the execution. However, in a goal, the

non-functional properties, capabilities, and interfaces are formulated as requests rather

than concrete properties (Roman et al., 2006).

In order to formulate the WSMO goal and service specification in a more lightweight

way, WSMO-Lite has been introduced dedicated to build an ontology base for WSDL

and REST services. A potential goal definition has to be in line with the WSMO-Lite

service definition for service discovery reasons. The goal description is mapped to

descriptions of existing services in order to find fitting services. Keller et al. (U. Keller

et al., 2004) are referred for a specification of discovering services for goals based on

WSMO descriptions. Hence, for LPM, in order to be in line with WSMO-Lite service

descriptions, another goal definition is needed. However, WSMO-Lite currently

doesn’t provide a goal specification.

101

4.6.3 Applying Goals to LPM

For LPM, a new kind of goal is defined, the LPM goal. This LPM goal references the

WSMO-Lite ontology. The main difference of the LPM goal to the WSMO goal is the

demission of assumptions and effects and the introduction of inputs and outputs.

Inputs and outputs represent sets of variable names, such as strings. In contrast,

preconditions and postconditions are logic expressions on an abstract level. These

logic expressions might be formulated as axioms in semantic description languages,

such as RDF or WSML. The axioms might include the input and output variables.

Hence, the input and output variable names are subsets of those variables defined in

terms of axioms of the preconditions and postconditions. The use of input and output

variables seems appropriate for LPM. Preconditions and postconditions might be seen

as refinement of the names of inputs and outputs and might be set as optional

properties thus.

A LPM goal comprises the following characteristics:

- Inputs: The set of input variable names

- Outputs: The set of output variable names

- Preconditions: The information space before a service execution, formulated as

logical expressions

- Postconditions: The information space after a service execution, formulated as

logical expressions

- Functional Classification: Assigns the required functionality to a set of functionality

descriptions. The classification might comprise a hierarchy of classes.

- Preferences over non-functional Properties

The non-functional properties might be used for ranking the goals according to the

users’ preferences. A LPM goal is a class and might be understood as an abstract

classifier for fitting SWS. Hierarchies of goals might be built comprising subgoals as

refinements of goals. An instance of the goal class represents a concrete goal providing

concrete instance references to some of its optional properties. They might be provided

by the modeller, but they could also be derived from domain specific contextual

information and tools. In particular, business users benefit from the goal approach.

They might browse and inspect available goals stored within a goal registry. The goals

are more intuitively understandable than mere service descriptions.

Binding a service to a goal

Goals represent abstract classifiers of services. In order to execute processes the goals

have to be instantiated with services. An important aspect is thus the discovery of

102

appropriate services. LPM allows for discovering and binding services at various

stages to achieve flexibility in the service selection. Goals serve as a kind of

placeholder for the late binding of services. To instantiate the goals, a discovery

engine reads the goal descriptions, matches it to existing service descriptions, and

returns fitting service descriptions. A reasonner might support these tasks.

In the context of LPM, the goal descriptions are transformed into queries that might be

processed by a discovery engine. The preconditions and postconditions of the LPM

goal specification are transformed into ontology-based preconditions and

postconditions in order to be able to map the service descriptions. The complete goal

description is then transformed into a query, such as a SPARQL (W3C, 2008) query.

Depending on the scenario and for performance reasons, a query generation based on

partial information might be considered. The query is processed by the discovery

engine in order to find appropriate services or service orchestrations, such as patterns

and templates.

Discovering services based on goal descriptions might be achieved differently. The

functional classification might be used or the capabilities. Table 23 presents the

various options to discover services based on goals
16

. Furthermore, the non-functional

properties might be used which is however not considered in the table below.

Table 23: Overview of service discovery types based on goals
16

Type of

Discovery

Discovery Means Example

Functional

Classification

One class E.g. Travel Booking

Intersection of several

classes

E.g. Travel Booking and Security

Union of several classes Train Booking or Flight Booking

Arbitrary expression Unions, Intersections, Negation

16
 The discovery types are described according to the SOA4All goal specification.

103

Capabilities Preconditions,

postconditions

Inputs/Outputs Input/output variable

names

Besides various discovery types, the matchmaking strategy from goal to service

descriptions might determine the resulting set of appropriate services. Four strategies

might be differentiated taken out of Pedrinaci and Krummenacher (Pedrinaci &

Krummenacher, 2009): Strict exact match, relaxed exact match, subcategory match,

super-category match. Table 24 explains the matching strategies according to

Pedrinaci and Krummenacher.

Table 24: Strategies of matching services to goals

Matching strategy Explanation

Strict exact The service is associated with exactly the same set of

categories as the goal

Relaxed exact match The service is associated with all the categories of the goal and

some others

Subcategory match The service is more specific than the goal

Supercategory match The service is more general than the goal

4.6.4 Abstract Service Descriptions in the LPML Metamodel

In the following, the elements for the instantiation of an activity in the process model

with a goal and with a service are described. Hereby, the elements are only defined in

the metamodel of the canonical LPML format. In order to separate the activity

description and its instantiation, the Conversation element has been created that

associates goals or services to an activity. This approach is similar to the separation of

activities (invoke, receive etc.) and their partner link in WS-BPEL. This mechanism

allows for late binding, as described in the literature (Adams, Ter, Edmond, & van der

Aalst, 2006; Hagemeyer, Hermann, Just, & Rüdiger, 1997; Han, 1997; Sadiq, Sadiq, &

Orlowska, 2005; Weber, Reichert, & Rinderle-Ma, 2008). While the Goal element

references existing goals, the Service element provides a list of services. The

Conversation might have attached a goal and a list of potential services. It references a

concrete service that is selected by analysing the semantic annotations, the referenced

goal, and the SelectionCriteria. The SelectionCriteria class is of type enumeration and

104

defines the ranking of services in the service list. In case a selected service is not

available, the ReplacementCondition as an enumeration type defines when to replace

that service. Service selection and replacement at runtime is performed assuming that

all implementations of an abstract service have different interfaces or adopt different

communication protocols. These mismatches are solved exploiting the semantic

annotations of service descriptions as described in (Cavallaro, Ripa, & Zuccala, 2009).

The relation of inputParameter and outputParameter of an activity is specified by the

Parameter element. Table 25 gives an overview of the Conversation element and its

attached services and goals. The Conversation, SelectionCriteria, and

ReplacementCondition elements reference a context file.

Table 25: Service and goal description

Related elements Attributes / Literals Semantic annotations

Conversation

Association: Activity, Goal,

Service,

ReplacementCondition,

SelectionCriteria

compositeGoal Not applicable

Service

Association: Conversation serviceReference Not applicable

Parent: Activity

Goal

Association: Conversation goalReference functionalClassification,

nonFunctionalProperty,
precondition, postcondition Parent: Activity

Selection Criteria

Parent: SemanticAnnotation bestPrice,

bestResponseTime,
rating

Not applicable

Association: Conversation

Replacement Condition

Parent: SemanticAnnotation Fault, faultAfterRetry,

noResponse

Not applicable

Association: Conversation

105

In the following pseudo java code extract of a sample process the activity

handlingPayment is instantiated by the goal handlingPaymentGoal and the service

creditCardPaymentService.

// A payment handling activity

Activity handlingPayment = new ActivityImpl();

handlingPayment.setName("Handling Payment");

handlingPayment.setOperation("charge");

// will be the operation of the bound service

handlingPayment.setSynchronous(true);

handlingPayment.setConversation

(handlingPaymentConversation);

p.addProcessElement(handlingPayment);

// a payment handling goal

Goal handlingPaymentGoal = new GoalImpl();

handlingPaymentGoal.setName("Payment Handler");

handlingPaymentGoal.setGoalReference(payment_url +

"handlingPaymentGoal.wsmo");

// a credit card payment service instantiating the payment

handling goal

Service creditCardPaymentService= new ServiceImpl();

creditCardPaymentService.setName

("CreditCardPaymentService");

creditCardPaymentService.setServiceReference(payment_url +

"services/CreditCardPaymentService.wsdl");

In order to attach appropriate services to a goal, the goal description has to be used for

search queries. Therefore, the semantic annotations of the goals are transformed into

queries. The LPMS might use RDFS to represent the semantic annotations. Further, it

is assumed, that the service descriptions might be represented in RDFS as well. Hence,

the goal annotations are transformed into SPARQL queries. However, the LPMS is not

restricted to a specific description language.

4.7 DATA FLOW SUPPORT

For process modelling, various perspectives might be distinguished. As introduced

above, the control-flow perspective captures aspects related to timely dependencies

between various activities, such as parallelism, concurrency, or synchronization. In

addition, the data perspective describes a means of communicating data elements. This

covers aspects, such as passing information between process elements or scoping of

variables. As per defining patterns and templates for the control flow, patterns and

106

templates for the data flow might be defined. However, the data flow patterns are not

main work of this thesis.

4.7.1 Benefits of Data Flow Support

Supporting the user in passing data from one process element to another is a main

issue for LPM. Currently, most of the solutions for data flow modelling and execution

are implemented for closed environments. For example, SAP has defined the SAP

Global Data Types harmonizing syntactic and semantic characteristics of data. Further

examples of data harmonization frameworks are ebXML(OASIS, 2001) for electronic

business or RosettaNet (RosettaNet, 2010) for an industrial consortium. However, the

LPMS aims at connecting heterogeneous web services of different providers and

contexts. Often the syntactical and semantic characteristics of data are not aligned. In

order to transfer data from one service to another, mapping and transformation

mechanisms are needed that are mostly performed by expensive IT experts. The goal

of LPM is to achieve a higher degree of automating the data flow and to support the

business user to perform a data mapping and transformation. Hereby, the mapping and

transformation have to consider both the semantic and syntactic level.

Data flow support

- Promises to overcome syntactic and semantic mismatches of data

- Automates data mappings through reasoning on semantic annotations

4.7.2 Structuring Data Flow Support

In case the user has to interact to model the data flow, LPM supports the user in

understanding data types and in performing operations on data. In the following is

presented how this support is implemented.

Russell et al. (N. Russell, ter Hofstede, Edmond, & van der Aalst, 2005; N. Russell, ter

Hofstede, Edmond, & Aalst, 2004) structure the data perspective according to the

following characteristics.

- Data visibility covering how process elements might view data elements

- Data interaction addressing the communication of data between process elements

- Data transfer describing the manner of passing data

- Data-based routing focussing on the interaction of data flow and other perspectives,

such as control flow

In this thesis, the data flow structuring focuses on data interaction and data transfer.

Data visibility depends on the parameter type. Any service parameters are only visible

by the according service, globally visible parameters are represented by context

107

information or might be referenced by semantic annotations. The data flow

implementation for LPM is designed based on the following options as described in

(N. Russell et al., 2005) and (N. Russell et al., 2004).

- Distinction of control flow and data flow vs. integrated flow vs. no data passing :

LPM differentiates between control flow and data flow. The user has to model the

control flow in any case. In addition, the data flow might be optionally specified, if

required. The data elements are passed between activities, no explicit global shared

data is provided for a process.

- Data interaction: The data interaction might be simple in case of an output

parameter becoming an input parameter of the following activity. More sophisticated

data interaction is managed by connectors that manipulate data.

- Data transfer: The data mediation is easy for a couple of primitive data types, e.g.

transforming Char to String or vice versa, Integer to Flow or vice versa, etc. However,

for other primitive data types the transformation is not that easy. Further , the

transformation of complex types has to be specified individually for any case. The data

might be passed by value or by reference. Mapping between activities have to exist, in

case of an equal data type (syntactic mapping) and meaning (semantic mapping) the

value might be passed, otherwise a transfer by reference is required. Another option is

to copy values into the spaces of other services. In case the data of two connected

services is not coherent, a data transformation has to be implemented by the process

execution engine.

- Data-based routing: LPM implements data-based routing through preconditions and

postconditions of services. Further, patterns to specify the process routing are

implemented through connectors.

4.7.3 Data Flow Support for LPM

As aforementioned, the data flow modelling covers both a semantic and syntactic

mapping. The following proceeding describes how the data flow modelling is

performed for LPM. This proceeding is adjusted from Lecue et al. (Lecue, Salibi,

Bron, & Moreau, 2008). A data flow from process element A to process element B is

assumed. The goal is to dynamically generate mappings between service parameters

based on semantic connections.

- First, the input parameters of process element B are read. A file of the semantic

descriptions of the input parameters is created.

- In the second step, a file of the semantic descriptions of the output parameters of

process element A is created.

108

- Afterwards, the semantic descriptions are mapped. This could be performed for all

parameters or according to predefined selection criteria. The mapping is performed

through a similarity measurement of parameters based on an ontology. In addition, the

semantic consistency of data is checked through reasoning in order to figure out the

semantic feasibility. In case the mapping is semantically not feasible, the user has to

interact in order to manipulate the data leading to a semi-automated mapping.

- For all identified matchings the syntactic mapping is checked in the next step. The

syntactic mapping is performed by the execution engine since reasonners performing

the semantic mapping do not support any transformations. Hereby, the information

provided by the semantic mapping is used. For example, an Extensible Stylesheet

Language (XSL) transformation file (W3C, 2007b) might be created dynamically

through listing the XSD (W3C, 2004e) mappings. Afterwards, the XSDs and the data

types might be transformed, if needed. In the optional final step, the values are

transformed.

The data mapping is performed automatically in LPM in order to keep the user free

from mapping details. In case the automatic mapping is not feasible, a tool supports

the user in performing the mapping manually. Figure 19 shows a snapshot of the

mapping tool.

Besides purely control flow oriented constructs, LPM provides a couple of data flow

oriented constructs. These constructs support service composition and sophisticated

data operations, such as mashups do. To this end, a list of operators, the so called

connectors in the context of LPM, is introduced to model and execute data

manipulation. The user might easily integrate the connectors in the process model in

order to specify a service mapping. By doing so, this approach differentiates from

existing approaches that handle mediation by dynamically defining mediators (Joerg

Nitzsche & Norton, 2009). Such an approach would require deep knowledge in

Figure 19: LPM tool support for data mapping

109

ontologies that the typical users of LPM don't have. The connectors have to consider

both semantic and syntactic mapping of the activities. Furthermore, the connectors

allow for the specification of the kind of connection between the services. In case the

user requires more sophisticated data manipulations between services, he might use

external built-in services provided by the process editor. A detailed listing and

description of the connectors is given in section 4.7.4.

4.7.4 Data Flow Connectors in the LPM Metamodel

As introduced in section 4.7.2 and described in (Schnabel, Xu et al., 2009) the data

flow handling requires several steps. In this section is described how these steps are

implemented by the LPMS for an automatic handling. If an automatic handling is not

feasible, the user is supported to provide missing information for completing the data

flow.

The elements for the data flow handling are only represented in the metamodel of the

canonical LPML format. In order to keep the graphical LPML layer simple, the data

flow is not explicitly depicted.

Semantic matching

The first steps for data flow handling cover the semantic matching of parameters.

Thus, files are created comprising the semantic service and parameter descriptions of

the services to be connected. In the context of the LPMS, these files are lists of the

semantic annotations of process elements. For example, in terms of the LPML

activities, these annotations describe the input and output parameters. The semantic

annotations might be represented by RDFS triples. The RDFS statements are based on

ontologies, such as WSMO, WSMO-Lite, or domain ontologies. The LPMS is not

restricted to a specific ontology in order to be applicable to various scenarios.

In the following steps, the service parameters have to be mapped on the semantic level.

Therefore, the RDFS triples representing the parameters of the two service lists are

compared. The composition component in cooperation with a reasonner performs the

comparison by measuring the similarity. A standard similarity measurement algorithm

is applied to compare the RDFS triples. In case the service parameter descriptions refer

to different ontologies, in addition, ontology mapping information has to be

considered.

Syntactic matching

In case a parameter matching on the semantic level has been identified, the matching

on the syntactic level has to be ensured. The syntactic similarity check compares the

110

syntactic service description files (e.g. the XSDs and WSDLs) comprising the data

types of the service parameters. In case of different data types a transformation

mechanism is triggered. This transformation mechanism uses the information provided

by the semantic matching. Besides the data type mapping, the values and the value

meanings have to be in line. For example, the country Germany might be coded as

“Germany” or as “GER” depending on the context. Hence, the transformation

mechanism has to consider a value mapping as well, again using the information

provided by the semantic matching.

The execution engine performs the syntactic mapping, e.g. through the copy/assign

mechanism in WS-BPEL combined with XPath (W3C, 1999) and XQuery (W3C,

2010) processes. Hereby, the XML data of one service is passed to the other service. If

the automatic mapping is not possible the process editor provides a tool for the manual

mapping. Another option is to dynamically create XSLT scripts for the transformation.

The work described by Lecue et al. (Lecue et al., 2008) is referred for further details of

this approach.

Connectors supporting more complex data manipulations

The LPMS and hence, the LPML provides a list of operators supporting more complex

data manipulations. In the following, only input and output based data manipulations

are considered. A SPARQL-based mechanism to manipulate both RDF data types and

values required (as inputs) and provided (as outputs) by services is provided. To this

end, the Connector element is responsible for the data mapping between services. The

following specifications are provided by the latter element:

- Merge takes an arbitrary number of input parameters and composes them to an

output parameter.

- The Split receives an input parameter and produces two or more identical output

parameters.

- The Count operator counts the number of inputs and outputs

- The Filter operator might be used to include or exclude items from an input.

Therefore some SPARQL rules might be created on top of the language to compare

inputs to values the end-user specifies.

- The Reduction operator returns a specified number of items from the top of the input

and hence limits the number of items in the output. Also a random item might be

selected.

111

- The Sort operator sorts an input by any item element, such as title or description.

Items might be sorted in either ascending or descending order.

- The Loop operator introduces the idea of sub-data processing. Any other operators

could be inserted inside the Loop operator. Any input is provided to the Loop operator,

the sub-data processing is run once for each item in the input.

- In case the data required by the end-user is deeply placed in the description, such as

nested inputs, the Sub-Description operator might be used to extract and select some

sub-descriptions from the input.

- The Sub-Description operator is the reverse of the Aggregation operator that

aggregates descriptions of an input into a more general input.

Each connection (operator, service) has the following optional attributes regarding the

data passing: Rounding-up, rounding-down, truncating. These attributes are required

for cases when the data provided and consumed is not of the same data type. Hence, a

process of rounding-up, rounding-down, or truncating might be required in some

cases.

Connector generation and integration

All described operators are considered as semantic and syntactic mapping elements in

the LPML. The data they manipulate are propagated through the user and the tools for

enhancing the abstract process model.

Ideally, the generation of the connectors is automatically performed by the

composition component of the LPMS. Based on the information of the semantic

annotations of the parameters and the semantic mapping, the connector type might be

determined. In case the connector cannot completely be generated automatically, the

user interacts through a wizard implemented in the process editor of the LPMS to

support the connector generation.

112

More experienced users might select and integrate the connectors themselves. Thus,

from the user perspective, the aforementioned list of connectors is available through a

toolbox in the process editor (such as in Yahoo!Pipes
17

). Besides simply drawing

connections from outputs of services to inputs of subsequent services, the user might

optionally specify the kind of connection between the services through the connectors.

This proceeding is in line with other Mashup editors, stating that the output is sent to

this input. In that way, the user could easily drag and drop the appropriate connectors

and then link them to the services to be included in the final composition. All these

connections are stored through the LPML description of the composition.

Alternatively, in case the user requires more specific or advanced data manipulation

within the process, the process editor provides a functionality for dragging and

dropping an appropriate, external built-in service in order to achieve the required

specific data manipulation. The built-in services are included as Activities. For any

connector a semantic data mapping component checks the semantic consistency of

data connections through reasoning based on the data type ontology. In case the

mapping is either semantically or syntactically not feasible, the process editor is called

by the composition component. The process editor then interacts with the user in order

to fix the mapping issues.

The composition component supports 1-to-1 connectors, namely exact and plug-in

matching. Further, subsumption and intersection matching are supported that imply

merging or aggregating connectors. These merging strategies however, are not part of

this thesis.

The connectors created by the composition component might optionally be visualized

in the graphical process model. If the connector cannot be created automatically, the

human modellers will be able to interact with the process editor to complete the

connector specification.

17
 http://pipes.yahoo.com/pipes/

113

Table 26 summarizes the elements for the data flow handling. All elements for the data

flow handling refer to a context file.

Table 26: Elements for the data flow handling

Element Related elements Attributes / Literals

Connector Parent: ProcessElement IDName,
URISemanticMapping,

URISyntacticMapping,

URIListInputParameters,

URIListOutputParameters,

TruncatingElement,

connectorType,

controlFlowConnector

Association: Activity,

Parameter,

ConnectorTypeEnumeration

Chlidren: Merge, Split, Loop,

Filter, SubDescription, Sort,
Count, Reduction,

Aggregation

ConnectorTypeE

numeration

Association: Connector Exact, PlugIn, Subsume,

Intersection, Disjoint,

Abduction

Merge Parent: Connector

Split Parent: Connector

Loop Parent: Connector NumberOfLoop

Sub Description Parent: Connector ExtractionRule,

URIListExtractedConcept

Filter Parent: Connector Rules, Any, All

Sort Parent: Connector URISortingConcept,

AscendingSorting,

DescendingSorting

Count Parent: Connector NumberOfElements

Reduction Parent: Connector NumberOfElements

Aggregation Parent: Connector URIListAggregatedConcept

4.8 CONCLUSION

In this section, the design principles for LPM, the LPM metamodel, and the

representation of the LPM metamodel in two LPML formats have been presented. The

principles aim at supporting the business user in modelling and executing processes. In

the following, the main aspects of the principles and their impact on the LPM

metamodel are summarized:

114

- Abstraction: The abstraction concept aims at keeping the business user free from

execution details. In the context of LPM, two abstraction layers for the LPML are

defined. While the abstract graphical layer is dedicated to the business user, the

canonical format targets at the machine-communication and serves as ground layer.

Both layers use the same metamodel of the LPML.

- Semantic annotations: In order to bridge the gap between business specifications and

execution details and to support the provisioning of execution-related information for

processes and services, semantic annotations are attached to processes and its

elements. These semantic annotations are more intuitively understandable for business

users and allow for the definition of requirements rather than specifying concrete

execution information. In the context of LPM, the semantic annotations will provide

information about discovery, composition, and execution of processes and services.

- Context-awareness: In order to flexibly and dynamically adjust processes to the

environment, context information is integrated into process models. The context -

awareness allows for late binding, processes might be adapted based on context

information, or process structures or the naming of elements might be proposed based

on the context. The Context-awareness for LPM means that any artefact of the process

model is linked to a specific context.

- Reuse through patterns and templates: Patterns and templates might accelerate the

designing of process models, reduce their modelling time, foster reuse of processes

and its parts, and improve the modelling quality by simply being instantiated or

customized. For LPM, patterns and templates are used to avoid modelling from scratch

by browsing a repository to retrieve patterns and templates, to refine activities with

patterns or templates, and to complete processes according to patterns and templates.

- Goals as abstract service definitions: Instead of implementation-oriented service

descriptions, goals state the users’ perspective, abstract from the implementation,

specify a kind of service category, and express the user’s needs in terms of desired

outputs or environment changes. For LPM, goals are used as unbound activities that

are bound to a particular service either later at design time or at runtime by a discovery

engine and composition tools.

- Data flow support: Besides the support for modelling the control-flow, LPM

supports the modelling of passing information between activities, the data flow. To

support the data flow modelling, a list of connectors is introduced to model and

execute data manipulation. The user might easily integrate the connectors in the

process model in order to specify a service mapping. The connectors have to consider

both semantic and syntactic mapping of the data.

115

In order to keep LPM light, event handling is not explicitly supported. For LPM,

events are subsumed to activities in the LPML.

The LPML implements the LPM design principles as follows:

- Abstraction layer: The abstraction layer comprises the elements Process,

ProcessElement, Activity, Flow, and Gateway. These elements are directly

manipulated by the user and might be visualized through graphical symbols.

- Semantic annotations: Semantic annotations support the automated discovery,

selection, binding, composition, and execution of services. They are based on an

ontology and might be attached to any process element including the process itself. A

reasoner resolves the semantic annotations. For some process elements, such as

Process, Activity, Gateway, Flow and Parameter, the annotations are mandatory. The

user has to provide these annotations comprising information about functional

classification, non-functional properties, preconditions, postconditions, metadata,

conditions, requirements, constraints, selection criteria, replacement condition, and

contextual information.

- Context-awareness: The context defines the environment a process artefact is used

in. The LPMS uses context information to discover, select, bind, and compose services

through the automated fulfilment of properties through context information, to align

and adjust the naming of activities through references to ontology-based business

entities, and to adjust the process structure through the context references of the

process elements.

- Patterns and templates: The support for patterns and templates is achieved through

indicating the affiliation of process elements to patterns and templates.

- Activity instantiation: The activities in the abstract process model have to be

instantiated by a goal and by a service for the process execution. Through the

separation of the activity description and the instantiation, binding might be done at

various stages. The LPML further provides elements for defining service selection

criteria and replacement conditions.

- Data flow connectors: The data flow connectors perform a data mapping both on

syntactic and semantic level. The more complex data manipulations are covered by

special connectors, such as merge, split, filter, or count connectors.

Design rules for the modelling of graphical LPML processes have further been

presented.

The LPML does not cover elements for specific execution aspects, such as error or

compensation handling. These aspects are not relevant for the design of the language.

116

However, it has to be ensured that the execution engine implements those aspects

based on the LPML metamodel.

According to the design science, the design of an artefact might be specified

iteratively. Following this approach, the presented design principles might as well be

implemented iteratively in LPM. Starting point should be to implement the handling of

semantic annotations for goals and the activity instantiation. The next step for the

implementation of LPM should be to implement the support for data flow. Following,

semantic annotations for context information should be defined. Afterwards, the

handling of patterns and templates should be implemented. The benefit of applying

patterns and templates to process models increases with the amount of available

patterns and templates in a repository.

After the definition of the design principles, the LPM metamodel, and the two LPML

layers, the following section describes how an executable process model is generated

through interactions of the user and supporting tools. Therefore, a design process is

specified that describes the proceeding to model and enhance executable processes.

This design process implements a program to generate executable processes. Further,

tooling functionalities that support the user in modelling executable processes are

described in detail.

117

5 THE LIGHTWEIGHT PROCESS MODELLING SOLUTION

LPM aims at enabling business users to model and execute processes. In the previous

section, the design principles for LPM, the LPM metamodel, and the implementation

of the LPM metamodel in two LPML layers have been introduced. The design

principles comprise abstraction, semantic annotations, context-awareness, reuse

through patterns and templates, goals, and data flow support.

In this section, the LPMS is presented as a prototypical implementation architecture

for LPM. Hence, it is described, how the user is supported in providing necessary

information and how the tools for LPM implement the modelling functionality and

enhancement steps. This is performed in order to create an executable process

specification out of the graphical process model and to eventually execute the process

with respect to flexibility and adaptability. The various enhancement steps follow a

well-defined design process. This section starts with the definition of the design

process in section 5.1. The design process is a program to generate executable

processes differentiating actions the user has to perform and actions that are

automatically performed by the tools.

Further, the tools for LPM are covered in section 5.2. As aforementioned, both the

language and the tools comprise elements and functionalities to implement the LPM

metamodel as discussed in the previous section. Section 5.2.1 addresses how the

LPML is made available to the tools through an API. The following sections introduce

the special LPM functionalities in the process editor (section 5.2.2), the composition

component (section 5.2.3), and the execution engine (section 5.2.4).

In the context of the design science, this section describes the second part of the design

of an artefact, the development.

5.1 DESIGN PROCESS FOR CREATING EXECUTABLE PROCESS MODELS

In this section, the design process for creating an executable process model out of the

graphical LPML model is introduced. This process specifies a program to transform

the graphical process model into the canonical format, to enhance the canonical format

by execution details, and transform this canonical model into an extended form of

BPEL that is a currently executable language. A special focus is on the support for the

users to provide the necessary information.

118

Figure 20: Process modelling and compilation

Figure 20 depicts this design process that is described in the following subsections

5.1.1 to 5.1.6. In the figure, the activities are assigned to roles that can be software

components or the user. Further, the activities are differentiated according to their

definition in this thesis or in the context of the SOA4All project. The blue boxes

symbolize tasks defined in this thesis. The grey boxes reference tasks performed by

technologies and components defined in the SOA4All project. Figure 21 visualizes

how the design process is mapped to the approach described in Figure 4 in section 3.3.

Service

Repository

Semantic Discovery

Engine

Composition Component

(supported by a

reasonner)

Process EditorUser (through Process

Editor)

Graphical Process

Modelling

Compilation of graphical

model (activities,

gateways, data flow),

partly ontology-based
Ontology-based

functionalities:

• Formulate search

queries for

goals/services

• Adapt to context
Search for services

(ontology-based)

Return services to

Process Editor
Bind services to

activities

Defined in

the thesis at

hand

Defined in

the SOA4All

Project

Canonical model

Provide

Service

Descriptions

Activity Gateway

Create connectors

Ontology-based data

functionalities:

• Identify mismatches

• Check semantic

matching

Compose services

119

Figure 21: How the design process is derived from the approach as presented in

Figure 4

The design process is in general performed in six steps that are described in the

following.

5.1.1 Step 1 – Process Modelling

The first step is performed by the user. Firstly, he specifies with graphical elements in

a process editor an abstract process model. Afterwards, the semantic information is

1a) User creates an abstract

process model

2) Compilation of graphical

process model and semantic

information

3) Semantic-based search

for services to instantiate

activities

1b) Provide semantic

information for activity and

process annotation

4) Bind services to activities

5) Compose services and

generate data flow

Process

Modelling

Process Model

Enhancement

Service Binding &

Process Execution

Service

6) Translate final model into

executable language

Conversation SelectGoodsConversation = new ConversationImpl();

Goal SelectGoodsGoal = new GoalImpl();

Service SelectGoodsService = new ServiceImpl();

SelectGoodsService.setServiceReference();

SelectGoodsConversation.addService(SelectGoodsService);

Activity SelectGoods = new ActivityImpl();

SelectGoods.setName("Select goods");

SelectGoods.setOperation();

SelectGoods.setStartElement(false);

SelectGoods.setEndElement(false);

SelectGoods.setConversation(SelectGoodsConversation);

SelectGoods.setHumanTask(false);

process.addProcessElement(SelectGoods);

// Input/Output

Parameter SelectGoodsParameter = new ParameterImpl();

SemanticAnnotation SelectGoodsAnnotation = new SemanticAnnotationImpl();

SelectGoodsAnnotation.setReferenceURI(targetNamespaceURIPrefix +

"SelectGoodsParameter");

/SelectGoodsAnnotation.setType(AnnotationType.Precondition);

SelectGoodsParameter.addSemanticAnnotation(SelectGoodsAnnotation);

SelectGoods.addOutputParameter(SelectGoodsParameter);

6

5
4

3

2

1

120

provided for the process, activities, gateways, and the data flow. The tasks to be

performed by the user are depicted in Figure 23 and explained in the following.

Figure 22: Activity modelling and service binding

An important part of designing a process model in the context of LPM and hence,

creating an executable process model, is the specification of the activities. Figure 22

visualizes an activity-focused view on the LPM design process. Those steps are

extracted that are necessary to model activities and to bind services to those activities.

The specification of the data flow to compose those services is described in section

5.1.5.

The process model comprises a start element, an end element, activities, and the

connections between those elements. The graphical LPM representation, as described

in section 4.2.2.2, covers the information that is provided by the user's process model

in the process editor (see step 1 in Figure 21). Further, the activities contain a name

and semantic annotations about the functionality. These semantic annotations are

formulating requirements and constraints, and hence comprise information, such as the

functional classification, requirements, constraints, non-functional properties, or

metadata (see again step 1 in Figure 21). A wizard supports the user in providing and

structuring the needed semantic descriptions. Ideally, the tools then automatically

enhance and execute the process model without any more user interaction.

Service

Repository

Semantic Discovery

Engine

Composition ComponentProcess EditorUser (through Process

Editor)

Graphical Process

Modelling

Compilation of

graphical model, partly

ontology-based

Formulate search

queries for goals and

services (supported by

a reasonner), based on

an ontology Search for services

(ontology-based)

Return services to

Process Editor

Bind services to

activities

Defined in

the thesis at

hand

Defined in

the SOA4All

Project
Canonical process

model

Provide

Service

Descriptions

Activity Activity

121

Figure 23: Process modelling performed by the user

In the Process Editor, the user is guided to specify as well the semantic annotations.

He therefore adds a new semantic annotation specifying the following aspects:

- The annotation type by selecting the type from a predefined list (e.g. functional

classification, precondition etc.)

- The annotation expression, such as

o Select by goods ID (for functional classification)

o Select goods by barcode (for functional classification)

o Specify goods amount (for functional classification)

o A goods ID or a barcode has to exist

o The desired amount has to be known

- Assignment of the used expression terms to predefined ontological concepts

Figure 24 depicts the proceeding to specify the semantic annotations. In case the used

terms cannot be assigned to existing ontological concepts, the user has to request an

extension of the ontology or select another ontology.

First step

Graphical process modelling (according to LPML design rules

and with the well-defined LPML symbols).

The user specifies:

• Start and end symbols

• Named activities including

• Requirements (for functional classification,

preconditions, postconditions, non-functional

properties)

• Constraints (for functional classification,

preconditions, postconditions, non-functional

properties)

• Metadata

• Flows

• Gateways incl. conditions

User (through Process

Editor)

Graphical Process

Modelling

3

3

2

1

1

2

2

2

122

Figure 24: Proceeding to specify semantic annotations in the Process Editor

Figure 25 depicts the gateway-focused view on the design process. Main tasks for the

gateway modelling and enhancement are the specification and compilation of the

conditions. The specification of conditions is similar to the specification of semantic

annotations for activities. The user is supported in defining the relevant variables and

the conditions for those variables. For example, the user might specify the relations

between variables or values, such as equal, bigger than, less than, string comparisons,

etc.

1) The user selects

the type of
annotation

2) The user types in the expression :

„Goods ID exists“
Goods ID is an attribute to Goods

Precondition

Goods ID exists

3) The user assigns the selected term to

an ontology. He therefore references the
goods ID to the attribute „goodsID“ of the
concept „goods“ in an existing ontology.

123

Figure 25: Gateway modelling in the LPM design process

5.1.2 Step 2 – Process Model Compilation and Semantic Annotations

The second step covers the compilation of the graphical process model and the

semantic annotations that are in line with service and goal annotations out of the

annotations provided by the user. The process editor implements a functionality to

perform this step (see step 2 Figure 21). The semantic annotations are generated for

the functional classification, non-functional properties, preconditions, postconditions,

conditions, selection criteria, replacement conditions, and metadata.

Furthermore, if the semantic annotations are given in XML notation, they will be lifted

to RDFS notation in order to be in line with ontology languages. If this step 2 cannot

be performed completely automatically, the user will be requested to provide missing

information through a wizard.

Figure 26 depicts the code of the canonical model in Java notation that is automatically

generated out of the graphical process model.

Process EditorUser (through Process

Editor)

Graphical Process

Modelling

Formulate Conditions

for Gateways

Defined in

the thesis at

hand

Defined in

the SOA4All

Project

Canonical process

model

Compilation of

conditions

Gateway Gateway

124

Figure 26: Automatically generated according code of the canonical process

model for the graphical process model

Figure 27 visualizes the code in WSML notation that is generated for the semantic

annotation, stored in a separate file, and referenced by the canonical process model.

According code of the canonical process model in Java

notation:
// ---- Select goods: Activity bound to a conversation
Conversation SelectGoodsConversation = new ConversationImpl();

Goal SelectGoodsGoal = new GoalImpl();
Service SelectGoodsService = new ServiceImpl();

SelectGoodsService.setServiceReference();

SelectGoodsConversation.addService(SelectGoodsService);
Activity SelectGoods = new ActivityImpl();

SelectGoods.setName("Select goods");
SelectGoods.setOperation();

SelectGoods.setStartElement(false);

SelectGoods.setEndElement(false);
SelectGoods.setSynchronous(true);

SelectGoods.setConversation(SelectGoodsConversation);
SelectGoods.setHumanTask(false);

process.addProcessElement(SelectGoods);

// Input/Output

Parameter SelectGoodsParameter = new ParameterImpl();
SemanticAnnotation SelectGoodsAnnotation = new

SemanticAnnotationImpl();

SelectGoodsAnnotation.setReferenceURI(targetNamespaceURIPrefi
x + "SelectGoodsParameter"); // ReferenceURI links the place of the

semantic annotation
SelectGoodsAnnotation.setType(AnnotationType.Precondition);

SelectGoodsParameter.addSemanticAnnotation(SelectGoodsAnnota

tion);
SelectGoods.addOutputParameter(SelectGoodsParameter);

According code of the canonical process model in Java

notation:
// Check card exclusive fork gateway
ExclusiveGateway checkCardforkGateway = new

ExclusiveGatewayImpl();
checkCardforkGateway.setSplit(true);

checkCardforkGateway.setCondition(checkCardforkConditionAnnot

ation); // This condition is formulated in terms of a semantic
annotation

process.addProcessElement(checkCardforkGateway);

// Check card fork gateway flows

Flow checkCardforkOutgoingFlow1 = new
FlowImpl(checkCardforkGateway, Checkout);

Flow checkCardforkOutgoingFlow2 = new
FlowImpl(checkCardforkGateway, Withdraw);

checkCardforkOutgoingFlow1.setCondition(checkCardforkOutgoing

Flow1Condition);
checkCardforkOutgoingFlow2.setCondition(checkCardforkOutgoing

Flow2Condition);
process.addProcessElement(checkCardforkOutgoingFlow1);

process.addProcessElement(checkCardforkOutgoingFlow2);

125

Figure 27: Automatically generated according code for the semantic annotation

5.1.3 Step 3 – Semantic-based Service Search

The third step is dedicated to find a set of appropriate services to instantiate the

activities. The discovery of services might be based on syntactic information, on

semantic information, or on both. The discovery on semantic level uses the description

of the attached goal found in a separate previous step or the semantic activity

annotations in case no goal has been attached.

In order to map a goal to an activity, this goal has to be discovered that meets best the

semantic annotations provided for the activity. Therefore, the semantic activity

annotations are transformed into queries, such as SPARQL queries, that might be

executed by a discovery engine. Since a goal is an artefact on semantic annotation

level, the queries have to be formulated as well for the semantic level. Based on these

queries, the goal discovery engine automatically searches for an existing goal. Hereby,

the queries are mapped to the semantic goal annotations. The goal instantiation is

referred to as step 3 in Figure 21.

To retrieve appropriate services, again, queries have to be created. Either the query

created for the goal retrieval is used or the semantic goal description is translated into

a search query. If the goal description is represented in RDFS, it will be translated into

According code of the canonical process model in Java

notation:
// ---- Select goods: Activity bound to a conversation
Conversation SelectGoodsConversation = new ConversationImpl();

Goal SelectGoodsGoal = new GoalImpl();
Service SelectGoodsService = new ServiceImpl();

SelectGoodsService.setServiceReference();

SelectGoodsConversation.addService(SelectGoodsService);
Activity SelectGoods = new ActivityImpl();

SelectGoods.setName("Select goods");
SelectGoods.setOperation();

SelectGoods.setStartElement(false);

SelectGoods.setEndElement(false);
SelectGoods.setSynchronous(true);

SelectGoods.setConversation(SelectGoodsConversation);
SelectGoods.setHumanTask(false);

process.addProcessElement(SelectGoods);

// Input/Output

Parameter SelectGoodsParameter = new ParameterImpl();
SemanticAnnotation SelectGoodsAnnotation = new

SemanticAnnotationImpl();

SelectGoodsAnnotation.setReferenceURI(targetNamespaceURIPrefi
x + "SelectGoodsParameter"); // ReferenceURI links the place of the

semantic annotation
SelectGoodsAnnotation.setType(AnnotationType.Precondition);

SelectGoodsParameter.addSemanticAnnotation(SelectGoodsAnnota

tion);
SelectGoods.addOutputParameter(SelectGoodsParameter);

According code of the canonical process model in Java

notation:
// Check card exclusive fork gateway
ExclusiveGateway checkCardforkGateway = new

ExclusiveGatewayImpl();
checkCardforkGateway.setSplit(true);

checkCardforkGateway.setCondition(checkCardforkConditionAnnot

ation); // This condition is formulated in terms of a semantic
annotation

process.addProcessElement(checkCardforkGateway);

// Check card fork gateway flows

Flow checkCardforkOutgoingFlow1 = new
FlowImpl(checkCardforkGateway, Checkout);

Flow checkCardforkOutgoingFlow2 = new
FlowImpl(checkCardforkGateway, Withdraw);

checkCardforkOutgoingFlow1.setCondition(checkCardforkOutgoing

Flow1Condition);
checkCardforkOutgoingFlow2.setCondition(checkCardforkOutgoing

Flow2Condition);
process.addProcessElement(checkCardforkOutgoingFlow1);

process.addProcessElement(checkCardforkOutgoingFlow2);

Referenced semantic annotation for the activity precondition. The

semantic annotation is given in WSML notation:

tns:SelectGoodsPrecondition a wsl:Condition;

rdf:value """

(?GoodsID[SelectGoods:GoodsID wsml:hasValue ?GoodsID]

wsml:memberOf LPMOntology:Goods and

?Amount[LPMOntology:Amount wsml:hasValue ?Amount] wsml:memberOf

LPMOntology:Amount)

or

(?ProductBarcode[LPMOntology:Barcode wsml:hasValue ?Barcode]

wsml:memberOf LPMOntology:Barcode

and

?Amount[LPMOntology:Amount wsml:hasValue ?Amount] wsml:memberOf

LPMOntology:Amount)

wsml:AxiomLiteral

126

a SPARQL search query. A service discovery engine executes the queries and returns

a set of fitting services. These services fulfil the basic requirements concerning

functional classification, preconditions, postconditions, and hence input and output

data.

Besides the service discovery on semantic level, the syntactic information – if existing

- might be used. Therefore, the information about the syntactic service description is

transformed into syntactic query statements, such as XQuery statements. These

statements are used by the discovery engine to find fitting syntactic service

descriptions, such as WSDL or REST interface descriptions. For documentation

purposes, the syntactic descriptions might be lifted on a semantic description level.

For each found service the Service element is instantiated that contains the reference of

the service URI. This is represented by step 4 in Figure 21.

5.1.4 Step 4 - Service Binding

The fifth step is now performed through an interaction of the composition component

and the execution engine. These two components select at runtime the best-fitting

service out of the created service list. The selection is mostly based on preferences

described in the non-functional properties. The execution engine might finally

compose the process with respect to adaptations in reaction to various kinds of

changes. Hereby, the execution engine applies the SelectionCriteria and the

ReplacementCondition defined at design time. The service selection is represented by

step 5 in Figure 21.

5.1.5 Step 5 – Service Composition and Data Flow Generation

As previously described, a prerequisite for service composition in the context of the

LPMS is that these services are semantically annotated. These semantic annotations

have to be checked in order to figure out the compatibility of two services that are

connected through the data flow in a process.

127

Figure 28: Data flow modelling

Figure 28 visualizes the metamodel view on the data flow modelling procedure. The

view starts with the binding of services to activities. Afterwards, the matching has to

be checked, data flow connectors have to be generated if required, and the connectors

have to be bound to the data flow. A reasoner (as described in section 3.4.2) supports

the data matching.

A data flow matching has to be ensured for the following artefacts:

- Parameters: The output variables of the preceding activity have to match the input

variables of the following activity in case of a data flow connection.

- Preconditions and postconditions: The Postconditions of the preceding activity

mustn’t contradict the preconditions of the following activity.

- Non-functional properties: Since the non-functional properties impact the selection

criteria for services and the replacement conditions, they mustn’t contradict each other.

The compatibility of these characteristics is checked by a reasoner. The reasoner

creates queries, again for example SPARQL queries, out of the annotations of the

connected services. The queries are used to check the characteristics of each connected

service. Then, the results of these queries are analysed and a matching value is

returned. If one of the characteristics doesn’t match, the further proceeding will be

different. If the parameters do not match, a transformation mechanism will be

triggered as described in detail in the data flow section 4.7. If the preconditions,

ReasonnerComposition ComponentProcess Editor

Ontology-based

functionalities:

• Identify mismatches

• Check semantic matching

• Adapt to context Ontology-based

reasonning on semantic

matching and mismatches

Create connectors

Bind connectors to

data flow

Defined in

the thesis at

hand

Defined in

the SOA4All

Project

Canonical process

model

Bind services to

activities

128

postconditions, or non-functional parameters do not match, it will be figured out

whether other services fit better. Therefore, another service out of the service set

discovered by step 3 is selected and again, the matching checked. The service

composition is depicted as step 6 in Figure 21.

In addition, the execution engine encapsulates the executable process model in a

service interface that is published in the process repository.

An instantiation of parts of the design process with concrete technologies is presented

in Krummenacher et al. (Krummenacher, Domingue, Pedrinaci, & Simperl, 2010). The

authors introduce the Minimal Service Model (MSM) in order to have a common

service model for WSDL-described services and REST services. This MSM serves as

a common model for service descriptions. Another approach is the so called Service

Template (ST) according to (Lampert & Pedrinaci, 2010). Like goals, the STs

represent the user’s perspective, express requirements rather than concrete

specifications, and form the basis for semantic discovery.

In their work, Krummenacher et al. propose to map the activity or goal annotations of

the LPML process model to the properties of the service templates. Afterwards ,

SPARQL queries are derived from the RDF-based service templates representing the

user’s perspective. The SPARQL queries are then executed against semantic service

descriptions in a service repository. Since these descriptions represent the service

perspective, they are based on the MSM.

5.1.6 Step 6 - Transformation into a currently executable language

The eventual execution of the processes represented through the LPML is performed

by an execution engine. Either an engine might be created executing directly the

LPML models or the LPML models might be transformed into a standard executable

process language, such as BPEL, and executed on an existing engine. In order not to

reinvent the wheel concerning workflow execution, the LPMS relies on existing

workflow execution engines and modifies these according to its purposes. Hence, the

129

LPML models have to be transformed into the language the execution engine is

capable to execute.

In this thesis, the transformation into an executable language is not described in detail.

As aforementioned, a wide-spread common language for executable process models is

BPEL. Hence, in order to use an existing process execution engine, the LPML is

transformed into BPEL. Within the SOA4All project, an approach has been developed

using the Intermediate Model (IM) project
18

 that is part of the Eclipse SOA Tools

Platform Project
19

. A transformation from the IM to BPEL had already been defined

that has been reused and adjusted for the LPMS. A detailed description of the

transformation from the LPML to the IM can be found in Ripa et al. (Ripa, De

Giorgio, Gorronogoitia, Mos, & Ravoajanahary, 2010). A description of the specific

LPM features of an execution engine is described in section 5.2.4.

5.2 MODELLING AND EXECUTING LPML PROCESSES

In this section is described, how the tools of the LPMS implement the modelling

functionality and enhancement steps. This is performed in order to create an

executable process specification out of the abstract process model and to eventually

execute the process with respect to flexibility and adaptability. Thus, the section 5.2.1

addresses how the LPML is made available to the tools through an API. The following

sections introduce the special LPMS functionalities in the process editor (section

5.2.2), the composition component (section 5.2.3), and the execution engine (section

5.2.4).

5.2.1 Tooling Interface

On the programmatic perspective, the LPMS including the LPML needs to be

managed by an Application Programming Interface (API) that abstracts and hides the

complexity of the LPML elements and their concrete serialization formats to the

18
 See www.eclipse.org/stp/im

19
 See www.eclipse.org/stp

130

programmer. This API is used by the LPMS components whenever LPML code needs

to be exchanged. The API supports the LPML code serialization into an extended form

of WS-BPEL that is usable by the execution engine but may also be used by third

party tools as it is backwards compliant to RDF. RDF might provide a full semantic

representation of the LPML. While the WS-BPEL serialization is obviously limited in

terms of LPML-specific features, the RDF version covers all details and contains

semantic annotations. The library might also be used to convert the various

serializations by simply loading an LPML model and serializing it again. The API is

kept generic in order to allow for the implementation of additional serialization

approaches.

5.2.2 Process Editor

In this section, the process editor as part of the LPMS is described. Those features are

focused that are specific to the implementation of the user support and to the LPML.

Since the LPML is a new language, an according new process editor is needed for the

LPMS.

The concept of LPM for the tooling perspective means easy deployment,

implementation, and execution of processes. The user interface doesn’t require high

installation effort. This is based on the fact that users are looking for models that

enrich existing internet applications. These models should allow for combining the

media-rich power of traditional desktop applications with the deployment and content-

rich nature of web applications (Allaire, 2002). Hence, the LPMS relies on the

principles of a Rich Internet Application (RIA) in order to be easily usable. An

overview of RIAs addressing BPM can be found in Le Clair and Teubner (Le Clair &

Teubner, 2007). Allaire (Allaire, 2002) describes the characteristics of RIAs. The

business value of RIAs is covered by Geelan (Geelan, 2008) and Driver and Rogowski

(Driver & Rogowski, 2007). Potential implementations of RIAs are described by

Adobe (Adobe, 2008) and by Schmelzer (Schmelzer, 2006).

According to the RIA principles, the process editor comprises two components, one on

the client side and one on the server side. On the client side, the process editor is

available through a standard internet browser. This requires a minimal installation

effort for the user. The client part comprises all major process editing functionality. It

allows for creating process models in an interactive way.

The server side is implemented as a set of services to be invoked by the client. Hereby,

additional information is requested from the server.

131

In the following, the new process editor functionalities related to LPM and hence, the

LPMS are listed.

- A new process editor for the new LPML: Figure 29 depicts the drawing area on the

right hand side, where LPML models can be created.

- Implementation of abstraction layers: The process editor visualizes the graphical

abstraction layer to the user. In the backend, the process model is stored in the

canonical format as described in section 4.2.2.1. Thus, the editor is based on its own

data model that is converted to and from the LPML. The process editor data model

comprises additional information about the graphical layout of the process model, such

as the position of a process element.

- Drag-and-drop functionality: Various artefacts, such as favourite activities or other

modelling elements, might be added to the process model through drag-and-drop

functionality. This increases usability of the process editor.

- Support for gateway handling: On the graphical abstraction layer (as described in

section 4.2.2.2) no symbols for gateways exist. Rather, a start element might have

multiple outgoing flows, an end element multiple incoming flows, and an activity

multiple incoming and outgoing flows. If the user draws multiple outgoing or

incoming flows, a wizard will pop up supporting the user in specifying the gateway

type and potential conditions. Through this wizard the user might select a function

from a predefined set in order to create conditions. These functions represent

requirements or constraints on properties defining the value or value range for input or

output parameters provided by the services. Furthermore, the wizard supports the user

in creating valid conditional expressions that might be evaluated at runtime by the

execution engine. Valid conditional expressions comprise valid parameters besides the

valid functions.

- Context-awareness: As described in section 4.4, the process structure might depend

on the context. Furthermore, activity naming and service binding might as well depend

on the context. The process editor supports gathering, applying, and visualizing

contextual information.

- Data area: Besides the drawing area, a data area supports the user in providing

semantic annotations and context information. Figure 29 visualizes the data area on the

left hand side.

- Wizards: By default, the process editor implements wizards to recommend patterns

and templates, to provide information for semantic annotations, for the gateway

specification, and for the modelling of sound process models. For example, if the user

splits the flow this wizard will make sure that a corresponding merge is added.

132

Furthermore, a wizard-creation mechanism is implemented supporting users in

creating customized wizards.

- Different modelling modes depending on the user expertise: The process editor

implements different support levels. For non-experienced users a guided modelling

mode might be selected. This modelling mode comprises wizards for every modelling

step. More experienced users might select a free modelling mode having the wizards

disabled.

- Favourite lists: In order to support the user in reusing artefacts, favourite lists for

services, activities, patterns, and templates are implemented.

- Support for data flow: A special support is dedicated to model the data flow. By

default, the data flow is not visualized on the graphical abstraction layer. However, the

user might set control flow connections as data flow connections and add connectors

through a drag-and-drop functionality. The connectors are implemented by the

composition component that uses the input and output data of the subsequent services.

Furthermore, a wizard is implemented supporting the user in specifying the connectors

in case these cannot be created automatically. In both cases, the connectors are

visualized in the process editor. The process editor interacts with the execution engine

in order to perform a manual data mapping in case the automatic mapping is not

feasible.

- Pattern and template recommendation: The process editor implements a pattern and

template recommender service that calculates at design time the similarity of the

modelled process to patterns and templates stored in a repository. As described in

section 4.5, the recommendations are given for activity refinements and for process

completion. Besides the interaction with the process editor, the recommender service

interacts with the composition component. The components exchange data about the

actually modelled process, the process after modification through the recommender

service, the calculated recommendation quality, information about the applied pattern

or template, and the recommendation type. In addition, a recommendation viewer

within the process editor visualizes the potential changes of the process model

performed by the recommender service.

133

Figure 29: Data area and drawing area of the SOA4All process editor

An implementation of a prototype of the process editor is performed in the context of

the SOA4All project. Detailed information can be found in the documentation of Task

2.6 of SOA4All
20

 (Pavlov et al., 2010). Figure 29 is as well a snapshot of this

SOA4All process editor.

5.2.3 Composition Component

The composition component is a central part of the LPMS in order to enhance the

abstract process models by information that makes the processes executable. The

purpose of this thesis is to introduce the main functionality that enables LPM and

hence, supports the business user through backend functionality.

Main features

The composition component enables the flexible and dynamic creation, instantiation,

and adaptation of processes at design time. Thus, the composition component supports

the entire life-cycle of service orchestration from high-level activity specification in

terms of process models to discovery and binding of services. In the context of the

LPMS, this means binding goals and services to activities, binding services to goals,

20
 See www.SOA4All.eu

Main menu

Toolbar

Drawing area

Data area

Diagram editor

134

resolving activities to process patterns and templates, checking and supporting the

matching of activities and services on semantic and syntactic layer, and creating data

flow connectors.

The composition component tightly interacts with the process editor, a reasonner

resolving semantic annotations, a discovery engine, and the execution engine. It serves

as a mediator between these components.

Resolution of semantic annotations through interaction with a reasoner

As introduced in section 3.4.2, the main feature of the interaction with the reasoner is

the resolution of the semantic annotations. The resolution of the semantic annotations

is needed for binding goals and services to activities and for composing services in

terms of data flow mappings. For the LPMS, RDFS representations are proposed for

process and activity descriptions, process fragment descriptions, and context

information. WSML-based annotations are proposed for axioms and logical

expressions that can’t be expressed through RDFS, such as conditions.

Besides the resolution of semantic annotations, support for querying is needed. Again,

various query formats might be supported, such as WSML or SPARQL queries.

The resolution of semantic annotations, and hence the service binding and the data

flow mapping, is implemented as a parametric design process. The parametric design

process is described in the work of Mittal and Frayman (Mittal & Frayman, 1989),

MacCallum and Yu (MacCallum & Yu, 1996), and Wielinga et al. (B. J. Wielinga,

Akkermans, & Schreiber, 1995). Parametric design is a refinement of configuration

design (Motta, 1999; B. Wielinga & Schreiber, 1997). In the configuration design, a

set of predefined components is selected and combined until a set of requirements and

constraints is satisfied. Parametric design assumes a set of functional solution

templates and parameters. Hence, the selection and composition is guided and the

space of possible designs is restricted.

Basically, parametric design comprises two phases, namely analysis and synthesis.

The analysis phase gathers the needed information for the later synthesis and

represents this information in a formal way. An ontology of structuring the design

might be found in the work of Motta (Motta, 1999). The analysis is conducted

iteratively refining the design stepwise. In the context of the LPMS, the information is

already well structured in terms of process models, the according elements, and the

semantic annotations.

135

The synthesis phase might be seen as a search in a space of potential solutions

(Chandrasekaran, 1990). Starting from an initializing design, multiple intermediate

designs are navigated through in various ways in order to reach a final solution. The

transitions between the intermediate designs are triggered by applying design operators

or transition agents.

The composition component transforms the input data of the LPML process models

into a parametric design problem. As aforementioned, Motta describes an approach to

structure a parametric design problem.

In order to make the abstract LPML models executable, various tasks have to be

performed by the composition component. In the following Table 27, these

enhancement tasks, the according parameters, and the value ranges are listed. For all

tasks, the non-functional properties and context information influence the preferences,

constraints, and requirements as described in the theoretic parametric design approach

by Motta (Motta, 1999).

Table 27: Enhancement tasks for the LPMS as parametric design

Enhancement task Parameter Values, Value Range

Binding goals and

services to activities

Goal binding, service

binding

Activity name, functional

classification, preconditions,

postconditions, input and output

parameters, selection criteria,

contextual information

Binding services to

goals (according to

(Pedrinaci et al.,

2010))

Service binding Goal in terms of semantic

annotations: functional

classification, preconditions,

postconditions, input and output

parameter, selection criteria,
contextual information

Resolving activities to

process patterns and

templates

Activities as process

fragment

Activity name, functional

classification, preconditions,

postconditions, input and output

parameter, contextual information

Match services on

syntactic and semantic

layer

Service matching Service descriptions: preconditions,

postconditions, input and output

parameters

Dynamically create

data flow connectors

Connector type,

connector

instantiation,

transformation script,

Service descriptions: Input and

output parameters

136

mapping file

In this thesis, the focus is on the design principles of LPM and the according LPMS.

Thus, a detailed specification of the composition component is not provided. The work

performed in the SOA4All project is referred for a detailed description of the

composition component (González-Cabero, Lecue, & Villa, 2008; Gorronogoitia,

Radzimski, Lecue, Villa, & Di Matteo, 2010).

5.2.4 Execution Engine

Main features

This thesis describes only those aspects of the execution engine that are specific to

LPM. Although these features are not new as such, the new thing of the LPMS is the

support through semantic annotations. A detailed specification of the execution engine

can be found in the documentation of the SOA4All project in Ripa et al. (Ripa et al.,

2010; Ripa, Zuccala, & Mos, 2009).

- Handling of semantic information for process execution : Basically, an execution

engine for the LPMS requires the representation of the control logic, such as an LPML

model, and means for service selection and adaptation at runtime. As aforementioned,

the control logic might be represented through LPML or through other executable

process representations, such as BPEL. The information required for service selection

and adaptation at runtime is given in terms of semantic annotations. Hence, the LPMS

execution engine comprises a component for syntactic process execution and a

component for reading and applying the semantic information for service selection and

adaptation.

- Runtime adaptation and dynamic binding . Traditional process execution systems

suppose that service interfaces are known at design time. However, in order to suppor t

dynamic selection and binding and due to a lack of standardization of service-oriented

systems, systems should be able to handle services the interfaces of which are only

137

known at runtime (see (Cavallaro & Nitto, 2008) and the European Integrated Project

SeCSE
21

). Hence, services have to be composed dynamically and heterogeneous

interfaces have to be mapped at runtime, e.g. interfaces of WSDL and RESTful

services. Semantic annotations of the service interfaces support this dynamic mapping.

These semantic annotations might be used to automatically create mappings and

according transformation scripts during execution of the process at runtime. In order to

create the scripts, a complete understanding of the semantics of the involved service

parameters and operations is needed. Thus, the semantic annotations have to use a

common knowledge base. Furthermore, a lifting or lowering mapping schema might

be needed. This applies to cases where syntactic descriptions have to be lifted to

semantic information in order to create a mapping on the semantic level. As well, a

lowering schema might be required in order to perform a mapping on the syntactic

layer based on semantic information.

- Dynamic replacement of services: To support self-healing functionality, the LPML

has introduced the element ReplacementCondition. Besides the dynamic selection and

mapping of services, the LPMS supports as well the dynamic replacement of services.

The ReplacementCondition element indicates the conditions and preferences to replace

a service.

- Handle user preferences and context: The LPMS considers context information and

supports the user in expressing preferences for the selection of appropriate services.

While the semantic annotation ContextualInformation states the context information,

the SelectionCriteria element indicates these preferences stated as non-functional

properties. Hence, the execution engine considers the expressions of

ContextualInformation and SelectionCriteria to dynamically select and bind services.

Current technologies for process execution

As aforementioned, the execution engine has to handle various kinds of services and

according descriptions and compose them seamlessly. Currently, REST and

21
 See www.secse-project.eu

138

WSDL/SOAP services are wide-spread standards for services. The interfaces of REST

services are described by hRESTS, the WSDL/SOAP services through WSDL. In

order to integrate semantic annotations in hRESTS descriptions, MicroWSMO has

been defined (Kopecky et al., 2009). MicroWSMO defines annotations for hRESTS as

SAWSDL does for WSDL.

A detailed description of a prototypical execution engine for the LPMS can be found

in the documentation of the project SOA4All (Ripa et al., 2010; Ripa et al., 2009).

5.3 CONCLUSION

In this section, the LPM design process and the prototypical tools supporting LPM

have been presented. These artefacts form the LPMS as an implementation

architecture for LPM.

- Design Process in section 5.1: This design process starts with the process modelling

performed by the business user. The further steps comprise the generation of semantic

annotations, the mapping of goals to activities, the service discovery, the service

selection, and the service composition. The result of this design process is the

executable process.

- API in section 5.2.1: The API manages the exchange of LPML code. This API

abstracts and hides the complexities of the LPML elements and their concrete

serialization formats to the programmer. In the context of the LPMS, the API supports

serialization into an extended form of BPEL but may also be used by 3rd party tools.

- Process Editor in section 5.2.2: The Process Editor is the user interface allowing for

the creation, manipulation, and execution of LPML models. It is implemented

according to the principles of RIAs. In order to implement the abstraction principle of

the LPMS, a drawing area and a data area are provided. The drawing area is dedicated

to the abstract, graphical LPML layer and implements modelling support functionality,

such as hiding gateways. The process editor supports gathering, applying, and

visualizing contextual information. Further, favourite lists and wizards are provided

supporting the user in modelling and providing information step by step. Depending

on the user expertise, different modelling support modes might be selected. The data

flow modelling is facilitated through support on the specification of data flow

connections and according connectors. Finally, a pattern and template

recommendation functionality is implemented.

- Composition Component in section 5.2.3: The composition component enables the

flexible and dynamic creation, instantiation, and adaptation of processes at design

139

time. In the context of the LPMS, this means binding goals and services to activities,

binding services to goals, resolving activities to process patterns and templates,

checking and supporting the matching of activities and services on semantic and

syntactic layer, and creating data flow connectors.

- Execution Engine in section 5.2.4: To execute the LPML processes a special

execution engine is needed. The LPMS leaves open whether to create an engine

executing directly the LPML models or to transform the LPML models into a standard

executable process language, such as BPEL, and to be executed on an existing engine.

The new functionalities for usage in the context of the LPMS comprise the handling of

execution-relevant, semantic information, the runtime adaptation and dynamic

binding, the dynamic replacement of services, and the handling of user preferences and

context.

In the context of the design science, this section 1 describes the second part of the

design of an artefact, the development. The iterative design approach proposed in

section 4.8 might be further refined according to the proposed artefacts of this section.

Again, the starting point should be to implement the handling of semantic annotations

for goals and the activity instantiation. Afterwards, the support for data flow should be

implemented. The semantic annotations for context information and the handling of

patterns and templates might be implemented with lower priority.

This section finalised the design of the artefact, the LPMS. The next section covers the

application of the LPMS in a use case. Hence, it is presented, how the LPMS might

add value to the public sector as a potential target industry.

141

6 LPM IN THE PUBLIC SECTOR

After the design and development phases, the design science defines the demonstration

of the use of the artefact to solve a problem (Peffers et al., 2008). In this thesis, the

demonstration phase involves a use case in the public sector. A process in the context

of the EU Services Directive has been selected in order to reveal the application of the

LPMS.

6.1 INTRODUCTION

Typical public administrations interact with citizens, businesses, and other

administrations in a plethora of administrative procedures (PICTURE, 2007). Existing

IT infrastructures however, often don’t support these procedures in an efficient and

effective way. Island solutions exist and services are still executed manually.

To adjust to changes in mandates and laws is a key success factor for administrations

while budgets get smaller. Modern IT technologies and approaches, such as SOA,

SWS, Web 2.0, and BPM as well as end-user empowerment, promise to support

administrations to cope with these challenges. In this thesis, sample scenarios and

specifics of the public sector are picked up. Thus, the thesis reveals, how the LPMS

based on these technologies might be used in the public sector.

6.1.1 The Public Sector as a Target Market for LPM

Any functioning society is dependent on services provided by public authorities.

Services in the area of public security, healthcare, education, or defence are provided

by the governmental organizations. Hence, a large number of customers and

significant IT budgets make the public sector very attractive for new software

solutions. However, like in the private sector, in the public sector as well, the need for

effective and efficient IT support increases. Costs have to be reduced.

The public sector comprises a huge amount of users that have to fulfil administrative

tasks in an efficient way. In Germany, for instance, the public sector is divided into

three main decision areas, namely the state, regions (federal states), and communit ies

(cities, towns, and municipalities). In the community area, about 25.000 public

administrations exist in 12.000 communal authorities (Habbel, 2008). The according

workforce of these administrations counts a number of 4.5 million people (Destatis,

2010). The customers of the public sector in Germany are 82 million citizens and 3.5

million enterprises (Habbel, 2008).

142

The public sector is characterized

- By a huge amount of users

- By the wide-spread existence of island solution

- By a majority of civil servants being typical business users

6.1.2 Current Situation in Typical Public Sector Organisations

Traditional applications in the public sector are based on heterogeneous technology

stacks, are often custom-built, and keep core processes or master data redundantly

(Vogel et al., 2009). Any information exchange between applications is often done

manually, has to overcome media breaks, or requires high effort to hard-wire any

connections. Due to the inflexible IT infrastructure and applications, the quality of

services provided to citizens is often low. Furthermore, services are often produced at

high costs. Difficulties in internally developing new or adjusting existing IT-based

services leads often to high costs and limited flexibility, especially in case of

requesting service development from external companies or consultants. As well,

small public administrations often do not have resources and know-how to develop

services. Moreover, projects exceeding a budget threshold have to apply a bidding

mechanism, again limiting the flexibility of software development and changes.

Improving business processes is ranked as the primary business objective for

governments in 2010 according to a Gartner CIO survey (Meehan, 2010) and a Gartner

Report (Bittinger & Di Maio, 2010; Meehan, 2010). Further, Bittinger and Di Maio

claim a shift to more collaborative work for process engineering and a shift from

function-centric to process-centric thinking.

Although the adoption of SOA in governmental organisations is commonly recognized

for a couple of years (Leganza, 2006) and seems to be on a good level, the progress is

slow. Common issues concern low reuse, shortcomings in enterprise architecture,

business processes, and SOA governance (Bittinger & Di Maio, 2010).

The application of the LPMS might significantly improve the adoption of BPM and

SOA and hence make governmental organisations more flexible and reduce IT costs.

Furthermore, through the empowerment of constituents, costly software sourcing from

external providers or consultants might be reduced.

The majority of civil servants have limited IT skills and no interest in becoming an IT

expert making the public sector a typical application area for the LPMS.

143

6.1.3 Potential Users in the Public Sector

In order to further motivate the application of the LPMS to the public sector, the

potential users are investigated in more detail. A study about a user-friendly tool for

process modelling has been conducted in the PICTURE project (PICTURE, 2007).

The respondents had been business users with limited IT knowledge. One of the core

results has been that 80% of the respondents evaluate the simplicity of a modelling

language as “important” or “very important” on a six point scale ranging from

“absolutely unimportant” to “very important”. Further findings of the study had been

the importance of an intuitive user interface of a modelling tool and the empowerment

of all users to model processes.

6.1.4 Need for Action

As aforementioned, the public sector use case serves as a demonstrator according to

the design science research methodology. The applicability of the LPMS in a real

setting is revealed by this use case. Therefore, user roles for the public sector are

defined. A concrete public sector process has been selected to reveal the application of

the LPMS. Further, specific extensions required in the public sector and their

implementation by the LPMS are presented.

6.2 THE LPMS IN THE PUBLIC SECTOR

In this section, a typical scenario including a sample process and according services of

the public sector is shown. The scenario is based on the EU Services Directive. In the

following, the scenario is introduced, the user roles are described, the typical context

information for the public sector is provided, and a typical process including services

and annotations are presented.

6.2.1 The EU Services Directive as public sector scenario

The EU Services Directive is an important initiative aiming at facilitating cross -border

settlement for service companies (Commission, 2006). For all member states of the

European Union the administrative procedures shall be harmonized and supported by

appropriate IT. According to the directive, “service providers should be able to

complete electronically and at a distance all procedures and formalities necessary to

provide a given service” (Commission, 2007). The implementation of these objectives

is performed through a so called single point of contact that handles all procedures to

fulfil the constituent’s needs. Hence, all kind of document and information exchange

should be handled electronically.

144

The LPMS might support the specification and implementation of new business tasks

and processes. Due to the implementation of the service directive in multiple countries

and in multiple scenarios with various variants and deviations, a flexible IT solution is

required, such as the LPMS. Furthermore, the administrations don’t have the time and

budget to source the new IT solutions from expensive external software providers. A

solution is required empowering the employees of the administrations that are mainly

business users to implement the tasks and processes themselves.

6.2.2 User Roles

The main target users of this public sector use case are civil servants with business

knowledge but without any programming skills. According to their job role, they are

not interested in gaining IT knowledge. The goal of the LPMS is to empower

constituents (citizens and businesses) to issue and monitor requests for public services

in a web portal. Further, civil servants should be enabled to search for, compose,

annotate, execute, monitor, and adjust public services and processes in order to reply

accordingly to the constituents’ requests.

Table 28: Roles in the public sector

Role Description

Process Modeller Produce processes

Process Expert Edit and refine existing processes

Process User Use and hence, execute processes

Legal Expert Check legal compliance

Reviewer Review processes, e.g. for compliance or security reasons

Approver Approve processes as a whole and activities

Table 28 lists the different roles in the public sector the users might take when

interacting with the LPMS. According to the target user definition in section 1.3, these

users have IT knowledge to an extent that allows for dealing with standard office,

desktop, and web applications. However, they lack specific programming or process

composition skills. An employee might take several roles according to his job tasks

and responsibilities.

145

6.2.3 Context Information

The context information that is important in the public sector might be differentiated

into profile and organisational context as follows:

- Profile context: User-ID, Name, Country, Region, City, Language, and preferred

method of payment

- Organizational context: Organization, organizational unit / department, user role /

position / rights, and user skills / competencies

6.2.4 Process Modelling

From the EU Services Directive scenario, the process “Registration of a business” has

been selected as a typical process in order to instantiate the LPMS. This process is

based on the process implemented by the city of Duesseldorf in Germany

(Duesseldorf, 2009). However, such a process might be found in multiple public

administrations. It describes the situation in which a service provider plans to open a

business in another country of the EU that he is not citizen in. Hence, he registers a

new business in the selected country.

Figure 30 shows this sample process in a BPMN notation. According to Smith (Smith,

2010), scenarios for end-user programming have typical characteristics, such as being

a human-centric application, having minimal system integration, having limited

organizational scope, being geographically localized to minimize network security

requirements, and not handling any critical data. The selection of the process

“Registration of a business” has considered these characteristics.

146

Figure 30: Sample process “register a new business”

Check
location

Check
lawfulness

Check
identity

Send
denial

Check
legal form

Check
operation
allowance

Archive

M
a
in

 c
h
e
c
k D
e
n
ia

l

Search for tax office
in charge &

notify tax office

Send confirmation

Create sales order
for service „reg…“

R
e
g

is
tr

a
ti
o

n

Archive

Pre-Check

failed
Pre-Check

successful

Registration of a

business

City of X

As-Is Situation

Receive form

F
ile

 C
a
s
e

Process Activity

based on

Service

Process start

Process end

Control flow

Process Activity

based on Human

Task

Find citizen
in CRM

Create citizen
in CRM

Read bank details
of citizen

Main Check

successful

Main Check

failed

P
re

-C
h
e
c
k

Create bank
details for citizen

Citizen not

in CRM
Citizen already

in CRM

Citizen‘s bank details

not available

Citizen bank details

available

147

Figure 31 depicts a sample part of the process “Registration of a business” in the

graphical abstraction notation of the LPML. Parts of the canonical LPML model of the

process “Registration of a business” are presented in the following. These parts are

based on the work performed in work package 7 of the SOA4All project. I have been

as well the author of the process model described in the following. The complete

process model can be found in Java notation in section 9.1.1. Table 29 depicts a

sample activity as described in section 4.2.2.1 in Java notation. The activity “Find

citizen in CRM” from the process “Registration of a business” has been selected. This

activity is performed by the administration officer after receiving a request to register a

new business. The purpose of the activity is to check whether the requesting citizen is

already registered in the administration’s CRM system.

The sample file shows the instantiation of the activity, the conversation element

preparing the binding of a goal and a service, the goal element, and the service

element. The activity attributes are set as well as the input and output parameter. An

important characteristic of the LPMS is the section about semantic annotations.

Besides the URI reference for any semantic annotation, the type is specified. The type

specification is performed semi-automatically. The user is supported in differentiating

functional and non-functional properties. For example, for the public sector, the

process editor might implement a wizard that provides a predefined set of functional

classes and non-functional requirements and constraints. The user might then easily

select a functional class and adjust it, if required. Furthermore, the non-functional

properties might easily be selected and specified. For example, the wizard for non-

functional properties provides the property “price”. In addition, the user might specify

a threshold price and whether he intends to have smaller or bigger prices. Like for the

Figure 31 : Sample part of the process "Registration of a business"

148

functional classification, another wizard supports the user in structuring preconditions

and postconditions.

Table 29: Activity "Find citizen in CRM"

Activity findCitizenInCRM = new ActivityImpl();

Conversation findCitizenInCRMConversation = new

ConversationImpl();

Goal findCitizenInCRMGoal = new GoalImpl();

Service findCitizenInCRMService = new ServiceImpl();

findCitizenInCRM.setName("Find Citizen in CRM");

findCitizenInCRM.setOperation();

findCitizenInCRM.setStartElement(false);

findCitizenInCRM.setEndElement(false);

findCitizenInCRM.setSynchronous(true);

findCitizenInCRM.setConversation(findCitizenInCRMConversat

ion);

findCitizenInCRM.setHumanTask(false);

process.addProcessElement(findCitizenInCRM);

Table 30 shows an example of the process gateway “Citizen in CRM exclusive fork

gateway” and Table 31 visualizes the sample flow element “Find citizen in CRM

flow”. Both examples are as well taken out of the process “Registration of a business”

and depicted in Java notation. The gateway describes a process split, hence the split

attribute is set to “true”. Furthermore, the gateway references the semantic annotation

for its condition. The condition is a logical expression and references a SPARQL

query that is evaluated at runtime.

Table 30: Citizen in CRM exclusive fork gateway

ExclusiveGateway citizenInCRMforkGateway = new

ExclusiveGatewayImpl();

citizenInCRMforkGateway.setSplit(true);

citizenInCRMforkGateway.setCondition(citizenInCRMforkCondi

tionAnnotation);

process.addProcessElement(citizenInCRMforkGateway);

Table 31 describes three flows. The first example describes a simple flow without any

condition. The second example covers a complex sample flow with conditions. The

gateway in the example has two outgoing flows. Each of the outgoing flow references

149

a condition. These conditions have to be evaluated in the context of the gateway

condition in order to decide which flow to follow.

Table 31: Find citizen in CRM flow

//Example for a simple sample flow

process.addProcessElement(new FlowImpl(findCitizenInCRM,

citizenInCRMforkGateway));

//Example for a complex sample flow

Flow citizenInCRMforkOutgoingFlow1 = new

FlowImpl(citizenInCRMforkGateway, citizenInCRMMerge);

Flow citizenInCRMforkOutgoingFlow2 = new

FlowImpl(citizenInCRMforkGateway, createCitizenInCRM);

citizenInCRMforkOutgoingFlow1.setCondition(citizenInCRMfor

kOutgoingFlow1Condition);

citizenInCRMforkOutgoingFlow2.setCondition(citizenInCRMfor

kOutgoingFlow2Condition);

process.addProcessElement(citizenInCRMforkOutgoingFlow1);

process.addProcessElement(citizenInCRMforkOutgoingFlow2);

6.2.5 Services and Annotations

A prerequisite for the service composition in the context of the LPMS is that potential

services are semantically described. Further, these annotations have to be based on a

common ontology or on ontologies that are related through a mapping specification.

Various ontologies have to be considered for the sample process “Registration of a

business”, such as a service ontology and a public sector ontology. These ontologies

might be further structured into a hierarchy of ontologies. The ontology specifications

and relations are described in detail in Vogel et al. (Vogel et al., 2010). An extract of

one of those ontologies is presented in the Annex in section 9.1.2. As aforementioned,

a complete specification of the ontologies related to the public sector can be found in

Vogel et al. (Vogel et al., 2010).

As an example of how an activity is annotated to find an appropriate service, the

activity “Find citizen in CRM” is selected. Besides the name for the activity, the user

has to specify requirements and constraints for the activity. These requirements and

constraints build the base for the ontological annotations. For the activity “Find citizen

in CRM” the following requirements and constraints could be typically provided:

- Requirement: Search for citizen (R1)

150

- Requirement: Search by Name/First name, Address (R2)

- Requirement: Search by ID (R3)

- Requirement: Name and first name or address exists (R4)

- Requirement: Return ID that is assigned to Name/First name (R5)

- Constraint: Search only in CRM system (C1)

- Constraint: Search only in public sector entries (C2)

- Constraint: No service fees (C3)

- Constraint: Only trusted services might be selected (C4)

- Constraint: Prefer service searching by name or address if existent (C5)

In the next step, these requirements and constraints have to be transformed into

semantic annotations for functional classification, non-functional properties,

preconditions, postconditions, and metadata. Ideally, this step is performed completely

automatically. In case the annotations cannot be generated automatically, the user is

supported in categorizing the requirements and constraints through a wizard. Table 32

reveals how the semantic annotations are derived from the requirements and

constraints given by the user.

Table 32: Deriving semantic annotations from requirements and constraints

Semantic annotation classification Requirement/Constraint

Functional classification R1, R2, R3, C1, C2

Non-functional properties C3, C4

Preconditions R4

Postconditions R5

Selection Criteria R3, C5

Replacement Condition R3

Metadata None

151

Table 33 shows the description of the precondition of the activity “Find citizen in

CRM” in N3
22

 notation. This description is based on the work performed in Vogel et

al. (Vogel et al., 2010). The expressions are generated by the process editor, based on

WSMO-Lite and the WSML namespace, and reference an ontology named

LPMOntology. The precondition requests the existence of a name and a first name, an

address, or an ID. A couple of further existing ontologies had been presented in section

3.4.2.

For the postconditions the declaration code looks similar to the code of the

preconditions.

Table 33: Description of the activity precondition in RDF based on WSMO-Lite

tns:ActivityFindCitizenInCRMPrecondition a wsl:Condition;

rdf:value """

(?Name[FindCitizenInCRM:FirstLineName wsml:hasValue

?firstLineName] wsml:memberOf LPMOntology:Name and

?Name[LPMOntology:SecondLineName wsml:hasValue

?secondLineName] wsml:memberOf LPMOntology:Name)

or

(?PhysicalAddress[LPMOntology:CountryCode wsml:hasValue

?countryCode] wsml:memberOf LPMOntology:PhysicalAddress

or

?PhysicalAddress[LPMOntology:RegionCode wsml:hasValue

?regionCode] wsml:memberOf LPMOntology:PhysicalAddress

or

?PhysicalAddress[LPMOntology:StreetPostalCode

wsml:hasValue ?streetPostalCode] wsml:memberOf

LPMOntology:PhysicalAddress or

?PhysicalAddress[LPMOntology:CityName wsml:hasValue

?cityName] wsml:memberOf LPMOntology:PhysicalAddress or

?PhysicalAddress[LPMOntology:POBoxID wsml:hasValue

?pOBoxID] wsml:memberOf LPMOntology:PhysicalAddress or

?PhysicalAddress[LPMOntology:StreetName wsml:hasValue

22
 N3 is a RDF syntax. For details see http://www.w3.org/DesignIssues/Notation3.html

152

?streetName] wsml:memberOf LPMOntology:PhysicalAddress

or

?PhysicalAddress[LPMOntology:HouseID wsml:hasValue

?houseID] wsml:memberOf LPMOntology:PhysicalAddress)

or

(?ID [FindCitizenInCRM:PersonID wsml:hasValue

?PersonID] wsml:memberOf LPMOntology:ID)

wsml:AxiomLiteral

The functional classification might be described ontologically – as well in N3 notation

- as depicted in Table 34. Again, this example is based on the work described in Vogel

et al. (Vogel et al., 2010). Here, the namespace “lpmfc” stands for “lightweight

process modelling functional classification”. The functional classifications are

categorized into three high-level classifications, the operational, designation, and

extensible classifications. The latter is a general dimensional construct allowing for

extending the set of dimensions by domain-specific dimensions. For each of the high-

level categories further dimensions might be defined. In the sample file in Table 34,

the dimension “search” is defined for the operational classification, the dimensions

“CRM” and “Public Sector” for the designation classification, and “NameSearch”,

“AddressSearch”, and “IDSearch” are defined for the extensible classification.

Furthermore, a detailed description of the relevant ontological dimensions can be

found in the Annex in section 9.1.2.

Table 34: Functional classification of the sample activity "Find citizen in CRM"

lpmfc:hasBusinessDomainOperationalClassification

lpmfc:BusinessDomainFunctionalClassificationSearch;

lpmfc:hasBusinessDomainDesignationClassification

lpmfc:BusinessDomainFunctionalClassificationCRM;

lpmfc:hasBusinessDomainDesignationClassification

lpmfc:BusinessDomainFunctionalClassificationPublicSector;

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:BusinessDomainServiceGoalAssistBusinessRegistrationN

ameSearch

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:BusinessDomainServiceGoalAssistBusinessRegistrationA

ddressSearch

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:BusinessDomainServiceGoalAssistBusinessRegistrationI

153

DSearch;

In order to precise the service search, a goal is instantiated in an intermediate step. The

goal concentrates on the basic functionality and the postcondition of an activity. In the

example above in Table 34, the functional classifications “search”, “CRM”, and

“public sector” are used to search for a goal. The extension classifications

“NameSearch”, “AddressSearch”, and “IDSearch” are refinements of the classification

and used at a later stage in order to bind appropriate services to the goal.

For the further annotations, such as non-functional properties and metadata, the

annotation mechanism is similar.

The ontological activity description might now be used to formulate a query in order to

discover a goal. In the current example, the goal is to find a citizen in the CRM

system. The according SPARQL query that is fed into a discovery engine is described

in Table 35, again based on the work described in (Vogel et al., 2010).

Table 35: Simple query for goal discovery based on functional classification

SELECT ?goal ?goalOntologyConceptRefURI

?goalDeploymentURI

WHERE {

 ?goal rdf:type lpm:Goal ;

 lpm:hasFunctionalClassification

?functionalClassification .

 ?goal rdf:type lpmgoal:Goal;

 rdfs:isDefinedBy ?goalDeploymentURI .

 ?functionalClassification rdf:type

lpmfc:BusinessDomainFunctionalClassification ;

 lpmfc:hasBusinessDomainOperationalClassification

lpmfci:BusinessDomainFunctionalClassificationSearch ;

 lpmfc:hasBusinessDomainDesignationClassification

lpmfci:BusinessDomainFunctionalClassificationCRM ;

 lpmfc:hasBusinessDomainDesignationClassification

lpmfci:BusinessDomainFunctionalClassificationPublicSector

;

}

154

The discovery engine returns the goal “FindCitizenInCRMGoal”. The goals have a

more detailed, predefined structure than the activities. Hence, service discovery

queries might be derived through a standard generation script. Particularly, the input

and output parameter specification further supports the service discovery. Goals serve

as service classes and a kind of filter in order to select a set of services with the

required functional classification. The set of services attached to a goal is further

investigated in order to figure out the best fitting service based on preconditions,

postconditions, input and output parameters, and non-functional properties.

Based on the goal description, a more refined service search query might be

formulated. The refined SPARQL search query is listed in Table 36, again based on

(Vogel et al., 2010). As aforementioned, the search query is extended by functional

classifications for the search by name and first name, address, and ID. While the

functional classifications for the goal discovery are mandatory functionalities, the

extension functionalities for discovering services are optional. Hence, for example,

services might be found that fulfil the name search classification but not the ID search

classification.

Table 36: Refined query for service discovery based on goal description

SELECT ?service ?operation ?serviceOntologyConceptRefURI

?serviceDeploymentURI

WHERE {

 ?service rdf:type msm:Service ;

 msm:hasOperation ?operation ;

 sawsdl:modelReference ?serviceOntologyConceptRefURI ;

 msm:hasFunctionalClassification

?functionalClassification .

 ?service rdf:type wsl:Service ;

 rdfs:isDefinedBy ?serviceDeploymentURI .

 ?functionalClassification rdf:type

lpmfc:BusinessDomainFunctionalClassification ;

 lpmfc:hasBusinessDomainOperationalClassification

lpmfc:BusinessDomainFunctionalClassificationSearch ;

 lpmfc:hasBusinessDomainDesignationClassification

lpmfc:BusinessDomainFunctionalClassificationCRM ;

 lpmfc:hasBusinessDomainDesignationClassification

lpmfc:BusinessDomainFunctionalClassificationPublicSector ;

155

// This is the new part refining the search query by the

type of search

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:

BusinessDomainServiceGoalAssistBusinessRegistrationNameSea

rch ;

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:

BusinessDomainServiceGoalAssistBusinessRegistrationAddress

Search ;

lpmfc:hasBusinessDomainExtensibleFunctionalClassification

lpmfc:

BusinessDomainServiceGoalAssistBusinessRegistrationIDSearc

h .

// Here ends the refining functional classification

 ?operation msm:hasInputMessage ?input ;

 msm:hasOutputMessage ?output .

}

In the example “FindCitizenInCRM”, the service search returns two services, one

service searching for the citizen by name or address and the other service searching by

ID. As described in the selection criteria (see Constraint C5 above) , the service

searching for the citizen by name or address is preferred.

As aforementioned, a prerequisite of the functioning of the LPMS is the existence of

semantically described web services. For WSDL services, the file containing the

semantic annotations has to be referenced through the SAWSDL annotation

modelReference. For RESTful services the Micro-WSMO annotation modelReference

references the location of the file containing the semantic annotations. The two

potential services to find a citizen in a CRM system –

156

FindCitizenInCRMByNameOrAddress and FindCitizenInCRMByID – are described

by a WSDL interface including SAWSDL references and can be found in the

documentation of the SOA4All project
23

.

6.3 REQUIRED FUNCTIONALITIES TO PROCESSES AND SERVICES

In this section, required functionalities for the public sector are described that are not

yet covered by the general requirements described in section 3.2. Table 37 presents

those requirements and derives specific requirements for LPM and the LPMS. The

requirements are based on public sector scenarios, such as registering a new business

as described in Vogel et al. (Vogel et al., 2009).

Table 37: Public sector requirements to the LPM language and tools

Requirement

Category

Public Sector Requirement LPM Requirement

User

Management

Identification and Authentication:

Manage user access based on

profile and account data. Hence, a

username and a password are

required.

Provide a reference to a role

model where user data is stored.

The role model is implemented

according to a standard identity

and access management
specification.

Profile Management: Associate

essential information to each user

profile, such as ID, name, email,

and role

Authorization: Manage access
rights to resources according to

the user profile

Auditing: Provide a tracking of

user actions for accounting

23
 Taken out of the SOA4All project, see www.soa4all.eu. The services are SAP Enterprise Services, see

www.sap.com

http://www.soa4all.eu/

157

reasons

Preference Management: Provide

simple storage and retrieval of

user-based and/or application-

based settings. These settings

might be used to customize the
tools or to fill in context-

information into process models.

Approval Provide a special functionality to

approve modelled processes

concerning correctness, legal

aspects, compliance etc.

Provide information about

process approval. Process states

should include ready for

approval, approved, and rejected.

Versioning Allow for a special tracking of

versions and the according

editors.

Provide information about

process model version and the

editors

Human task

management

Allow for the marking of

activities as human tasks. Further,

notify the according user about a

required action

Provide information whether an

activity is a human task. Further

allow for notifying a user that

has to perform the task.

A proper user management is an important requirement to the public sector services

and processes. The user management is normally handled by Identity and Access

Management (IAM) solutions. A standard IAM solution is referred to in order to

implement the user management. However, the LPML has to be extended by a process

attribute referencing the user model.

6.4 LPML AND TOOL CUSTOMIZING

This section describes how the LPM language and tools implement the required

functionalities. Table 38 lists the requirements as defined in the previous section and

describes the according LPMS.

Table 38: LPM language and tools implementing the public sector requirements

Requirement

Category

LPM Requirement Implementation through the

LPMS

User

Management

Provide a reference to a role model

where user data is stored. The role

model is implemented according to

a standard IAM specification.

Attach semantic annotation of

type metadata to the process

element referencing the role

model URI

158

Approval Provide information about the

process approval state. State values

should include ready for approval,

approved, rejected.

Attach a semantic annotation of

type metadata for the approval

state to the process element.

The values representing the

states are ready for approval,

approved, and rejected

Versioning Provide information about the

process model version and the

editors

Add a semantic annotation of

type metadata for version and

editor

Human task

management

Provide information whether an

activity is a human task.

Attach an attribute

“HumanTask” of type boolean

to activities.

Provide information about the user

calling the human task server for a

callback mechanism

Attach an attribute of type ID

to activities indicating the

calling user

Allow for notifying a user that has

to perform the task.

Attach an attribute

“NotifiedUser” of type ID to

activities

6.5 BUSINESS ASPECTS

In this section, an exploitation option for the LPMS is presented. The LPMS might be

implemented as process delivery platform where users might provide and consume

services in terms of processes. The process delivery platform might be implemented

within an organization or across organizations. For the public sector, both scenarios

might be implemented.

Besides the LPM tools described in section 5.2, the process delivery platform

comprises a component for discovering services and processes, a repository, and an

execution infrastructure for scalable web service calls.

In this thesis, the potential roles and their according rights and duties in the context of

a process delivery platform are described in detail.

Table 39 presents these roles and the according description according to the

description in Vogel et al. (Vogel et al., 2009). Each of the roles has a different

motivation to use the LPMS serving as a process delivery platform.

159

Table 39: Roles Involved in the process delivery platform

Role Description

Service developer Designs and implements new services to be consumed through

processes.

Service and

process provider

Offers and supplies services and processes to consumers. The

services might be consumed by users or processes, the processes

by users or other processes. Both services and processes are

provided on the process delivery platform.

Service and
process broker

The service broker bundles existing services and processes to
new services and processes that are provided through the

process delivery platform.

Consultant Consultants support service providers and consumers

performing their tasks. For example, service providers are

supported in describing or categorizing their services or

defining price models. Service consumers might be supported in

composing services or processes according to their business

needs.

Service and

process composer

The service and process composer orchestrates existing services

and processes to new processes. In contrast to the mere bundling

of services and processes that are situated on a business level,

the service and process composer acts on both the business and

the technical level to develop new services and processes. The

composer either provides the new compositions himself or sells

them to service and process providers.

Service and

process annotator

The service and process annotator attaches semantic annotations

in terms of metadata to services or processes. The metadata

might describe technical and business information or

information about the roles and actors having a stake in the

service or process. For example, the metadata might comprise

information about the process composer, the services involved,

the versioning of the process, or the editing history.

Service and

process consumer

The service and process consumer demands and uses services

and processes. He searches for, selects, combines, and executes

services and processes.

Platform vendor The platform vendor designs and implements the components

and tools for the service and process delivery platform. The

vendor either performs the role of the platform provider himself

or sells the platform.

160

Platform provider The platform provider hosts the service and process delivery

platform.

6.6 CONCLUSION

This section addressed the application of the LPMS in a use case, namely the

application in the public sector. Typical public administrations interact with a high

amount of citizens, businesses, and other administrations in a plethora of

administrative procedures. Existing IT infrastructure however, doesn’t support these

procedures in an efficient and effective way since island solutions exist and services

are still executed manually.

Due to the inflexible IT infrastructure and applications, service costs are high and the

quality of services provided to citizens is often low. Difficulties in internally

developing or adjusting IT-based services arise. As well, small public administrations

often do not have resources and know-how to develop services.

The LPMS promises to contribute to the effective and efficient management of these

challenges. To customize the LPMS to the public sector, user roles have been defined.

These roles are differentiated according to their task duties and IT-skills and comprise

process modellers, process experts, process users, legal experts, reviewers, and

approvers. Further, context information has been defined covering aspects specific to

the public sector, such as the profile and organizational context.

A concrete public sector process for the registration of a new business in the context of

the EU Services Directive has been selected. Thanks to this sample process, this thesis

revealed, how activities, goals, services, gateways, semantic annotations, and flows are

represented in the LPML.

Further, specific extensions required in the public sector and their implementations

through the LPML and the tools have been presented. These extensions address the

user, approval, versioning, and human task management through the LPMS.

Finally, a process delivery platform as an exploitation option of the LPMS has been

presented.

The application to the public sector use case revealed that the LPMS adds value to a

business scenario. Further, the use case revealed that the LPMS might be extended

according to new, specific requirements. Hence, the application is not limited to

specific scenarios.

161

According to the design science phases, this section covers the demonstration of the

use of the artefact to solve a problem (Peffers et al., 2008).

The following section covers the evaluation of the LPMS based on well-defined

metrics. The evaluation again is a well-defined phase in the design science process

according to Peffers et al.

163

7 EVALUATION

The design science research methodology comprises the two major processes build

and evaluate (March & Smith, 1995). The evaluation is an observation and

measurement “how well an artefact supports a solution to the problem” (Peffers et al.,

2008). After describing the creation and use case demonstration of the artefact, in this

section, the evaluation of the design of the LPMS comprising the LPML and tools

follows. This proceeding is in line with the design science guideline “design

evaluation” as introduced in Hevner et al. (Hevner et al., 2004). The evaluation is

based on the requirements that are described in section 2 and the observed results of

using the LPMS in the use case described in section 1. As aforementioned, this thesis,

and hence the evaluation, focuses on the design of the LPMS. In addition, the

evaluation section describes, how the evaluation of the use of the LPMS should be

performed.

Basically, two categories of evaluation approaches exist: Analytical and empirical

evaluation (Fettke & Loos, 2003). While analytical approaches focus on logical

reasoning in terms of a descriptive evaluation, the empirical evaluation covers

objective observations, such as case studies, surveys, or experiments. Hevner et al.

(Hevner et al., 2004) further structure these two approaches into evaluation methods.

Table 40 reveals how these evaluation methods are applied to the LPM and LPMS

evaluation. The last column of Table 40 references the sections where the evaluation

method is applied.

Table 40: Evaluation methods in this thesis

Evaluation Method according to

(Hevner et al., 2004)

Application to this thesis Sections

applying the

method

Observational Case Study and

Field Study

In this thesis, a case study

applying the LPMS to the

public sector is presented.
Various aspects are evaluated

by this study.

7.3.1, 7.3.3 -

7.3.5

Analytical

Static analysis

(e.g. complexity)

Evaluation in terms of

completeness, expressiveness,

adaptability, extensibility

7.3.1 - 7.3.5

Architecture

analysis

Evaluation in terms of the fit to

SOA principles, fit to the

SOA4All architecture, and fit

7.3.1

164

to the internet and web serving

as an architecture for LPM

since services are available in

the web

Optimization Optimization is not yet subject

to the design of LPM and the
LPMS

Dynamic analysis

(e.g.

performance)

Evaluation in terms of runtime

behaviour and service

selection. The dynamic analysis

is not focused in this thesis and

depends on the LPMS

implementation and the user.

7.3.1

Experimental

Controlled

experiment

Evaluation through Workshops 7.3.1, 7.3.4,

7.3.5

Simulation Simulation is not applied in this

thesis.

Testing Not focused in this thesis, since

no special testing methods are

required.

Descriptive

Informed

argument

Evaluation in terms of literature

research. The arguments

provided in this thesis are

based on interviews, literature,

and surveys.

7.3.1 - 7.3.5

Scenarios No scenarios are constructed.

LPM is applied to the public

sector to demonstrate usability.

This section 1 starts with an introduction of the evaluation metrics, their

categorization, and structuring in section 7.1. Each metric category refers to a strategy

of technical, individual, organisational, or economic evaluation. In addition, for each

metric is specified whether the evaluation is performed based on literature and general

requirements or based on the public sector use-case.

Besides the static analysis, the evaluation is performed dynamically and observation-

based through surveys and modelling workshops. In this thesis, the dynamic

evaluation is focusing on the user behaviour to model and execute processes. The user

is the main part of the proposed software solution. Hence, the evaluation metrics for

the dynamic evaluation are defined with respect to the user interaction.

165

The proceeding for the empirical evaluation is described in section 7.2. The evaluation

itself is then covered by section 7.3. For each metric the evaluation means and the

result are presented. Besides the enablers of the LPMS, potential risks are discussed in

section 7.4. The conclusion in section 7.5 closes this section 1.

Table 41 presents an overview of the evaluation structure of this thesis. For each of the

evaluation strategies, the beneficiary perspective, the evaluation approach, and the

application area as described above are indicated.

Table 41: Overview of evaluation structuring

Evaluation strategies

T
e
c
h

n
ic

a
l

In
d

iv
id

u
a
l

O
rg

a
n

is
a
ti

o
n

a
l

E
c
o

n
o

m
ic

Beneficiaries Service Technology ●

Organisations ● ●

End-user ● ● ●

Evaluation approach Analytical ● ● ● ●

Empirical ● ● ●

Application area General ● ● ● ●

Public sector use case ● ● ●

7.1 EVALUATION METRICS

Table 42 presents the metrics for evaluating LPM and the LPMS. Like the

requirements, the metrics are grouped into technical, individual, organisational, and

economic metrics. However, this distinction is not always unambiguous, several

metrics fit to more than one category. The very left column indicates the metric. The

column in the middle describes the application of the design science evaluation

method of Table 40 to the metric. Finally, the right column describes the type of

evaluation. The type of evaluation is differentiated according to the evaluation based

on general requirements and literature as well as the public sector (PS) use-case-based

evaluation. How the metric is concretely measured in this thesis is described in section

7.3. In general, the metrics evaluate the envisaged improvement of interacting with a

166

BPM solution. Hence, the realization of the LPM design principles and the LPMS are

evaluated.

An international standard for the evaluation of software quality is the ISO/IEC 9126
24

.

In this thesis, functionality and usability are the main criteria from the proposed set of

characteristics. This is in line with the description of a new research paradigm and the

according prototype rather than the specification of a mature software product.

Table 42: Evaluation metrics for the LPMS

Metric Design Science

Type

Type of evaluation

Technical metrics

Consistent BPM stack Static analysis General analysis

Consistency of design process to create an

executable process model.

Static and

observational

analysis

General analysis

Handling of semantic annotations Static and

observational

analysis

General analysis, PS

use case

Integration of heterogeneous services Static analysis General analysis

Service selection, binding, replacement,

and adaptation at various stages

Static analysis General analysis

Individual metrics

Executable BPM functionality for

business users

Static analysis General analysis

Potential number of users without IT

knowledge

Static analysis PS use case

Usability, Simplicity, and Observational,

dynamic, and

General analysis, PS

24
 Detailed information about ISO/IEC 9126 can be found here:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749

167

understandability static analysis use case

Simple graphical symbols Static and

observational

analysis

General analysis, see

survey

Suitable abstraction views Static analysis General analysis

Easy information search Static analysis General analysis, PS

use case

Type of interaction (commercial,

prolonged, multiple, minimal)

Static and

dynamic analysis

PS use case

Hurdle of taking process ownership Observational and

dynamic analysis

PS use case

Organisational metrics

Potential number of users according to

task duties

Static analysis PS organizations and

processes

Community acceptance, suitability for

collaborative modelling

Static analysis General analysis

Economic metrics

Strategic importance (core strategic,

important, useful, contributing,

exploratory)

Observational and

dynamic analysis

PS use case

Generality and applicability to various

scenarios according to March and Smith

(March & Smith, 1995)

Static analysis General analysis, PS

use case

Degree of reuse as part of efficiency and

effectiveness according to March and
Smith (March & Smith, 1995)

Observational,

dynamic, and
static analysis

General analysis, PS

use case

Modelling time as part of efficiency and

effectiveness according to March and

Smith (March & Smith, 1995)

Observational and

dynamic analysis

PS use case processes

Needed expertise, training effort as part of
efficiency and effectiveness according to

March and Smith (March & Smith, 1995)

Observational and
dynamic analysis

PS use case

Utilization of existing infrastructure and

software assets (Palmer, 2009)

Static analysis General analysis

Use of internal development and support
resources and avoid high workload for IT

resources (Palmer, 2009)

Static analysis General analysis

Faster Time to market (Palmer, 2009) Static analysis General analysis

Lower initial application integration costs Static analysis General analysis

168

(Palmer, 2009)

For the evaluation of the LPML, special language evaluation categories are applied.

Table 43 covers the LPML evaluation. Hence, for each metric the metric categories,

the design science type, and the type of evaluation are presented. The design science

type follows the LPM evaluation as presented in Table 40. Again, the type of

evaluation covers the fact to be based on general requirements and literature or on the

use-case.

Table 43: Special evaluation metrics for the LPML

Metric

category

Metric Design Science

Type

Type of

evaluation

Correctness Syntactic and semantic

correctness

Static analysis General analysis

Uniqueness and

canonical, exchangeable

format

Static analysis General analysis

Coherency of abstraction

layers

Static analysis General analysis

Completeness

and

expressiveness

Ontological

completeness

Static analysis General analysis

Pattern-based

completeness

Static analysis General analysis

Use case scenario

coverage

Static analysis PS use case

Adaptability and

Extensibility

 Static analysis General analysis,

PS use case

7.2 PROCEEDING FOR EMPIRICAL EVALUATION

Besides the static evaluation, this section describes how the dynamic evaluation of the

LPMS is performed. According to the design science approach described by Hevner et

al. (Hevner et al., 2004), this section describes the setup of the experimental, dynamic

analysis. Both descriptive and analytic design, as described by Oppenheim

(Oppenheim, 1992), is applied to this thesis through a survey and experiments. While

the purpose of a descriptive design is to identify the amount of participants to be

169

assigned to various groups, the analytical design seeks to reveal explanations,

causalities, and relationships. The main means to perform an evaluation are surveys

and experiments. Best evaluation practice is a combination of both means in order to

use the results of the one to improve the other (Oppenheim, 1992). The reason behind

is on the one hand that an experiment is often unrepresentative, deals with artificial

situations, and fails to achieve an appropriate degree of precision and control. On the

other hand surveys provide a limited ability to control or manipulate variables and are

limited in proving causal relationships.

Mainly, two steps have been followed to perform the evaluation of this thesis: a focus

group evaluation and a comprehensive expert and business user evaluation. While the

focus group evaluation is targeting business users, as described in the previous section,

the expert and business user evaluation targets all kind of users.

- Focus group: In a focus group evaluation a special group of users is questioned

about their opinions on the research topic (Nielsen, 1993). Such a focus group

evaluation has been conducted during the EUD4Services Workshop held in

conjunction with AVI 2010 in Rome in May 2010. The workshop participants have

been researchers and end-users of various organisations. Before the discussion, a

couple of introductory slides have been presented
25

. The feedback the workshop

participants gave was generally positive. They liked the idea of having a process

modelling solution for business users. Further, they supported the idea of keeping

business users free from execution details.

- Experts and business users: Expert-based evaluation is often guided by heuristics for

usability evaluation. A reality-based, typical scenario that has to be performed by a

business user is given to the experts. The evaluation feedback should then comprise

comments about usability problems that might be assigned to the usability guidelines

described in the heuristics. The expert and business user evaluation is applied in a

broader sense in this thesis. Besides usability, various aspects are evaluated.

25
 The introductory slides shown in the workshop can be found here:

http://cslab.dico.unimi.it/EUD4Serv ices/slides/EUD4Serv ices -lombardi-demo.pdf.

http://cslab.dico.unimi.it/EUD4Services/slides/EUD4Services-lombardi-demo.pdf

170

For LPM, the expert and business user evaluation is not differentiated. In the following

is described how a survey and workshops gather feedback from expert and business

user evaluation target groups.

The aim of the survey set up for the expert and business user evaluation has been to

figure out the usefulness of end-user empowerment in the BPM area and what users

think about the main LPM ideas. A detailed description of the hypothesis is covered by

section 7.2.2. For each of the evaluation metrics defined in section 7.1, a variable is

defined that is statically analysed, questioned in the survey, or measured in a

workshop. However, before describing the survey, the setup of modelling workshops

is covered by the following section 7.2.1.

7.2.1 Workshops

The evaluation of some metrics is best performed by modelling workshops. In these

workshops, users have to conduct modelling experiments. The workshops should

include all three target groups as described in the previous section. However, the

workshops do not explicitly differentiate according to the target group. In the

workshops, the user profiles are tracked in order to allow for an analysis based on the

target user groups.

A typical workshop should include both the focus group evaluation and the expert and

business user evaluation. Since users without any previous knowledge participate in

the workshops, an introduction is needed. As introductory steps the workshop

participants should be asked about business user development of service-based

software in general. In terms of process modelling, information about ways to

dynamically compose services should be gathered. Besides control-flow modelling,

data-flow modelling as well as assisted modelling is proposed for LPM. Further,

experiments should be set-up in order to gather a possibly complete list of

requirements and feedback about early design stages. A workshop helps potential users

to learn about the LPMS and its benefits for dynamically composing processes.

General requirements for conducting workshops concern the amount and the profiles

of participants. A number of at least 12 participants that might be divided into groups

might fit very well the purposes. The participants’ profiles should match the target

group profiles.

A description of a sample workshop that has been conducted in the context of

SOA4All (see section 3.4.1) can be found in section 9.1.2. This workshop has been

conducted at an early stage of the LPMS. It has covered the general evaluation of

171

service composition approaches and the LPM approach. Besides the software usage,

the participants’ backgrounds, their requirements, and their ideas have been analysed.

Further, a couple of risks have been identified that are described in section 7.4.

The modelling experiments for the LPM evaluation are described in section 7.3 in the

context of the according evaluation metric.

7.2.2 Survey

The survey conducted in the context of this thesis had been designed for expert and

business users as described in section 1.3. The participants surveyed are expert and

business users from SAP, SAP Research, SAP customers in the public sector,

University of St. Gallen, City of Winterthur (Switzerland), City of Muenster

(Germany), and the SAP BPX Community. They all have to fulfil BPM-related tasks

in their work environment. The complete survey questionnaire can be found in the

Annex in section 9.3.

In order to brief the survey participants about LPM, an introductory video and a set of

slides has been provided on the start page of the survey. To check the participants’

understanding the first questions have been set around the video respectively the set of

slides. Afterwards, the main questions about the LPM design principles have been

asked. The results of the survey questions are presented in section 7.3 in the context of

the according evaluation metrics.

In order to figure out the target user group a potential respondent belongs to, the user

profile including modelling and IT experience has been surveyed as well. Hence, the

answers given in the survey could be related to the target user group as described in

section 1.3. Another option to assign users to one of the target groups is to let them

define the term “service” and then analyse the IT relation given in the answer.

As previously mentioned, the aim of the survey has been to figure out the usefulness of

end-user empowerment in the BPM area and what users think about the main LPM

ideas. In the following Table 45 the hypotheses for the survey are listed. In the right

column, the related research question (RQ) (see Table 44) is assigned to the

hypothesis.

Table 44: Research Questions (RQ) as stated in section 1.2

RQ1: How might business users be enabled to model executable processes in a
lightweight way?

RQ2: What are the design principles for artefacts supporting the business user in

process modelling and executing?

172

RQ3: How do artefacts, such as a language and tools for LPM, look like?

RQ4: How does the LPML reflect these design principles?

The survey only covers hypotheses for RQ1 and RQ2. Questions about RQ3 and RQ4

require a deep understanding of the subject area and hence would require a high effort

to brief the survey participants. Further, the respondents targeted are typically business

users that are by the definition of LPM not expected to have that deep understanding

of process modelling.

Table 45: Survey hypotheses

Hypothesis

Related

research

question

Business-user empowerment in the BPM area is useful for organisations. RQ1

LPM is applicable to various, heterogeneous business areas. RQ1

The user prefers to model processes without high training effort. RQ1

The user prefers to be kept free from execution details. RQ2

The user prefers a graphical abstraction model to a textual programming

model. The graphical abstraction comprises a minimal element set the

business user might understand.

RQ2

Providing semantic annotations to activities serving as service

categorization, rather than providing service specifications, is easier for

the user.

RQ2

Semantic annotations support the user in modelling data flow, facilitate

optimization through non-functional properties, and facilitate reuse.

RQ2

Context information supports the user in the modelling procedure. RQ2

The survey had been set up as an online survey. 21 participants answered all questions

and terminated the survey. Special questions have been answered by up to 35

participants. An introducing question about the respondents’ understanding of the

subject revealed a good understanding. The average value has been 3.97 on a 5-point

Likert scale as shown in

Table 46.

173

Table 46 : 5-point Likert scale as applied in this thesis

Value Meaning

1 Strongly disagree

2 Disagree

3 Undecided

4 Agree

5 Strongly agree

The main subject of education of the respondents has been Economy and Management

(31%), Computer Science (56%), and Information Management (13%). The according

main subjects of work have been Economy and Management (35%), Computer

Science (43%), and Information Management (22%). Concerning IT training, 30% of

the respondents had a self-taught training, 13% an introduction to office software, 17%

a significant IT training, and 74% an IT-related degree. The following Table 47 and

Table 48 indicate the software and BPM experience of the surveyed users for the entire

group of respondents and for business users.

Table 47: Software experience of surveyed users

Software Amount of users

experienced in

Amount of

business users

experienced in

Windows 100% 100%

Office software 96% 80%

Programming software (Visual Basic, Java,

C, C++, SQL, etc.)

78% 20%

Web applications (iGoogle, Facebook, etc.) 91% 100%

Mashups (Yahoo Pipes, etc.) 39% 20%

Service composition 43% 20%

174

Table 48: BPM experience of surveyed users

Software Amount of users

experienced in

Amount of

business users

experienced in

Petri nets 43% 0%

UML activity diagrams 83% 20%

BPMN 78% 60%

WS-BPEL 35% 0%

YAWL 9% 0%

Flow charts 70% 60%

EPC 26% 0%

The respondents have been aged between 20-30 (55%), 30-39 (32%), 40-49 (9%), and

>59 (4%). Their main professions have been student (14%), researcher (55%), and

non-researcher employee (27%).

Table 49 : Favourite modelling languages or tools of respondents

Modelling language

or tool

Percentage of respondents

feeling the language or tool

highly usable

Percentage of respondents

expecting a high training

effort

All users Business users All users Business

users

Flow charts in Office

Software, e.g. in MS

Power Point

52% 80% 4% 0%

Flow charts in MS

Visio

35% 40% 17% 0%

EPC and ARIS 17% 20% 22% 20%

BPMN 43% 60% 35% 20%

WS-BPEL 17% Not applicable 30% Not

applicable

BPM Suite (e.g. SAP

NetWeaver, IBM

Rational, etc.)

22% 20% 22% 20%

175

Table 49 reveals the survey respondents’ experience in handling existing modelling

languages and tools. Since no responding business user used WS-BPEL, no results

might be shown for the evaluation of WS-BPEL by business users.

Especially the evaluation of BPMN is interesting for this thesis. 20% of business users

heard about it and used it. The business user respondents feel it highly usable (60%),

don’t think that high training effort is required (20%), and none of them faces

difficulties. In contrast, only 45% of IT-experts feel BPMN highly usable and 45%

think that the language requires a high training effort. The interpretation of the

differences is that business users see BPMN as a graphical modelling tool that is easy

to use. However, the IT people see BPMN as a graphical modelling tool that has to be

enhanced by execution information. Since this requires much more effort, the IT

people feel BPMN less usable and expect more training effort to use the language

effectively and efficiently.

As well, none of the business users heard about and used BPEL and YAWL that are

executable languages. Again, this shows that business users don’t think at process

execution when modelling processes.

The survey further questioned the use of Eclipse-based modelling tools. However,

none of the respondents used one of those tools. Unfortunately none of them used

Lombardi Blueprint either that claims as well being a tool for lightweight process

modelling.

A detailed report of the survey results and an assignment to the evaluation metrics is

given in the sections 7.3 and 7.5.

7.3 LPM EVALUATION RESULTS

After having introduced the evaluation metrics, the target users, and the evaluation

proceeding, this section covers the evaluation results. The section starts with the

evaluation of the LPM approach to compose services. Afterwards, the evaluation of

the LPMS is addressed in terms of correctness, completeness, and expressiveness,

adaptability and extensibility, and usability.

As described in Table 42 and Table 43, a couple of metrics are measured by

observational analysis. The observation of these metrics is performed in workshops as

described in section 7.2.1. In the following, the experiments that have to be conducted

in these modelling workshops are presented. These experiments serve for evaluating

certain aspects of the LPMS and the LPML. The experiments haven’t been conducted

176

yet, since this thesis focuses on the design of LPM. Furthermore, at the time when this

thesis has been written, no integrated prototype has existed that could have been used

in experiments. In the context of the project SOA4All these experiments will be

conducted as soon as an integrated prototype will exist.

For those metrics that are evaluated through the survey, the 5-point Likert scale as

presented in Table 46 is applied.

7.3.1 LPM Approach to Compose Services

Here, the results of the general evaluation of the LPM approach to compose services

are presented. The evaluation metrics presented in section 7.1 are measured by

evaluation means that are described in this section 7.3.1. Further, the results of the

measurements are described. For those evaluation metrics that should be analysed

dynamically the evaluation is based on the survey and the public sector use case. If a

use-case-based evaluation is not feasible for a certain metric, a static analysis will be

performed. The feedback given by the focus group of the EUD4Services Workshop

(see section 7.2) is integrated into the result descriptions of the evaluation metrics if

applicable.

Table 50 covers the evaluation of the technical metrics as described in section 7.1. All

technical metrics are analysed statically through reasoning on literature and the LPM

approach objectives. The consistency of the LPMS should be analysed based on a use

case as well. For example, the public sector processes and services might be analysed

in order to figure out the average user interaction or automated execution.

Table 50: Evaluation of technical metrics

Metric Evaluation Means Result

Consistent BPM

language stack

Static: Analysis of the LPML

metamodel

Through the use of a common

metamodel, the abstract and

the canonical layer are in line.

Consistency of

the design

process and the

tooling support

In order to guarantee the

consistency of the design process

to make the process model

executable, a static analysis of the

metamodel is applied.

Survey: Question about

understanding of shown scenario

and underlying design process.

Static analysis:

The shared canonical process

model guarantees

consistency.

The transformation of the

LPML model into an

executable process language

uses all information stored in

the LPML models.

177

The LPML and tools are

strongly aligned and built

with respect to each other.

Survey:

The question about the

understanding of the shown

scenario and the underlying

design process results in an

average value of 3.97

revealing that the design

process is consistent.

Handling of

semantic

annotations

Static: Describe the handling of

the semantic annotations by the

LPMS.

Workshop experiment: Let users

provide semantic annotations.

Check whether these annotations

might be used by the tools for

service search and composition.

Static analysis:

The LPML provides elements

for semantic annotations of

various types. The LPM tools

either process the semantic

annotations themselves or

interact with additional tools,

such as reasonners.

Focus group: Semantic
annotations are a valuable

approach to specify services.

Integration of

heterogeneous

services

Static: Describe service interface

handling through tools

Static analysis:

The LPMS works with an

abstraction of services that is

independent of the service

implementation technology.

Currently, the handling of

WSDL, REST, and

semantically described
services is allowed.

Service selection,

binding,

replacement, and

adaptation at

various stages

Static: Describe abstraction

concept

Static analysis:

The LPMS allows for

optional service specification

and binding through

favourites from the process

editor, manual search, goal

and activity descriptions to be

instantiated at runtime, and

the interaction of the
discovery engine and the

execution engine at runtime.

The evaluation of the individual metrics is covered by Table 51.

178

Table 51: Evaluation of individual metrics

Evaluation Metric:

Executable BPM functionality for business users

Evaluation Means:

The evaluation of the executable BPM functionality has been performed through a

static comparison of the functionality of existing BPM tools in terms of modelling,
execution, service integration, and business-user focus. Furthermore, a focus group has

been asked about the BPM approach. Lastly, the survey conducted in the context of

this thesis shows valuable results as well.

Evaluation Result:

General analysis: A comparison of the LPMS to other BPM suites reveals various

benefits of using the LPMS. The LPMS might be used in an open environment and

allows for the integration of heterogeneous web services. Furthermore, the LPMS

targets the business users through providing an easily understandable process

modelling language and keeping the user free from execution details.

Focus group: The participants of the focus group agreed that the LPMS is a very useful

approach.

Survey results:

A question whether the LPMS is a real innovation revealed an average value of 3.66,

whether the solution would be potentially used for business tasks 3.45 (business users

2.80), whether in a non-business context 3.07 (business users 3.20), and whether

people would share services and processes an average value of 3.28, each on a 5-point

Likert scale (see Table 46). Furthermore, the question of whether business users would

benefit from the LPMS as a BPM solution revealed an average value of 3.78. Each

presented value is based on the 5-point Likert scale (see Table 46).

Evaluation Metric:

Potential number of users without IT knowledge

Evaluation Means:

The evaluation of the potential number of users without IT knowledge should be
performed through workshops. In these workshops an analysis of the used

functionalities in the process editor should be performed. By relating the used

functionalities to the respondent’s experience, the potential number of users might be

estimated. Further, the use of wizards should be analysed. Users using wizards will

potentially prefer from the LPMS.

Another workshop experiment to be performed is to analyse the process model quality

of users having joined different trainings and or having different experiences. During

the workshop experiment, those heterogeneous user groups should be asked to model a

given scenario from scratch. Based on the relation of the experience and the modelling

results, an analysis might be performed about how much expertise is required for

specific modelling procedure steps.

Evaluation Results:

179

The target users of the LPMS are business users. Hence, in order to identify potential

users, the survey questioned the BPM experience of the respondents. In particular, the

answers of the respondents with an economic background are of interest. The five

respondents with an economic background are experienced in – the number in brackets

indicate the amount of respondents - Petri Nets (0), UML Activity Diagrams (1),

BPMN (3), WS-BPEL (0), YAWL (0), Flow charts (3), and EPC (0). The average

value of whether the LPMS process editor is easy to use from a business user

perspective is 3.40 which is almost the same as for all participants (3.52). The value of

whether they understand easily the graphical process representation is 3.40 for

business users, compared to 4.00 for all respondents, of whether they don’t want to be

informed about technical details is 3.50 for business users, compared to 3.38 for all
respondents, and whether they miss important information is 2.40 for business users,

compared to 2.78 for all respondents. Each presented value is based on the 5-point

Likert scale (see Table 46).

Evaluation Metric:

Usability, simplicity, and understandability: See section 7.3.5 for a detailed evaluation.

Evaluation Metric:

Suitable abstraction views

Evaluation Means:

The evaluation of the abstraction views is performed by a static analysis, a workshop

experiment, and the evaluation survey.

Evaluation results:

In terms of the static analysis, the fact is accounted, that the LPMS comprises two
abstraction layers. One of the layers is abstract and dedicated to business users, the

other one is canonical, hidden from the user, and only processed by tools. Through the

application of simplicity and understandability principles, the graphical abstraction

layer is suitable for the business user. The canonical formats of the LPML process

models are suitable for the LPMS tools.

The workshop experiment should check whether users are able to provide the

necessary annotations in order to make processes executable. Hence, the users are

asked to model activities based on a given scenario with specific information about the

activities. By analyzing whether the modelled information is sufficient, evaluation

information about the suitability of the abstraction layers might be gathered.

In terms of the survey results, the question about whether the graphical symbols were

clearly and intuitively understandable revealed an average value of 3.65. A question

about users preferring graphical models to textual models resulted in an average value

of 3.91. Finally, the question about whether users missed important information in the

graphical model revealed an average value of 2.78. Each presented value is based on
the 5-point Likert scale (see Table 46).

180

Evaluation Metric:

Easy information search

Evaluation Means:

The information search mainly focuses on the search for services to be bound to

process activities. The evaluation of the service search is performed by a workshop

experiment and survey questions.

Evaluation Result:

Focus group: The participants agreed on a high value of having automated search

based on semantic annotations.

Workshop: Like for the evaluation of the suitable abstraction views, a workshop

experiment should be performed to check whether the information provided by the

users is appropriate to find fitting services. Hence, it might be figured out whether the

service search is easy to perform.

Survey results:

Users have been asked whether they prefer to indicate a service category, rather than a

concrete service. The average result value is 3.70. However, the trust that search tools
will find the best fitting service is low with an average value of 2.87. The business

users show more trust with an average value of 3.20. The average result of the

question about the preference to select a concrete service by the user himself is 3.74

and for business users 3.40. Each presented value is based on the 5-point Likert scale

(see Table 46).

Evaluation Metric:

Type of interaction (commercial, prolonged, multiple, minimal)

Evaluation Means:

To evaluate the type of interaction with the LPMS, survey questions about the

potential use of the LPMS are asked.

Evaluation Result:

The type of interaction has been mainly differentiated into business and non-business

usage. The survey revealed an average value for business usage of 3.45 and for non-

business tasks of 3.07, each on a 5-point Likert scale. Furthermore, the survey asked

about potential usage areas. The following values indicate the amount of all users

intending to use the LPMS, in brackets the amount of business users is shown. 70%

(60%) of the respondents intend to use the LPMS in the user’s functional area, 39%

(20%) in HR processes, 65% (40%) in administrative processes, and 26% (0%) for

private use.

Evaluation Metric:

Hurdle of taking process ownership

Evaluation Means:

The evaluation of hurdles of taking the process ownership has been performed by the

181

survey.

Evaluation Result:

The survey revealed that 30% of the respondents fear a lack of process understanding

preventing them from taking the process ownership. Only 17% of the respondents

don’t want to take the ownership due to the fact that they didn’t model the processes

themselves. 22% fear various process performers, 30% think that the integrated
processes are not controllable, 35% fear the lack of exception and error handling, and

39% fear that processes could be error-prone. Further answers of the respondents had

been that they don't want to be responsible for a process if it is not related to personnel

core activities, that interaction with processes of other humans cannot be modelled,

and that the work environment changes too fast for effective process modelling.

Table 52: Evaluation of organisational metrics

Evaluation Metric:

Potential number of users according to task duties

Evaluation Means:

The potential number of users according to their task duties is mainly evaluated by

survey questions about the usage areas and the frequency of process modelling.

Evaluation Result:

Focus group: The focus group agreed that a high number of users are expected.

Survey results:

The survey question about the usage area resulted in an average value for business

usage of 3.45 and for non-business tasks of 3.07. Both presented values are based on

the 5-point Likert scale (see Table 46).

As already described for the type of interaction, the following values indicate the

amount of all users intending to use the LPMS, in brackets the amount of business

users is shown. 70% (60%) of the respondents intend to use the LPMS in the user’s

functional area, 39% (20%) in HR processes, 65% (40%) in administrative processes,

and 26% (0%) for private use.

In addition, the survey questioned the frequency of process modelling. 39% of the
respondents answered to model processes once a year, 35% once a month, 17% once a

week, and 9% once a day.

Evaluation Metric:

Community acceptance, suitability for collaborative modelling

Evaluation Means:

The evaluation of the community acceptance is performed by a static analysis of the

LPMS in terms of potential extensions for collaborative modelling. Further, the survey

asked a question about whether people desire to share services and processes.

Evaluation Result:

182

Static analysis: In order to allow for collaborative modelling, additional information

about process models has to be attached. Concretely spoken the LPMS has to support

sharing, searching, reusing, and discussing process models. This requires information,

such as key words, tags, plain text (description, explanation), categories (like in

Forums), descriptions dedicated for reuse of process models, explanations,

discussions, document editing history, monitoring information, marks, comments,

recommendations, ratings, or votes. Through the semantic annotations and, in

particular, the annotation type metadata this information might easily be attached.

Survey results:

A survey question about the desire to share services and processes resulted in an

average value of 3.28 (2.60 for business users). Each presented value is based on the 5-
point Likert scale (see Table 46).

Table 53: Evaluation of economic metrics

Evaluation Metric:

Strategic importance (core strategic, important, useful, contributing, exploratory)

Evaluation Means:

The evaluation of the strategic importance of the LPMS has been performed through

the survey.

Evaluation Results:

The survey revealed that 13% of the respondents think that the LPMS could be core

strategic, 87% think it should be supporting.

The average value of whether service and process composition by business users is

useful is 4.0, and the value of whether service and process composition by business

users could break organizational rules and policies is 3.55. Each presented value is

based on the 5-point Likert scale (see Table 46).

Evaluation Metric:

Generality and applicability to various scenarios according to March and Smith

(March & Smith, 1995)

Evaluation Means:

The evaluation of the generality is performed by a static analysis and survey questions.

Evaluation Result:

Static analysis: The LPMS is not restricted to a specific domain or scenario. General

extension mechanisms are provided through the semantic annotations. Annotation

types might be further added. In addition, the LPMS might integrate all kinds of

services.

Survey results:

The survey revealed that respondents intend to use the LPMS in business and non-

business contexts. In terms of the business context, the LPMS is applicable to various

areas. The survey question about the usage area resulted in an average value for

183

business usage of 3.45 and for non-business tasks of 3.07. Each presented value is

based on the 5-point Likert scale (see Table 46). The following values indicate the

amount of all users intending to use the LPMS, in brackets the amount of business

users is shown. 70% (60%) of the respondents intend to use the LPMS in the user’s

functional area, 39% (20%) in HR processes, 65% (40%) in administrative processes,

and 26% (0%) for private use.

Evaluation Metric:

Degree of reuse

Evaluation Means:

The degree of reuse has been evaluated through survey questions.

Through the pattern and template repository as a potential extension of the LPMS, an

additional mechanism for reusing process parts might be provided. This repository

could be analysed as well in order to evaluate reuse of processes and its parts.

However, the repository analysis doesn’t make sense until a critical mass of processes

and parts of it to be reused is available in the repository.

Evaluation Result:

The survey asked various questions related to reusing processes and parts of it. A basic

question about whether people suppose themselves to be able to open and adjust a

predefined process model indicated an average value of 3.86.

The question about people preferring to model their processes themselves revealed an

average value of 3.23. Although this value seems to be low, the interpretation doesn’t

contradict the reuse paradigm. Reuse might save modelling time through integrating

existing parts of the process or adjusting existing processes. However, the users still

model the processes themselves. Further, examples of successful business process

modelling stimulate users to model their processes (3.78). Survey respondents trust

other users to model processes and parts to be reused (3.78). In addition, users think

it’s useful to search for existing processes and parts to be reused before starting

modelling (4.13). Only few respondents (average of 2.13) think, that there’s no use of

searching for existing process models. The average value of people that only trust

process models that are in line with well-defined quality standards is 3.23. Each

presented value is based on the 5-point Likert scale (see Table 46).

Evaluation Metric:

Modelling time

Evaluation Means:

An important criterion for the success of the LPMS is the time reduction to model an

executable process. Therefore, a workshop experiment is set up letting various user

groups model the same business process in different languages, such as LPML, BPEL,

YAWL, and BPMN. The time to model the target processes is measured. Furthermore,

the effectiveness and efficiency of modelling executable processes might be evaluated

by comparing the procedure to model processes and make them executable for various

languages.

184

Evaluation Result:

In this thesis, the design of the LPMS is focused. Hence, the described modelling

workshop has to be conducted as soon as the LPMS is implemented.

Evaluation Metric:

Needed expertise, training effort

Evaluation Means:

The evaluation of the needed expertise and training effort is performed in a modelling

workshop and by survey questions.

A workshop experiment might be set up targeting users with low BPM experience.

Two groups of users get the same general BPM training. Afterwards, one group
models a process with one of the existing process modelling languages and another

group with the LPML. Hence, the training effort might be compared by analysing the

quality of the modelled processes. Furthermore, an option to figure out the training

effort is to provide different trainings or introductions to the users. Provided that the

two user groups have similar modelling expertise, the modelling results of the two

groups might be compared.

Evaluation Result:

The survey asked various general questions about a potential modelling training. The

question about whether people prefer to use the LPMS without training resulted in an
average value of 3.57. The average value of people saying that attending a training

course helps them to start modelling is 3.48 and 4.40 for business users. Hence, a

training for the LPMS should be provided, however, the training effort should be kept

low. Each presented value is based on the 5-point Likert scale (see Table 46).

Evaluation Metric:

Utilization of existing infrastructure and software assets

Evaluation Means:

The evaluation of the utilization of the existing infrastructure and software assets has

been performed by a static analysis of the LPMS.

Evaluation Result:

The LPMS is fully service-oriented. A general analysis revealed that through the

integration of various service types, such as WSDL, REST, or SWS, existing

infrastructures and software assets might be reused.

Evaluation Metric:

Use of internal development and support resources and avoid high workload for IT

resources

Evaluation Means:

The evaluation of the distribution of the internal development and support resources

185

has been performed by a static analysis of the LPMS.

Evaluation Result:

The goal of the LPMS is to enable business users to model executable processes.

Hence, through shifting programming effort from the IT department to business

departments, the workload for the IT department might be reduced. Furthermore,

through the intuitive use of the LPMS, the support through the IT department might be
kept low.

Evaluation Metric:

Faster Time to market

Evaluation Means:

The evaluation of the time to market has been performed by a static analysis.

Evaluation Result:

Again, the goal of the LPMS is repeated: Enable business users to model executable

processes. Through the LPMS, business users might model and execute new processes

related to product management. Time-consuming information exchange procedures
between business and IT departments might be avoided. New software artefacts and

processes might be created more quickly. Hence, the product’s time to market might

be reduced.

Evaluation Metric:

Lower initial application integration costs

Evaluation Means:

The evaluation of the initial application integration costs has been performed by a

static analysis.

Evaluation Result:

The LPMS is based on services that facilitate the integration of applications.

Furthermore, the discovery, binding, and composition of services are supported by

tools. Ideally, these activities are performed completely automatically. Hence, the

initial application integration costs might be kept low.

In order to evaluate the LPM approach of composing processes through control-flow

modelling, an experiment has been conducted comparing the control-flow modelling

to data-flow modelling and assisted modelling. The experiment is described in

(Abdallah Namoune et al., 2009) and documented according to the Design Rationale

(Jarczyk, Loeffler, & Iii, 1992). Design rationale aims to support system designers and

documents the decisions for the selected approach regarding alternative ways.

The experiment focused on three approaches to compose processes:

186

- Data-flow to create service mashups

- Control-flow as in typical process models

- Assisted modelling using wizards that guide the user in a stepwise procedure

The main results that emerged from the workshop revealed that the data-flow

representation was most difficult to model while assisted composition was easiest. The

control-flow representation however, had not been ranked significantly more difficult

than assisted modelling. During the experiment, the users’ backgrounds have been

analized. It came out that modellers without IT knowledge favoured the assisted

modelling, while the control-flow approach was favoured by people that understood

programming. Data-flow modelling was regarded to require high understanding effort

due to service interoperability and the according data type and value matching. Hence,

the results of this workshop lead to the decision of providing a tool for control-flow

modelling including wizards to support assisted modelling and to strongly support the

user in data flow modelling.

7.3.2 LPML Correctness

The evaluation of the LPML correctness is subject of this section. As described in

Table 54, the LPML is evaluated in terms of syntactic and semantic correctness,

uniqueness, and coherency.

Table 54: Evaluation of the LPML correctness

Metric Evaluation means Result

Syntactic

correctness

Static analysis of the

LPML metamodel

and the design rules

The syntactic correctness of the process

models is made sure through the LPML

metamodel and the according design

rules as described in section 4.2.2.1 and

in section 4.2.2.2.

Semantic

correctness

Static analysis of the

LPML metamodel

The semantic correctness of the LPML

is given through the definitions in the

metamodel.

Uniqueness and

canonical,

exchangeable

format

Static analysis of the

LPML metamodel

The process models are represented by a

canonical process representation. Any

element of the LPML is characterized by

an unambiguous ID. Further, the

canonical format of the LPML process

ensures the exchangeability.

Coherency of

different layers

Static analysis of the

LPML metamodel

The two abstraction layers (graphical

and canonical layer) are not different

187

models that have to be transformed.

Both layers have the same underlying

process model (the canonical format).

7.3.3 Completeness and Expressiveness of the LPML

In this section, the LPML is evaluated in terms of completeness and expressiveness, as

partially described in Schnabel et al. (Schnabel, Born et al., 2009). In particular, the

completeness and expressiveness is evaluated in terms of ontological completeness

and of a pattern-based analysis. The evaluation based on ontological completeness has

been performed in various studies, such as a study for reference models by Fettke and

Loos (Fettke & Loos, 2003). In line with the design science, the completeness and

expressiveness is evaluated through a static analysis. Therefore, as defined in Schnabel

et al., a reference set of BPM concepts and language constructs has been prepared in a

first step. This first step is in line with the approach of Weber et al. (Weber et al.,

2008) who defined a framework for the evaluation of the expressiveness of Process-

aware Information Systems (PAIS) in terms of suitability to support process changes.

The reference set has been built with respect to the target usage of business users.

Therefore, the well-established Bunge-Wand-Weber (BWW) models (Bunge, 1977;

Wand & Weber, 1989) have been used. In particular, the representation model has

been used in order to measure the ontological completeness. Further, a benchmark set

of 20 control flow patterns from workflow systems (van der Aalst, ter Hofstede,

Kiepuszewski et al., 2003) and six communication patterns from Enterprise

Application Integration (EAI) systems (Ruh, Maginnis, & Brown, 2001) has been

selected as part of the reference set.

In the second step, an attempt has been performed to model the previously defined

concepts and constructs of the reference set using the LPML. Three resulting cases

emerged, the direct match, the indirect match through another LPML construct or

combination of LPML constructs, and a gap.

Finally, the indirect mappings and gaps had been presented to experts from the public

sector use case (see section 1). The presentation had been performed in order to gather

feedback about the significance of any mismatches in real scenarios and hence, to

allow for a judgement about the scenario coverage and the language richness.

In the following, the results of this process are described for ontological completeness

and pattern-based analysis of the LPML.

188

7.3.3.1 Ontological Completeness

The proceeding to evaluate ontological completeness has already been described in

Schnabel et al. (Schnabel, Born et al., 2009). In order to gather a reference foundation

for analysing the concepts coverage for the development of information systems,

Wand and Weber (Wand & Weber, 1989) have studied the philosophical works of

Bunge (Bunge, 1977) and produced the Bunge-Wand-Weber (BWW) ontology. The

BWW ontology comprises three parts as follows for the description of information

systems (IS) (Gehlert, Pfeiffer, & Becker, 2007; Wand & Weber, 1993):

- The representation model stating that an IS should be a faithful representation of a

real world proportion.

- The state tracking model stating that an IS has to be embedded into the real world

and must track its changes.

- The good decomposition model stating that a good decomposition is strongly in line

with the structure and the dynamics of the modelled real system.

Wand and Weber propose a 1:1 mapping of the representational model to any

modelling grammar used to model ISs. By reaching this 1:1 mapping, the grammar is

said to be ontologically complete. Hence, the representational model of the BWW

models is a well-established approach for evaluating the completeness of a language.

In the following, the representation model is focused. It comprises a set of constructs

that are sufficient to represent the structure and the behaviour of an arbitrary system

(Peter Green, Rosemann, Indulska, & Manning, 2007). The use for such evaluations

has been extensively validated through the application in over 30 projects analysing

various grammars (Peter Green et al., 2007). In the area of process modelling, Green et

al. (Peter Green et al., 2007) have mapped the BWW representation model in one such

study to the constructs of BPEL. In another study, Recker et al. have mapped BPMN

to BWW constructs (J. Recker et al., 2008). The authors of the BPMN-BWW-mapping

see the BWW representation model as a benchmark for the evaluation of

representational capabilities of modelling techniques. Furthermore, Recker and

Mendling (J. Recker & Mendling, 2006) have compared BPMN and BPEL based on

the BWW models. In this thesis, these analyses have been adjusted for the LPML

serving as a starting point for the evaluation of the ontological completeness.

As previously mentioned, the BWW constructs are part of the reference set used to

evaluate the LPML completeness and expressiveness. Table 55 presents the mapping

of a core set of the BWW representation model constructs (according to (J. Recker et

189

al., 2008)) to the LPML constructs reflecting the first two steps of the evaluation

proceeding.

Table 55: Mapping the BWW representation model to the LPML

BWW Ontological

construct

LPML construct

Thing (as well

composite thing,

component thing)

Not explicitly represented by the LPML

Property Represented through attributes and semantic annotations of

Conversation

Class Represented through Conversation

Subclass Not explicitly represented by the LPML

Kind Not explicitly represented by the LPML

State

Not explicitly represented by the LPML

Conceivable state

and state space

State law

Lawful state space

Event Represented through Activities

Conceivable event

space

Not explicitly represented by the LPML

Lawful event space Not explicitly represented by the LPML

Transformation

Represented through Activities. Could be represented through a

pattern or template as well.

Lawful

transformation

Represented through preconditions and postconditions,

conditions in Gateways, Connectors and Flows

History Not explicitly represented by the LPML

Acts-on Not explicitly represented by the LPML

Coupling Represented through Flow and Connector

System Represented through Process

System composition Represented through Process and Conversation

System environment Represented through the context file referenced by each process

element. However a clear distinction of external and intrinsic

190

entities is not provided.

System structure Not explicitly represented by the LPML

Subsystem Represented through Process describing patterns, and templates

System

decomposition

Not explicitly represented by the LPML

Level structure Not explicitly represented by the LPML

Stable state

Not explicitly represented by the LPML

Unstable state Not explicitly represented by the LPML

External event Entry point in Process

Internal event Not explicitly represented by the LPML

Well-defined event Entry point in Process

Poorly-defined event Not explicitly represented by the LPML

Having conducted the second step of the evaluation proceeding, the result reveals that

20 out of the 31 core BWW constructs do not have a direct LPML representation.

A remarkable gap is the lack of a representation of thing and its kind. Thing represents

objects of the real world, kind the sort of thing. However, the lack of thing is common

amongst orchestration languages of electronic services, such as BPEL. A couple of

discussions exist stating the lack of thing may cause a lack of clarity in describing

stakeholders of the process or in relating class instances (Peter Green et al., 2007).

However, the semantic annotations in the LPML provide a means to replace

descriptions of the construct thing. For example, a description of participants might be

defined through semantic annotations for process or activity stakeholder, such as

author, service provider, or process owner.

Another gap is state and its related constructs. Hence, the specification of business

rules is not possible with the LPML. However, with respect to our target user group

the specification of business rules would require too much skills or training effort. In

the LPML, states might be simulated by preconditions and postconditions in

combination with environment variables. Furthermore, constructs related to event

spaces are not supported by the LPML. For reasons of abstraction and late service

binding, the event spaces cannot be predefined. History-related constructs are missing

as well which could lead to issues in recovery and reliability. However, the LPMS

performs tasks related to history, hence, a tracking through an LPML construct is not

191

necessary. The support for system structure is not a purpose of a process modelling

language.

Also notable is the lack of a representation of system environment. Green et al. (Peter

Green et al., 2007) argue this might lead users to lack a clear distinction of things

inside and outside the system. This lack of a clear identification of external things

might lead to a difficult identification of entities that might generate external events.

Transformation might be represented by a single activity or a set of activities and

gateways resp. connectors. The following section about pattern-based analysis further

details this aspect.

In the third step of the evaluation proceeding, these findings have been analysed in the

context of the public sector processes. In various expert interviews, the lack of LPML

constructs to cover the BWW constructs has been discussed. The feedback indicated

that the lack of these constructs is not crucial for the regarded process models.

7.3.3.2 Pattern-based Analysis of the LPML

In order to express patterns and templates of both control and data flow, the BWW

construct transformation is used. This proceeding has as well been partially described

in Schnabel et al. (Schnabel, Born et al., 2009). Through the LPML, transformation

might be represented by a set of activities and gateways, respectively connectors, the

patterns, and templates. In this section is described which patterns and templates the

LPML supports. A similar approach has already been performed for BPMN and EPCs

as described by Russel et al. and Recker and Dreiling (J. Recker & Dreiling, 2007; N.

Russell et al., 2006). Like in the previous section, the evaluation proceeding comprises

three steps. The first step is the selection of a benchmark set of 20 control flow

patterns based on workflow systems as described in van der Aalst et al. (van der Aalst,

ter Hofstede, Kiepuszewski et al., 2003) and a set of six communication patterns based

on Enterprise Application Integration (EAI) systems (Ruh et al., 2001). Afterwards, an

analysis is performed to figure out which patterns of the two benchmark sets the

LPML covers. This approach is similar to the one proposed by Wohed et al. (Wohed,

van der Aalst, Dumas, & ter Hofstede, 2003).

Table 56 presents the results of the LPML coverage of the control-flow patterns based

on workflow systems, Table 57 the coverage of control-flow patterns found in EAI

systems.

192

Table 56: Control-flow patterns based on workflow systems

Pattern Description Implementation using LPML

Sequence A cannot start before B

completes

Flow

Parallel Split ,

Synchronization,

Synchronizing Merge

Here, concurrent execution is

enabled. In case of

synchronization C can only

start once all the active Ai

from (A1..An) complete.

Parallel gateway

Exclusive Choice At this point, one of (A1..An)

is chosen based on data

Exclusive gateway

Simple Merge C can only start once A or B

completes, only A or B can be

run

Exclusive gateway

Multi Choice and Multi

Merge

At this point, two or more of

(A1..An) are chosen based on

data resp. C is started once for

each completion of active Ai

from (A1..An)

Parallel gateway in

combination with exclusive

gateway, both with conditional

expressions, in LPML

semantic annotation.

Discriminator C is started just once with the

first completion from all

active Ai (i {1..n})

Parallel gateway with

conditional expressions, in

LPML semantic annotation

Arbitrary Cycles Any portion of the process
should be visited repeatedly

Will potentially be supported
in an extended version of the

LPML

Implicit Termination Process completes when

nothing left to do, without

explicit term. activity

Implicit termination is not

supported, explicit “End

activity” used instead

MI without

Synchronization

A number of concurrent

(sub)process instances are

created

Not supported by default. In

case the support is needed, the

LPML might be extended.

MI with a Priori Design

Time Knowledge

A number of concurrent

(sub)process instances are

created and their completion

synchronised, before

proceeding with the rest of the

process.

MI with/without a

Priori Runtime

Knowledge

Deferred Choice Point of choosing A or B is

reached before the decision

Parallel gateway with

conditional expressions, in

193

data is available. LPML semantic annotation

Interleaved Parallel

Routing

Each Ai from (A1..An) is

executed exactly once in an

order determined just after the

previous activity

Might be modelled through

preconditions

Milestone C can only be started if A has

finished but a subsequent B

has not yet started

Might be modelled through

preconditions

Cancel Activity Terminate activity Not supported

Cancel Case Terminate instance Not supported

Table 57: Control-flow patterns based on EAI systems

Pattern Description Implementation using LPML

Request/Reply Sender waits for a reply before

continuing

Depends on the transformation

of the LPML in an executable

language. In the LPML, the

activity handles this pattern.
OneWay Sender waits for an

acknowledgment before continuing

Synchronous

Polling

Sender polls for a response whilst

receiving one.

Message Passing Sender sends a message and
continues processing

Depends on the service
executing the activity.

However, this is not explicitly

modelled.

Publish/Subscribe Request sent to all receivers which

have previously declared interest

Might be modelled implicitly

by data split or control flow

split.

Broadcast Request sent to all receivers in a

network, each decides whether to

act

Not supported

The results show that most of the patterns can be supported through the LPML.

However, the implementation of the patterns in LPML process models might be

difficult and complicated through sophisticated conditional expressions in semantic

annotations. With respect to the target user, the application of most of these

complicated patterns is not expected. A business user normally doesn’t have the skills

to model those patterns. A significant simplification and user support to model these

194

patterns is not followed regarding the assumed need in very few cases. The feedback

given by the experts from the public sector use case supported these arguments.

7.3.4 Adaptability and Extensibility

The adaptability and extensibility of the LPML is analysed statically according to the

design science. In general, the semantic annotations allow for adjusting and extending

the LPML. In the standard version, semantic annotations are predefined for

discovering and selecting services. These annotations are hence mostly addressed

towards service descriptions. However, the semantic annotation type metadata allows

for the definition of heterogeneous descriptions and information. An example of an

extension has been given in the public sector use case by an annotation referencing the

user management file. Table 58 discusses the LPML adaptability and extensibility

facing the public sector extensions. The results show that the LPMS might be easily

customized to the public sector and hence, very likely to other scenarios as well.

Table 58: LPM language and tool evaluation according to public sector

requirements

Evaluation

Criteria

LPM Evaluation

User

Management

Through separating the user model from the process model and only

providing a reference in the process model, flexibility is ensured.

Any change in the user model doesn’t impact the process model.

Further, the process model might be used in various process contexts.

Approval A special approval handling has been implemented in the LPMS.

Further, through the simple definition of a semantic annotation for

approval, this requirement might be handled easily by the LPMS.

Versioning An easy change management and tracking is available through

versioning and logging of the editing history. By simply customizing

semantic annotations for versioning, this requirement is easily

handled by the LPMS.

Human task

management

Through the separation of the human task management from the

process model, standard execution engines might be used. This keeps

the LPML compatible to other existing process modelling languages.
By providing service interfaces for the LPMS, the integration of a

human task server is easily feasible.

195

7.3.5 Usability

The usability evaluation of the LPMS including the LPML is strongly aligned with the

simplicity and understandability evaluation. This section covers all of them. First , a

heuristic evaluation is performed based on literature criteria addressing a static

evaluation according to the design science. Afterwards, an observational analysis is

described in terms of a user survey and workshops focussing on the evaluation of the

design of the LPMS. The usability of the prototype of the LPMS is not part of this

thesis and will be conducted in the context of the SOA4All project.

The heuristic usability evaluation is based on the work performed by Nielsen (Nielsen,

1993) who describes heuristics for usability engineering focusing on user interfaces. In

this thesis, these usability heuristics are applied to the LPMS. Table 59 describes the

static analysis of these heuristics.

Table 59: LPM evaluation based on usability heuristics (Nielsen, 1993)

Usability heuristic LPM evaluation

Visibility of system status The visibility is implemented in the navigation

scheme of the process editor. Further, the

proceeding steps of the background tools
(composition component, execution engine) might

be monitored through the process editor.

Match between system and the

real world

Direct match through semantic annotations rather

than service specification

User control and freedom Undo and redo functionality in the process editor

Consistency and standards Ontology-based terms guarantee a common

language.

Error prevention Design time support for the user to produce sound

process models. Wizards guide the user. A
validation functionality is implemented in the

process editor.

Recognition rather than recall Separate data area indicates process-related data.

Flexibility and efficiency of use Various user modes: Users without experience are

guided through wizards, experienced users might
model directly.

Aesthetic and minimalist design Data sections to be opened and closed avoid the

display of unnecessary information.

Help users recognize, diagnose,

and recover from errors

Wizards guiding the user in case of errors

196

Help and documentation Help section foreseen in a commercial version of

the LPMS.

The observational analysis of these heuristics is performed by a survey and workshops

that are described in the following. The survey showed mock-ups and snapshots of the

current version of the process editor and the LPML and asked according questions.

According to Nielsen (Nielsen, 1990), such a heuristic evaluation is performed at an

early stage of the tool implementation as it is in the context of this thesis.

Normally, a heuristic evaluation produces a list of identified issues, for example

usability problems in the user interface of the process editor. These identified issues

are assigned to the well-known usability problems as described by Nielsen (Nielsen,

1993). Through a systematic structure, the usability issues might often easily be

solved. For the evaluation of the LPMS, a similar proceeding is proposed. The

usability strongly depends on the stability of the supporting modelling tools. As soon

as the integrated prototype of the modelling tools exists, a usability testing workshop

should be performed.

Focus group evaluation

In terms of the observational evaluation, the focus group described in section 7.2 has

been surveyed. The survey revealed that the LPM approach and design process are

easily understandable and highly usable. Further, the focus group agreed that the

graphical abstraction and the LPML symbols are very understandable.

Survey questions and results

The survey covered questions about the usability and simplicity of the process editor

and the understandability and simplicity of the graphical representation of the LPML.

The survey respondents had been shown a video and a set of slides introducing the

process editor and the LPML. Since this thesis describes the design of the LPMS, a

video and a set of slides are appropriate means to evaluate the LPMS. Further, the

survey questions targeted the evaluation of the LPM design principles. In the

following, the survey questions and the corresponding results are described. Each

presented value is based on the 5-point Likert scale (see Table 46).

- The survey question about whether the process editor is easily usable from a

business user perspective revealed an average value of 3.52. Similarly, the question

about whether the graphical process representation is easily understandable revealed

197

an average value of 4.00. These two results show a high acceptance of the design of

the process editor.

- The average value of whether people are capable of opening and adjusting

predefined processes is 3.86. This means that people might easily understand existing

processes which, again, reveals a high usability of the process editor and the LPML.

- The average value of people that like the graphical layout of the modelling

environment is 3.74. This shows as well the high usability of the LPML.

- However, the average value of people preferring to have an introduction (video, user

manual) to the LPMS is 3.71. Hence, the LPMS should be introduced with the target to

keep the needed introduction time short.

In the following, the results for the evaluation of the LPM design principles are

presented.

Abstraction concept

In terms of the abstraction concept, the survey showed that the LPML uses clear

graphical symbols with an average value of 3.65 and that users prefer a graphical

model to a textual model with an average value of 3.91. Further, the average value of

people missing important information in the graphical model is only 2.78. These

results verify the decision to use a graphical representation for the users to model their

processes.

Semantic annotations

Concerning semantic annotations, the average value of people preferring to have

additional descriptions indicating the service function is 3.57. This reveals that the

mere service function signature is not sufficient for people to understand the service

functionality. People prefer not to have to specify the data type for input and output

data which is shown by the average value of 3.61. These two survey results show in

general that the targeted users of the LPMS have difficulties in understanding the

technical descriptions and prefer to have additional annotations in a business language.

Further, the average value of people preferring to specify non-functional properties is

3.61. This shows that services are not only selected by their functionality but as well

by non-functional properties, such as price or availability. Lastly, people prefer to get

provided metadata, such as author or history data, which is shown by an average value

of 3.61.

Goals

198

Concerning goals, the average value of people preferring to specify a service category

rather than a service is 3.70. As had been shown by the semantic annotations, here

again, the result shows that people prefer to be kept free from execution details.

However, the average value of people trusting that search tools will find the best

fitting service is only 2.87. A clear distinction between technical and business people

came out for this question. The corresponding value for business users is 3.20. Thus,

the business users as the main target group of the LPMS expect to benefit from the

automatic service selection. Same as for the previous question, the average value of

people preferring to select a concrete service themselves is 3.74 and 3.40 for business

users. In the context of the overall survey results, these values seem too high and not in

line with the other results of the goal design principle evaluation. An interpretation

might be that the respondents of the survey thought about the service functionality

independent of the representation through a service category or a concrete service.

Finally, respondents don’t prefer to specify detailed information about service binding

and execution which is shown by an average value of 2.65 and an average value of

2.40 for business users.

Context information

Concerning context information, the average value of people that won't allow a tool to

use personal profile information for privacy reasons is 2.91 and don't want to publish

business information such as the industry, company, or department, is as well 2.91.

This shows that the majority of potential users of the LPMS expect to benefit from

context information. The average value of respondents trusting the software to observe

the privacy policy is 3.09. However, the average value of respondents who don't want

a tool to use information about their personal history is 3.17. All these results show

that privacy has to be respected when using personal information for contextual

information.

Patterns and templates

Concerning patterns and templates, the average value of people trusting other users to

model processes and parts that might be reused is 3.78. This shows that the survey

respondents are highly interested in reusing processes and parts of it. As well, the

average value of people thinking that it's useful to search for existing processes and

parts to be reused before starting modelling is 4.13. Another aspect of reuse is the

provisioning of existing processes and parts as examples. The survey showed that most

of the respondents prefer to check existing process models serving as examples

(average value of 4.17). Further, the average value of people thinking that processes

199

are completely different and that hence, there would be no use of searching for

existing process models is only 2.13. Respondents think that process patterns and

templates have to be easily retrievable (average value of 4.09). Through the semantic

annotations and the corresponding, various search mechanisms, the LPMS respects

this result. Moreover, the respondents rely on process models and parts of them that

are in line with well-defined quality standards, but reuse as well models with unknown

quality. The according average value is 3.48. However, the respondents don't want to

spend a lot of time to understand existing process models (the average value is 4.00).

Since the other survey results revealed a high usability and simplicity of both the

LPMS and the LPML, the needed time to understand existing process models should

be low.

Data connectors

In terms of data connectors, people desire the LPMS to handle lists of data entries. The

according average value is 3.77. The average value of respondents preferring to define

data manipulation activities is 3.43. This shows that the respondents prefer to have

explicit activities allowing for the handling of complex data flow operations. As well ,

the respondents prefer to use predefined data operators. The according average value is

3.78. Lastly, most of the users prefer not to specify a data mapping (average value of

3.39).

Gateways

The average value of respondents preferring to have no explicit gateways is 3.23 and

preferring to draw multiple outgoing or incoming connections for an activity is 3.26.

This legitimates the decision not to explicitly represent gateways in the graphical

abstraction of the LPML.

Workshops: Experiments to check simplicity and understandability

An experiment to be conducted concerns the comparison of the LPML to other process

modelling languages, such as BPMN. A BPMN and LPML process model comprising

the same content could be modelled either by the same user to directly compare the

two languages or by different users in order to measure usability and simplicity.

An additional experiment should be to let two groups with different modelling

expertise model the BPMN process and two groups model the LPML process. By

doing so, it might be figured out whether differences in the usability of the two

languages exist in user groups with low or high experience.

200

In a further experiment comparing LPML to other modelling languages, the users are

asked to model process splits or merges as a typical workflow process pattern

according to van der Aalst (van der Aalst, ter Hofstede, Kiepuszewski et al., 2003). By

measuring the time to model the process as well as potential documentation

consultations, the usability and simplicity of the LPML might be evaluated.

Furthermore, by comparing the LPML to other modelling languages, the users might

be asked about their intuitive understanding of the two process models.

7.4 RISKS

Besides the presented enablers of BPM for business users, a couple of risks exist that

might lead to a missing acceptance amongst potential users.

Users are afraid of losing control over information, both personal and business

information. For example, in the area of social interaction, the users are afraid of

friends or service providers publishing or forwarding confidential information to

people or organizations that do not stick to data-protecting principles. Further, a

potential risk is the availability of services when they are needed. Service Level

Agreements (SLA) could be difficult to negotiate in an open environment, such as the

web.

The SOA4All workshop described in Namoune et al. (Abdallah Namoune et al., 2009)

showed in addition that the LPMS should foster the awareness of consequences of

one’s actions. This had been felt to be the most significant difference between non-

experienced and experienced users. In addition, complete automation of the modelling

proceeding could frustrate users due to missing control options. Hence, the LPMS

should indicate the automated steps at any point in time if this is requested by the user.

And finally, the users feared a lack of clarity in using context information,

personalizing the system, or reusing modelled processes and parts of it.

In terms of reuse of process models, a couple of additional risks might emerge.

Denning et al. (Denning, Horning, Parnas, & Weinstein, 2005; Kittur, Suh, & Chi,

2008) described in their work potential risks for collaboration platforms, such as

Wikipedia. This thesis is evaluated with respect to these risks. According to the

authors, an issue might emerge by not knowing which of the process models are

accurate. Further, the modelling experience of the authors might not be known which

leads to difficulties in assessing the process quality. However, before reusing process

models the soundness should be guaranteed.

201

Another issue might occur in terms of process model stability. By enabling business

users to modify, adjust, and update process models, versioning control could be

difficult to implement. Hence, the models could be instable. As described in the public

sector use case in section 1, versioning should be implemented for process models.

This is as well important for the process owners in order to keep control of their

process models.

7.5 CONCLUSION

This section presented the evaluation of the design of the LPMS. First, the evaluation

metrics have been specified. These metrics are based on the requirements defined in

section 3.2 and are grouped into technical, individual, organisational, and economic

metrics. The type of evaluation is differentiated according to their basement on general

requirements and literature and on the use case.

Afterwards, the target users have been defined that are beneficiaries of the LPMS. The

users have been distinguished into IT experts, business users, and casual business

users. The evaluation has been performed with respect to these target users.

Besides the static evaluation, mainly two steps have been followed to perform the

observational evaluation of this thesis: the focus group evaluation and a

comprehensive expert and business user evaluation. While the focus group evaluation

is targeting business users, the expert and business user evaluation targets all kind of

users. For the expert and business user evaluation, a survey has been conducted. In

addition, workshop experiments have been described that eventually evaluate an

implementation of the LPMS. The main finding of the focus group evaluation has been

that business user empowerment in the BPM area is useful for organisations and that

the selected design principles for LPM seem to be capable to fulfil the needs of

business users.

The survey has been based on a couple of hypothesis giving statements about the

applicability of the LPMS to various, heterogeneous business areas and about the

users’ preferences to model and execute processes.

The results of the static evaluation revealed that all requirements are satisfied. The

survey results revealed that the respondents are mostly satisfied with the design of the

LPMS. A couple of aspects have to be explained in more detail.

A low value (2.80) resulted in the usage for business tasks by the respondents with

economic background, compared to an overall value of 3.45. However, the usage in a

202

non-business context is expected higher (value of 3.20), compared to the overall value

of 3.07. An interpretation might be that business users don’t expect needs to execute

processes in their daily business. Another low value (2.60) resulted in the potential

sharing of services and processes for respondents with economic background,

compared to an overall value of 3.28. Each presented value is based on the 5-point

Likert scale (see Table 46).

As well, the results revealed that values about publishing information about the user

profile, business information, or tool usage history are lower for respondents with an

economic background than the overall values. While in IT-related areas the

community-driven approaches seem to be wide-spread, the business areas are not yet

convinced about sharing information.

The general risks seen by the users confirm these feelings that came out in the survey.

The users fear to lose control over important information and not to be able to rely on

correct and stable information.

The further evaluation tasks concern the conduction of the described workshops and

experiments. As soon as an implementation of the LPMS will exist, in particular, the

usability has to be evaluated through modelling experiments. Another interesting

evaluation is the comparison of the LPML to other process modelling languages, such

as BPMN, YAWL, or BPEL. Further experiments have to be conducted comparing the

new LPML to those existing languages.

203

8 CONCLUSION AND OUTLOOK

This thesis gave an insight into the specification of Lightweight Process Modelling

(LPM). The according implementation of a language and tools for LPM has been

named LPMS. Mainly three components for LPM have been designed. The set of LPM

design principles, structured by the LPM metamodel, forms the first component. The

other two components are part of the design of the LPMS and comprise the LPML and

the set of according tools.

In the context of the design science, this section covers the phase of “learn and

theorize” according to Rossi and Sein (Rossi & Sein, 2003). This phase comprises the

reflection on the artefact, the generalisation of the findings, and the confirmation or

rejection of the original assumptions. In addition, in this thesis, the research

contribution and the future work based on the research results is presented in this

section.

8.1 REFLECTION ON THE ARTEFACT

LPM promises to enable business users to model and execute processes. This is a

challenging goal that is not completely new to research but that hasn’t been

investigated yet in a holistic approach. The evaluation of this thesis revealed that all

requirements have been fulfilled by the LPMS.

However, the critical point of a new language and new tools is user acceptance. The

usefulness and usability of the new features has to be proved in order to achieve user

acceptance. This proof has to be performed as soon as the integrated implementation

of the LPMS design has been completely realized. New requirements might arise that

are not yet reflected by the LPMS.

The user capability to provide semantic annotations is a key to make processes

executable for the LPMS. For sure, the provisioning of semantic annotations is easier

than providing execution information. However, probably training effort is needed for

the user in order to be able to provide suitable service descriptions in terms of

semantic annotations.

Within a research environment, the benefit of the reuse design principle cannot be

completely evaluated. In order to provide full benefit of the user support through

patterns, templates, and goals, a critical mass of existing artefacts has to be provided.

204

In particular, domain-specific patterns, templates and goals that have to be created in

practice will provide an added value to the user.

Another aspect to reflect on is the evaluation of the LPML. The LPML has been

evaluated using the concepts of ontological completeness and coverage. An analysis

with respect to the target usage revealed satisfactory coverage of the exhaustive sets of

concepts and patterns used for evaluation. The most important differences concern the

lack of representation for environment and things interacting with the process. This

seems to be common with other execution-oriented process modelling languages, such

as BPEL. The LPML is based on a lightweight nature. This means the language aims

at being fit for purpose rather than being complete. This explains that such missing

concepts have been dismissed in the LPML.

In order to support the use of the LPMS, existing examples of successfully created and

executed process models might be provided. This helps the user in understanding the

modelling steps. Further, often, people are less afraid after having seen other users

successfully using a tool. A community-based feedback and recommendation tool

supports this as well.

8.2 GENERALISATION OF FINDINGS

In this thesis, the LPMS design has been applied to only one industry. For this

industry, the public sector, the LPMS revealed the capability, to overcome current

issues and to add value to organisations and users of the public sector. Future work

should apply the LPMS to further industries. Hereby, the LPMS shows high potential

in adding value to further industries. The target group of the LPMS is selected

according to the users’ IT skills. However, the users’ IT skills do not depend

significantly on the industry they work in. Further, the LPMS doesn’t restrict the type

of services or processes. Any kind of process integrating any kind of service is allowed

by the LPMS. Lastly, as shown by the public sector use case, the LPMS might be

extended according to special user or industry requirements.

These theoretical arguments are confirmed by the project SOA4All where the LPMS is

applied to one scenario in the telecommunications industry and to one targeting small

and medium-sized enterprises.

205

8.3 EVALUATION OF ORIGINAL ASSUMPTIONS

One of the challenges for the success of the LPMS is the existence of semantically

described services. Currently, most of the existing services are only described

syntactically. The research project SOA4All has recognised the need for a tool

allowing the easy creation of semantic service descriptions. In the context of the

project, SWEET
26

 (Semantic Web sErvice Editing Tool) has been developed. SWEET

is “an editor for supporting the semantic annotation of Web APIs and RESTful

services.”

The ability to be transformed into other process modelling languages, both executable

and documentation languages, is key to the LPML. In this thesis, a transformation of

the LPML into BPEL has been assumed. However, the LPML is designed to be

flexible enough in order to be easily transformed into various, existing process

modelling languages.

Further, for this thesis has been assumed that users prefer graphical modelling

languages to text-based languages. This has been confirmed by the survey results

described in the evaluation section. However, cases might appear where the

information provided by the graphics is not sufficient. Additional textual

representations might be needed.

The application of ontologies in process modelling languages has to be further

evaluated in the future. For the LPML, a pragmatic approach has been selected.

Hereby, ontologies are only applied for specifying activities. At the moment, this

approach seems to be most appropriate in order to achieve a working solution that

might be handled by business users. However, as semantic descriptions will evolve

and be attached to more and more artefacts, other full-fledged ontological approaches,

such as BPMO-based approaches, might be applicable as well.

26
 See http://sweet.kmi.open.ac.uk/

http://sweet.kmi.open.ac.uk/

206

8.4 RESEARCH CONTRIBUTION

This thesis contributes to the research community through Design Research. Design

Research is the process of constructing and evaluating an artefact. The research results

provided by this thesis are principles for lightweight process modelling and the LPMS

comprising the LPML, a design process to make processes executable, and the tools

for execution.

This thesis has been created in the context of the EU-funded research project

SOA4All. Parts of the thesis had been published in deliverables of SOA4All which

reveals the strong research contribution.

8.5 FUTURE WORK

This final section covers potential application scenarios of the LPMS that might be

elaborated in the future. By enabling business users to model and execute processes,

the amount of well-structured processes will increase. This could be used to leverage

bottom-up approaches, e.g. to derive an organisational structure as described in section

8.5.1 or to enable a collaborative process development as described in section 8.5.2.

8.5.1 Organizational Structure

Currently, in most organisations that envisage to systematically model their services

and processes an expert modelling team is requested. These modelling experts request

business process and task information from process owners. The process owners are

typical business users whereas the modelling experts have expertise in process

modelling and IT yet no specific business knowledge. In order to gather information

about the processes and tasks, the modelling experts have to closely collaborate with

the process owner. The modelling experts have to ask for the processes, tasks, and

their structural organisation. Based on this information, they create process and task

models. Since often the gathered information is not enough, the modelling experts

have to conduct multiple iterations of questioning.

According to the experiences of Lanker (Lanker, 2008), the current information

gathering procedure might be ineffective and inefficient. Quite often, discussions

about processes and services arise that are not goal-oriented but time consuming. The

achieved results seem obvious which makes it difficult for the expert team to ask for

peoples’ time. Especially modelling workshops are rather time-consuming. Further,

the processes and their lifecycle have multiple dimensions that are not easy to be

transferred from the business expert to the modelling expert. Thus, there’s often a loss

207

of information in discussing. In addition, an iterative proceeding is required capturing

a lot of resources. And finally, there is not the “one and only” solution. A couple of

sufficient solutions and loads of bad solutions exist.

In order to avoid time-consuming discussions and the loss of information between

business experts and IT experts, this thesis envisages enabling the process owners to

model their processes themselves.

By using the LPMS, a process owner is enabled to model its process. Therefore, the

process models might be enriched and used in order to derive an organisational

structure. This organisational structure comprises the documentation of the processes

(what), the stakeholders (for whom), the services (for what), the process context

(depending from), and the process steps (how). This documentation will have to reveal

the right granularity in various views and align the models, the terminology, and the

form of representation. An existing business design according to High et al. (High et

al., 2005) is assumed. However, the business design is not well documented.

The organisational structure comprises processes, services, process groups, service

groups, and the relations between them. A prerequisite thus is that the processes are

identified, modelled, and accordingly described by a semantic annotation.

In order to build the organisational structure, additional information is needed that is

only partly in the process models. By using the semantic annotations, the services and

processes might be aggregated into process and service groups. This is performed by

providing process and service categories. According to the context-awareness

principle, the linkage to a business entity might be used to optimize the assignment to

existing groups. Process owners, responsibles, and constituents might be assigned

according to the information provided by the process metadata.

By using the previously gathered information, the organisational structure might be

built. Therefore, the individual process and task models and process and service

groups are combined.

8.5.2 Processpedia

By providing an easy methodology, language, and tools for process modelling, the

amount of well-modelled and automatically executable processes will increase. As

well, a significant higher group of information worker will gain knowledge about

process modelling. In order to further spread and share this kind of knowledge , a

collaboration platform is needed where users might publish their process models.

Further, existing BPM suites have only limited functionality for discovering processes

208

(Richardson et al., 2009). Similar to Wikipedia
27

 as a community-driven online

dictionary a platform to model, share, search, and discuss process models, the so called

Processpedia, might be created. The term Processpedia has been announced by the

SAP Research Team in the CEC St. Gallen. Through various feedbacks within the

BPM community, Processpedia will further improve the quality and foster the reuse of

process models. A BPM community might be built within organisations as well as

across organisations in networks. Concretely spoken, the LPMS might be extended to

support sharing, searching, reusing, and discussing process models. This comprises

new functionalities for storage and easy retrieval of processes as well as a suitable

security mechanism. Further, mechanisms to ensure trust are important. Such

mechanisms might comprise public user profiles, the assignment of process models to

profiles, access restrictions, different views on process models, or documentation of

the editing history.

Additional functionalities for the collaboration might comprise monitoring,

notification mechanisms, and functionalities for marks, commenting,

recommendations, ratings, votes, or file references.

27
 See www.wikipedia.org

209

9 ANNEX

9.1 PUBLIC SECTOR PROCESS MODELS AND SERVICES

9.1.1 LPML model of the process “Registration of a business”

This section shows a simplified version of the canonical format of the abstract LPML

model “Registration of a business” in Java-Notation. The representation below is the

textual equivalent to the graphical version as shown in section 6.2. The process model

has been created by the author of this thesis in cooperation with the SAP Research

SOA4All team. At the beginning of the file a couple of classes have to be imported

that aren’t depicted for visibility reasons. The process model is implemented as Java

Class.

// The imported classes have been deleted for visibility

reasons

public class BusinessRegistrationTest {

private static final String targetNamespaceURIPrefix =

"http://org.soa4all.eu/wp7#";

private Process process = null;

private Process deserializedProcess = null;

 }

public Process createProcessFixtureForWP7Scenario() {

///

// creation of a new process

///

Process process = new ProcessImpl();

SemanticAnnotation sa = new SemanticAnnotationImpl();

sa.setReferenceURI(targetNamespaceURIPrefix +

"transactional");

sa.setType(AnnotationType.NON_FUNCTIONAL_PROPERTY);

process.addSemanticAnnotation(sa);

// creation of Start/End process element

Activity start = process.setStartElement();

Activity end = process.setEndElement();

// ---- Find Citizen in CRM: Activity bound to a

conversation

Conversation findCitizenInCRMConversation = new

ConversationImpl();

210

Goal findCitizenInCRMGoal = new GoalImpl();

Service findCitizenInCRMService = new ServiceImpl();

findCitizenInCRMService.setServiceReference();

findCitizenInCRMConversation.addService(findCitizenInCRMSe

rvice);

Activity findCitizenInCRM = new ActivityImpl();

findCitizenInCRM.setName("Find Citizen in CRM");

findCitizenInCRM.setOperation();

findCitizenInCRM.setStartElement(false);

findCitizenInCRM.setEndElement(false);

findCitizenInCRM.setSynchronous(true);

findCitizenInCRM.setConversation(findCitizenInCRMConversat

ion);

findCitizenInCRM.setHumanTask(false);

process.addProcessElement(findCitizenInCRM);

// Input/Output

Parameter citizenInCRMforkParameter = new ParameterImpl();

SemanticAnnotation citizenInCRMforkConditionAnnotation =

new SemanticAnnotationImpl();

citizenInCRMforkConditionAnnotation.setReferenceURI(target

NamespaceURIPrefix + "citizenInCRMforkParameter");

citizenInCRMforkConditionAnnotation.setType(AnnotationType

.META_DATA);

citizenInCRMforkParameter.addSemanticAnnotation(citizenInC

RMforkConditionAnnotation);

findCitizenInCRM.addOutputParameter(citizenInCRMforkParame

ter);

// Gateway

// Citizen in CRM exclusive fork gateway

ExclusiveGateway citizenInCRMforkGateway = new

ExclusiveGatewayImpl();

citizenInCRMforkGateway.setSplit(true);

citizenInCRMforkGateway.setCondition(citizenInCRMforkCondi

tionAnnotation);

process.addProcessElement(citizenInCRMforkGateway);

// Citizen in CRM exclusive merge gateway

ExclusiveGateway citizenInCRMMerge = new

ExclusiveGatewayImpl();

citizenInCRMMerge.setSplit(false);

process.addProcessElement(citizenInCRMMerge);

// ---- Create Citizen in CRM: Activity bound to a

conversation

Conversation createCitizenInCRMConversation = new

ConversationImpl();

211

Service createCitizenInCRMService = new ServiceImpl();

createCitizenInCRMService.setServiceReference();

createCitizenInCRMConversation.addService(createCitizenInC

RMService);

Activity createCitizenInCRM = new ActivityImpl();

createCitizenInCRM.setName("Create Citizen in CRM");

createCitizenInCRM.setOperation();

createCitizenInCRM.setSynchronous(true); // blocking

operation (default)

createCitizenInCRM.setConversation(createCitizenInCRMConve

rsation);

process.addProcessElement(createCitizenInCRM);

// Input/Output

createCitizenInCRM.addOutputParameter(citizenInCRMforkPara

meter);

// ---- Read bank details of citizen: Activity bound to a

conversation

Conversation readBankDetailsOfCitizenConversation = new

ConversationImpl();

Service readBankDetailsOfCitizenService = new

ServiceImpl();

readBankDetailsOfCitizenService.

setServiceReference();

readBankDetailsOfCitizenConversation.addService(readBankDe

tailsOfCitizenService);

Activity readBankDetailsOfCitizen = new ActivityImpl();

readBankDetailsOfCitizen.setName("Read Bank Details Of

Citizen");

readBankDetailsOfCitizen.setOperation();

readBankDetailsOfCitizen.setSynchronous(true); // blocking

operation (default)

readBankDetailsOfCitizen.setConversation(readBankDetailsOf

CitizenConversation);

process.addProcessElement(readBankDetailsOfCitizen);

// Input/Output

readBankDetailsOfCitizen.addInputParameter(citizenInCRMfor

kParameter);

Parameter bankDetailsOfCitizenForkParameter = new

ParameterImpl();

SemanticAnnotation

bankDetailsOfCitizenForkAnnotationCondition = new

SemanticAnnotationImpl();

212

bankDetailsOfCitizenForkAnnotationCondition.setReferenceUR

I(targetNamespaceURIPrefix +

"bankDetailsOfCitizenForkParameter");

bankDetailsOfCitizenForkAnnotationCondition.setType(Annota

tionType.META_DATA);

bankDetailsOfCitizenForkParameter.addSemanticAnnotation(ba

nkDetailsOfCitizenForkAnnotationCondition);

readBankDetailsOfCitizen.addOutputParameter(bankDetailsOfC

itizenForkParameter);

// CitizenBankDetailsAvailable exclusive fork gateway

ExclusiveGateway citizenBankDetailsAvailableFork = new

ExclusiveGatewayImpl();

citizenBankDetailsAvailableFork.setSplit(true);

citizenBankDetailsAvailableFork.setCondition(bankDetailsOf

CitizenForkAnnotationCondition);

process.addProcessElement(citizenBankDetailsAvailableFork)

;

// CitizenBankDetailsAvailable exclusive merge gateway

ExclusiveGateway citizenBankDetailsAvailableMerge = new

ExclusiveGatewayImpl();

citizenBankDetailsAvailableMerge.setSplit(false);

process.addProcessElement(citizenBankDetailsAvailableMerge

);

// ---- Create bank details for citizen: Activity bound to

a

// conversation

Conversation createBankDetailsForCitizenConversation = new

ConversationImpl();

Service createBankDetailsForCitizenService = new

ServiceImpl();

createBankDetailsForCitizenService.setServiceReference();

createBankDetailsForCitizenConversation.addService(createB

ankDetailsForCitizenService);

Activity createBankDetailsForCitizen = new ActivityImpl();

createBankDetailsForCitizen.setName("Create Bank Details

For Citizen");

createBankDetailsForCitizen.setOperation();

createBankDetailsForCitizen.setSynchronous(true); //

blocking operation (default)

createBankDetailsForCitizen.setConversation(readBankDetail

sOfCitizenConversation);

process.addProcessElement(createBankDetailsForCitizen);

// Input/Output

213

createBankDetailsForCitizen.addInputParameter(citizenInCRM

forkParameter);

createBankDetailsForCitizen.addOutputParameter(bankDetails

OfCitizenForkParameter);

// ---- Check location: Activity performed by human

// Binding of human tasks not further specified in this

thesis

// Service checkLocationService = new ServiceImpl();

// checkLocationService.setServiceReference();

Activity checkLocation = new ActivityImpl();

checkLocation.setName("Check Location");

checkLocation.setHumanTask(true);

process.addProcessElement(checkLocation);

// ---- Check lawfulness: Activity performed by human

// Binding of human tasks not further specified in this

thesis

// Service checkLawfulnessService = new ServiceImpl();

// checkLawfulnessService.setServiceReference();

Activity checkLawfulness = new ActivityImpl();

checkLawfulness.setName("Check Lawfulness");

checkLawfulness.setHumanTask(true);

process.addProcessElement(checkLawfulness);

// Input/Output

Parameter preChecksParameter = new ParameterImpl();

SemanticAnnotation preChecksAnnotationCondition = new

SemanticAnnotationImpl();

preChecksAnnotationCondition.setReferenceURI(targetNamespa

ceURIPrefix + "preChecksParameter");

preChecksAnnotationCondition.setType(AnnotationType.META_D

ATA);

preChecksParameter.addSemanticAnnotation(preChecksAnnotati

onCondition);

checkLawfulness.addOutputParameter(preChecksParameter);

// Gateway

// Pre-Check exclusive fork gateway

ExclusiveGateway preCheckForkGateway = new

ExclusiveGatewayImpl();

preCheckForkGateway.setSplit(true);

preCheckForkGateway.setCondition(preChecksAnnotationCondit

ion);

process.addProcessElement(preCheckForkGateway);

214

// Pre-Check exclusive merge gateway

ExclusiveGateway preCheckMerge = new

ExclusiveGatewayImpl();

preCheckMerge.setSplit(false);

process.addProcessElement(preCheckMerge);

// ---- Send Denial: Activity bound to a conversation

Conversation sendDenialConversation = new

ConversationImpl();

Service sendDenialService = new ServiceImpl();

sendDenialService.setServiceReference();

sendDenialConversation.addService(sendDenialService);

Activity sendDenial = new ActivityImpl();

sendDenial.setName("Send Denial");

sendDenial.setOperation(); // Add operation

sendDenial.setSynchronous(true); // blocking operation

(default)

sendDenial.setConversation(sendDenialConversation);

process.addProcessElement(sendDenial);

// Input/Output

sendDenial.addInputParameter(citizenInCRMforkParameter);

sendDenial.addOutputParameter(citizenInCRMforkParameter);

sendDenial.addOutputParameter(preChecksParameter);

// ---- Check identity: Activity performed by human

// Binding of human tasks not further specified in this

thesis

// Service checkIdentityService = new ServiceImpl();

// checkIdentityService.setServiceReference();

Activity checkIdentity = new ActivityImpl();

checkIdentity.setName("Check Identity");

checkIdentity.setHumanTask(true);

process.addProcessElement(checkIdentity);

// ---- Check legal form: Activity performed by human

// Binding of human tasks not further specified in this

thesis

// Service checkLegalFormService = new ServiceImpl();

// checkLegalFormService.setServiceReference();

Activity checkLegalForm = new ActivityImpl();

checkLegalForm.setName("Check Legal Form");

checkLegalForm.setHumanTask(true);

process.addProcessElement(checkLegalForm);

215

// ---- Check operation allowance: Activity performed by

human

// Binding of human tasks not further specified in this

thesis

// Service checkOperationAllowanceService = new

ServiceImpl();

// checkOperationAllowanceService.setServiceReference();

Activity checkOperationAllowance = new ActivityImpl();

checkOperationAllowance.setName("Check Operation

Allowance");

checkOperationAllowance.setHumanTask(true);

process.addProcessElement(checkOperationAllowance);

// Input/Output

Parameter mainCheckParameter = new ParameterImpl();

SemanticAnnotation mainCheckAnnotationCondition = new

SemanticAnnotationImpl();

mainCheckAnnotationCondition.setReferenceURI(targetNamespa

ceURIPrefix + "mainCheckParameter");

mainCheckAnnotationCondition.setType(AnnotationType.META_D

ATA);

mainCheckParameter.addSemanticAnnotation(mainCheckAnnotati

onCondition);

checkOperationAllowance.addOutputParameter(mainCheckParame

ter);

sendDenial.addOutputParameter(mainCheckParameter);

// Gateway

// Main check exclusive fork gateway

ExclusiveGateway mainCheckForkGateway = new

ExclusiveGatewayImpl();

mainCheckForkGateway.setSplit(true);

mainCheckForkGateway.setCondition(mainCheckAnnotationCondi

tion);

process.addProcessElement(mainCheckForkGateway);

// Main Check exclusive merge gateway

ExclusiveGateway mainCheckMerge = new

ExclusiveGatewayImpl();

mainCheckMerge.setSplit(false);

process.addProcessElement(mainCheckMerge);

// ---- Search for tax office in charge & notify tax

office: Activity bound to a conversation

Conversation searchForTaxOfficeConversation = new

ConversationImpl();

Service searchForTaxOfficeService = new ServiceImpl();

216

searchForTaxOfficeService.setServiceReference();

searchForTaxOfficeConversation.addService(searchForTaxOffi

ceService);

Activity searchForTaxOffice = new ActivityImpl();

searchForTaxOffice.setName("Search For Tax Office");

searchForTaxOffice.setOperation();

searchForTaxOffice.setSynchronous(true); // blocking

operation (default)

searchForTaxOffice.setConversation(searchForTaxOfficeConve

rsation);

process.addProcessElement(searchForTaxOffice);

// Input/Output

searchForTaxOffice.addInputParameter(citizenInCRMforkParam

eter);

// ---- Create sales order for service Business

Registration Activity bound to a conversation

Conversation createSalesOrderForServiceConversation = new

ConversationImpl();

Service createSalesOrderForServiceService = new

ServiceImpl();

createSalesOrderForServiceService.setServiceReference();

createSalesOrderForServiceConversation.addService(createSa

lesOrderForServiceService);

Activity createSalesOrderForService = new ActivityImpl();

createSalesOrderForService.setName("Create Sales Order For

Service");

createSalesOrderForService.setOperation();

createSalesOrderForService.setSynchronous(true); //

blocking operation (default)

createSalesOrderForService.setConversation(createSalesOrde

rForServiceConversation);

process.addProcessElement(createSalesOrderForService);

// Input/Output

createSalesOrderForService.addInputParameter(citizenInCRMf

orkParameter);

Parameter salesOrder = new ParameterImpl();

SemanticAnnotation so = new SemanticAnnotationImpl();

so.setReferenceURI(targetNamespaceURIPrefix +

"salesOrder");

so.setType(AnnotationType.META_DATA);

salesOrder.addSemanticAnnotation(so);

createSalesOrderForService.addOutputParameter(salesOrder);

217

// ---- Send confirmation: Activity bound to a

conversation

Conversation sendConfirmationConversation = new

ConversationImpl();

Service sendConfirmationService = new ServiceImpl();

sendConfirmationService.setServiceReference();

sendConfirmationConversation.addService(sendConfirmationSe

rvice);

Activity sendConfirmation = new ActivityImpl();

sendConfirmation.setName("Send Confirmation");

sendConfirmation.setOperation();

sendConfirmation.setSynchronous(true); // blocking

operation (default)

sendConfirmation.setConversation(sendConfirmationConversat

ion);

process.addProcessElement(sendConfirmation);

// Input/Output

sendConfirmation.addInputParameter(citizenInCRMforkParamet

er);

sendConfirmation.addInputParameter(salesOrder);

sendConfirmation.addOutputParameter(citizenInCRMforkParame

ter);

sendConfirmation.addOutputParameter(salesOrder);

// ---- Archive: Activity bound to a conversation

Conversation archiveConversation = new ConversationImpl();

Service archiveService = new ServiceImpl();

archiveService.setServiceReference();

archiveConversation.addService(archiveService);

Activity archive = new ActivityImpl();

archive.setName("Archive");

archive.setOperation();

archive.setSynchronous(true); // blocking operation

(default)

archive.setConversation(archiveConversation);

process.addProcessElement(archive);

// Input/Output

archive.addInputParameter(citizenInCRMforkParameter);

archive.addInputParameter(preChecksParameter);

archive.addInputParameter(mainCheckParameter);

archive.addInputParameter(salesOrder);

218

///

// Flows

///

// Start (Receive from) -> Find citizen in CRM

process.addProcessElement(new FlowImpl(start,

findCitizenInCRM));

// Find Citizen in CRM

process.addProcessElement(new FlowImpl(findCitizenInCRM,

citizenInCRMforkGateway));

// Citizen in CRM Fork

Flow citizenInCRMforkOutgoingFlow1 = new

FlowImpl(citizenInCRMforkGateway, citizenInCRMMerge);

Flow citizenInCRMforkOutgoingFlow2 = new

FlowImpl(citizenInCRMforkGateway, createCitizenInCRM);

citizenInCRMforkOutgoingFlow1.setCondition(citizenInCRMfor

kOutgoingFlow1Condition);

citizenInCRMforkOutgoingFlow2.setCondition(citizenInCRMfor

kOutgoingFlow2Condition);

process.addProcessElement(citizenInCRMforkOutgoingFlow1);

process.addProcessElement(citizenInCRMforkOutgoingFlow2);

// Create citizen in CRM

process.addProcessElement(new FlowImpl(createCitizenInCRM,

citizenInCRMMerge));

// Citizen in CRM Merge

process.addProcessElement(new FlowImpl(citizenInCRMMerge,

readBankDetailsOfCitizen));

// Read Bank Details of Citizen

process.addProcessElement(new

FlowImpl(readBankDetailsOfCitizen,

citizenBankDetailsAvailableFork));

// Citizen Bank Details Available Fork

Flow bankDetailsOfCitizenForkPositiveFlow = new

FlowImpl(citizenBankDetailsAvailableFork,

citizenBankDetailsAvailableMerge);

Flow bankDetailsOfCitizenForkNegativeFlow = new

FlowImpl(citizenBankDetailsAvailableFork,

createBankDetailsForCitizen);

bankDetailsOfCitizenForkPositiveFlow.setCondition(bankDeta

ilsOfCitizenForkAnnotationCondition);

219

bankDetailsOfCitizenForkNegativeFlow.setCondition(bankDeta

ilsOfCitizenForkAnnotationCondition);

process.addProcessElement(bankDetailsOfCitizenForkPositive

Flow);

process.addProcessElement(bankDetailsOfCitizenForkNegative

Flow);

// Create Bank Details for Citizen

process.addProcessElement(new

FlowImpl(createBankDetailsForCitizen,

citizenBankDetailsAvailableMerge));

// Citizen Bank Details Available Merge

process.addProcessElement(new

FlowImpl(citizenBankDetailsAvailableMerge,

checkLocation));

// Check Location

process.addProcessElement(new FlowImpl(checkLocation,

checkLawfulness));

// Check Lawfulness

process.addProcessElement(new FlowImpl(checkLawfulness,

preCheckForkGateway));

// Pre-Check Fork

Flow preCheckForkPositiveFlow = new

FlowImpl(preCheckForkGateway, checkIdentity);

Flow preCheckForkNegativeFlow = new

FlowImpl(preCheckForkGateway, preCheckMerge);

preCheckForkPositiveFlow.setCondition(preChecksAnnotationC

ondition);

preCheckForkNegativeFlow.setCondition(preChecksAnnotationC

ondition);

process.addProcessElement(preCheckForkPositiveFlow);

process.addProcessElement(preCheckForkNegativeFlow);

// Check Identity

process.addProcessElement(new FlowImpl(checkIdentity,

checkLegalForm));

// Check Legal Form

process.addProcessElement(new FlowImpl(checkLegalForm,

checkOperationAllowance));

// Check OperationAllowance

process.addProcessElement(new

FlowImpl(checkOperationAllowance,mainCheckForkGateway));

220

// Main Check Fork

Flow mainCheckFormPositiveFlow = new

FlowImpl(mainCheckForkGateway, searchForTaxOffice);

Flow mainCheckFormNegativeFlow = new

FlowImpl(mainCheckForkGateway, preCheckMerge);

mainCheckFormPositiveFlow.setCondition(mainCheckAnnotation

Condition);

mainCheckFormNegativeFlow.setCondition(mainCheckAnnotation

Condition);

process.addProcessElement(mainCheckFormPositiveFlow);

process.addProcessElement(mainCheckFormNegativeFlow);

// Pre-Check Merge

process.addProcessElement(new FlowImpl(preCheckMerge,

sendDenial));

// Send Denial

process.addProcessElement(new FlowImpl(sendDenial,

mainCheckMerge));

// Main Check Merge

process.addProcessElement(new FlowImpl(mainCheckMerge,

archive));

// Search for Tax Office

process.addProcessElement(new FlowImpl(searchForTaxOffice,

createSalesOrderForService));

// Create Sales Order

process.addProcessElement(new

FlowImpl(createSalesOrderForService, sendConfirmation));

// Send Confirmation

process.addProcessElement(new FlowImpl(sendConfirmation,

mainCheckMerge));

// Archive

process.addProcessElement(new FlowImpl(archive, end));

return process;

}

}

221

9.1.2 Ontology Sample File

The following example shows an ontological description of a dimension definition.

Further, the example reveals how a query could be created that uses that dimension

example. The example is taken out of the project SOA4All.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-

flight"

namespace {

_"http://www.soa4all.eu/ontologies/kb/examples/agegroup#"

 }

ontology example1

/* The present WSML file is to demonstrate a simple

example of dimension definition and how a query could be

constructed to use it.

The scenario is intended to illustrate how to indicate a

service's sensitivity to an age group and how to simply

associate a person with that service (as user.

Scenario:

- There are 4 persons of age, respectively 6, 23, 40 and

66.

- Four age groups are defined as follows:

 age group 1: 0 to 17

 age group 2: 18 to 24

 age group 3: 25 to 65

 age group 4: over 66

- Two services differ in their sensitivity to age groups.

Service 1 is sensitive to a dimension that includes age

group 2 and 3. For example, it is geared towards active

adults.

Service 2 is sensitive to a dimension that includes only

age group 4. For example, it is geared towards 'senior

citizens'.

*/

/* Domain ontology */

concept Person subConceptOf GeoLocated

 hasGender ofType Gender

 hasAgeInYears ofType _integer

 hasAgeGroup ofType AgeGroup

222

concept Gender

instance Male memberOf Gender

instance Female memberOf Gender

concept AgeGroup

 hasInRange ofType _integer

instance AgeGroup0to17 memberOf AgeGroup

instance AgeGroup18to24 memberOf AgeGroup

instance AgeGroup25to65 memberOf AgeGroup

instance AgeGroup66to memberOf AgeGroup

axiom agegroup0to17def

 definedBy

 ?x[hasAgeGroup hasValue AgeGroup0to17]

 impliedBy ?x[hasAgeInYears hasValue ?a] and ?a =< 17.

axiom agegroup18to24def

 definedBy

 ?x[hasAgeGroup hasValue AgeGroup18to24]

 impliedBy ?x[hasAgeInYears hasValue ?a] and ?a >= 18 and

?a =< 24.

axiom agegroup25to65def

 definedBy

 ?x[hasAgeGroup hasValue AgeGroup25to65]

 impliedBy ?x[hasAgeInYears hasValue ?a] and ?a >= 25 and

?a =< 65.

axiom agegroup66todef

 definedBy

 ?x[hasAgeGroup hasValue AgeGroup66to]

 impliedBy ?x[hasAgeInYears hasValue ?a] and ?a >= 66.

/* Person KB */

instance MrsGoggins memberOf Person

 hasGender hasValue Female

 hasAgeInYears hasValue 66

instance Patrick memberOf Person

 hasGender hasValue Male

 hasAgeInYears hasValue 40

instance Amy memberOf Person

 hasGender hasValue Female

 hasAgeInYears hasValue 23

instance Julian memberOf Person

 hasGender hasValue Male

 hasAgeInYears hasValue 6

/* Sensitivity (of Service) to agegroup */

223

concept Service

 hasSensitivityTo ofType Dimension

concept Dimension

 hasDimensionValue impliesType DimensionValue

concept DimensionValue

instance AgeGroupDimensionUnder65 memberOf Dimension

 hasDimensionValue hasValue {AgeGroup0to17,

AgeGroup18to24, AgeGroup25to65}

 hasAssociatedSlot hasValue hasAgeGroup

instance AgeGroupDimensionOver18Under65 memberOf Dimension

 hasDimensionValue hasValue {AgeGroup18to24,

AgeGroup25to65}

 hasAssociatedSlot hasValue hasAgeGroup

instance AgeGroupDimensionOver66 memberOf Dimension

 hasDimensionValue hasValue AgeGroup66to

 hasAssociatedSlot hasValue hasAgeGroup

instance Service1 memberOf Service

 hasSensitivityTo hasValue

AgeGroupDimensionOver18Under65

instance Service2 memberOf Service

 hasSensitivityTo hasValue AgeGroupDimensionOver66

/* select is the service-person dummy relation for this

example.

The two more specific relations, select1 and select 2, are

only used here to illustrate specifically two axioms for

infering select-relationships. The first axiom relies

merely on the fact that dimensions have associated values.

The second axiom abstract over the slot associated with a

dimension and is therefore the only one reusable without

modification. * /

relation select (ofType Service, ofType Person)

relation select1 (ofType Service, ofType Person)

subRelationOf select

relation select2 (ofType Service, ofType Person)

subRelationOf select

 /* SIMPLE:

This axiom allows to infer (Service,Person) relationships.

A relationship between a service S and a person P will be

inferred when S is sensitive to a defined dimension that

has as one of its values the age group to which P is

224

associated through the hasAgeGroup slot of the concept

Person.

 */

axiom selectdefsimple

definedBy

 select1(?x, ?y)

 impliedBy

 ?x[hasSensitivityTo hasValue ?d]

 and ?d[hasDimensionValue hasValue ?v]

 and ?y[hasAgeGroup hasValue ?v].

 /* General (with property variable)

The following axiom, selectdefwithslot, is an abstraction

over the previous axiom, selectdefsimple. In

selectdefwithslot ?s is a variable and its value is found

as the value for the 'hasAssociatedSlot' property of a

dimension which is a value for the variable ?d.

*/

axiom selectdefwithslot

definedBy

 select2(?x, ?y)

 impliedBy

 ?x[hasSensitivityTo hasValue ?d]

 and ?d[hasDimensionValue hasValue ?v]

 and ?d[hasAssociatedSlot hasValue ?s]

 and ?y[?s hasValue ?v] .

/* Query example (tested in the WSMT2.0 reasonner's tab)

Query: select(?x , ?y)

Results:

?x: Service1 ?y: Patrick

?x: Service1 ?y: Amy

?x: Service2 ?y: MrsGoggins

(The same results are obtained for the relations select1

and select2.)

*/

9.2 EVALUATION WORKSHOPS

As described in section 7.2.1 a focus group evaluation workshop has been conducted

in the context of the project SOA4All in order to gather feedback about the main ideas

of the LPMS and service composition in general.

225

The main objectives of the workshop had been to

- Obtain general opinions of the business users about end-user development of

service-based software;

- Evaluate and compare the current mock-ups of the process editor within a

participatory design process;

- Gather as many LPMS requirements as possible.

The workshop execution has been as follows:

- At least 12 participants for the planned session that had been divided into 3 groups,

plus one moderator for each group.

- The session lasted for about 3.5 hours in a large seminar room with 3 round tables

seating 6 each, including a 20-minutes break in the middle.

- A 30-minutes introductory talk has been followed by a 20-minutes discussion on the

perceptions about risks and benefits of the envisioned mode of user-driven service

composition, and on existing practices and proposed supporting actions

- A short notational study has discovered how participants understand core proposed

representations of the LPML

- After the break, the discussion focused on alternative designs for a business user tool

for service composition. Questionnaires and audio tapes have been used to record the

participants’ responses for the analysis.

In order to gather information about the background of business users, their general

ideas and thoughts about service composition specific questions have been asked, such

as:

- What information/ system parts do you consider is important for your job?

- What features do you like about your current tools?

- What features do you dislike about your current tools?

- What aspects do you consider problematic in your current tools?

Other questions have focused on end user development issues:

- What are the benefits of end user development?

- What are the risks of end user development?

- What strategies / approaches do end users follow when developing applications?

226

9.3 EVALUATION SURVEY

In the following, the evaluation survey questions conducted in the context of this thesis

are illustrated. The survey has been implemented through the survey tool Unipark
28

.

28
 See www.unipark.de

227

228

229

230

231

232

233

10 BIBLIOGRAPHY

Adams, M., Ter, Edmond, D., & van der Aalst, W. (2006). Worklets: A Service-

Oriented Implementation of Dynamic Flexibility in Workflows. In On the Move

to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE (pp.

291-308).

Adobe, S. I. (2008). LiveCycle ES Overview.

Allaire, J. (2002). Macromedia MX - A next generation rich client. San Francisco.

Allen, R. (2001). Workflow: An Introduction: Workflow Management Coalition.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2004). Web Services: Concepts,

Architectures and Applications. Berlin: Springer Verlag.

Andrikopoulos, V., Bertoli, P., Bindelli, S., Di Nitto, E., Gehlert, A., Germanovich, L.,

et al. (2008). State of the art report on software engineering design knowledge
and Survey of HCI and contextual Knowledge : S-CUBE.

Appian. (2010). Appian Business Process Management Suite , from www.appian.com

Ardissano, L., Furnari, R., Goy, A., Petrone, G., & Segnan, M. (2007). A framework

for the mangement of context-aware workflow systems. Paper presented at the

Third International Conference on Web Information Systems and Technologies,

Barcelona, Spain.

Armistead, C., Machin, S., & Pritchard, J. P. (1997). Approaches to business process

management. Paper presented at the International Conference of the European

Operations Management Association, IESE, Barcelona, Spain.

Barricelli, B. R., Mussio, P., Valtolina, S., Padula, M., Scala, P. L., & Piccinno, A.

(2010). Visual Workflow Composition through Semantic Orchestration of Web

Services. Paper presented at the EUD4Services Workshop in conjunction with

AVI2010, Rome.

Becker, J., Rosemann, M., & Kugeler, M. (2003). Process Management: Springer-

Verlag New York, Inc.
Becker, J., Rosemann, M., & Schütte, R. (1995). Grundsätze ordnungsgemäßer

Modellierung. Wirtschaftsinformatik, 37.

Benslimane, D., Dustdar, S., & Sheth, A. (2008). Services Mashups: The New

Generation of Web Applications. IEEE Internet Computing, 12(5), 13-15.

Bittinger, S., & Di Maio, A. (2010). Hype Cycle for Government Transformation,

2010.

Blackwell, A. F. (2002). First Steps in Programming: A Rationale for Attention

Investment Models. In Proceedings of the IEEE 2002 Symposia on Human

Centric Computing Languages and Environments (HCC'02) (pp. 2): IEEE

Computer Society.

Blechar, M. (2007). Magic Quadrant for Business Process Analysis Tools, 2H07-

1H08.

Blythe, J., Deelman, E., & Gil, Y. (2003). Planning for workflow construction and

maintenance on the grid. Paper presented at the ICAPS 03 - Workshop on Web

Services Composition.

http://www.appian.com/

234

Böhmann, T., Junginger, M., & Krcmar, H. (2003). Modular Service Architectures: A
concept and method for engineering IT services. Paper presented at the 36th

Hawaii international conference on system sciences (HICSS'03), Hawaii.

Born, M. (2009). Towards efficient user guidance in Business Process Modeling.

Unpublished Dissertation Thesis, TU Clausthal, Clausthal.

Born, M., Hoffmann, J. r., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna,

J., et al. (2009). Supporting Execution-Level Business Process Modeling with

Semantic Technologies. In Proceedings of the 14th International Conference on

Database Systems for Advanced Applications (pp. 759-763). Brisbane,

Australia: Springer-Verlag.

Bouquet, P., Fausto, G., Van Harmelen, F., Serafini, L., & Stuckenschmidt, H. (2003).

C-OWL: Contextualizing Ontologies. In Journal of Web Semantics (pp. 164-

179): Springer Verlag.

Brancheau, J. C., & Brown, C. V. (1993). The management of end-user computing:

status and directions. ACM Comput. Surv., 25(4), 437-482.

Bretzke, W.-R. (1980). Der Problembezug von Entscheidungsmodellen . Tübingen:
Mohr.

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-modelling based assembly

techniques for situational method engineering. Information Systems, 24(3), 209-

228.

Brockhaus, D. (2002). Der Brockhaus Computer und Informationstechnologie. Leipzig

- Mannheim: F.A. Brockhaus GmbH.

Brogi, A., & Popescu, R. (2007). Service adaptation through trace inspection.

International Journal of Business Process Integration and Management

(IJBPMIM), 2(1), 9-16.

Brown, W. A., & Cantor, M. (2006). SOA governance: how to oversee successful

implementation through proven best practices and methods : IBM.

Bunge, M. (1977). Treatise on Basic Philosophy. Ontology I: The furniture of the

world, 3.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Past, Present, and Future
Trends in Software Patterns. IEEE Software, 24(7/8), 31-37.

Canning, R. G. (1981a). Programming by end users. EDP Analyzer, 19(5).

Canning, R. G. (1981b). Supporting end-user programming. EDP Analyzer, 19(6).

Cantara, M. (2009). Research Index: A Guide to Principles of Business Process

Management: Gartner Research.

Cantara, M., Plummer, D. C., Kenney, L. F., White, A., Wilson, D. R., Lheureux, B.

J., et al. (2009). Hype Cycle for Business Process Management, 2009.

Casati, F., Ilnicki, S., Jin, L.-j., Krishnamoorthy, V., & Shan, M.-C. (2000). Adaptive

and Dynamic Service Composition in eFlow. In Proceedings of the 12th

International Conference on Advanced Information Systems Engineer ing (pp.

13-31): Springer-Verlag.

Cavallaro, L., & Nitto, E. D. (2008). An approach to adapt service requests to actual

service interfaces. In Proceedings of the 2008 international workshop on

Software engineering for adaptive and self-managing systems (pp. 129-136).

Leipzig, Germany: ACM.
Cavallaro, L., Ripa, G., & Zuccala, M. (2009). Adapting service requests to actual

service interfaces through semantic annotations. In Proceedings of the 2009

235

ICSE Workshop on Principles of Engineering Service Oriented Systems (pp. 83-
86): IEEE Computer Society.

Chandrasekaran, B. (1990). Design problem solving: a task analysis. AI Mag., 11(4),

59-71.

Chang, J. F. (2005). Business Process Management Systems: Strategy and

Implementation: Auerbach Publications.

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web Service

Definition Language (WSDL).

Cimpian, E., Moran, M., Oren, E., Vitvar, T., & Zaremba, M. (2005). D13.0 v0.2

Overview and Scope of WSMX: WSMO Working Group.

Colombo, M., Di Nitto, E., & Mauri, M. (2006). SCENE: A Service Composition

Execution Environment Supporting Dynamic Changes Disciplined Through

Rules, Service-Oriented Computing â€“ ICSOC 2006 (pp. 191-202).

Commission, E. (2006). Directive 2006/123/EC of the European Parliament and of the

Council of 12 December 2006 on Services in the Internal Market, OJ L376 .

Commission, E. (2007). Handbook on Implementation of the Services Directive .
Cordys. (2010). Cordys Business Process Management Suite .

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Commun. ACM, 35(9),

75-90.

Czarnecki, K., Eisenecker, U., Glueck, R., Vandevoorde, D., & Veldhuizen, T. (2000).

Generative Programming and Active Libraries. In M. Jazayeri, R. Loos & D.

Musser (Eds.), Generic Programming (Vol. 1766, pp. 25-39): Springer Berlin /

Heidelberg.

Davenport, T. H. (1993). Process Innovation: Reengineering Work through

Information Technology. Boston: Harvard Business School Press.

Davis, R. (2001). Business Process Modelling with ARIS . London: Springer-Verlag.

Denning, P., Horning, J., Parnas, D., & Weinstein, L. (2005). Wikipedia risks.

Commun. ACM, 48(12), 152-152.

Destatis. (2010). Peronnel of public service institutions . Retrieved 02/08/2010, from

http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/EN/Content/St
atistics/FinanzenSteuern/PublicService/PublicServicePersonnel/Aktuell,templat

eId=renderPrint.psml

Dey, A. K. (2001). Understanding and Using Context. Personal Ubiquitous Comput.,

5(1), 4-7.

Dimitrov, M., Simov, A., Stein, S., & Konstantinov, M. (2007). A BPMO Based

Semantic Business Process Modelling Environment. In SBPM.

Dostal, W., Jeckle, M., Melzer, I., & Zengler, B. (2005). Service-orientierte

Architekturen mit Web Services. München: Spektrum Akademischer Verlag.

Driver, E., & Rogowski, R. (2007). RIAs bring people-centered design to information

workplaces.

Duesseldorf. (2009). oEPK Prozessmodell "Elektronische Gewerbeanmeldung".

Retrieved 16.07.2010, from

http://www.duesseldorf.de/egovernment/pdf/oepkkommunaleverfahren.pdf

Ehrig, M., Koschmider, A., & Oberweis, A. (2007). Measuring similarity between

semantic business process models. In Proceedings of the fourth Asia-Pacific
conference on Comceptual modelling - Volume 67 (pp. 71-80). Ballarat,

Australia: Australian Computer Society, Inc.

http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/EN/Content/Statistics/FinanzenSteuern/PublicService/PublicServicePersonnel/Aktuell,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/EN/Content/Statistics/FinanzenSteuern/PublicService/PublicServicePersonnel/Aktuell,templateId=renderPrint.psml
http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/EN/Content/Statistics/FinanzenSteuern/PublicService/PublicServicePersonnel/Aktuell,templateId=renderPrint.psml
http://www.duesseldorf.de/egovernment/pdf/oepkkommunaleverfahren.pdf

236

Elzinga, D. J., Horak, T., Chung-Yee, L., & Brunner, C. (1995). Business Process
Management: Survey and Methodology. IEEE Transactions on Engineering

Management, 24(2), 119-128.

Fettke, P., & Loos, P. (2003). Ontological evaluation of reference models using the

Bunge-Wand-Weber model. Paper presented at the Americas Conference on

Information Systems (AMCIS), Tampa.

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. Unpublished PhD Thesis, University of California, Irvine.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., & Mehandjiev, N. (2004). Meta-

design: a manifesto for end-user development. Commun. ACM, 47(9), 33-37.

Fötsch, D., Speck, A., & Hänsgen, P. (2005). The Operator Hierarchy Concept for

XML Document Transformation Technologies. In R. Eckstein & R. Tolksdorf

(Eds.), Berliner XML Tage 2005 (pp. 59-70). Berlin: Humboldt-Universität zu

Berlin.

Frank, J. H., Gardner, T. A., Johnston, S. K., White, S. A., & Iyengar, S. (2004).

Business Process Definition Metamodel - Concepts and overview. Retrieved
04.12.06, 2006, from http://www.omg.org/docs/bei/04-05-03.pdf

Frank, U. (1998). Evaluating Modeling Languages: Relevant Issues, Epistemological

Challenges and a Preliminary Research Framework . Koblenz: Universitaet

Koblenz Landau, Institut für Wirtschaftsinformatik.

Gadatsch, A. (2005). Grundkurs Geschäftsprozess-Management: Vieweg Friedr. +

Sohn Ver.

Gao, Y. (2008). BPMN-BPEL Transformation and Round Trip Engineering : OASIS.

Geelan, J. (2008). The Business Value of RIAs: An informal, virtual round table .

Retrieved 08/09/2008, from http://pbdj.sys-con.com/node/492119?page=1

Gehlert, A., Pfeiffer, D., & Becker, J. (2007). The BWW-Model as Method

Engineering Theory. Paper presented at the 13th Americas Conference on

Information Systems (AmCIS 2007), Keystone, CO, USA.

Genovese, Y., Comport, J., & Hayward, S. (2006). Person-to-Process Interaction

Emerges as the "Process of Me".
Giaglis, G. M. (2001). A Taxonomy of Business Process Modeling and Information

Systems Modeling Techniques, International Journal of Flexible

Manufacturing Systems (Vol. 13, pp. 209-228): Springer Netherlands.

Gil, Y. (2006). Workflow Composition. In D. Gannon, E. Deelman, M. Shields & I.

Taylor (Eds.), Workflows for e-Science: Springer Verlag.

González-Cabero, R., Lecue, F., & Villa, M. (2008). D6.4.1 Specification and First

Prototype of Service Composition and Adaptation Environment .

Gorronogoitia, Y., Radzimski, M., Lecue, F., Villa, M., & Di Matteo, G. (2010).

D6.4.2 Advanced Prototype For Service Composition And Adaptation

Environment.

Green, P., & Rosemann, M. (2000). Integrated Process Modelling: An ontological

evaluation. Information Systems, 25, 73-87.

Green, P., Rosemann, M., Indulska, M., & Manning, C. (2007). Candidate

Interoperability Standards: An Ontological Overlap Analysis. Data &

Knowledge Engineering, 62(2), 274-291.
Greenfield, J. (2004). Software Factories: Assembling Applications with Patterns,

Models, Frameworks and Tools. In G. Karsai & E. Visser (Eds.), Generative

http://www.omg.org/docs/bei/04-05-03.pdf
http://pbdj.sys-con.com/node/492119?page=1

237

Programming and Component Engineering (Vol. 3286, pp. 403-482): Springer
Berlin / Heidelberg.

Greiffenberg, S. (2003). Methoden als Theorien der Wirtschaftsinformatik. Paper

presented at the 6th International Conference Wirtschaftsinformatik, Dresden.

Group, W. C. W. S. A. W. (2004). Web Services Architecture, from

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

Group, W. C. W. S. A. W. (2004). Web Services Glossary

Gruber, T. R. (1992). A Translation Approach to Portable Ontology Specifications.

Stanford, California: Knowledge Systems Laboratory.

Gschwind, T., Koehler, J., & Wong, J. (2008). Applying Patterns during Business

Process Modeling. In Proceedings of the 6th International Conference on

Business Process Management (pp. 4-19). Milan, Italy: Springer-Verlag.

Habbel, F.-R. (2008). EU Service Directive: a challenge for Paneuropean

Government.

Hagemeyer, J., Hermann, T., Just, K., & Rüdiger, S. (1997). Flexibilität bei Workflow-

Management-Systemen. Software-Ergonomie, '97, 179-190.
Hammer, M. (1990). Re-engineering work: don’t automate, obliterate. Harvard

Business Review(July-August), 104-112.

Hammer, M., & Champy, J. (1993). Re-engineering the Corporation: A Manifesto for

Business Revolution. London: Nicolas Brearly.

Hammer, M., & Champy, J. (1994). Business reengineering - Die Radikalkur für das

Unternehmen (2. Auflage ed.). Frankfurt am Main: Campus.

Hammer, M., & Stanton, S. (1999). How process enterprise really work. Harvard

Business Review(November-December), 108-118.

Han, Y. (1997). Software Infrastructure for Configurable Workflow Systems.

Unpublished PhD Thesis, Techical University of Berlin, Berlin.

Harrington, H. J. (1991). Business Process Improvement: The Breakthrough Strategy

for Total Quality, Productivity and Competitiveness. New York: McGraw-Hill.

Havey, M. (2005). Essential Business Process Modeling: O'Reilly Media, Inc.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1), 75-105.

High, R. J., Kinder, S., & Graham, S. (2005). IBM's SOA Foundation - An

Architectural Introduction and Overview.

Hill, C., Yates, R., Jones, C., & Kogan, S. L. (2006). Beyond predictable workflows:

enhancing productivity in artful business processes. IBM Syst. J., 45(4), 663-

682.

Hill, J. B., Cantara, M., Kerremans, M., & Plummer, D. C. (2009). Magic Quadrant

for Business Process Management Suites.

Hoffmann, W., Kirsch, J., & Scheer, A.-W. (1993). Modellierung mit

Ereignisgesteuerten Prozessketten. IWi Heft, 101.

Hollingsworth, D. (1995). The Workflow Reference Model.

Hornung, T., Koschmider, A., & Lausen, G. (2008). Recommendation Based Process

Modeling Support: Method and User Experience. In Proceedings of the 27th

International Conference on Conceptual Modeling (pp. 265-278). Barcelona,

Spain: Springer-Verlag.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

238

Hoyer, V., Janner, T., Delchev, I., Fuchsloch, A., L\&\#243;pez, J., Ortega, S., et al.
(2009). The FAST Platform: An Open and Semantically-Enriched Platform for

Designing Multi-channel and Enterprise-Class Gadgets

10.1007/978-3-642-10383-4_21. In Proceedings of the 7th International Joint

Conference on Service-Oriented Computing (pp. 316-330). Stockholm:

Springer-Verlag.

Hoyer, V., & Stanoevska-Slabeva, K. (2009). Towards a Reference Model for

Grassroots Enterprise Mashup Environments. Paper presented at the 17th

European Conference on Information Systems (ECIS 2009), Verona, Italy.

IRS. (2010). Internet Reasoning Service III. Retrieved 29.12.2010, from

http://technologies.kmi.open.ac.uk/irs/#irsiii

Jablonski, S., Böhm, M., & Schulze, W. (1997). Workflow Management - Entwicklung

von Anwendungen und Systemen. Heidelberg: dpunkt.

Jablonski, S., & Bussler, C. (1996). Workflow management : modeling concepts,

architecture and implementation. London ; Sydney :: International Thomson

Computer Press.
Jarczyk, A. P. J., Loeffler, P., & Iii, F. M. S. (1992). Design Rationale for Software

Engineering: A Survey: Press L2.

Keller, G., Nüttgens, M., & Scheer, A.-W. (1992). Semantische Prozeßmodellierung

auf der Grundlage "Ereignisgesteuerter Prozeßketten (EPK)". IWI-Heft, 89.

Keller, U., Lara, R., Pollers, A., Toma, I., Kifer, M., & Fensel, D. (2004). WSMO Web

Service Discovery.

Kim, J., Suh, W., & Lee, H. (2002). Document-based workflow modeling: a case-

based reasoning approach. Expert Systems with Applications, 23(2), 77-93.

Kiper, J. D., Howard, E., & Ames, C. (1997). Criteria for Evaluation of Visual

Programming Languages. Journal of Visual Languages & Computing, 8(2),

175-192.

Kircher, M. (2007, 2007/06/27). Guest Editors' Introduction: Software Patterns. IEEE

Software, 24, 28-30.

Kittur, A., Suh, B., & Chi, E. H. (2008). Can you ever trust a wiki?: impacting
perceived trustworthiness in wikipedia. In Proceedings of the ACM 2008

conference on Computer supported cooperative work (pp. 477-480). San Diego,

CA, USA: ACM.

Klein, R., F., K., & A.-W., S. (2004). Modellierung inter-organisationaler Prozesse mit

Ereignisgesteuerten Prozessketten. IWI Heft, 178.

Ko, R., Lee, S., & Lee, E. (2009). Business process management (BPM) standards: a

survey. Business Process Management Journal, 15(5), 744-791.

Koehler, J., & Vanhatalo, J. (2007). Process anti-patterns: How to avoid the common

traps of business process modelling. IBM WebSphere Developer Technical

Journal.

Kopecky, J., Moran, M., Vitvar, T., Roman, D., & Mocan, A. (2007). D24.2v0.1

WSMO Grounding.

Kopecky, J., Vitvar, T., Fensel, D., & Gomadam, K. (2009). hRests & MicroWSMO.

Krummenacher, R., Domingue, J., Pedrinaci, C., & Simperl, E. (2010). SOA4All:

Towards a global service delivery platform. In F. I. Assembly (Ed.), Future
Internet.

239

Kueng, P., & Kawalek, P. (1997). Goal-based business process models: creation and
evaluation. Business Process Management Journal, 3(1), 17-38.

Kurpjuweit, S. (2009). Stakeholder-orientierte Modellierung und Analyse der

Unternehmensarchitektur unter besonderer Berücksichtigung der Geschäfts -

und IT-Architektur. Unpublished Doctoral Thesis, University of St. Gallen

(HSG), St. Gallen.

Lampert, D., & Pedrinaci, C. (2010). WSMO-Lite extras: The minimal service model

and service templates: STI Innsbruck.

Lanker, E. (2008). Services and processes at University of St. Gallen .Unpublished

manuscript, St. Gallen.

Le Clair, C., & Teubner, C. (2007). The Forrester Wave: Business Process

Management for document processes.

Lechner, U., Schmid, B. F., Schubert, P., & Zimmermann, H.-D. (1998). Die

Bedeutung von Business Communities für das Management der neuen

Geschäftsmedien. In M. Englien & K. Bender (Eds.), Gemeinschaften in neuen

Medien (GeNeMe 98) (pp. 203-219).
Lecue, F., Salibi, S., Bron, P., & Moreau, A. (2008). Semantic and Syntactic Data

Flow in Web Service Composition. In Proceedings of the 2008 IEEE

International Conference on Web Services (pp. 211-218): IEEE Computer

Society.

Lee, R. G., & Dale, B. G. (1998). Business process management: a review and

evaluation. Business Process Management Journal, 4(3), 214-225.

Leganza, G. (2006). Why is SOA hot in Government.

Lenat, D. (1998). The Dimensions of Context-Space.

Lieberman, H., Paterno, F., & Wulf, V. (2006). End-User Development: Springer.

Lillehagen, F., & Krogstie, J. (2008). Active Knowledge Modeling of Enterprises:

Springer Publishing Company, Incorporated.

Linden, T. A. (1991). Representing software designs as partially developed plans. In

M. Lowry & R. McCartney (Eds.), Automating Software Design (pp. 603-625):

AAAI Press / The MIT Press.
Lo, A., & Yu, E. (2008). From Business Models to Service-Oriented Design: A

Reference Catalog Approach. In Conceptual Modeling - ER 2007 (pp. 87-101).

Lombardi-BPM. (2010). IBM Lombardi BPM. Retrieved 12/12/2010, from

http://www.lombardisoftware.com/

Maamar, Z., Benslimane, D., & Narendra, N. C. (2006). What can context do for web

services? Commun. ACM, 49(12), 98-103.

MacCallum, K. J., & Yu, B. (1996). Modelling of Product Configuration Design and

Management by Using Product Structure Knowledge. In Knowledge intensive

CAD. London: Chapman & Hall.

MacLean, A., Carter, K., Loevstrand, L., & Moran, T. (1990). User-tailorable systems:

pressing the issues with buttons. In Proceedings of the SIGCHI conference on

Human factors in computing systems: Empowering people (pp. 175-182).

Seattle, Washington, United States: ACM.

Madhusudan, T., Zhao, J. L., & Marshall, B. (2004). A case-based reasoning

framework for workflow model management. Data Knowl. Eng., 50(1), 87-115.
Maleshkova, M., Pedrinaci, C., & Domingue, J. (2010). Semantic Annotation of Web

APIs with SWEET. Paper presented at the 6th Workshop on Scripting and

http://www.lombardisoftware.com/

240

Development for the Semantic Web at Extended Semantic Web Conference
(ESWC2010), Heraklion, Greece.

Malone, T. W., Crowston, K., & Herman, G. A. (2003). Organizing Business

Knowledge: The MIT Process Handbook: MIT Press.

Malone, T. W., Lai, K.-Y., & Fry, C. (1992). Experiments with Oval: a radically

tailorable tool for cooperative work. In Proceedings of the 1992 ACM

conference on Computer-supported cooperative work (pp. 289-297). Toronto,

Ontario, Canada: ACM.

March, S. T., & Smith, G. F. (1995). Design and Natural Science Research on

Information Technology. Decision Support Systems, 15.

Martin, J. (1982). Application Development without Programmers : Prentice Hall PTR.

McBride, N., & Wood-Harper, A. T. (2002). Towards User-Oriented control of End-

User Computing in Large Organisations. Journal of End user Computing.

McLean, E. R. (1979). End users as application developers. MIS Quarterly, 3(4), 37-

46.

Medicke, J., & McDavid, D. (2004). Patterns for Business Process Modelling.
Business Integration Journal, 1, 32-35.

Meehan, P. (2010). The Business Units CIO's 2010 Agenda .

Mehandjiev, N. (2008, 2008/09/15). End-User Development for task management:

Survey of attitudes and practices. Paper presented at the Visual Languages -

Human Centric Computing.

Mehandjiev, N., Sutcliffe, A. G., & Lee, D. (2006). Organisational view of end-user

development. In H. Lieberman, F. Paterno & V. Wulf (Eds.), End User

Development (Vol. 9, pp. 371-393): Human-Computer.

Mendling, J., Lassen, K. B., & Zdun, U. (2005). Transformation Strategies between

Block-Oriented and Graph-Oriented Process Modelling Languages: GITO-

Verlag.

Mendling, J., & Recker, J. (2008). Towards Systematic Usage of Labels and Icons in

Business Process Models. Paper presented at the CAiSE 2008 Workshop

Proceedings - Twelfth International Workshop on Exploring Modeling Methods
in Systems Analysis and Design (EMMSAD 2008).

Mens, T., Czarnecki, K., & Gorp, P. V. (2005). A taxonomy of model transformations.

Paper presented at the Language Engineering for Model-Driven Software

Development - Dagstuhl Seminar, Dagstuhl, Germany.

MIT. (1993). Watch what I do: programming by demonstration : MIT Press.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration tasks.

Paper presented at the Eleventh International Joint Conference on AI.

Moody, D., & Shanks, G. (1994). What makes a good data model? Evaluating the

quality of entity relationship models, Entity-Relationship Approach â€” ER '94

Business Modelling and Re-Engineering (pp. 94-111).

Morch, A., & Mehandjiev, N. (2000). Tailoring as Collaboration: The Mediating Role

of Multiple Representations and Application Units. Computer Supported

Cooperative Work, 9(1), 75-100.

Motta, E. (1999). Reusable Components for Knowledge Modelling: Case Studies in

Parametric Design Problem Solving: IOS Press.
Namoune, A., Mehandjiev, N., Lecue, F., Wajid, U., Macaulay, L., & Álvaro Rey, G.

(2009). D2.5.1 Formative Evaluation and User-Centred Design.

241

Namoune, A., Wajid, U., & Mehandjiev, N. (2009). Composition of interactive
service-based applications by end-users. Paper presented at the UGS 2009 - 1st

International Workshop on User-generated Services.

Nardi, B. A. (1993). A small matter of programming: perspectives on end user

computing: MIT Press.

Neiger, D., & Churilov, L. (2004a). Goal-oriented business process engineering

revisited: a unifying perspective. In Computer Supported Activity Coordinatin

(pp. 149-163): INSTICC Press.

Neiger, D., & Churilov, L. (2004b). Goal-Oriented Business Process Modeling with

EPCs and Value-Focused Thinking, Business Process Management (pp. 98-

115).

Nielsen, J. (1990). Paper versus computer implementations as mockup scenarios for

heuristic evaluation. In Proceedings of the IFIP TC13 Third Interational

Conference on Human-Computer Interaction (pp. 315-320): North-Holland

Publishing Co.

Nielsen, J. (1993). Usability Engineering: Morgan Kaufmann Publishers Inc.
Nitzsche, J., & Norton, B. (2009). Ontology-Based Data Mediation in BPEL (For

Semantic Web Services), Business Process Management Workshops (pp. 523-

534).

Nitzsche, J., van Lessen, T., Karastoyanova, D., & Leymann, F. (2007a). BPEL for

Semantic Web Services (BPEL4SWS). Paper presented at the On the Move to

Meaningful Internet Systems 2007: OTM 2007 Workshops.

Nitzsche, J., van Lessen, T., Karastoyanova, D., & Leymann, F. (2007b). BPEL-Light.

Paper presented at the 5th International Conference on Business Process

Management (BPM 2007).

Norton, D., Blechar, M., & Jones, T. (2010). Magic Quadrant for Business Process

Analysis Tools.

Nunamaker, J. F., Chen, M., & Purdin, T. D. M. (1991). Systems development in

information systems research. Journal of Management Information Systems,

7(3), 89-106.
OASIS. (2001). ebXML Technical Architecture Specification v1.0.4 : OASIS.

OASIS. (2005). Reference Model for Service Oriented Architectures .

OASIS. (2006). Web Services Business Process Execution Language Version 2.0 , from

http://www.oasis-open.org/committees/download.php/18714/wsbpel-

specification-draft-May17.htm

OMG. (2004). Business Process Definition Metamodel (Vol. Version 1.0.2): OMG.

OMG. (2006). Business Process Modeling Notation Specification, OMG Final

Adopted Specification dtc/06-02-01. Retrieved 27.04.2006, from

http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%20

1-0%20Spec%2006-02-01.pdf

Oppenheim, A. N. (1992). Questionnaire design, interviewing and attitude

measurement: Pinter Pub.

Ouyang, C., Dumas, M., ter Hofstede, A. H. M., & van der Aalst, W. M. P. (2007).

Pattern-based translation of BPMN process models to BPEL web services.

Padovitz, A., Loke, S. W., & Zaslavsky, A. (2004). Towards a Theory of Context
Spaces. In Proceedings of the Second IEEE Annual Conference on Pervasive

Computing and Communications Workshops (pp. 38): IEEE Computer Society.

http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BPMN%201-0%20Spec%2006-02-01.pdf

242

Paige, R., Ostroff, J. S., & Brooke, P. J. (2000). Principles for Modeling Language
Design. Information and Software Technology, 42(10), 665-675.

Palmer, N. (2009). 2009 BPM State of the Market Report.

Pankratius, V., & Stucky, W. (2005). A formal foundation for workflow composition,

workflow view definition, and workflow normalization based on petri nets.

Paper presented at the 2nd Asia-Pacific conference on Conceptual modelling,

Newcastle, New South Wales, Australia.

Pavlov, G., Genevski, P., Vogel, J., Abels, S., Puram, S., Blood, S., et al. (2010).

D2.6.2 SOA4All Composer First Prototype.

Pedrinaci, C., Grenon, P., Galizia, S., Gugliotta, A., & Domingue, J. (2010). A

Knowledge-Based Framework for Web Service Adaptation to Context. In M.

Sheng, J. Yu & S. Dustdar (Eds.), Enabling Context-Aware Web Services:

Methods, Architectures, and Technologies: Chapman and Hall/CRC.

Pedrinaci, C., & Krummenacher, R. (2009). Goals in SOA4All.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A Design

Science Research Methodology for Information Systems Research. J. Manage.
Inf. Syst., 24(3), 45-77.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems: Prentice Hall

PTR.

Petri, C. (1962). Kommunikation mit Automaten. Institut fÃ¼r instrumentelle

Mathematik.

PICTURE. (2007). Report on Current Practice of Process Modelling Projects and

Technicques in European Public Administrations : EU FP6 project PICTURE.

Plummer, D. (2005). Defining 'Service' is Key to Implementing a Service-Oriented

Architecture.

Plummer, D., & Hill, J. (2009). Composition and BPM Will Change the Game for

Business System Design.

Powell, A., & Moore, J. E. (2002). The Focus of Research in End User Computing:

Where have we come since the 80ties? Journal of End user Computing, 14(1),

3-22.
Quinn, K. (2005). Not everyone who drives a car fixes it themselves - Strategic

Information Infrastructure. Retrieved 22/03/2010, from

http://www.dmreview.com/news/1041222-1.html

Rao, J., & Su, X. (2005). A Survey of Automated Web Service Composition Methods.

In J. Cardoso & A. Sheth (Eds.), Semantic Web Services and Web Process

Composition (Vol. 3387, pp. 43-54): Springer Berlin / Heidelberg.

Recker, J. (2008). BPMN Modeling – Who, Where, How and Why. BPTrends, 5(3), 1-

8.

Recker, J., & Dreiling, A. (2007). Does it matter which process modelling language

we teach or use? An experimental study on understanding process modelling

languages without formal education. Paper presented at the 18th Australasian

Conference on Information Systems, Toowoomba, Australia.

Recker, J., Indulska, M., Rosemann, M., & Green, P. (2008). An Exploratory Study of

Process Modelling Practice with BPMN.

Recker, J., & Mendling, J. (2006). On the Translation between BPMN and BPEL:
Conceptual Mismatch between Process Modeling Languages. Paper presented

http://www.dmreview.com/news/1041222-1.html

243

at the Workshops and Doctoral Consortium for the 18th International
Conference on Advanced Information Systems Engineering.

Recker, J. C., Indulska, M., Rosemann, M., & Green, P. (2005, 2005/01/01). Do

Process Modelling Techniques Get Better? A Comparative Ontological

Analysis of BPMN.

Regev, G., Bider, I., & Wegmann, A. (2007). Defining business process flexibility

with the help of invariants. Software Process: Improvement and Practice,

12(1), 65-79.

Remme, M. (1997). Konstruktion von Geschäftsprozessen - ein modellgestützter

Ansatz durch Montage generischer Prozesspartikel. Wiesbaden: Gabler.

Richardson, C., Moore, C., & Nicolson, N. (2009). Vendor Snapshot: Lombardi

Blueprint Bridges Gap Between Process Discovery And Execution .

Richter-von Hagen, C., & Stucky, W. (2004). Business-Process- und Workflow-

Management, Prozessverbesserung durch Prozess-Management (Vol. 1):

Teubner.

Riehle, D., & Zuellighoven, H. (1996). Understanding and using patterns in software
development. Theor. Pract. Object Syst., 2(1), 3-13.

Rieper, B. (1992). Betriebswirtschaftliche Entscheidungsmodelle: Grundlagen. Herne:

Neue Wirtschafts-Briefe.

Ripa, G., De Giorgio, T., Gorronogoitia, Y., Mos, A., & Ravoajanahary, F. (2010).

D6.5.2 Advanced Prototype For Adaptive Service Composition Execution .

Ripa, G., Zuccala, M., & Mos, A. (2009). D6.5.1 Specification and first prototype of

the composition framework.

Riss, U. V., Rickayzen, A., Maus, H., & van der Aalst, W. M. P. (2005). Challenges

for Business Process and Task Management. Journal of Universal Knowledge

Management, 0(2), 77-100.

Rolland, C. (1998). A Comprehensive View of Process Engineering. In Proceedings of

the 10th International Conference on Advanced Information Systems

Engineering (pp. 1-24): Springer-Verlag.

Rolland, C., Kaabi, R., & Kraiem, N. (2007). On ISOA: Intentional Services Oriented
Architecture, Advanced Information Systems Engineering (pp. 158-172).

Rolland, C., & Kaabi, R.-S. (2007). An Intentional Perspective to Service Modeling

and Discovery. In Proceedings of the 31st Annual International Computer

Software and Applications Conference - Volume 02 (pp. 455-460): IEEE

Computer Society.

Roman, D., Lausen, H., & Keller, U. (2006). Web Service Modelling Ontology

(WSMO).

Rosemann, M., & Recker, J. (2006). Context-aware process design: Exploring the

extrinsic drivers for process flexibility. Paper presented at the 18th International

Conference on Advanced Information Systems Engineering, Luxembourg.

Rosemann, M., Recker, J., & Flender, C. (2008). Contextualisation of business

processes. International Journal of Business Process Integration and

Management (IJBPMIM), 3(1), 47-60.

Rosemann, M., Sedera, W., & Sedera, D. (2001). Testing a Framework for the Quality

of Process Models – A Case Study. Paper presented at the PACIS2001.

244

Roser, S., Lautenbacher, F., & Bauer, B. (2007). Generation of workflow code from
DSMs. Paper presented at the 7th OOPSLA Workshop on Domain-Specific

Modeling.

RosettaNet. (2010). Partner Interface Processes (PIPs), from

http://www.rosettanet.org/Standards/RosettaNetStandards/PIPs/tabid/475/Defau

lt.aspx

Rosser, B. (2008). Taking Advantage of User-Friendly Business Process Modelling .

Rossi, M., & Sein, M. K. (2003). Design Research Workshop - A Proactive Research

Approach. Retrieved 31/03/2010, from

http://www.cis.gsu.edu/~emonod/epistemology/Sein%20and%20Rossi%20-

%20design%20research%20-%20IRIS.pdf

Ruh, W. A., Maginnis, F. X., & Brown, W. J. (2001). Enterprise Application

Integration: A Wiley Tech Brief: John Wiley and Sons Inc.

Russell, N., Arthur, van der Aalst, W., & Mulyar, N. (2006). Workflow Control-Flow

Patterns: A Revised View.

Russell, N., ter Hofstede, A., Edmond, D., & van der Aalst, W. (2005). Workflow Data
Patterns: Identification, Representation and Tool Support, Conceptual Modeling

â€“ ER 2005 (pp. 353-368).

Russell, N., ter Hofstede, A. H. M., Edmond, D., & Aalst, W. M. P. v. d. (2004).

Workflow Data Patterns.

Russell, S. J., & Norvig, P. (2003). Artificial Intelligence: A modern approach .

Sadiq, S., Sadiq, W., & Orlowska, M. (2005). A Framework for Constraint

Specification and Validation in Flexible Workflows. Information Systems,

30(5), 349-378.

Saidani, O., & Nurcan, S. (2007). Towards context-aware business process modelling.

Paper presented at the 8th Workshop on Business Processes and Support

Systems: Requirements for flexibility and the ways to achieve it.

Scheer, A.-W. (1998). ARIS - Vom Geschäftsprozess zum Anwendungssystem.

Saarbrücken: Springer-Verlag.

Scheer, A.-W. (2001). ARIS - Modellierungsmethoden, Metamodelle, Anwendungen .
Heidelberg, Berlin: Springer-Verlag.

Schmelzer, R. (2006). Rich Internet Applications - Market trends and approaches.

Schnabel, F., Born, M., Xu, L., González-Cabero, R., Lecue, F., & Mehandjiev, N.

(2009). D6.3.1 First Specification of Lightweight Process Modelling Language .

Schnabel, F., Xu, L., Born, M., Gorronogoitia, Y., Lecue, F., Ripa, G., et al. (2009).

D6.3.2. Advanced Specification Of Lightweight, Context-aware Process

Modelling Language.

Scholz-Reiter, B., & Stickel, E. (1996). Business Process Modelling: Springer-Verlag

New York.

Schütte, R. (1997). Die neuen Grundsätze ordnungsmässiger Modellierung. Paper

presented at the Forschungsforum '97, Leipzig.

Schütte, R. (1998). Grundsätze ordnungsmässiger Referenzmodellierung:

Konstruktion konfigurations- und anpassungsorientierter Modelle. Wiesbaden:

Gabler.

Silver, B. (2008). More on BPMN-to-BPEL. Retrieved 28/11/2010, from
http://www.brsilver.com/2008/04/04/more-on-bpmn-to-bpel/

Silver, B. (2009). BPMN Method and Style: Cody-Cassidy Pre.

http://www.rosettanet.org/Standards/RosettaNetStandards/PIPs/tabid/475/Default.aspx
http://www.rosettanet.org/Standards/RosettaNetStandards/PIPs/tabid/475/Default.aspx
http://www.cis.gsu.edu/~emonod/epistemology/Sein%20and%20Rossi%20-%20design%20research%20-%20IRIS.pdf
http://www.cis.gsu.edu/~emonod/epistemology/Sein%20and%20Rossi%20-%20design%20research%20-%20IRIS.pdf
http://www.brsilver.com/2008/04/04/more-on-bpmn-to-bpel/

245

Simon, H. A. (1969). The Sciences of the Artificial: MIT Press.
Sinz, E. J. (1998). Modellierung betrieblicher Informationssysteme - Gegenstand,

Anforderungen und Lösungsansätze. Paper presented at the Modellierung '98,

GI-Workshops in Muenster, Muenster.

Smith, G. (2010). BPM, the next stage of end user programming - Part II. Retrieved

22/01/2010, from http://www.bpm.com/bpm-the-next-stage-of-end-user-

programming-part-ii.html

SOA4All. (2010). SOA4All - Enabling a Web of Billions of Services. Retrieved

02.01.2011, from www.soa4all.eu

Spahn, M., Dörner, C., & Wulf, V. (2008). End User Development: Approaches

towards a flexible software design. Paper presented at the 16th European

Conference on Information Systems.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer.

Staud, J. (2001). Geschäftsprozessanalyse (Vol. 2. überarbeitete und erweiterte

Auflage): Springer Verlag.

Stein, S., & Ivanov, K. (2007). EPK nach BPEL Transformation als Voraussetzung
fuer praktische Umsetzung einer SOA. In W.-G. Bleek, J. Raasch & H.

Züllighoven (Eds.), Software Engineering 2007 (Vol. 105). Hamburg,

Germany: GI.

Stein, S., Kuehne, S., & Ivanov, K. (2009). Business to IT Transformations Revisited.

In D. Ardagna, M. Mecella & J. Yang (Eds.), Business Process Management

Workshops (Vol. 17, pp. 176-187): Springer Berlin Heidelberg.

Stoitsev, T., & Scheidl, S. (2008). An Architecture for End-User Driven Business

Process Management. In Proceedings of the 2008 12th International IEEE

Enterprise Distributed Object Computing Conference (pp. 53-62): IEEE

Computer Society.

Stoitsev, T., Scheidl, S., Flentge, F., & Muehlhaeuser, M. (2008). From Personal Task

Management to End-User Driven Business Process Modeling. In Proceedings

of the 6th International Conference on Business Process Management (pp. 84-

99). Milan, Italy: Springer-Verlag.
Stuhec, G., & Crawford, M. (2007). Accelerate your Business Data Modeling and

Integration Issues by CCTS Modeler Warp 10 .

Sutcliffe, A. (2005). Evaluating the costs and benefits of end-user development. In

Proceedings of the first workshop on End-user software engineering (pp. 1-4).

St. Louis, Missouri: ACM.

Sutcliffe, A. G., Lee, D., & Mehandjiev, N. (2003). Contributions, costs, and prospects

for end-user development. HCI International 2003, 2.

Tan, P. S. (2007, 2007/06/27). Context-enabled B2B Collaborations. Paper presented

at the Services Computing, IEEE International Conference on.

TheFreeDictionary. (2011). Semantics. Retrieved 30/07/2011, from

http://www.thefreedictionary.com/semantics

Thomas, O. (2005). Das Modellverständnis in der Wirtschaftsinformatik: Historie,

Literaturanalyse und Begriffsexplikation: Universität Saarbrücken, Institut für

Wirtschaftsinformatik.

Tran, H. N., Coulette, B., & Dong, B. T. (2007). Broadening the Use of Process
Patterns for Modelling Processes. Paper presented at the SEKE.

http://www.bpm.com/bpm-the-next-stage-of-end-user-programming-part-ii.html
http://www.bpm.com/bpm-the-next-stage-of-end-user-programming-part-ii.html
http://www.soa4all.eu/
http://www.thefreedictionary.com/semantics

246

Ukelson, J. (2009). Five ways to discover unstructured processes . Retrieved
03.01.2011, from

http://www.zdnetasia.com/techguide/techmanagement/0,39044902,62056996,0

0.htm

UN-CEFACT. (2003). Core Component Technical Specification .

van der Aalst, W. M. P., Aldred, L., Dumas, M., & ter Hofstede, A. H. M. (2004).

Design and Implementation of the YAWL system.

van der Aalst, W. M. P., & Lassen, K. B. (2005). Translating Workflow Nets to

BPEL4WS: BPM Center.

van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2005). YAWL: Yet Another

Workflow Language. Information Systems, 30(4), 245-275.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., & Barros, A. P.

(2003). Workflow Patterns. Distributed and Parallel Databases, 14(3), 5-51.

van der Aalst, W. M. P., ter Hofstede, A. H. M., & Weske, M. (2003). Business

Process Management: A Survey. Paper presented at the 1st International

Conference on Business Process Management.
van der Aalst, W. M. P., & van Hee, K. (2004). Workflow Management: MIT Press.

Visser, E. (2001). A Survey of Rewriting Strategies in Program Transformation

Systems. Electronic Notes in Theoretical Computer Science

WRS 2001, 1st International Workshop on Reduction Strategies in Rewriting and

Programming, 57, 109-143.

Vitvar, T., Kopecky, J., & Fensel, D. (2008). WSMO-Lite: Lightweight Semantic

Descriptions for Services on the Web .

Vogel, J., Schnabel, F., Mehandjiev, N., Lombardi, J.-P., Lecue, F., & Wajid, U.

(2009). D7.2 Scenario Definition.

Vogel, J., Tsvetkova, I., Meyer, S., Un, P., Pariente Lobo, T., Lucea, J., et al. (2010).

D7.6 End User Service Annotation and Context Description .

W3C. (1999). XML Path Language (XPath): W3C.

W3C. (2004a). OWL Web Ontology Language: W3C.

W3C. (2004b). OWL-S: Semantic Markup for Web Services.
W3C. (2004c). RDF Primer: W3C.

W3C. (2004d). RDF Semantics: W3C.

W3C. (2004e). XML Schema Part 0: Primer Second Edition .

W3C. (2007a). Semantic Annotations for WSDL and XML Schema : W3C.

W3C. (2007b). XSL Transformations (XSLT) Version 2.0 .

W3C. (2008). SPARQL Query Language for RDF.

W3C. (2010). XQery 1.0: An XML Query Language (Second Edition).

Wajid, U., Namoune, A., & Mehandjiev, N. (2010). A Comparison of Three Service

Composition Approaches for End Users. Paper presented at the EUD4Services

Workshop in conjunction with AVI 2010, Rome.

Wand, Y., & Weber, R. (1989). An ontological evaluation of systems analysis and

design methods. In E. D. Falkenberg & P. Lindgreen (Eds.), Information System

Concepts: An Indepth Analysis (pp. 79-107).

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information

systems analysis and design grammars. Information Systems, 3(4), 217-237.

http://www.zdnetasia.com/techguide/techmanagement/0,39044902,62056996,00.htm
http://www.zdnetasia.com/techguide/techmanagement/0,39044902,62056996,00.htm

247

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change
support features - Enhancing flexibility in process-aware information systems.

Data Knowl. Eng., 66(3), 438-466.

Wielinga, B., & Schreiber, G. (1997). Configuration-Design Problem Solving. IEEE

Expert: Intelligent Systems and Their Applications, 12(2), 49-56.

Wielinga, B. J., Akkermans, J. M., & Schreiber, A. T. (1995). A Formal Analysis of

Parametric Design Problem Solving. Paper presented at the 9th Banff

Knowledge Acquisition Workshop (KAW-95).

Wiig, K. M. (2004). People-focused knowledge management: how effective decision

making leads to corporate success: Elsevier Butterworth-Heinemann.

Williams, S. (1967). Business Process Modeling improves Administrative Control. In

Automation (pp. 44-50).

Winter, R. (2003). Modelle, Techniken und Werkzeuge im Business Engineering. In

in: Business Engineering, Hubert Österle (Vol. Auflage 2., pp. pp. 3- 18):

Springer Verlag.

Wohed, P., van der Aalst, W. M. P., Dumas, M., & ter Hofstede, A. H. M. (2003).
Analysis of Web Services Composition Languages: The Case of BPEL4WS. In

Proceedings of Conceptual Modelling: Springer.

WSMO-Working-Group. (2008). D16.1 v1.0 WSML Language Reference: WSMO

Working Group.

Wulf, V., & Jarke, M. (2004). The economics of end-user development. Commun.

ACM, 47(9), 41-42.

Zairi, M. (1997). Business process management: a boundaryless approach to modern

competitiveness. Business Process Management Journal, 3(1), 64-80.

Zaslavsky, A. (2002). Adaptability and Interfaces: Key to efficient pervasive

computing. Providence.

Zelewski, S. (1996). Eignung von Petrinetzen für die Modellierung komplexer

Realsysteme - Beurteilungskriterien. Wirtschaftsinformatik, 38(4), 369-381.

Ziemann, J., & Mendling, J. (2005). EPC-Based Modelling of BPEL Processes: a

Pragmatic Transformation Approach. Paper presented at the International
Conference on Modern Information Technology in the Innovation Processes of

the Industrial Enterprises, Genova.

Zimmermann, O., Krogdahl, P., & Gee, C. (2004). Elements of Service-oriented

Analysis and Design: IBM Developernetwork.

zur Muehlen, M. (2004). Workflow-based Process Controlling: Foundation, Design

and Application of workflow-driven Process Information Systems. Berlin:

Logos-Verlag.

zur Muehlen, M., & Recker, J. C. (2008). How Much Language is Enough?

Theoretical and Practical Use of the Business Process Modeling Notation :

Springer.

249

Curriculum Vitae

Persönliche Daten

Geburtsort Schorndorf (Deutschland)

Nationalität Deutsch

Arbeitserfahrung

Seit Aug 2010 Berater im Management Consulting bei der Swisscom ITS

AG im Bereich Finance (ehemals COMIT AG).

Feb 2007 – Jul 2010 Forschungsassistent an der Universität St. Gallen (HSG),

Institut für Medien- und Kommunikationsmanagement

(=mcminstitute) und SAP Schweiz AG, SAP Research

CEC St. Gallen

Apr 2006 – Dez

2006

Werksstudent an der Universität St. Gallen (HSG), Institut

für Wirtschaftsinformatik.

Okt 2005 – Mär

2006

Praktikum bei der IBM Deutschland GmbH im Bereich

Kundenzufriedenheitsanalyse.

Mär 2003 – Apr

2003

Werksstudent bei der Daimler AG im Bereich

Geschäftsprozessmodellierung.

Aug 2002 – Okt

2002

Werksstudent bei der Daimler AG im Bereich

Geschäftsprozessmodellierung.

Jul 2001 – Aug 2001 Einzelhandelsassistent im Kaufland Schorndorf.

Jul 2000 – Mai 2001 Zivildienst am Marienstift Schorndorf.

Ausbildung

Feb 2007 – Jul 2010 Doktorat an der Universität St. Gallen (HSG)

Sep 2004 – Jun 2005 Studium der Informatik am ENSIMAG (Grenoble,

Frankreich) und Studium der Volkswirtschaft an der

Université Pierre Mendes (Grenoble, Frankreich)

Sep 2001 – Apr 2007 Studium der Informationswirtschaft am Karlsruhe Institute

of Technology (ehemals Universität Karlsruhe (TH)).

Abschluss: Diplom-Informationswirt

1991 – 2000 Schulausbildung am Burggymnasium Schorndorf

