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Summary

In the first paper, I analyze fallen angel bonds’ returns before and after their
downgrade to high-yield. Fallen angel bonds experience a sharp price decline
prior and a sharp recovery after the rerating announcement by the rating
agency. I introduce a novel benchmark that should more closely mirror the
price fallen angel bonds would have had, had they not experienced a fire sale
prior to their downgrade. This allows me to estimate the total preannounce-
ment sell-off and I then use this in order to decide on which fallen angel
bonds should be bought after their downgrade. There exists a strong nega-
tive relationship between the size of the preannouncement sell-off and future
postannouncement returns. I can then show, that an investor fares better,
if only fallen angels are bought that trade at a discount to their respective
estimated benchmark return had they not experienced the sell-off. Using the
introduced innovative, data-driven, novel benchmark allows an investor to
generate higher returns. This outperformance gets more pronounced as one
focuses on the fallen angel bonds that experienced the highest preannounce-
ment sell-off.

In the second paper, we study the cross-section of corporate bonds utilizing
a large set of financial statements, equity and bond characteristics. We use
a predictive regression framework and the adaptive Lasso to choose the most
relevant characteristics for the cross-section of corporate bonds. Applying the
adaptive Lasso to the full dataset, we find a ten-factor model, with value,
bond reversal, and equity momentum spillover being the dominant factors.
Contrary to equity studies, financial variables from Compustat do not appear
to have strong power in predicting corporate bond returns. We validate our
initial results by running an out-of-sample exercise using an expanding win-
dow approach. Out of the 60 months utilized in the out-of-sample, the adap-
tive Lasso consistently chooses value, bond reversal, and equity momentum
spillover. Finally, we evaluate the economic benefits of investing according to
the predictions of the adaptive Lasso and find significant benefits in terms of
absolute and risk-adjusted returns.

In the third paper, we evaluate the ability of U.S. corporate bond fund man-
agers to generate alpha. We apply the False Discovery Rate (FDR) to dis-
tinguish between “skill” and “luck.” We find that long-term outperformance
remains elusive, with only 1% of the funds able to generate significant al-
pha over their life. However, fund managers are able to generate alpha over
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the short-term with the proportion of skilled funds increasing to 13.5% when
we examine three-year sub-periods. To confirm these findings, we design an
out-of-sample investment strategy where we invest in funds according to their
estimated “skill” from past returns. Our strategy generates positive and sig-
nificant alpha, which confirms the persistence in outperformance over the
short-run. Our results are economically meaningful for investors suggesting
that dynamic and active manager selection pays off.

II



Zusammenfassung

In der ersten Arbeit analysiere ich die Renditen von “Fallen Angel”-Anleihen
vor und nach ihrer Herabstufung zu hochverzinslichen Anleihen. “Fallen
Angel”-Anleihen verzeichnen einen starken Kursrückgang vor und eine deut-
liche Erholung nach der Ankündigung der Herabstufung durch die Ratinga-
gentur. Ich führe eine neue Benchmark ein, die den Preis von “Fallen Angel”-
Anleihen besser widerspiegeln sollte, wenn sie nicht vor ihrer Herabstufung
einen Ausverkauf erlebt hätten. Auf diese Weise kann ich den gesamten
Ausverkauf vor der Bekanntgabe der Herabstufung schätzen und auf dieser
Grundlage entscheiden, welche “Fallen Angel”-Anleihen nach ihrer Herabstu-
fung gekauft werden sollten. Es besteht ein starker negativer Zusammen-
hang zwischen dem Ausmass des Ausverkaufs vor der Herabstufung und den
zukünftigen Renditen nach der Herabstufung. Ich kann dann zeigen, dass ein
Investor höhere Renditen erzielen kann, wenn er nur “Fallen Angel”-Anleihen
kauft, die mit einem Abschlag zu ihrer jeweiligen geschätzten Benchmark-
Rendite gehandelt werden. Im Vergleich zu bisherigen Methoden aus der Lit-
eratur, kann ein Anleger mit der eingeführten innovativen, datengestützten,
neuartigen Benchmark höhere Renditen erzielen. Diese Outperformance wird
umso deutlicher, je mehr man sich auf die “Fallen Angel”-Anleihen konzen-
triert, die vor der Ankündigung den grössten Ausverkauf erlebt haben.

In der zweiten Arbeit untersuchen wir den Querschnitt von Unternehmen-
sanleihen, indem wir einen grossen Datensatz von Jahresabschluss-, Aktien-
und Anleihenmerkmalen verwenden. Wir verwenden einen prädiktiven Re-
gressionsrahmen und das adaptive Lasso, um die wichtigsten Merkmale für
den Querschnitt der Unternehmensanleihen auszuwählen. Bei Anwendung des
adaptiven Lasso auf den gesamten Datensatz ergibt sich ein Zehn-Faktoren-
Modell, wobei Value, Bond Reversal und Equity Momentum Spillover die do-
minierenden Faktoren sind. Im Gegensatz zu Aktienstudien scheinen Finanz-
variablen aus Compustat keine grosse Aussagekraft bei der Vorhersage von
Unternehmensanleihenrenditen zu haben. Wir validieren unsere ersten Ergeb-
nisse, indem wir eine Out-of-Sample-Untersuchung mit einem Expanding-
Window-Ansatz durchführen. Von den 60 Monaten, die in der Out-of-Sample-
Stichprobe verwendet wurden, wählt das adaptive Lasso konsistent Value-
, Bond-Reversal- und Equity-Momentum-Spillover aus. Abschliessend bew-
erten wir den wirtschaftlichen Nutzen von Investitionen gemäss den Vorher-
sagen des adaptiven Lassos und stellen fest, dass sie in Bezug auf die absoluten
und risikobereinigten Renditen erhebliche Vorteile bieten.
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In der dritten Arbeit wird die Fähigkeit der Manager von Unternehmensan-
leihenfonds, Alpha zu generieren, bewertet. Wir wenden die False Discov-
ery Rate (FDR) an, um zwischen “Können” und “Glück” zu unterscheiden.
Wir stellen fest, dass eine langfristige Outperformance schwer zu erreichen
ist, da nur 1% der Fonds in der Lage ist, während ihrer Laufzeit ein sig-
nifikantes Alpha zu erzielen. Allerdings sind die Fondsmanager in der Lage,
kurzfristig Alpha zu generieren, wobei der Anteil der “Können” Fonds auf
13,5% steigt, wenn wir dreijährige Teilperioden untersuchen. Um diese Ergeb-
nisse zu validieren, entwerfen wir eine Out-of-Sample-Anlagestrategie, bei der
wir in Fonds entsprechend ihrem geschätzten “Können” investieren. Unsere
Strategie generiert ein positives und signifikantes Alpha, was die Persistenz
der Outperformance im kurzfristigen Bereich bestätigt. Unsere Ergebnisse
sind für Anleger von wirtschaftlicher Bedeutung und deuten darauf hin, dass
sich eine dynamische und aktive Managerauswahl auszahlt.
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Chapter 1

The preannouncement sell-off of
fallen angel bonds: An event
study using a novel benchmark

Abstract
In this paper, I analyze fallen angel bonds’ returns before and
after their downgrade to high-yield. Fallen angel bonds experi-
ence a sharp price decline prior and a sharp recovery after the
rerating announcement by the rating agency. I introduce a novel
benchmark that should more closely mirror the price fallen an-
gel bonds would have had, had they not experienced a fire sale
prior to their downgrade. This allows me to estimate the total
preannouncement sell-off and I then use this in order to decide on
which fallen angel bonds should be bought after their downgrade.
There exists a strong negative relationship between the size of the
preannouncement sell-off and future postannouncement returns. I
can then show, that an investor fares better, if only fallen angels
are bought that trade at a discount to their respective estimated
benchmark return had they not experienced the sell-off. Using
the introduced innovative, data-driven, novel benchmark allows
an investor to generate higher returns. This outperformance gets
more pronounced as one focuses on the fallen angel bonds that
experienced the highest preannouncement sell-off.
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Chapter 1

1.1 Introduction

This paper studies the behavior of corporate bond prices prior and post to
their downgrade to high-yield. When a corporate bond is downgraded from
investment-grade to high-yield, this is referred to a fallen angel event. Why
do investment professionals refer to this as a fallen angel event? To cite Clare,
Thomas, and Motson (2016), one could think of fallen angels to represent an-
gels that have been rejected from heaven due to their unbecoming behavior.
Their unbecoming behavior is that they once had an investment-grade rat-
ing from Moody’s or Standard & Poor’s (S&P), but were downgraded and
no longer possess an investment-grade rating from either (Ambrose, Cai, &
Helwege, 2008). This means that the once investment-grade rated corporate
bond got forced into the high-yield fixed income asset class. This happens
when the credit rating agency perceives a decline in the credit quality of the
issuer high enough to justify a speculative-grade rating. Emery and Gates
(2014) examines the press releases from Moody’s and concludes that 72 per-
cent are due to company specific reasons and industry stress. Why should
a downgrade to high-yield be bad? High-yield bonds tend to be riskier be-
cause their risk of default is higher. Therefore many investment and fund
managers must sell them from their portfolios because they are constrained
by their investment guidelines. Investment guidelines specify the risks that
are allowed to be taken in the portfolio and refer specifically to ratings from
Moody’s or S&P. Furthermore, passive investment vehicles – such as exchange
traded funds – have gained a lot of traction in recent years. Because exchange
traded funds aim to replicate their specific investment-grade benchmark in-
dex, they naturally sell-off the fallen angel bonds once they get downgraded
to high-yield. In addition, investment professionals tend to anticipate which
bonds are likely to get downgraded given that public information on bond
issuers is updated regularly and sell them well in advance of the downgrade
announcement by the rating agency. This is because fund managers do not
like to report downgrades in their investment-grade rated fund.

The literature on bond rating changes and associated bond price effects, doc-
uments for fallen angels following stylized facts: They tend to underperform
investment-grade bonds before the announcement and outperform high-yield
bonds after the downgrade. This implies a “V-shaped” curve of fallen bond
prices, centered at their downgrade date.

As already outlined, this particular anomaly is likely to have its roots in
institutional and behavioral factors. Investment managers must adhere to
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strict investment guidelines and there also seems to be evidence of fund man-
agers engaging in a precautionary sell-off. This results in fallen angel bonds
experiencing a sell-off prior to their downgrade to high-yield. This sell-off
likely pushes the price of fallen angel bonds below their “fair value.” The key
question hereby is, what is a fallen angel’s respective fair value? Or stated
otherwise: What would the price of the bond have been, had it not been sold-
off in a fire sale? In econometrics, this hypothetical, unobservable outcome,
is known as a counterfactual.

In prior literature, the fair value is simply calculated as a difference between
the returns of the fallen angel bond and a broad bond benchmark index.
These differences are added up in an event window around the downgrade
announcement and averaged by firm. The methodology outlined is known as
an event study.

Estimation of these effects could be problematic with the existing event study
literature, in part because of the choice of the broad bond benchmark used as
a counterfactual. This is because at the time of price movements related to
a potential downgrade, fallen angel bonds differ from the broad investment-
grade market with respect to individual characteristics that arguably relate
to the probability of being downgraded and becoming subsequently a fallen
angel bond. A simple difference of the time-series return of fallen angels and
investment-grade bonds would therefore not only reflect the effect of becoming
a fallen angel bond but also the pre-anticipation period differences in credit
and issuer quality that affect the future price path of the return on corporate
bonds.

I am interested in estimating the preannouncement sell-off fallen angel bonds
suffer. Furthermore, I then aim to investigate whether the difference between
the fallen angels’ bond price and its estimated fair value at the date of the
downgrade can be used to explain future fallen angel bond returns. This re-
search question is relevant for many different reasons. Firstly, it shows how
big the sell-off due to institutional and behavioral factors might be on aver-
age. Secondly, if there is a relation between the size of the preannouncement
sell-off and future bond returns, rich investment opportunities could arise.
Fallen angel factor portfolios could be constructed, targeted at specifically
harvesting this anomaly. Questions such as how long to keep the position
in the portfolio arise naturally and practical guidance can be given with this
study. Furthermore, it presents investment-grade corporate bond portfolio
managers with an incentive to strategically drift from their benchmark. If
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they sell-off the asset at the same time everyone else does, they simply lock-in
their losses. If they, however, strategically time their exit – which they have
to do, due to restrictions on credit quality in their investment guidelines –
they could recoup some of their loss. This study could therefore also impact
the literature in the creation of “better” investment guidelines for investment
professionals, giving them more leeway in the time that they have to sell the
asset that has been downgraded to high-yield.

In this study, I try to merge the traditional event study framework with a
framework from the causal inference literature that is specifically targeted at
estimating these kind of effects under a certain set of identifying assumptions.
Thus, the unified framework outlined in this paper could also be applied to
similar event studies that try to find a better, more “custom” benchmark. The
core of the causal analysis revolves around the imputation of the unknown,
unobservable counterfactual of the fallen angel bond. Different methodolo-
gies exist to estimate this unknown counterfactual, whereas the estimation in
general is concerned with estimating a vector of weights for the control units
that minimizes the distance in pre-treatment outcomes between the treated
unit (the fallen angel bond) and pool of controls (investment-grade bonds
that did not experience a downgrade to high-yield). Pre-treatment refers to
the period before fund managers and investment professionals engage in a
sell-off because they anticipate a downgrade. A popular and natural esti-
mation procedure for this type of problem is the synthetic control method
by Abadie, Diamond, and Hainmueller (2010). The procedure selects a set
of weights such that chosen covariates and pre-treatment outcomes of the
treated unit are approximately matched by a weighted average of the control
units. Abadie et al. (2010) impose a no-intercept condition as well as that the
weights need to sum up to one and non-negativity of the weights. However,
as noted by Athey and Imbens (2017), it is not obvious that restricting the
weights to be positive and sum up to one is always the most sensible choice
for constructing the counterfactual. Considering this and the fact that my
particular estimation problem is of a high-dimensional nature, i.e. the num-
ber of controls is larger than the sample size, I use an approach in the flavor
of Doudchenko and Imbens (2017), who propose to use an elastic-net type
penalty for the weights and do not impose any of the aforementioned restric-
tions on the weights or intercept. Popular other contestants of this estimation
problem are difference-in-differences (DID), constrained regression and best
subset selection. Similarly like the synthetic control method by Abadie et al.
(2010), these methods also frequently impose next to a no-intercept condition
a collection of constraints on the weights, e.g. weights have to add up to one,
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non-negativity or even constant-weights in the case of DID.

In the empirical part, I use a comprehensive dataset and am able to show the
notorious “V-shape” curve documented in the literature. The results show,
that during the preannouncement period, fallen angel bonds suffer a substan-
tial sell-off. Furthermore, after the sell-off has settled, fallen angel bonds
recoup the bulk of the value they lost due to the downgrade to high-yield and
thus offer substantial investment opportunities. The size of the preannounce-
ment sell-off is negatively related to the future return of fallen angel bonds.
In the data, there seems to be an indication, that buying fallen angel bonds
that trade below their estimated fair value outperforms a naive strategy that
disregards information about their preannouncement sell-off. A holding pe-
riod of 10 months reaps the bulk of the outperformance with respect to the
new broad high-yield bond benchmark index. Using my “novel” benchmark
that was estimated with the synthetic control, I can show that – albeit its
outperformance not being statistically significant – it offers higher returns
than when applying other choices of benchmarks often encountered in the
literature.

The remainder of the paper is organized as follows. Section 1.2 provides a
brief overview of the main studies that analyze the impact of rating changes
on corporate bond prices. Section 1.3 gives a review of traditional event
studies and section 1.4 introduces the causal event study framework. Section
1.5 presents the data and section 1.6 reports the estimation results. Section
1.7 concludes.

1.2 Literature on bond rating effects

A vast body of literature investigates changes in credit ratings on corporate
bond prices. The majority of these studies are conducted with the event
study methodology and find significant negative average excess returns as-
sociated with downgrades. In event studies, time-series of affected units are
centered around an event and excess returns are taken with respect to some
unaffected benchmark. These “abnormal returns” are then added up which
yields “cumulative abnormal returns.” Cumulative abnormal returns are then
grouped on the firm level over which the average is taken. The literature on
bond rating effects uses as an event naturally the rerating announcement of
the rating agency and for the unaffected benchmark a simple market-value
weighted bond benchmark. In the United States (U.S.) there exist three big
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rating agencies: Moody’s, S&P and Fitch. Studies concerned with U.S. cor-
porate bonds predominantly utilize data from Moody’s and S&P, since Fitch
has a smaller market share and therefore fewer ratings on corporate bonds.
May (2010) collects data from all three rating agencies and the tabulations
show that Moody’s and S&P with a share of 42 and 40 percent, respectively,
contribute far more towards the final sample than Fitch with a share of only
17 percent. In the past, the literature utilized predominantly monthly or
weekly data, but has now shifted to daily data due to the larger availability
of high-quality data sources and research showing that monthly returns lack
the power to detect excess returns (Bessembinder, Kahle, Maxwell, & Xu,
2009). Concerning the results there is substantial variation with regard to
the time period relative to the downgrade event where significant effects are
found. Furthermore, not all studies investigate the more narrow question of
price effects of a bond becoming a fallen angel. A large part of the literature
investigates incremental changes in ratings without specifically analyzing the
investment-grade versus high-yield threshold. This can in part be explained
by the relative importance of fallen angel bonds over time. Whereas in the
period 1997 to 2002 only 10–15 percent of all outstanding high-yield corporate
debt corresponded to fallen angels, this share has increased to 25 percent in
the year 2009 (Bolognesi, Ferro, & Zuccheri, 2014).

One of the earliest research papers on this topic was written by Grier and
Katz (1976). Grier and Katz (1976) investigate the impact of reclassifica-
tion in ratings on bond prices from industrial and utility bonds. They find
that there is an anticipation period in the industrial bond market to rating
changes and that their reaction relative to utility bonds is more pronounced.
Furthermore, Grier and Katz (1976) find that the negative price effect oc-
curs in the month of and the one following the rating announcement. In
their study they utilize rating changes from 1966 to 1972 and monthly data.
Contrasting the results of Grier and Katz (1976) is the study of Weinstein
(1977). Weinstein (1977) also analyzes the price behavior of corporate bonds
during the period surrounding a rating change announcement. The author
finds evidence of a price change ranging from 18 to 7 months prior to the
announcement of the rating change. However, Weinstein (1977) does not find
any evidence during the 6 months prior to the rating change, nor any dur-
ing the month of the change or for 6 months postannouncement. Similarly,
Wansley and Clauretie (1985) also use monthly returns and do not find any
significant reactions to downgrades or upgrades in the month of and month
following a rerating announcement. Hite and Warga (1997) analyze the effect
of rating changes for industrial firms from 1985 to 1995 using monthly data.
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They find strong negative effects during the event month that last up to 6
months after the rerating announcement for downgrades remaining below the
investment-grade threshold. Furthermore, Hite and Warga (1997) are able
to show that the downgrade effect is substantially higher for high-yield rated
than for investment-grade firms. Wansley, Glascock, and Clauretie (1992)
study the impact of bond reratings by S&P on bond prices using weekly data
from 1982 to 1984. In the case of downgrades, they find a strong negative
announcement effect in the week of the downgrade announcement. Further-
more, they find negative responses up until 3 weeks prior to the downgrade.
Using daily data from 1977 to 1982 and bond downgrade data from S&P and
Moody’s, Hand, Holthausen, and Leftwich (1992) are able to further corrobo-
rate the negative average bond returns around the announcement day. In ad-
dition, Hand et al. (1992) show that their announcement effect is stronger for
high-yield bonds than for investment-grade rated bonds. Steiner and Heinke
(2001) focus on the German Eurobond market and consider rating changes
from 1985 to 1996. They use daily returns for their analysis and find a strong
reaction to downgrades on the announcement day, especially for downgrades
into speculative-grade. Furthermore, Steiner and Heinke (2001) find signif-
icant price movements up to 100 days prior to the rerating announcement.
In addition to the downwards trend prior to the downgrade, they also detect
positive excess returns after the downgrade announcement between day 15
and 45. Steiner and Heinke (2001) conclude, that in particular for fallen an-
gel bonds the negative announcement effects can in part be explained by price
pressure effects due to regulatory constraints rather than original information
content of rating changes. Furthermore, they explain their finding of a re-
bound in the postannouncement period with investors’ attitude to overreact
to downgrades. May (2010) analyzes rating changes during the period 2002
to 2009 with daily data and finds evidence of negative excess returns in the
month before the downgrade announcement. The author’s estimated negative
effect immediately following the rerating announcement as well as up until 10
days postannouncement is highly significant. Dor and Xu (2011) corroborate
the existence of a significant three month negative preannouncement trend in
excess returns. Their negative price effect is the strongest during the month
of the rerating event. Finally, Bolognesi et al. (2014) study the impact of a
formerly investment-grade rated European corporate bond being downgraded
to high-yield status. Their analysis therefore is one of the few papers that
exclusively covers fallen angel bonds. In their analysis they cover the period
from 2001 to 2009 and rating changes from Moody’s and S&P. The authors
construct their set of fallen angel bonds by monitoring a specific Merrill Lynch
investment-grade index. According to the index rules a fallen angel event is
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when both Moody’s and S&P downgrade the bond to speculative-grade. The
results of Bolognesi et al. (2014) are threefold: Firstly, the first downgrade
event as well as the second downgrade feature statistically significant and large
negative preannouncement returns, both for the (-30, -1) and (-15, -1) days
event window. In addition to the preannouncement windows, the same results
hold both in terms of significance and magnitude for the (-1, 1) event window
covering the immediate postannouncement period. Secondly, their results do
not differ significantly for the first and the second downgrade announcement
by the respective rating agencies, suggesting that the announcements hap-
pen not too far apart and that the respective windows are heavily correlated.
Thirdly, Bolognesi et al. (2014) study the impact of deletion from the index
which occurs at each month-end index reweighting date. They are able to
show that post-deletion there exist significant positive excess returns, sug-
gesting that it can be advantageous for investment managers to strategically
time the buying of fallen angel bonds and drift from their benchmark. Fur-
thermore, their cross-sectional results show that the bond’s price rebound is
proportional to the strength of the impact of the downgrade to fallen angel.
Bolognesi et al. (2014) conclude that the observed outperformance of fallen
angel bonds after the index rebalancing with respect to their high-yield peers
relates to portfolio governance rules of many institutional investors. In par-
ticular, their ban on holding high-yield, non-investment-grade rated securities
and the subsequent obligation to sell them once they reach fallen angel status
and get deleted from the investment-grade index.

Regarding the mixed results from less contemporary literature, e.g. Weinstein
(1977) andWansley et al. (1992), there are two important key points regarding
the quality of data that must be noted and that directly affect the validity
of their obtained results. Firstly, the use of data on bond trades from the
New York Stock Exchange which is characterized by infrequent trading and
constitutes for a negligible fraction of overall market size and activity (May,
2010). Furthermore, the use of monthly returns and the resulting weaker
power of tests, especially in small samples, is known and shown in e.g. Brown
and Warner (1985) and Bessembinder et al. (2009). Secondly, the use of so
called “matrix prices.” Matrix prices are bond price estimates provided by
commercial bond pricing services such as e.g. the Merrill Lynch Bond Pricing
Service. The concern thereby being that matrix prices are predicted and not
actual and ratings are one of the predictors. In case of downgrades, there
would therefore be a mechanical strong negative price effect (May, 2010). It
is therefore considered best practice when conducting studies on the U.S. cor-
porate bond market to use daily data (or intra-day data aggregated to daily
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data as established by Bessembinder et al. (2009)) from the over-the-counter
(OTC) market.

The literature review suggests a tentative pattern with respect to the price be-
havior of fallen angel bonds around their downgrade announcement. Namely
that prior to the downgrade announcement there are significant negative cu-
mulative abnormal returns, i.e. fallen angel bonds lose relative to their peers.
The day of the announcement and the following day, bond prices tend to ex-
hibit a significant decline. This decline tends to last a couple of days before
the fallen angel bonds rebound again. The resulting pattern of cumulative
abnormal returns therefore seems to represent a “V-shape” curve.

The causes of this particular phenomenon are likely to represent the insti-
tutional character of the U.S. corporate bond market. The reason for this
is that corporate bonds trade OTC and that individual block sizes are too
big for retail investors. Trading in corporate bonds is predominantly done by
investment funds, passive investment vehicles and mutual funds (Bolognesi
et al., 2014). However, investment funds such as insurance funds are sub-
ject to rigorous regulatory constraints based on credit rating. This means
that these regulatory constraints can either restrict or forbid the ownership
of non-investment-grade securities to retain the risk capital for other risky
assets. Furthermore, investment funds also face reputational considerations
(Ambrose et al., 2008; Ellul, Jotikasthira, & Lundblad, 2011). This means
that investment funds that are constrained by their investment guidelines
must sell downgraded securities immediately without considering current mar-
ket prices or opportunities. Ambrose, Cai, and Helwege (2012) therefore also
argue that insurers sell fallen angel bonds quicker in response to regulatory
pressure. Cantor, Gwilym, and Thomas (2007) surveyed 200 U.S. and Eu-
ropean fixed income fund managers and plan sponsors. The results of their
study corroborate the importance of ratings in investment guidelines. They
find that only 14 percent of the fund managers and 8 percent of the plan
sponsors do not specify any explicit reference to ratings in their investment
guidelines. The story with passive investment funds such as exchange traded
funds that track an investment-grade bond index is similar. Since their objec-
tive is to replicate their respective benchmark, they will sell-off assets imme-
diately that lose their investment-grade status and that get removed from the
index. This particular setting is also analyzed by Bolognesi et al. (2014) who
find that after the index finishes its rebalancing and removes the fallen angel
bonds, they feature significant positive abnormal returns with respect to their
new high-yield peers. Institutional factors are closely linked to insights from
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behavioral finance. Specifically, the tendency of individuals to overreact to
bad news and underreact to good news. This is known as the overreaction
hypothesis (Kahneman & Tversky, 1982). In a seminal study De Bondt and
Thaler (1985) illustrated the overreaction hypothesis using U.S. stock data.
Their finding was that stocks that had experienced significant losses tended to
rebound in a predictable way over subsequent months, outperforming stocks
that fared well initially. The conclusion is that investment managers are likely
to sell-off securities well in advance of a potential downgrade, because they do
not want to – or are not allowed to – report a downgrade of their portfolio.
This leads to a “fire sale” that is naturally bound to be followed by a rebound.

1.3 Traditional event study framework

The literature on changes in credit ratings and their effect on corporate bond
prices relies heavily on the event study methodology. In event studies there
is an event some units are exposed to and the goal is to analyze the impact
of the event on the treated units, i.e how their excess returns relative to
peers behave around the event. To conduct an event study it is therefore
necessary to identify the date of the event, the affected units and some form
of control group. Time-series for each treated and its corresponding control
group are shifted such that day 0, i.e. the event, is in the middle of the
event window. In the case of rating changes and their impact on bond prices
the event is given by the date of the downgrade announcement by the rating
agency. The treated unit is the fallen angel bond and the controls are some
form of corporate bond benchmark index. Subsequently, abnormal returns
are formed. Daily abnormal bond returns are calculated as the raw return
minus the contemporaneous return on an index of matched corporate bonds
(May, 2010):

ABRt = Rt − IRt, (1.1)

where ABRt denotes the abnormal bond return on day t, Rt the raw bond
return and IRt the return on an index of matched corporate bonds that did
not experience a downgrade to speculative-grade during the event window.
Bessembinder et al. (2009) defines the raw bond return Rt as following:

Rt =
Pt − Pt−1 +AIt

Pt−1
, (1.2)

where Pt−1 and Pt are the daily prices on days t− 1 and t, respectively. AIt
corresponds to the interest accrued over day t and is calculated as the annual
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coupon payment multiplied by L, all divided by 360, whereby L corresponds
to the number of calendar days elapsed between the close of market day t− 1
and the close of day t (May, 2010). In the literature and in common data
provider services the raw bond return Rt is also known as the total return of
a bond. Afterwards, the cumulative abnormal return (CAR) for each issue i
over a test window from day H to day L is formed by simply summing up
their respective abnormal returns:

CAR(H,L),i =

L∑︂
t=H

ABRi,t. (1.3)

In some instances multiple issues i from the same firm j are downgraded
at the same date, therefore cumulative abnormal returns are aggregated by
firm to avoid positive correlation from bonds issued from the same firm. In
the literature two common ways are adopted, either by equal-weighting the
cumulative abnormal returns of the individual issues of each firm (Grier &
Katz, 1976; Bolognesi et al., 2014), or weighting them by their respective share
of the overall market-value of debt outstanding for each firm (Bessembinder
et al., 2009):

CAR(H,L),j =

n∑︂
i=1

CAR(H,L),iwi,t−1, (1.4)

where wi,t−1 represents in case of the equal-weighting aggregation scheme a
constant of the size 1/n, n indicating the number of issues i for each firm
j. For the market-value weighting method, wi,t−1 is the ratio of issue i’s
market value on day t − 1 to the total market value of the firm j’s issues.
The cumulative abnormal returns are usually calculated in several pre-event
and post-event windows to detect dynamics around the event. Inference is
conducted by analyzing the vectors of CAR(H,L),j and performing classical
t-tests as well as non-parametric Wilcoxon signed-rank tests against the null
hypothesis that the mean of CAR(H,L) equals zero.

So far, so good. But what about IRt? IRt represents a return on an index of
matched corporate bonds that did not experience a rating change. Although
it is not always explicitly stated, what these studies analyzing the impact of
rating changes on corporate bonds prices want to study is the causal effect.
IRt therefore represents the classical counterfactual, unobservable outcome
from the causal inference literature. In contemporary and past literature only
crude approximations based on ad hoc decisions of this counterfactual are
utilized. May (2010) – who does not focus exclusively on fallen angel bonds
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– constructs IRt using 13 bond indices, resulting from a partitioning scheme
that considers both the rating and the maturity of bonds. The maturity cutoff,
i.e. long-maturity vs. short-maturity bonds, for 6 of the 7 rating categories
are chosen such that there exist more or less an equal amount of bonds in
given bond index. Bolognesi et al. (2014) consider in their study exclusively
fallen angel bonds. In the pre-event period, i.e. before the bond gets down-
graded, Bolognesi et al. (2014) simply take the broad market-value weighted
investment-grade corporate bond index to measure the counterfactual. The
counterfactual measures the unobservable return of what would the return of
the fallen angel bond have been, had it not been downgraded. Is it really
sensible to compare a bond that has suffered a decline in the perceived abil-
ity to repay its debt with the broad investment-grade market? Fallen angel
bonds are usually at the lower end of the investment-grade credit spectrum
already and might suffer from some kind of deterioration in financial met-
rics well in advance of a downgrade. They might already have suffered some
downgrades within the investment-grade credit spectrum and suffered associ-
ated price shocks. Furthermore, the bulk of investment-grade debt tends to
be offered by large corporations which tend to fare better in terms of credit
rating, thus pushing up the average credit quality of a market-value weighted
broad investment-grade bond index. In case one can not fully support the
statement that the broad investment-grade market serves as a sensible coun-
terfactual for fallen angel bonds, the estimated cumulative abnormal returns
are not causal in nature. They simply document some form of excess re-
turn over broad investment-grade or high-yield investments around the event
window. Rather, identifying assumptions must be made and an unknown,
unobservable counterfactual – i.e. what would the price of the fallen angel
bond have been, had it not been downgraded – has to be estimated.

In the next section I introduce a unifying framework for causal event studies.
I propose to estimate IRt, i.e. the return on an index of matched corpo-
rate bonds that did not experience a downgrade to speculative-grade, using a
generalized variant of the synthetic control method.

1.4 Causal event study framework

Event studies have a very specific setup. In particular, they can be framed
such that there exists one treated unit with an associated pool of potential con-
trol units. In the case of analyzing the effect of a downgrade from investment-
grade to speculative-grade on bond prices, the treated unit is obviously the
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fallen angel bond. The pool of controls consist of all other investment-grade
rated bonds that did not experience a downgrade to speculative-grade. At
some point, there is a shift in perceived perception about the ability of the
issuer of the corporate bond to be able to repay the debt. Similarly, market
participants might expect the issue to be downgraded and thus want to avoid
this by selling the bond. This is when things start to drift off for fallen angel
bonds. This can be argued to be similar to e.g. the implementation of a new
policy or some kind of treatment often studied in comparative case studies.

To cope with these kind of econometric problems, Abadie et al. (2010) in-
troduced in a seminal paper the synthetic control method, see also Abadie,
Diamond, and Hainmueller (2015) and Abadie and Gardeazabal (2003). The
synthetic control method of Abadie et al. (2010) is designed to estimate the ef-
fect of a treatment in the presence of a single treated unit and a pool of control
units. Their proposed method selects a set of weights such that chosen covari-
ates and pre-treatment outcomes of a treated unit are approximately matched
by a weighted average of control units. This weighted average of control units
is coined synthetic control by Abadie et al. (2010). The synthetic control is
then in turn used to estimate the unobserved counterfactual post-treatment
in order to assess the impact of the treatment. The estimated causal effect of
the treatment is then simply the difference between the observed time-series
of the treated unit and the predicted time series using the synthetic control at
each point in time where the policy takes place. The impact of the synthetic
control method by Abadie et al. (2010) has been huge in the policy analysis
literature, with a vast body of literature generalizing assumptions and work-
ing on improving inference methods. Athey and Imbens (2017) even state
that the synthetic control method is one of the most important innovations
in the program evaluation literature of the past fifteen years.

Doudchenko and Imbens (2017) generalize the synthetic control method and
provide a unified framework for various other reduced-form approaches.
Reduced-form approaches are characterized by modeling the counterfactual
directly as a linear combination of the control units.

1.4.1 Framework

The general notation and framework follows the setting of Doudchenko and
Imbens (2017). For ease of exposition I cover the case of a single treated unit,
unit 0, and an associated single event. I consider a panel data setting with
N + 1 cross-sectional units observed over the full sample in time periods t =
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1, . . . , T . From period T0+1 onwards, for 1, . . . , T0, T0+1, . . . , T , the treated
unit receives the treatment. This means that there are T0 pre-treatment
periods. Utilizing the potential outcome setup developed by Rubin (1974),
there exists for each treated unit in each of the time periods, t = T0+1, . . . , T
a pair of potential outcomes Y0,t(0) and Y0,t(1). Y0,t(0) corresponds to the
potential outcome of the treated unit 0 at time t, given that the treated
unit had not received the treatment. The treated unit actually received the
treatment and therefore Y0,t(0) represents the counterfactual and is therefore
unobserved. Y0,t(1) denotes the potential outcome of the treated unit 0 at
time t given that the treated unit received the treatment. This potential
outcome is therefore observed. The causal effects τ0,t for the treated unit 0
for each time period t are as follows:

τ0,t = Y0,t(1)− Y0,t(0), for t = T0 + 1, . . . , T. (1.5)

Units i = 1, . . . , N are control units which do not receive the treatment in
any of the time periods t = 1, . . . , T . In case of only wanting to estimate
average treatment effects on the treated, the only potential outcome of interest
corresponds to Yi,t(0) and is observed. To formalize the observed outcome a
treatment indicator variable Wi,t is necessary:

Wi,t =

{︄
1 if i = 0, and t ∈ {T0 + 1, . . . , T}
0 otherwise

(1.6)

For unit i in period t, the treatment Wi,t and the realized outcome Y obs
i,t is

observed:

Y obs
i,t = Yi,t(Wi,t) =

{︄
Yi,t(0) if Wi,t = 0

Yi,t(1) if Wi,t = 1
(1.7)

We can denote Yobs
i as a T × 1 vector (Y obs

i,1 , . . . , Y obs
i,T )T . This vector we can

split up in pre- and post-treatment periods and group by treated unit and
control units yielding Yobs

t,pre a T0-vector, Y
obs
c,pre a N × T0 matrix (excluding

the treated unit 0) and similarly, Yobs
t,post and Yobs

c,post for the post-treatment
period, respectively. Combining these matrices yields:

Yobs =

(︃
Yobs

t,post Yobs
c,post

Yobs
t,pre Yobs

c,pre

)︃
=

(︃
Yt,post(1) Yc,post(0)
Yt,pre(0) Yc,pre(0)

)︃
(1.8)

The causal effect of interest in equation (1.5) depends on the pair of matrices
Yt,post(1) and Yt,post(0). While Yt,post(1) is observed, Yt,post(0) represents
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the counterfactual and is therefore unobserved. The goal is now to impute the
unobserved control outcomes for the treated unit Yt,post(0) on the basis of
the pre-treatment period outcomes for both treated and control units and the
post-treatment outcomes for the control units, i.e. Yt,pre(0), Yc,pre(0) and
Yc,post(0). The question on the importance of covariates has been debated in
the literature. Athey and Imbens (2017) and Doudchenko and Imbens (2017)
argue that the outcomes tend to be substantially more important than covari-
ates in term of predictive power. Therefore, to construct the synthetic control
it is often sufficient to minimize the difference between the treated and control
outcomes prior to the treatment. Furthermore, Kaul, Klößner, Pfeifer, and
Schieler (2021) show that if all lagged outcomes are included in the synthetic
control method as introduced by Abadie et al. (2010), covariates become re-
dundant. In addition, in my particular analysis many covariates are already
implicitly included in the outcomes. This is due to the fact that I use total
returns and to form these, I need to take the coupon rate, coupon frequency
and maturity into account. Liquidity, general industry and company stress as
well as potential prior downgrades should also already be reflected in the price
process. I therefore focus in my analysis on imputing the unobserved control
outcomes for the treated unit solely on the basis of the three aforementioned
outcomes Yt,pre(0), Yc,pre(0) and Yc,post(0).

1.4.2 Identification

The estimation of the causal effect in equation (1.5) needs an identifying
assumption since the counterfactual for the treated unit, Y0,t(0) for t =
T0 + 1, . . . , T , is unobserved. The true counterfactual cannot be observed in
general, therefore the validity of a particular identifying assumption cannot
be tested empirically (Imbens & Wooldridge, 2009). In this paper, I use the
conditional independence assumption for the identification of the treatment
effect. The conditional independence assumption is discussed by Angrist and
Pischke (2009). O’Neill, Kreif, Grieve, Sutton, and Sekhon (2016) and Kinn
(2018) relate it to synthetic control methods. It is assumed that the potential
outcome can be expressed by some function of an unobserved common time
effect γt, unobserved time-varying unit specific effects ϕi,t and a vector of ob-
served time-varying unit specific covariates Xi,t, i.e. Yi,t(0) = f(γt, ϕi,t,Xi,t).
If the potential outcome Yi,t(0) was not exposed to a treatment, as in the
case of the control units, it is independent of the treatment Wi,t conditional
on γt, ϕi,t and Xi,t, i.e. Yi,t(0) |= Wi,t|(γt, ϕi,t,Xi,t). The conditional inde-
pendence on past outcomes assumption states that the potential outcome
without treatment for both groups is the same in expectation conditional on
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past outcomes and observed covariates:

Yi,t(0) |=Wi,t|(Yobs
i,pre,Xi,t), (1.9)

where Yobs
i,pre is a vector of realized outcomes for unit i in the T0 periods prior

to the introduction of the treatment. The conditional independence assump-
tion therefore proxies for the unobserved confounding factors γt and ϕi,t by

conditioning on the full set of pre-treatment outcomes Yobs
i,pre. Under this

assumption, it is anticipated that individuals with similar outcomes in the
pre-treatment period would have similar potential treatment-free outcomes in
post-treatment periods after conditioning on observed covariates Xi,t. Since
Yi,t(0) is affected by observed as well as unobserved confounders, Abadie et al.
(2010) argue that units with similar outcomes in the pre-treatment period are
also likely to have similar values of the time-varying unobserved confounding
factors. Thus, if the synthetic control is able to find a weighted combination
of controls that matches the treated unit, the time-varying unobserved con-
founding factors will also likely be balanced. In particular, in estimating the
preannouncement sell-off fallen angel bonds suffer, I argue that before the sell-
off starts, we can find a weighted combination of bonds that match the total
return profile of the fallen angel bond. That weighted combination should in
essence reflect similar bonds, bonds with similar values of the coupon rate,
maturity, yield-to-maturity, level of the bond price, liquidity, industry stress,
potential prior downgrades and rating profile. After the fallen angel bond has
been pushed into a sell-off, we should be able to proxy the development of
its total return in absence of the sell-off by using the weighted combination
obtained from the periods prior to the sell-off.

Another assumption, that is implicitly stated in equation (1.7), is the stable
unit treatment value assumption (SUTVA). It states that only two poten-
tial outcomes exist and that one of them is observed for each unit i. The
SUTVA first appeared in Rubin (1980), but it had already been discussed
in earlier studies. E.g. Cox (1958) assumes no interference between units,
i.e. the potential outcome observation on one unit should be unaffected by
the particular assignment of treatments to the other units. The SUTVA is
therefore violated in the presence of general equilibrium effects (Heckman,
Lalonde, & Smith, 1999), peer-effects, or in the presence of externalities and
spillover effects. This is a very strict assumption and is unlikely to be satisfied
on financial markets. A discussion of the causality of the estimated effects in
my particular setting with the fallen angel event study is given in subsection
1.4.5.
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1.4.3 Estimation

If we focus for ease of exposition only on time period T , the causal effect for
unit 0 from equation (1.5) can be written as τ0,T = Y0,T (1) − Y0,T (0). Con-
sidering that unit 0 receives the treatment in period T , Y0,T (1) = Y obs

0,T with

the causal effect therefore being τ0,T = Y obs
0,T − Y0,T (0). Y0,T (0) is therefore

the only unknown component and needs to be estimated. Doudchenko and
Imbens (2017) note that many estimators commonly used in the literature
share the following linear structure:

Ŷ 0,T (0) = µ+

N∑︂
i=1

ωiY
obs
i,T . (1.10)

Therefore to impute the unknown Y0,T (0), a linear combination with intercept
µ and weight ωi for the outcome of control unit i in time T is proposed. One
natural way to estimate this relationship might be by using ordinary least
squares (OLS):

(µ̂ols, ω̂ols) = arg min
µ,ω

T0∑︂
s=1

(︄
Y obs
0,s − µ−

N∑︂
i=1

ωiY
obs
i,s

)︄2

. (1.11)

The estimation of this equation involves T0 observations and N +1 predictors
(N controls and µ). However, in high-dimensional settings where N+1 >> T0

some form of regularization of the weights ω is required to be able to estimate
the regression. Doudchenko and Imbens (2017) propose the use of an elastic-
net type penalty for the weights that combines the penalties from the least
absolute shrinkage and selection operator (Lasso) and Ridge regression. Their
objective function including the elastic-net penalty function is the following:

(µ̂en(λ, α), ω̂en(λ, α)) = arg min
µ,ω

||Yobs
t,pre − µ− ωTYobs

c,pre||22

+ λ

(︃
1− α

2
||ω||22 + α||ω||1

)︃
,

(1.12)

where λ and α represent the overall shrinkage and the value of the elastic-net
mixing parameter that determines the relative weight of Lasso vs. Ridge reg-
ularization, respectively. Doudchenko and Imbens (2017) do not normalize
Yobs

c,pre, since this would change the weights when the variable is renormal-
ized, thus affecting the construction of the synthetic control. Furthermore,
the authors relax in their paper three assumptions common to traditional
synthetic control methods as introduced by Abadie et al. (2010). These are
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1) no-intercept, µ = 0; 2) adding-up,
∑︁N

i=1 ωi = 1 and 3) non-negativity,
ωi ≥ 0, i = 1, . . . , N . The DID method is relaxed with respect to the
constant-weights assumption, ωi = ω̄, i = 1, . . . , N as well as the adding-
up and the non-negativity assumption.

In order to determine the value of λ and α, I suggest to use hν-block cross-
validation as proposed by Racine (2000). hν-block cross-validation is a consis-
tent cross-validatory method to perform model-selection for dependent data.
It consists of dividing the time-series of pre-treatment periods T0 into K sub-
sets, i.e. “folds,” and because of the dependent nature of time-series one needs
to further remove h observations from either side of the fold that serves as
validation set. More formally, the training set has size T0 − 2h − ν, where
ν = ⌊T0/K⌋. For the purposes of this paper, I follow the rule-of-thumb sug-
gestion of Burman, Chow, and Nolan (1994), setting h = T0/6. According
to Burman et al. (1994), h = T0/6 appears to be a sensible choice in a va-
riety of settings. Continuing with the cross-validation procedure, for a given
λ and α one solves equation (1.12) by using the first training set and then
computes the mean squared error on the validation set. This procedure is
repeated K times, each time leaving out another validation set, such that
all validation sets are left out once. The optimal pair (λen

opt, α
en
opt) is chosen

such that the average of the cross-validated errors is minimized. For practical
purposes, often a finite set of values for α ∈ {0, 0.05, 0.10, . . . , 0.90, 0.95, 1}
and all possible values for λ, λ ∈ (0,∞) is considered. Once (λen

opt, α
en
opt) have

been determined, one can estimate equation (1.12) on the full T0 to deter-
mine (µ̂en(λen

opt, α
en
opt), ω̂

en(λen
opt, α

en
opt)). These estimates can then be used to

construct the synthetic control and estimate the causal effect in equation (1.5).

In this application, I choose to only use the Lasso penalty function resulting
in the following objective function:

(µ̂lasso(λ), ω̂lasso(λ)) = arg min
µ,ω

||Yobs
t,pre − µ− ωTYobs

c,pre||22

+ λ (||ω||1) ,
(1.13)

where (µ̂lasso(λlasso
opt ), ω̂lasso(λlasso

opt )) now denote the estimates used to construct
the synthetic control. The reason for only choosing the Lasso penalty function
is that the elastic-net – due to the Ridge penalty component – does not often
set weights exactly to zero. For prediction purposes this can make sense, but
due to the causal question at hand, attaching non-zero weights to controls
that are not similar to the fallen angel bond is rather counterintuitive.
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1.4.4 Inference

Conducting inference for synthetic control methods is not an easy task. Main
reasons are the lack of randomization and that no probabilistic sampling is
used to choose sample units (Abadie et al., 2015). In their seminal study,
Abadie et al. (2010) conduct inference on the estimated treatment effects
by means of randomization inference. What randomization inference essen-
tially does, is to assess if the estimated treatment effect of the treated unit
is “abnormally” large in comparison to the treatment effects estimated from
pseudo-treated units, i.e. placebo experiments. Pseudo-treated units are con-
trol units which are assigned the treated state – each control takes the role of
a pseudo-treated once – and all other control units except the pseudo-treated
unit are used as the control group. Conducting this placebo experiment yields
a distribution of effects. Therefore, if one wants to claim some kind of “sig-
nificance” of the treatment, the estimated treatment effect of the treated unit
needs to lie outside or in the tails of the distribution.

Improving inference methods is an active field in the literature, with many
contributions recently, see e.g. Ferman and Pinto (2019), Firpo and Possebom
(2018), Xu (2017), Li (2020) and Chernozhukov, Wüthrich, and Zhu (2021).
These new methods generally advocate some sort of bootstrapping approach
where either the unit that is treated is viewed as random and/or that the pe-
riod where the treated unit first receives the treatment is viewed as random.

For my specific application the question of interest would be inference on av-
erages of estimated treatment effects and whether these are statistically sig-
nificantly different from the cumulative abnormal returns as estimated from
traditional event studies. Such kind of inference procedure has to my knowl-
edge not yet been developed by the literature and would face many challenges
due to the multiple layers in estimation uncertainty stemming from the syn-
thetic control. Due to my analysis not being interested in estimating the size
of the causal effect per se, but rather using it in order to make buying/selling
decisions and analyzing subsequent average postannouncement returns, I do
not conduct inference on the estimated causal effects. I do, however, conduct
inference on average postannouncement returns, i.e. whether the difference
in means between using the synthetic control vs. a different counterfactual
is significant. I do this via the classical way of doing inference in traditional
event studies, as described in section 1.2.
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1.4.5 The question of causality in this particular appli-
cation

After introducing a causal event study framework in section 1.4 and already
discussing some potential pitfalls, one might ask, can the estimated prean-
nouncement sell-off of fallen angel bonds be truly regarded as causal? The
short answer is: Probably not. This is not in particular due to the intro-
duced, general framework for a causal event study in section 1.4, but rather
has to do with my particular research setting and question at hand. Specifi-
cally, whereas in comparative case studies there is a clear treatment at a clear
date, e.g. implementation of a new policy or a change in a rule, I base my
treatment on the outcome, i.e. the future downgrade event. More specifically,
I assume that for bonds that are being downgraded, the preannouncement
sell-off starts 100 days prior to the downgrade date. These 100 days are not
simply plucked out of thin air or based on observing when in my particu-
lar sample fallen angels’ bond prices start to drift off on average, but rather
rely on prior literature such as Steiner and Heinke (2001), who already find
that fallen angel bonds feature a negative excess return 100 days prior to the
downgrade announcement. A later study conducted by Dor and Xu (2011),
similarly finds up to three months prior to rerating announcements a neg-
ative price effect. Nevertheless, this is a very strong assumption and must
not hold for the individual bond. Furthermore, the SUTVA is also likely to
be violated due to the abundance of peer-effects, externalities and spillover
effects on financial markets. Finally, the question is if it matters if the esti-
mated preannouncement sell-off of fallen angel bonds is not causal in nature.
The answer thereby depends on what the aim of the analysis is. If the aim
of the paper would be to accurately estimate the size of the true causal im-
pact of being downgraded to high-yield, it would absolutely be of importance,
whether the assumptions can be regarded as satisfied to a high enough of a
degree. If, however, as in this paper the aim of the analysis is rather simply
using this estimated “causal” effect in order to make buying/selling decisions
and investigating subsequent investment gains, the question of true causality
becomes less of an issue.

1.5 Data

To analyze the preannouncement sell-off of fallen angel bonds I use a very
comprehensive dataset from the OTC-market. The bond transaction tick
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data is available from July 2002 until December 20181 through Financial In-
dustry Regulatory Authority’s (FINRA) Trade Reporting and Compliance
Engine (TRACE), which was introduced by the National Association of Se-
curities Dealers (NASD) in 2002, in an effort to improve transparency in the
OTC corporate bond market. From February 2005 onwards, 99 percent of all
TRACE eligible bond transactions are covered on an intra-day basis. Infor-
mation contained in the database is listed by transaction, key metrics include
trade date, time, par volume, yield and transaction price. TRACE is there-
fore the most comprehensive source of pricing information when it comes to
research questions concerning the U.S. corporate bond market. It is available
on Wharton Research Data Services (WRDS). TRACE features two different
versions, a standard and an enhanced version. The difference is that in the
enhanced version all trades are included since 2002, whereas the standard
edition only includes specific segments of bonds, i.e. until 2005, practically
no high-yield trades were disclosed. Furthermore, the standard TRACE data
includes a cap on the volume traded, whereas the enhanced edition reports
the uncapped, exact volume. The disadvantage of the enhanced TRACE ver-
sion is that it is reported with a lag, whereas the standard TRACE data is
not. Fortunately, I am able to use the TRACE enhanced data for the full
sample time. As discussed in section 1.2, using effective transaction prices
and not some form of matrix prices is of utmost importance when analyzing
relations between prices and ratings. The TRACE data, however, needs to be
cleaned thoroughly before it can be used. Due to the fact that the TRACE
data is dealer reported, errors can happen. Instead of correcting the data
in the database directly, trade messages are appended, indicating either can-
cellations, corrections or reversals. Trades can also be double counted in the
TRACE system, due to the fact that various parties can report the same trade.
I follow the steps outlined in Dick-Nielsen (2009) and Dick-Nielsen (2014) to
take care of the cancellation, correction, reversal and double counting issues. I
followed Bessembinder et al. (2009) in calculating daily trade-weighted prices
and followed Bai, Bali, and Wen (2019) in excluding trades with a par volume
of less than 10,000 USD.

1I am constrained using data only up until December 2018, because my acquired Altman-
Kuehne NYU Salomon Center Corporate Bond Default Master database ends then.
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Table 1.1: Sample setup. In this table I describe the detailed steps I take to filter the
TRACE dataset and the impact of those steps on the dimensions of my dataset.

total sample fallen angels sample
obs issues firms events firms

starting sample, TRACE raw data 22,063,238 173,017
- remove trade records, price reversal > |10| USD 22,043,784 173,017
- match bond CRSP link database 16,146,320 130,281 3,354
- match Mergent FISD issue database 15,679,664 113,216 3,007
- remove privately placed securities not available to the public 113,195
- remove private placement issues (SEC Rule 144a) 112,410
- remove bonds denominated in a foreign currency 112,399
- remove bonds with country domicile outside U.S. 71,213
- remove Yankee bonds 71,109
- remove Canadian bonds 71,098
- remove bonds not in “CZ,” “UCID,” “USBN,” “CMTZ,” 68,266

“CMTN,” “RNT,” “CDEB” categories
- remove asset backed bonds 68,261
- remove convertible bonds 68,250
- coupon type = “V” (variable coupon bonds) 52,661
- coupon change indicator = “D,” “R,” “T” 52,495

(coupon that is allowed to change)
- remove perpetual bonds 52,493
- remove preferred securities 48,523
- missing values: private placement 48,446
- missing values: security level 48,437
- missing values: interest frequency 48,421
- missing values: coupon 48,386
- missing values: day count basis 48,362
- missing values: coupon type 48,360
- missing values: putable 48,356
- conflict: interest frequency = 0 but coupon != 0 48,321
- conflict: coupon = 0 but interest frequency != 0 11,918,157 48,319 1,981

- match Mergent FISD ratings database 11,918,152 48,315 1,981 3,000 318
- remove 2nd fallen angel event (only keep the first 2,940 318

fallen angel event for each bond)
- remove bonds due to insufficient maturity 1,853 280

(≤ 24 months from downgrade date)
- remove bonds due to maturity > 30 years 1,841 280
- remove bonds downgraded straight into default 1,821 276

rating proximity (CCC+ or worse, see Table 1.2)
- match bond default database 1,821 276
- remove bonds that already defaulted prior 1,811 274

downgrade date or in 10 days after
- remove bonds not traded during 1 year window 1,700 264

around downgrade date
- remove bonds not traded during training window 1,507 239

(−365 : −101, 265 days)
- remove bonds with insufficient training data 1,426 233

(start data > −200, < 100 days max. available)
- remove bonds with insufficient number of 1,194 204

training observations (< 10)
- remove bonds with insufficient number of testing 904 184

(−100 : −1, 100 days) observations (< 10)
- remove bonds not traded in first 10 days post downgrade date 839 176
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Table 1.1 displays the detailed sample setup. Firstly, I needed to delete trade
records that featured a daily reversal in prices over 10 USD in absolute terms,
because there were some obviously faulty trade prices. E.g. if a bond trades
at 100 on Monday, drops to below 90 on Tuesday, and then features again a
price of over 100 on Wednesday, I exclude the trade record for Tuesday for
that particular bond. As evidenced by Table 1.1, only roughly 0.09% of trade
records got removed and checking a large subset of them manually, confirmed
that they were indeed outliers. I then need to match two databases to be able
to uniquely determine the firm that issues the individual bonds (bond CRSP
link database) and obtain information of the issue such as coupon, coupon
frequency, day count convention, maturity (Mergent FISD issue database). I
then follow the cleaning steps outlined by Bai et al. (2019), most importantly
removing bonds in a different currency than the USD, bonds issued from firms
outside the jurisdiction of the U.S., asset backed bonds, bonds with a variable
coupon rate for which a total return computation is very cumbersome and
prone to error,2 perpetual bonds and preferred securities.3 This big cleaning
step reduced the number of trade records by 24% down to 11,918,157 resulting
in having a sample of 48,319 issues of 1,981 firms.

The goal of the next step is to create a liquid sample of fallen angel bonds.
I first match in rating information of the individual issues from the Mergent
FISD ratings database. Table 1.2 displays an overview of the ratings the dif-
ferent rating agencies attach to individual bonds. The Mergent FISD ratings
database includes the exact day of the rating changes from Fitch, S&P and
Moody’s. To define when a bond becomes a fallen angel, I use the index
inclusion rules from Bloomberg Barclays benchmark indices. A bond is ex-
cluded from the index, if its middle rating drops below investment-grade. The
middle rating is applied when all three rating agencies have an outstanding
rating, if only two have an outstanding rating, the lower is the relevant rating
for index inclusion. This way I can initially identify 3,000 fallen angel events
of 318 firms. I then remove 60 fallen angel events, because I do not want
multiple fallen angel events for individual bonds. These are mostly due to
bonds that were about to expire and one of the rating agencies ceased their
rating of the issue which led to jumps across the investment-grade, high-yield
barrier. I then remove fallen angel events that after the downgrade announce-

2Representative bond benchmark indices such as Bloomberg Barclays also only include
bonds with a fixed coupon rate.

3The bonds in this sample belong to one of the following categories: CZ-U.S. Corporate
Zero, UCID-U.S. Corporate Insured Debenture, USBN-U.S. Corporate Bank Note, CMTZ-
U.S. Corporate Medium Term Note (MTN) Zero, CMTN-U.S. Corporate MTN, RNT-Retail
Note, CDEB-U.S. Corporate Debentures.
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Table 1.2: Ratings. This table compiles and compares the ratings given by the three rating
agencies Fitch, S&P and Moody’s. A previously investment-grade rated bond crossing the
investment-grade/high-yield barrier is considered a fallen angel bond.

Fitch S&P Moody’s Rating grade description (Moody’s)
AAA AAA Aaa Minimal credit risk
AA+ AA+ Aa1
AA AA Aa2 Very low credit risk
AA- AA- Aa3
A+ A+ A1
A A A2 IG Low credit risk
A- A- A3
BBB+ BBB+ Baa1
BBB BBB Baa2 Moderate credit risk
BBB- BBB- Baa3
BB+ BB+ Ba1
BB BB Ba2 Substantial credit risk
BB- BB- Ba3
B+ B+ B1
B B B2 High credit risk
B- B- B3
CCC+ CCC+ Caa1
CCC CCC Caa2 HY Very high credit risk
CCC- CCC- Caa3
CC CC Ca In or near default, with possibility of recovery
C C
DDD SD C
DD D In default, with little chance of recovery
D

ment have less or equal to 24 months left until redemption. This is due to
the fact, that index exclusion rules for major benchmark indices require a
minimum time-to-maturity of 1 year. Keeping a bond with a short maturity,
could suffer a mechanical price pressure due to being excluded from the in-
dex. I also proxy for perpetual bonds by excluding fallen angel bonds with a
remaining maturity of over 30 years. I exclude bonds rated directly to CCC+
or worse, because these include issues that went straight into default at the
time of the downgrade, e.g. Lehman Brothers, and an investor would never
consider buying them. In order to control for defaulting bonds directly, I
acquired the Altman-Kuehne NYU Salomon Center Corporate Bond Default
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Master database. Defaults are kept in the dataset to avoid any survivor-
ship bias. Their price, however, changes only according to their trading price
(which represents the recovery rate). Defaulted issues are assumed not to pay
coupons anymore and therefore their traded price equals their total return.
In my analysis, I only start to invest in bonds after 10 days postannounce-
ment. This is due to the fact that immediately after the downgrade, fallen
angels tend to suffer a substantial price shock as outlined in section 1.2. I
therefore remove bonds that already featured a default event4 up to 10 days
postannouncement.

The next couple of cleaning steps deal with having enough trades in order
to estimate the synthetic control as well as preserving liquidity of the fallen
angel bonds around the downgrade date. In total, I cover data 1 year around
the downgrade event. The downgrade event is day 0. The event window
therefore goes from day -365 to day +365, covering 731 days in total. The
training window where I estimate the Lasso, covers 265 days in total, from
days -365 to -101. The testing window, where I use the weights estimated
using the Lasso on the training window and then fit the model on the testing
data in order to get the synthetic control counterfactual, covers 100 days in
total, from days -100 to -1. This testing window period I coin in this paper
the “preannouncement.” A couple of fallen angel bonds were not traded 1
year around their downgrade date as well as during the training window and
thus needed to be removed from the sample. Fallen angel bonds not traded
at least once prior to day -200, or having less than 10 trade records in the
training/testing window were removed as well. Finally, I also removed bonds
not traded in the first 10 days post their downgrade date.

The final sample includes 839 fallen angel bonds of 176 firms. The fallen angel
sample featured 70 defaulted bonds of 23 firms. In general, if a bond is not
traded on a given day, its prior price is filled forwards to the next available
transaction price. The bond, however, accumulates accrued interest. Due
to the Mergent FISD issue database, I am able to calculate the exact total
return using equation (1.2), because I have full data on the coupon, coupon
frequency, day count convention, last interest date and maturity.

Figure 1.1 displays for each of the 182 distinct fallen angel downgrade event
dates the number of potential control bonds, i.e. investment-grade rated

4The Altman-Kuehne NYU Salomon Center Corporate Bond Default Master database
defines a default as being either a bankruptcy, missed interest payment or distressed ex-
change.
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Figure 1.1: Number of IG rated issues. This figure shows how many control bonds
were available for each of the 182 distinct fallen angel downgrade events. Control bonds
needed to maintain an investment-grade rating from day -365 to day +10 and had to have
a cumulative total return from day -365 to day -1 of less than 100%.
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bonds that can be used to train and fit the synthetic control 1 year up to
the event. The number of investment-grade issues outstanding varied sub-
stantially over the sample period, reaching a peak shortly before the onset
of the global financial crisis in 2008 of around 9,500 issues and then steadily
decreased to under 8,000 issues. In order for the individual control bond to
qualify to be included in the sample, it had to exhibit a continuous investment-
grade rating from days -365 through to day +10. Furthermore, outliers were
removed, by removing control bonds that featured a doubling or more of their
indexed total return value from 100 (day -365) to 200 (day -1) or over.

Table 1.3 shows in which years and by how many firms the 839 fallen angel
events occurred. There is a clustering of fallen angel events in the years from
2004 until 2009 and from 2014 until 2016. In particular in 2005, there were
285 fallen angel events. From those 285 fallen angel events, however, 236 can
be directly attributed to “Ford Motor Company” being downgraded to high-
yield. The period between 2010 and 2013 features comparatively few fallen
angel events. The example of having 236 fallen angel bonds of the same firm,
highlights the importance of grouping individual fallen angel bonds by firm
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Table 1.3: Number of fallen angel events. This table displays in which year, how many
fallen angel events occurred by how many firms. There is a large clustering of 236 events
in 2005 from “Ford Motor Company.”

Year Bonds Firms
2003 14 7
2004 48 17
2005 285 19
2006 47 19
2007 45 18
2008 84 12
2009 97 23
2010 24 7
2011 13 8
2012 7 5
2013 26 6
2014 66 13
2015 21 8
2016 48 19
2017 14 9

839

and taking averages.

Figure 1.2 displays indexed fallen angel bonds’ total return (grouped by firm
with an equal-weighting scheme). Figure 1.3 features the notorious V-curve,
that is typical for the price behavior of fallen angel bonds. Figure 1.3 is gener-
ated by first grouping fallen angels bonds’ total return by firm (average returns
by firm) and then grouping by day (average returns by day) and then indexing
it to a base of 100. From Figure 1.3 it is evident, that around 2 percent of
the value would temporarily be lost a few days after the downgrade event.
That the minimum on average is slightly after the downgrade announcement,
can be explained by the reaction time of investors and passive investment
vehicles to the downgrade announcement. For instance, some investors might
not have anticipated the downgrade and after hearing about the news of the
rerating by the rating agency, need to sell the fallen angel bond due to their
investment guidelines. Furthermore, a passive investment vehicle such as an
exchange traded fund typically rebalances its portfolio holdings at the end of
the month. Figure 1.3 also shows, that 100 days prior to the downgrade an-
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Figure 1.2: Fallen angel return (grouped by firm). This figure shows indexed fallen
angel bonds’ total return. It is generated by grouping fallen angel bonds’ total return by
firm (average return by firm) and then indexing it to a base of 100.
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Figure 1.3: V-curve, mean fallen angel return (grouped by firm). This figure shows
the notorious V-curve, that is typical for the price behavior of fallen angel bonds. It is
generated by first grouping fallen angels’ bond total return by firm (average returns by
firm) and then grouping by day (average returns by day) and then indexing it to a base of
100.
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nouncement, the kink in the performance apparently starts. It can therefore
be presumed, that at roughly 100 days before the downgrade announcement,
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investors engage in the sell-off. Next to the findings already presented by
Steiner and Heinke (2001) and Dor and Xu (2011), this further motivates
my choice for the 100 days prior to the downgrade announcement to be my
preannouncement sell-off period. Data up until 100 days prior to the fallen
angel event are therefore used to train the synthetic control. The synthetic
control is then fit on the 100 days prior to the downgrade announcement to
obtain the counterfactual. In terms of the time periods the causal event study
framework uses in section 1.4, 1, . . . , T0 corresponds to days -365 until -101
prior to the event, and T0+1, . . . , T corresponds to days -100 until -1 prior to
the event. T0 would therefore mean that the pre-treatment period (before the
preannouncement sell-off starts) amounts to 265 days in total. T on the other
hand, would amount to 365 days, just before the downgrade to high-yield
announcement by the rating agency on day 0. Revisiting the number of con-
trols available in Figure 1.1, we can observe that for each distinct rating date
N+1 >> T0. We are therefore in the high-dimensional setting and some form
of regularization of the weights ω is necessary, as discussed in subsection 1.4.3.

The task in the next section will be to estimate the abnormal preannounce-
ment return. This will be done by training the synthetic control on the
pre-treatment sample 1, . . . , T0 and then fitting it on the treatment sam-
ple T0 + 1, . . . , T . The total return of fallen angel bonds will then sub-
tract their individual synthetic controls’ returns to form abnormal returns
(equation (1.1)). These abnormal returns are then log-cumulated (equation
(1.3)) and then grouped by firm with an equal-weighting scheme (equation
(1.4)). The resulting vector CAR(−100,−1),i is therefore simply the treatment
effect for a fallen angel bond – i.e. unit 0 in section 1.4 – in time period
T , τ0,T = Y0,T (1) − Y0,T (0) or equivalently due to Y0,T (1) being observed,
τ0,T = Y obs

0,T − Y0,T (0). Both the traditional event study setup in section 1.3
and the introduced causal event study setup in section 1.4 can therefore easily
be related to each other. Investment applications using the size of the abnor-
mal preannouncement return with the synthetic control as its counterfactual
are considered and its benefits vs. using a “naive” broad-based investment-
grade rated benchmark are highlighted.

1.6 Results

This section aims to estimate the preannouncement sell-off fallen angel bonds
suffer and to use this estimate in order to be able to make better informed
buying/selling decisions post-downgrade. The question hereby is, whether a
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custom benchmark – the constructed synthetic control – can provide investors
with some added utility, rather than simply using a broad-based investment-
grade bond index as a counterfactual to gauge the fallen angel bond’s potential
cumulative abnormal preannouncement return. To achieve this aim, a syn-
thetic control needs to be constructed in the pre-treatment period, i.e. before
the sell-off of worried fund managers starts. This synthetic control should be
similar to the fallen angel bond in all important aspects. This will allow the
imputation of the unknown counterfactual for the fallen angel bond and thus
to gauge the preannouncement sell-off on the fallen angel’s bond price. The
estimate of this preannouncement sell-off is an important metric to gauge the
degree of overselling, which depresses the price of a fallen angel bond below its
fair value. Why should this fair value of a bond be important? The fair value
should be able to help investors’ judgment about whether the price decline
reflects overall market risk for these type of bonds or is purely driven as a
result of a sell-off of a particular company and thus trying to avoid having a
high-yield rated bond in the portfolio. If one further believes that a bond’s
fair value – i.e. counterfactual – can badly be proxied by an overall broad
investment-grade market index that is the same for all bonds, one should con-
sider trying to estimate a customized counterfactual, that arguably should fit
the characteristics of the soon-to-be fallen angel bond better and thus should
reflect a more credible counterfactual.

This has important implications on constructing fallen angel factor portfolios
targeted on harvesting this anomaly resulting from institutional and behav-
ioral factors. On the one hand, one could e.g. advocate a strategy that buys
(i.e. goes long) bonds that trade at a discount to their fair value and sells
(i.e. goes short) bonds that trade at a premium. Due to the fact that cor-
porate bonds are very costly to short, a long only strategy that only invests
in bonds that trade below their estimated fair value will be the focus of this
paper. On the other hand, guidance could also be given to portfolio managers
with respect to a possible weighting scheme for their potential fallen angels
investment, that is, that it potentially could be profitable to overweight (more
recently downgraded) fallen angel bonds that exhibit a larger discount to their
fair value. Questions of how long a fallen angel bond should be included in
the portfolio can be addressed by examining for various holding periods the
excess returns with respect to a high-yield broad benchmark index. E.g., if
fallen angel bonds would on average underperform a high-yield benchmark
index for a holding period of 6 months, it would not make sense to take on
the added risk of holding these fallen angel bonds and the investor should
simply consider investing directly into a diversified high-yield market vehicle.
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As already mentioned in section 1.5, the pre-treatment period, i.e. before the
preannouncement sell-off started, is set to T0 = 265 days. Since N +1 >> T0

is true for each fallen angel sample (see Figure 1.1), some kind of regulariza-
tion of the weights ω needs to be applied. In this paper, I follow largely the
approach of Doudchenko and Imbens (2017) with the exception of the choice
of the penalty function. In particular, they propose a generalized synthetic
control method which can cope with the high-dimensional case by applying an
elastic-net type penalty on the weights ω. In my particular setting, however, a
Lasso only type penalty on the weights makes more sense. The approach has
been discussed in subsection 1.4.3. I choose to use hν-block cross-validation
as proposed by Racine (2000) in order to tune the tuning parameter λ. What
still needs to be set are the number of folds K for the cross-validation proce-
dure. By doing this, one also needs to consider the rule-of-thumb suggestion
from Burman et al. (1994) for setting the h in the hν-block cross-validation
procedure. To recall, the h suggested by Burman et al. (1994) amounts to
h = T0/6. This means that 265/6 ≈ 44 observations get removed from either
side of the fold that serves as validation set. If e.g., we choose to set K = 3,
the first validation set includes the first 88 observations of T0, the next 44 are
omitted from the training set because they “belong” to the h. The training set
therefore has a size of T0−T0/6−⌊T0/K⌋ = 265−265/6−88 = 133. Similarly,
the third training set also amounts to 133 observations. The second, however,
amounts to T0 − 2× T0/6−⌊T0/K⌋ = 265− 2× 265/6− 88 = 89, because we
have to remove h twice from either side of the validation set because it is in
the middle. Note that for K > 5, entire folds get skipped over on either side
of the validation set because of the h observations that need to be removed
in the hν-block cross-validation procedure. I therefore propose to use K = 3
in this analysis.

Next, I estimate equation (1.13) with the above-mentioned cross-validation
procedure to tune the tuning parameter λ. Note that I follow Doudchenko
and Imbens (2017) with not imposing the traditional synthetic control method
restrictions on the ω, as well as not normalizing the Yobs

c,pre. Figure 1.4 displays
the percentage of control bonds selected for each fallen angel bond, based on
the optimal cross-validated value of the λlasso

opt . On average, roughly 24 con-
trols were selected for each fallen angel bond (0.3 percent of the sample size).
For each fallen angel bond, there were on average 8,339 controls to choose
from. With my estimates of (µ̂lasso(λlasso

opt ), ω̂lasso(λlasso
opt )) I can build the syn-

thetic control for each fallen angel bond. Figure 1.5 shows an example of two
fallen angel bonds’ total return index along with their respective estimated
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Figure 1.4: Number of controls chosen by Lasso. This figure displays the percentage
of control bonds selected for each fallen angel bond, based on the optimal cross-validated
value of the λlasso

opt . 24 controls (0.3 percent of the sample size) were selected on average.
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Figure 1.5: Fallen angel bond and its estimated synthetic control. This figure
displays two fallen angels’ total return index along with their estimated synthetic control.
As can be seen from Figure 1.5b, one advantage of using the synthetic control is that it is
also reasonably able to cope with less liquid issues.
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synthetic control. One can see, that one further advantage of the synthetic
control is, that it is also reasonably able to cope with less liquid issues, such
as in Figure 1.5b. Following the estimation of the synthetic control, I take
returns and plug them in equation (1.5) to obtain the “causal effect” τ0,t for
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time periods t = T0 + 1, . . . , T . Note that that this equation corresponds
to equation (1.1) for abnormal returns. Specifically, I subtract from the total
returns of the fallen angel bond the returns of the estimated synthetic control.
These abnormal returns are then log-cumulated (equation (1.3)) and then –
following Grier and Katz (1976) and Bolognesi et al. (2014) – grouped by firm
with an equal-weighting scheme (equation (1.4)). This yields the cumulated,
aggregated, abnormal preannouncement return for time period T , i.e. the to-
tal size of the preannouncement sell-off of fallen angel bonds from a particular
firm.

Figure 1.6: Abnormal fallen angel preannouncement return (grouped by firm).
This figure displays a histogram of the abnormal preannouncement return (using the syn-
thetic control as counterfactual), i.e. the preannouncemet sell-off fallen angel bonds suffer.
The abnormal preannouncement return is generated by cumulating the log-difference of
fallen angel total returns and returns of the synthetic control, grouping by firm and then
taking the average.
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Figure 1.6 displays a histogram of the estimated abnormal preannouncement
returns. If the abnormal preannouncement return is negative (positive), this
means that the fallen angel bond trades at a discount (premium) relative to
its estimated synthetic control. 63 percent of fallen angel bonds trade at a dis-
count, 1 day before the rating agency announces their downgrade to high-yield
and therefore removing them from the investment-grade universe. The aver-
age preannouncement sell-off of fallen angel bonds amounts to -3.46 percent.
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However, when instead of the synthetic control all investment-grade issues
(used in the construction of the synthetic control, i.e. the controls) are equal-
weighted and used as the counterfactual, the preannouncement sell-off is more
pronounced with a value of -3.75 percent. Value-weighting the controls yields
a similar sell-off of -3.60 percent. The obtained results are as hypothesized,
i.e. the sell-off is less pronounced when using a synthetic control as a counter-
factual. It makes intuitively sense, that the preannouncement sell-off of fallen
angels using the estimated synthetic control is less pronounced compared to
simply using broad investment-grade bond indices. It can be argued that this
is due to the synthetic control providing a counterfactual that is more simi-
lar to the fallen angel bond. Bonds that are about to be downgraded might
experience a lower return than that of a broad investment-grade benchmark.
This lower return results in a difference that is less negative when forming
abnormal returns, thus yielding an overall less negative estimate of the pre-
announcement sell-off. Using a traditional event study therefore could tend
to overestimate the size of preannouncement sell-off of fallen angel bonds,
whereas using a framework inspired from causal inference could result in a
more sensible estimate of the preannouncement sell-off by using a custom,
more similar benchmark to the fallen angel bonds. In Appendix 1.A, Figures
1.8 and 1.9 show averaged returns for fallen angels and counterfactuals up until
the downgrade announcement. In particular, it can be seen that the synthetic
control was able to match the total return of fallen angels on average in the
pre-treatment period. Figure 1.8 shows, that the equal-weighted investment-
grade controls performed the best, followed by their value-weighted version
and lastly the Bloomberg value-weighted benchmark index. This makes in-
tuitively sense, because equal-weighted indices in general tend to fare better
than indices with more concentrated weights (smaller, more risky and volatile,
perhaps profitable issues are also included in equal-weighting). If as in Fig-
ure 1.9 counterfactuals are indexed at the start of the treatment-period, i.e.
then when the preannouncement sell-off is about to happen, one can observe
that the Bloomberg benchmark index actually features an overall lower re-
turn than the synthetic control. This leads to an average preannouncement
sell-off of -3.40 percent that is slightly less negative than that of the synthetic
control and would therefore counter our above train of thought about the
hypothesized sizes and orderings of sell-offs under different counterfactuals. I
attribute this, however, to the different rebalancing (monthly vs. daily) of the
Bloomberg index and that it has not been calculated based on the TRACE
dataset from scratch, thus being perhaps tilted towards specific big companies
and not the entire universe of bonds. Nevertheless, the Bloomberg index is
of utmost importance of being included as a counterfactual, because this is
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what investors have at hand when evaluating investment decisions and what
has been used in the past in traditional event studies.

What is the use of estimating the preannouncement sell-off of fallen angels?
By examining the V-curve in Figure 1.3, one might possibly argue, that fallen
angel bonds with a larger preannouncement sell-off might subsequently gen-
erate higher returns. The question hereby is, can the synthetic control as a
counterfactual better distinguish between over- and underpriced fallen angel
bonds than broad investment-grade market indices? If it can better distin-
guish between over- and underpriced fallen angel bonds, more pronounced
discounted fallen angel bonds should subsequently generate higher returns.
Fallen angel bonds trading at a rather small discount or even above their
fair value should therefore generate subsequently lower returns. There should
therefore exist a negative relationship between the size of the preannounce-
ment sell-off of fallen angel bonds and their subsequent postannouncement
return. This can be formalized in the following regression:

CR(+11,+Holding period),j = α+ βCAR(−100,−1),j + ϵ, (1.14)

where CR(+11,+Holding period),j denotes the cumulative return of firm j’s out-
standing fallen angel bonds if bought 11 days after the downgrade announce-
ment and held for a specified holding period. The constant is denoted by α
and ϵ is the error term. The preannouncement sell-off of fallen angel bonds
from firm j is given by CAR(−100,−1),j . β denotes the coefficient on the
preannouncement sell-off of a fallen angel bond, i.e. how strong the rela-
tion is between the size of the preannouncement sell-off and its subsequent
postannouncement return over the holding period. If the synthetic control
can better identify between over- and underpriced fallen angel bonds, its β
should be more negative than that of the counterfactual that simply uses a
broad investment-grade index.

In Table 1.4, the results of the estimation of equation (1.14) are shown.
Results are tabulated for 4 different counterfactuals: 1) synthetic control,
2) all investment-grade bonds equally-weighted (calculated from the con-
trol sample used to construct the synthetic control), 3) all investment-grade
bonds value-weighted and 4) as a robustness check the commonly used broad
investment-grade bond index from Bloomberg. The results show, that when
using the synthetic control as the counterfactual for fallen angel bonds, the
estimated β is more negative for all holding periods, no matter whether
equal-, value-weighted or even the Bloomberg index is used as counterfac-
tual. This indicates, that using the synthetic control as a counterfactual
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Table 1.4: Regression results. This table shows the results from regressions of postan-
nouncement returns on the preannouncement sell-off of fallen angel bonds for 4 different
counterfactuals and various holding periods. *, **, ***, denotes significance on the 10, 5, 1
percent level, respectively.

\Counterfactual Synthetic Control Controls IG EW Controls IG VW Bloomberg IG VW
Holding period β Std. error β Std. error β Std. error β Std. error
1 month -0.05 0.06 -0.03 0.05 -0.01 0.05 -0.01 0.06
2 months -0.27 0.07∗∗∗ -0.25 0.06∗∗∗ -0.23 0.06∗∗∗ -0.22 0.06∗∗∗

3 months -0.32 0.08∗∗∗ -0.27 0.07∗∗∗ -0.28 0.07∗∗∗ -0.29 0.07∗∗∗

4 months -0.49 0.09∗∗∗ -0.38 0.09∗∗∗ -0.40 0.09∗∗∗ -0.42 0.09∗∗∗

5 months -0.60 0.11∗∗∗ -0.46 0.10∗∗∗ -0.49 0.10∗∗∗ -0.50 0.10∗∗∗

6 months -0.83 0.12∗∗∗ -0.69 0.11∗∗∗ -0.71 0.11∗∗∗ -0.74 0.11∗∗∗

7 months -0.94 0.13∗∗∗ -0.79 0.12∗∗∗ -0.82 0.12∗∗∗ -0.85 0.12∗∗∗

8 months -0.94 0.14∗∗∗ -0.77 0.13∗∗∗ -0.81 0.13∗∗∗ -0.86 0.13∗∗∗

9 months -1.10 0.16∗∗∗ -0.93 0.14∗∗∗ -0.96 0.14∗∗∗ -1.01 0.14∗∗∗

10 months -1.26 0.17∗∗∗ -0.98 0.16∗∗∗ -1.03 0.16∗∗∗ -1.08 0.16∗∗∗

11 months -1.38 0.18∗∗∗ -1.11 0.17∗∗∗ -1.15 0.17∗∗∗ -1.20 0.17∗∗∗

12 months -1.52 0.20∗∗∗ -1.25 0.18∗∗∗ -1.29 0.18∗∗∗ -1.34 0.18∗∗∗

can better distinguish between over- and underpriced fallen angel bonds than
broad investment-grade market indices. Fallen angel bonds with a higher pre-
announcement sell-off tend to subsequently generate higher returns. Fallen
angel bonds trading at a rather small discount or even above their fair value
tend to generate subsequently lower (or even negative) returns.

Figure 1.7 displays the relationship between a firm’s abnormal preannounce-
ment return, calculated using the 4 different counterfactuals, and its sub-
sequent 12-month postannouncement return. The β is simply the slope of
the regression line in equation 1.14. Although the 4 scatterplots look fairly
similar, it can be seen that when using the synthetic control as the counter-
factual, the regression line is steeper. In Table 1.4 the estimated β coefficients
are more negative, the longer the holding period. This indicates that the re-
turn of holding fallen angel bonds gets more positive, the longer the holding
period is. This is in line with the general V-curve as displayed in Figure 1.3.
Furthermore, Figure 1.7 shows that following a strategy that involves shorting
bonds will not lead to superior investment results. This is directly visible as
evidenced by the lack of observations in the lower-right quadrant, i.e. fallen
angel bonds that traded at a premium with respect to their counterfactual
and that generated subsequent negative returns. Fallen angels that traded at
a premium therefore did not see a reversal in prices strong enough that would
yield a profitable investment strategy. Employing a long-only investment ap-
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Figure 1.7: Abnormal preannouncement vs. 12-month postannouncement return
(grouped by firm). This figure shows the relationship between a firm’s average abnormal
preannouncement and average postannouncement return if its fallen angel bonds are held
for 12 months. Abnormal preannouncement returns are calculated using 4 different coun-
terfactuals.
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proach therefore seems to be the natural choice.

A natural starting point when wanting to investigate the economic benefits
of investing in fallen angel bonds is: 1) If fallen angel bonds are bought, how
much money can one make after n months on average and 2) is it worth taking
on the additional risk of investing in fallen angel bonds or should one sim-
ply stick with holding risky high-yield, junk-rated bonds? Table 1.5 displays
average equal-weighted returns by firm (176 firms in total) of buying fallen
angel bonds – irrespective the size of their preannouncement sell-off – 11 days
after they were downgraded and held for n months. Furthermore, the average
outperformance vs. the Bloomberg high-yield bond benchmark index is also
investigated. This naive fallen angel buying strategy yields a return of 14.81
percent after 1 year on average, with an outperformance of 4.26 percent. The
outperformance, however, peaks after 10 months, suggesting that after that
holding period, it is not profitable to hold fallen angel bonds anymore and
that investors should rather switch to a diversified high-yield benchmark in-
dex.
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Table 1.5: Naive fallen angel buying strategy. This table displays the average total
return and outperformance vs. the Bloomberg high-yield bond benchmark index for various
holding periods if fallen angels are bought no matter their preannouncement sell-off.

Holding period return (%) return - HY (%)
1 month 0.80 0.06
2 months 3.03 1.11
3 months 4.23 1.04
4 months 6.48 1.97
5 months 8.32 3.07
6 months 9.68 3.44
7 months 10.69 3.55
8 months 11.35 3.31
9 months 12.38 3.74
10 months 13.38 4.41
11 months 14.09 4.17
12 months 14.81 4.26

The analysis in Table 1.4 showed, however, that bonds that suffered a higher
preannouncement sell-off, on average experienced a larger postannouncement
return. This would suggest, that one should only buy fallen angels that trade
at a discount with respect to their counterfactual and that the bigger this
sell-off was, the bigger potential profit opportunities are.

Panel A in Table 1.6 shows the average total return and outperformance vs.
the Bloomberg high-yield bond benchmark index for holding periods rang-
ing from 1 through 12 months if fallen angels are bought if they trade at
a discount vs. their counterfactual (abnormal preannouncement return <
0). Results are tabulated for each considered counterfactual. Furthermore,
Panel B in Table 1.6 restricts the choice of buying fallen angels only to the
ones that featured the most severe preannouncement sell-off (abnormal pre-
announcement return < 20th percentile of abnormal preannouncement return
for each respective counterfactual). As in previous tables, individual fallen
angels’ bond return was averaged by firm using an equal-weighting scheme.
Using the synthetic control as a counterfactual and only buying bonds that
trade at a discount, results in an average total return of 18.71 percent if fallen
angels are bought 11 days after the downgrade and held for 12 months. This
total return is higher than the one which does not take into account the size
of the preannouncement sell-off (see Table 1.5, 14.81 percent). Using the
size of the preannouncement sell-off can therefore enhance the total return of
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the investment by roughly 4 percentage points. Furthermore, the results in
Panel A in Table 1.6 show, that using the synthetic control as counterfactual
outperforms every other choice of counterfactual for any of the considered
holding periods. For the 12-month holding period differences in total return
using the synthetic control vs. a different choice of counterfactual range from
-0.73 percentage points (Bloomberg investment-grade index) to -2.25 percent-
age points (equal-weighted investment-grade bonds). There is therefore an
advantage of using the synthetic control as opposed to a simple benchmark.
This advantage is even more pronounced, if only the fallen angels with the
biggest preannouncement sell-off are considered (Panel B in Table 1.6). Dif-
ferences in 12-month total return now range from -2.41 percentage points
(equal-weighted investment-grade bonds) up until a whopping -5.77 percent-
age points (Bloomberg investment-grade index). For investors this has severe
implications, because most of them only have access to the readily available
Bloomberg investment-grade index for evaluating the size of the preannounce-
ment sell-off.

Table 1.7: Fallen angel buying strategy, counts and significance. This table displays
for the fallen angel buying strategy in Table 1.6 how many firms were included when using
each of the utilized counterfactuals and also how many firms were common in both the
synthetic control and in each of the other counterfactuals. This was done in order to assess
if results were driven by only one or two extreme outliers and if there was any variation in
the portfolio composition at all. Two-sided unpaired two-samples Wilcoxon tests were also
conducted in order to asses whether the difference in mean total returns using the synthetic
control or one of the other counterfactuals is statistically significant or not. *, **, ***,
denotes significance on the 10, 5, 1 percent level, respectively.

\Counterfactual Synthetic Control Controls IG EW Controls IG VW Bloomberg IG VW
Metrics

Panel A: Long (abnormal preannouncement return < 0)
Holding period: 12 months

# of firms 111 121 118 113
# of shared firms
with synthetic control

– 104 100 95

p-value of two-sided unpaired
two-samples Wilcoxon test

– 0.53 0.54 0.68

Panel B: Long (abnormal preannouncement return < 20th percentile of abnormal preannouncement return)
Holding period: 12 months

# of firms 35 35 35 35
# of shared firms
with synthetic control

– 30 28 28

p-value of two-sided unpaired
two-samples Wilcoxon test

– 0.75 0.57 0.52

Table 1.7 investigates for the fallen angel buying strategy in Table 1.6, how
many firms were included when utilizing different counterfactuals. Further-
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more, in order to test whether results are purely driven by one or two firms,
the number of shared firms with the synthetic control are also displayed. Fi-
nally, in order to assess whether the found advantage of using the synthetic
control in generating superior postannouncement returns is statistically sig-
nificant vs. using a different counterfactual, a two-sided unpaired two-samples
Wilcoxon test is conducted (the null hypothesis being, that the mean total
returns when using the synthetic control vs. using a different counterfactual
are equal). I opted for a non-parametric test, because a Shapiro–Wilk test on
the total returns of the fallen angel buying strategy indicated non-normality.
Panel A and Panel B in Table 1.7 cover the same setup as explained in Table
1.6. From Table 1.7 it can be seen, that there is variation among which firms
end up in the portfolio and that the results are not just due to one extreme
observation ending up in the portfolio. Figure 1.7 further corroborates this
claim. It is, however, evident, that the outperformance of using the synthetic
control as a counterfactual vs. a different choice of counterfactual, is not
statistically significant. Nevertheless, the economic significance of the results
can be substantial for investment professionals. In particular, when consid-
ering those fallen angels that experienced the most severe sell-off, an almost
6 percent advantage in using the synthetic control vs. the common industry
Bloomberg benchmark index is material.

This research can help investment managers in constructing factor portfolios
that systematically harvest this observed anomaly resulting from institutional
and behavioral factors. In particular, investment managers need guidance on
which fallen angels to buy and how long they should hold them in order to reap
the vast amount of the fallen angel’s price rebound. Various insights could be
gained investigating the pre- and postannouncement returns of fallen angel
bonds. Firstly, without considering their preannouncement sell-off size, one
can outperform on average the high-yield market as a whole for 10 months
after the downgrade announcement (cumulative outperformance of 4.41 per-
cent after 10 months holding period). After that period, the outperformance
is declining. Secondly, buying only fallen angel bonds trading at a discount
vs. their counterfactual can increase total returns. In the case of using the
synthetic control as a counterfactual, outperformance with respect to high-
yield bonds increases to 8.06 percent for a holding period of 10 months. Only
buying bonds that trade at a discount, therefore is able to almost double
outperformance compared to the naive fallen angel buying strategy. Using
the synthetic control and only buying bonds that trade at a discount further
allows the strategy to outperform high-yield bonds up until a holding period
of 12 months (albeit the bulk of the rebound has been recovered at month

41



Chapter 1

10). Buying only fallen angels that suffered the most severe sell-off, further
is able to increase total returns up to a value of 51.83 percent for a holding
period of 12 months. Thirdly, using the synthetic control – albeit not being
statistically significant – yields higher total returns than when using any of
the other counterfactuals. When considering the case of the fallen angels that
featured the biggest sell-off, the synthetic control has – for a holding period
of 12 months – an average total return that is 5.77 percentage points higher
than the one obtained from using the Bloomberg investment-grade index as
a counterfactual.

Investment managers are therefore well advised to buy fallen angel bonds
that trade at a discount. Whereas using a synthetic control would be best
when wanting to assess the degree of overselling of the fallen angel bond
– with respect to future investment gains after the downgrade – using any
common counterfactual will yield a higher return than when simply buying
fallen angel bonds without considering the size of their sell-off. Whereas the
outperformance vs. high-yield bonds only continues up until 10 months after
the downgrade for the naive fallen angel buying strategy, using the size of the
sell-off allows this outperformance to continue up until 12 months.

1.7 Conclusion

A fallen angel bond is a corporate bond that was originally rated as investment-
grade but got subsequently downgraded to speculative-grade by a rating
agency. In this paper, I investigate the research question of how high the
preannouncement sell-off of fallen angel bonds could be and how this could
be used in making better informed investment decisions. The literature of the
effect of bond reratings on bond prices relies heavily on event studies. Event
studies analyze excess returns of fallen angel bonds with respect to some broad
bond benchmark around the announcement date of the rerating by the rating
agency. Due to their usage of a broad bond benchmark, the question arises
whether the estimated effects can be viewed as adequate or not.

To overcome this issue that prior literature has faced, I propose a unified
causal event study framework. This framework unifies both, the traditional
event study framework and a commonly used framework from the causal in-
ference literature, utilizing potential outcomes. Since the counterfactual of a
fallen angel bond’s return – i.e. the return that the fallen angel bond would
have realized during the preannouncement sell-off had it not been downgraded
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– is not observed, identifying assumptions must be made. Since event stud-
ies can be framed as involving only one treated unit (the fallen angel bond)
and having a substantial number of controls (investment-grade bonds that
did not experience a downgrade to speculative-grade), I propose to use a
generalized version of the synthetic control method that can cope with these
high-dimensional settings by applying a Lasso type penalty on the weights.
Whether the estimated preannouncement sell-off of fallen angel bonds can be
viewed as causal relies heavily on rather strict identifying assumptions. Due
to the nature of financial markets with its abundance of peer-effects, exter-
nalities and spillover effects, as well as my definition of treatment that relies
on the outcome 100 days later, these identifying assumptions probably are
violated. However, since I am not per se interested in estimating the exact
causal size of the preannouncement sell-off for each fallen angel bond, but
rather using this estimate in order to make better informed buying decisions,
I argue that the potential non-causality becomes less of an issue.

My findings are similar to those found in the past literature. In particular,
I document a strong “V-curve” shape of the total returns around the down-
grade date. This means that there exists an anticipation period where fund
managers and investment professionals alike engage in a fire sale. In this
paper I coin this period the preannouncement sell-off. After the downgrade
announcement of the rating agency, a steep recovery sets in, suggesting that
the price of the bond has been pushed well below its fair value. Reasons
identified from the literature suggest that this is an anomaly driven by insti-
tutional and behavioral factors. On the one hand, fund managers who are
constrained by their investment guidelines to not hold any speculative-grade
assets – or insurance funds with similar constraints – must sell the fallen angel
bonds immediately without regard to price or opportunity. The story with
exchange traded funds is much the same, their objective is to track an index
and objects that leave the index must be sold. Since investment profession-
als do not like to report downgrades of their portfolio or are constrained by
some tracking error considerations, they are likely to sell-off these assets well
in advance of the downgrade announcement, thus depressing the price of the
security even before it becomes a fallen angel. In particular, I find that the
preannouncement sell-off fallen angel bonds suffer amounts to -3.46 percent on
average. Furthermore, the size of the preannouncement sell-off of fallen angels
is strongly negatively related to future postannouncement performance. The
relationship is more pronounced if only fallen angels are bought that trade
at a discount. I was able to document, that – albeit not being statistically
significant – using the synthetic control as a counterfactual, was able to out-
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perform other common choices of counterfactuals. In particular if one focuses
on the subset of fallen angels that experienced the most severe preannounce-
ment sell-off, using a synthetic control generates a total return that is almost
6 percentage points higher than when using the industry standard Bloomberg
benchmark bond index. Using this data-driven, innovative approach of find-
ing a more representative counterfactual – a “novel” benchmark – can thus
result in material economic gains for investment managers.

The impact of my work on the field of bond reratings and bond price ef-
fects is threefold. Firstly, by unifying the traditional event study framework
with the framework from the causal inference literature, I am able to provide a
fallen angel specific, custom benchmark return, rather than some vague broad-
based benchmark return. Secondly, I propose the use of an already developed
data-driven procedure which borrows from recent developments of the ma-
chine learning literature to impute the counterfactual, which leads in turn to
the estimated preannouncement sell-off and its application in making better
informed fallen angel buying decisions after the downgrade announcement.
Thirdly, I demonstrate the new methodology on a state-of-the-art dataset
that features prices from the OTC-market with daily frequency. In compari-
son to prior literature, my fallen angels sample is quite rich with 176 unique
firm-level observations. Bolognesi et al. (2014) report 48 and May (2010) 105
fallen angel firm-level bonds. With my empirical study, I am able to further
corroborate the “V-shape” curve of total returns around the downgrade an-
nouncement already identified in the literature. The impact on a potential
fallen angel factor portfolio construction is therefore huge, where questions of
when to exit and how to weight individual trades arise.
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1.A Fallen angel and counterfactual data

Figure 1.8: Mean fallen angel and counterfactual return until event. This figure dis-
plays averaged total returns for fallen angels and its 4 counterfactuals: 1) synthetic control,
2) controls equally-weighted, 3) controls value-weighted and 4) Bloomberg investment-grade
value-weighted index.
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Figure 1.9: Mean fallen angel and counterfactual return until event (indexed at
100 days to event). This figure displays averaged total returns for fallen angels and
its 4 counterfactuals: 1) synthetic control, 2) controls equally-weighted, 3) controls value-
weighted and 4) Bloomberg investment-grade value-weighted index.
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The cross-section of corporate
bond returns

Co-author: Dimitrios Nteventzis

Abstract
We study the cross-section of corporate bonds utilizing a large set
of financial statements, equity and bond characteristics. We use a
predictive regression framework and the adaptive Lasso to choose
the most relevant characteristics for the cross-section of corpo-
rate bonds. Applying the adaptive Lasso to the full dataset, we
find a ten-factor model, with value, bond reversal, and equity mo-
mentum spillover being the dominant factors. Contrary to equity
studies, financial variables from Compustat do not appear to have
strong power in predicting corporate bond returns. We validate
our initial results by running an out-of-sample exercise using an
expanding window approach. Out of the 60 months utilized in the
out-of-sample, the adaptive Lasso consistently chooses value, bond
reversal, and equity momentum spillover. Finally, we evaluate the
economic benefits of investing according to the predictions of the
adaptive Lasso and find significant benefits in terms of absolute
and risk-adjusted returns.
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2.1 Introduction

Most of the academic research after the milestone publication of Fama and
French (1992) has focused on discovering factors in the equity space. De-
spite the increasing size of the corporate debt markets and its importance
as a financing channel for firms, the cross-section of corporate bond returns
remained under-researched. However, a rapidly expanding literature has re-
cently focused on asset-pricing factors in the corporate bond market. The
improved data availability on over-the-counter (OTC) bond transactions and
the need to jointly study returns of different asset classes to identify signifi-
cant factors of the stochastic discount factor (SDF) are critical drivers for the
increased attention on corporate bonds.

The purpose of this paper is to explore the cross-section of corporate bond
returns. Similar to studies focusing on equities, one of the biggest challenges
in explaining corporate bond returns is the large number of potential char-
acteristics that affect the cross-section. To overcome this issue, we employ
the adaptive Lasso in order to identify significant characteristics for the cross-
section of corporate bonds. We utilize a large dataset of characteristics which
is comprised of 46 equity characteristics similar to Freyberger, Neuhierl, and
Weber (2020) and 21 bond specific characteristics. We separate our paper into
two parts. In the first part, we offer a detailed description of the bond data and
characteristics, and we perform an initial analysis by forming bi-variate sorted
portfolios. In the second part, we use the adaptive Lasso in a pooled predic-
tive regression setting in order to choose significant characteristics. Similar to
portfolio sorts, our analysis focuses explicitly on the cross-sectional dimension
of expected returns. To measure the economic benefits of the proposed model,
we create a single factor by sorting bonds each month according to the 1-step
ahead forecasted return. We then test the significance of the factor against a
variety of previously reported models.

First, our initial analysis of forming factors through sorted portfolios can be
interpreted as a detailed replication study. As demonstrated by Hou, Xue,
and Zhang (2020) most reported anomalies in the equity space fail to repli-
cate even before accounting for the issue of multiple testing bias that was
brought to attention by Harvey, Liu, and Zhu (2016). Given the lower qual-
ity of available data for bonds vs. equity and the idiosyncrasies of bonds
(defaults, fixed maturity/discontinuity), we argue that replication studies are
much more needed in corporate bonds than in equities. Many previous studies
merge data from the Trade Reporting and Compliance Engine (TRACE) with
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Thomson Reuters Datastream and Lehman Brothers fixed income databases
to increase the sample size (TRACE starts in 2002). To increase the relia-
bility of our study, we employ only trade-based data from TRACE and not
dealer quotes reported in Datastream and Lehman Brothers databases. We
provide an extensive list of the steps we take to clean the TRACE data and
arrive at our final sample. Contrary to previous studies, we directly control
for defaulted bonds by matching our dataset to the Altman1 default database.
From our initial analysis, we find that the dominant factors are the value fac-
tor proposed by Israel, Palhares, and Richardson (2018) and the one-month
bond reversal and equity momentum spill-over reported by Chordia, Goyal,
Nozawa, Subrahmanyam, and Tong (2017) and Gebhardt, Hvidkjaer, and
Swaminathan (2005), respectively. Interestingly, we find that downside risk
factors proposed by Bai, Bali, and Wen (2019), the momentum factor Jostova,
Nikolova, Philipov, and Stahel (2013) and illiquidity factor Bao, Pan, and
Wang (2011) do not replicate in our sample. Our hypothesis is that downside
and illiquidity risk factors are sensitive to the treatment of defaulted bonds.

Second, our paper contributes to the study of the cross-section of corporate
bonds. Previous papers have focused on a handful of pre-selected equity or
bond factors to explain corporate bonds’ returns. We extend previous work
by using a large set of characteristics and utilizing modern machine learning
techniques in empirical asset pricing similar to Gu, Kelly, and Xiu (2020).
Using the adaptive Lasso, we choose a ten-factor model with the value fac-
tor proposed by Israel et al. (2018), the one-month bond reversal and equity
momentum spill-over being the most important. Contrary to equity stud-
ies, financial variables from Compustat do not appear to have strong power in
predicting corporate bond returns. To validate our results and test the useful-
ness of adaptive Lasso, we run an out-of-sample exercise, using an expanding
window approach and forecasting the returns of the whole cross-section each
month. We then construct a factor portfolio (Flasso) by going long/short the
bonds with forecasted returns in the top/bottom 20%. The adaptive Lasso
factor generates significant monthly excess returns of 0.28%. Using intercept
tests, we show that Flasso carries a positive and significant premium which
can not be explained by existing models. The risk-adjusted excess return of
the factor, expressed by the intercepts, is significant and relatively stable,
ranging from 0.24% to 0.32% even though we test for a large set of competing
models. We thus conclude that the adaptive Lasso framework can deliver su-
perior returns for an investor who invests according to the forecasted returns
of the model.

1Altman-Kuehne NYU Salomon Center Corporate Bond Default Master Database.

51



Chapter 2

Our paper is organized as follows. In the second section, we provide a de-
tailed literature review of reported factors in corporate bonds and machine
learning techniques employed in empirical asset pricing. In the third section,
we present our data. In the fourth section, we perform an initial analysis by
forming bi-variate sorted portfolios according to all 67 characteristics that we
study. In section five, we use the adaptive Lasso to choose characteristics and
evaluate the economic benefits of the proposed model over previously reported
models. Section six concludes our findings.

2.2 Literature review

The existing literature on corporate bond returns can be separated into two
broad categories: The first using equity and financial characteristics and the
second using bond-specific characteristics. In the first category, researchers
exploit the fact that the fundamentals of the same firm drive both equity
and corporate debt returns. Thus, they use well-established factors from the
equity asset-pricing literature to price the cross-section of corporate bonds.
Chordia et al. (2017) try to answer whether market anomalies are common in
the equity and corporate bond market. They use ten well-established equity
characteristics and conclude that equity factors are weak in the corporate
bond universe.2 Choi and Kim (2018) use six equity characteristics to study
the market integration between equity and corporate debt.3 They also find a
weak presence of equity factors in the corporate bond market. Finally, Bektić,
Wenzler, Wegener, Schiereck, and Spielmann (2019) use the four Fama-French
factors4 to price U.S. and European corporate bonds. They get economically
significant results for the U.S. high yield market but weak results for the U.S.
and European investment grade market. Results among those papers are con-
tradicting. Bektić et al. (2019) find significant results and the same signs as
the equity studies for U.S. high yield. Chordia et al. (2017) report significant
results for the profitability factor but an opposite sign compared to the equity
studies for the value factor. Finally, Choi and Kim (2018) report not signifi-
cant results for both value and profitability.

2Chordia et al. (2017) use: Size, value, momentum, reversal, accruals, asset growth,
profitability, net issuance, earnings surprise, and idiosyncratic volatility.

3Choi and Kim (2018) use: Asset growth, investment, profitability, net issuance, value
and momentum.

4Small minus big (SMB), high minus low (HML), robust minus weak (RMW), and
conservative minus aggressive (CMA).
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The weak performance of equity-specific factors in pricing the cross-section
of corporate bonds highlights the differences between the two markets and
the need to construct factors modified to price the cross-section of corporate
bonds. Correia, Richardson, and Tuna (2012) are the first to report a value
factor in corporate bonds. Instead of using book-to-market, they construct the
value factor by comparing market and model implied spreads estimated from
a structural credit risk model á la Merton (1974). Jostova et al. (2013) re-
port strong evidence of momentum effects in the U.S. corporate bond market,
mostly driven by the high yield segment. Israel et al. (2018) and Houweling
and van Zundert (2017), propose two similar four-factor models that include
value, momentum, quality/low-risk and carry/size. Finally, Bai et al. (2019)
introduce downside risk as a new factor in corporate bonds and propose a
four-factor model that includes the market, downside risk, credit risk, and
liquidity.

Our paper is also related to the expanding literature on machine learning
and asset pricing. Gu et al. (2020) perform a comparative analysis of ma-
chine learning methods in choosing firm characteristics. They find significant
economic benefits over the standard ordinary least squares (OLS) estimation
method. All machine learning methods agree that the dominant set of char-
acteristics includes variations of momentum, liquidity, and volatility. Feng,
Giglio, and Xiu (2020) propose a regularized two-pass estimation procedure
focusing on risk-prices instead of risk-premia and treating for the effect of
omitted variables. They report that chosen factors vary from 10 in 1994 to 18
in 2016. They also find a significant effect for some recently suggested factors,
noting that academic research continues to discover new factors. Messmer and
Audrino (2017) apply the adaptive Lasso methodology to a total of 64 firm
characteristics and find 14 of them being significant. Finally, Freyberger et al.
(2020) highlight the importance of nonlinearities in the relationship of char-
acteristics and expected returns and apply the grouped Lasso methodology in
order to identify useful characteristics non-parametrically. They find that 13
variables have incremental explanatory power for expected returns.
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2.3 Data and variable definition

2.3.1 Corporate bond data

We use OTC bond transaction data which is available directly through Fi-
nancial Industry Regulatory Authority’s (FINRA) Trade Reporting and Com-
pliance Engine (TRACE). TRACE was introduced by the National Associ-
ation of Securities Dealers (NASD) in 2002 to improve transparency in the
OTC corporate bond market. From February 2005 onwards, 99 percent of
all TRACE-eligible bond transactions are covered on an intra-day basis. The
information covered in the TRACE database is listed by transaction, and key
variables include transaction date, time, price, and traded volume. There-
fore, TRACE is the most comprehensive source of pricing information when
it comes to research questions concerning the U.S. corporate bond market. We
use the enhanced version of the TRACE database, which has no volume cap
on reported trades and thus captures a broader range of the U.S. corporate
bond market. Our data extend from July 2002 to December 2018. Since the
TRACE data is dealer-reported, errors can occur. Instead of correcting the
data in the database directly, trade messages are appended, indicating either
cancellations, corrections, or reversals. Trades can also be double-counted in
the TRACE system because various parties can report the same trade. We
follow the steps outlined in Dick-Nielsen (2009) and Dick-Nielsen (2014) to
take care of the cancellation, correction, reversal, and double counting issues.

In our effort to clean the TRACE data, we follow the cleaning steps outlined in
Bessembinder, Kahle, Maxwell, and Xu (2009) and Bai et al. (2019). In par-
ticular, we remove transaction records: (1) with trading volume of less than
10,000 USD, (2) are labeled as when-issued, (3) locked-in, (4) have special
sales conditions, (5) have more than a two-day settlement, and (6) are flagged
as equity-linked notes. In order to minimize the effect of bid-ask spreads
in prices, we calculate the daily clean price as the trading volume-weighted
average of intra-day prices. We continue by following Bai et al. (2019) in re-
moving trade records that feature a transaction price under 5 or above 1,000
USD. This step implicitly removes some defaulted bonds. However, this is
a very low threshold in our view since many defaulted bonds tend to trade
above 5 USD. Including defaulted bonds in our study can create biased results
for three main reasons: (1) defaulted bonds typically do not accrue interest,
(2) liquidity is typically very low after a default, and (3) actual recovery is
deal-specific and hard to estimate. For these reasons and in contrast to previ-
ous papers such as Bai et al. (2019), we choose to control for defaulted bonds
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directly. We incorporate the issue-level default data information from the Alt-
man5 database and exclude all future bond observations post a given default
date. In the initial results, we observed an overly strong reversal factor. After
checking data manually, we found that extreme day-to-day reversals exist due
to prices of small trades and thus is a type of an outlier. For this reason, we
implemented a reversal rule, where we exclude trade records that featured a
daily reversal of more than 10 USD in absolute terms. E.g., if a bond trades
at 100 on Monday, drops to below 90 on Tuesday, and then features again
a price of over 100 on Wednesday, we exclude the trade record for Tuesday
for that particular bond. We then aggregate the daily bond price data to the
monthly frequency. We follow Bai et al. (2019) in only considering a bond’s
monthly end price as a non-missing value if it falls within the last seven week-
days of that particular month. The monthly traded volume for each bond is
generated by first aggregating it to the daily level by taking the intra-day sum
for all days and then taking the sum over all days in a particular month.

We then match the bond CRSP link database to get the corresponding firm
identifier for each bond and match the corresponding equity and financial vari-
ables from CRSP and Compustat. We retrieve bond issue information such
as the maturity date, coupon rate, coupon payment frequency, etc., from
the Mergent FISD database. A key metric of a bond is its rating and how
it changes over time. We access the historical rating history of each bond
through Mergent FISD’s historical bond rating database. It includes ratings
from Standard & Poor’s, Moody’s, and Fitch. We follow the industry con-
vention and form composite ratings by applying the following methodology:
if three outstanding ratings are available, we choose the middle rating; if two
ratings are outstanding, we choose the more conservative one, and if only one
rating is outstanding, we choose the one that is available.

We use information from the Mergent FISD database in order to further filter
our data. We exclude bonds that are not listed or traded in the U.S. public
market. That includes private placements, 144A bonds, bonds that do not
trade in U.S. dollars, and issuers not located in the U.S. We further remove
structured notes, mortgage-backed securities, asset-backed securities, agency-
backed bonds, and convertible bonds. We only keep bonds with a fixed or a
zero-coupon and exclude all bonds with a variable or floating coupon rate. In
addition to excluding perpetuals (bonds without a fixed maturity), we exclude
bonds with a remaining lifetime of more than 30 years since these bonds tend
to be illiquid. If a bond trades close to maturity, i.e. less than one year, it

5Altman Kuehne NYU Salomon Center Corporate Bond Default Master database.
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is delisted from major corporate bond indices, thus reducing its liquidity. We
thus remove bonds with less than one year remaining to maturity.

Afterwards, we calculate for each bond-month observation its corresponding
yield-to-maturity and modified duration. Both of these variables are key met-
rics needed in the construction of characteristics. In order to calculate the to-
tal return of a bond, we also need to incorporate information on when coupon
payments were made and what the accrued interest amounted to at each point
in time for each individual bond issue. The coupon payment schedule can be
backed out by going backwards from the last coupon payment by the bond’s
coupon payment frequency. Accrued interest is the amount of interest that
accrues from one coupon payment to the next. We follow Bessembinder et al.
(2009) in their calculation of a bond’s total return:

ri,t =
Pi,t +AIi,t + Ci,t

Pi,t−1 +AIi,t−1
− 1, (2.1)

where Pi,t is the transaction price (i.e. the clean price), AIi,t the accrued in-
terest and Ci,t the coupon payment if any, of bond i in month t. We calculate
excess returns using the maturity-matched treasury returns instead of the one
month risk-free rate. We denote bond i’s excess return as Ri,t = ri,t − rf,t,
where rf,t is the return of bond i’s maturity-matched treasury bond. Avail-
able constant maturity treasury bonds cover maturities including 1, 2, 5, 7,
10, 20 and 30 years. As a final step in our sample setup, we adopt the same
bond trading/liquidity restriction of Bai et al. (2019). In particular, for a
bond-month observation to be considered in our analysis, we require that it
had a valid return for at least 24 out of the past 36 months.

Table 2.1 describes the steps we take to filter the TRACE dataset and the im-
pact of those steps on the dimensions of our dataset. The sample starts with
the intra-day level frequency of the raw TRACE data consisting of 184,645
bond issues and ends with a final sample size of 7,839 bond issues from 1,087
unique firms. The largest loss of observations is when daily observations are
aggregated to monthly. This step reduces the number of issues by roughly
60 percent. This reduction is mainly due to the restriction that to have
a non-missing return in a given month, the bond needs to trade in the last
seven weekdays of two consecutive months. After matching the Mergent FISD
database and applying the filtering steps described above, the number of is-
sues reduces from 48,598 to 25,994. A sizeable fraction of observations is lost
due to the construction of bond and equity/financial variables. The propor-
tionally bigger loss in observations when matching in the bond variables is
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Table 2.1: Sample setup. In this table we describe the detailed steps we take to filter the
TRACE dataset and the impact of those steps on the dimensions of our dataset.

issues firms frequency obs
starting sample, TRACE raw data 184,645 intra-day 223,961,512
- daily aggregation 173,017 daily 22,063,238
- remove trade records, price < 5, > 1000 USD 172,422 daily 22,024,034
- remove trade records, price reversal > |10| USD 172,422 daily 22,005,801
- monthly aggregation 66,026 monthly 1,594,457
- match bond CRSP link database 48,618 3,022 monthly 1,152,419
- match bond default database 48,598 3,015 monthly 1,142,465
- match Mergent FISD issue database 25,994 1,889 monthly 738,947
- match Mergent FISD ratings database 24,002 1,775 monthly 696,258
- remove trade records, < 24 out of 36 months traded 22,955 1,744 monthly 619,498
- match bond variables 10,836 1,254 monthly 336,707
- match equity and financial variables 7,839 1,087 monthly 227,795

due to the necessity of a 36 month rolling window in calculating specific bond
characteristics such as the value at risk or expected shortfall metrics from Bai
et al. (2019). Considering equity and financial variables further reduces the
sample size because some firms are not listed or do not file financial state-
ments.

Figure 2.1: Key characteristics of the U.S. corporate bond market. In the left panel
we show the time evolution of the number of bonds split by IG and HY. In the right panel
we show the cumulative return of Bloomberg IG/HY benchmark indexes and the market
created from our sample. Data from October-2005 to December-2018.
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Figure 2.1a shows the number of bonds in our estimation sample, split by
rating category. The sample is predominantly investment grade (IG) rated,
with the proportion of investment grade increasing since 2010. The amount
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of high yield (HY) bonds in our sample is reasonably constant over time, with
an average of roughly 250 bonds each month. Figure 2.1b shows the cumu-
lative performance of the Bloomberg IG/HY index and the value-weighted
market from our sample. Since we include both investment grade and high
yield bonds in our sample, we expect the market return to track the invest-
ment grade benchmark closer but have a higher return due to the inclusion of
high yield bonds. The investment grade and high yield Bloomberg benchmark
indices have an annualized mean (standard deviation) of 4.81 (5.49) and 7.18
(9.45) percent, respectively. The market constructed from our sample has an
annualized mean (standard deviation) of 5.52 (5.12) percent.

Table 2.2 shows the summary statistics for our sample of corporate bonds.
The mean, median, standard deviation and percentiles were calculated by
pooling all bond-month observations. On average, corporate bonds exhibited
a total return of 0.42 percent in a given month. 81 percent of observations can
be categorized as investment grade. Bonds on average were issued 6.52 years
ago and have a remaining 8.53 years until maturity. The average coupon and
yield to maturity are 5.70 and 4.64 percent,while the average amount issued
is 650.37 million USD.

For the asset pricing part where we conduct intercept tests, we need to control
for the default (DEF) and the term (TERM) factor. We follow Bai et al.
(2019) in the construction of these two factors. The default factor is defined as
the difference between the equal-weighted market portfolio return of corporate
bonds and the 30-year government bond return. The term factor is defined
as the difference between the monthly 30-year government bond return and
the return on holding the one-month Treasury bill.

Table 2.2: Summary statistics (CRSP/Compustat matched). In this table we dis-
play the summary statistics of our main sample which is CRSP/Compustat matched. Data
from October-2005 to December-2018.

Percentiles
N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond total return (percent) 227,795 0.42 0.31 3.70 -7.95 -2.89 -0.34 1.16 3.81 8.82
Rating (1-21, 1=AAA, IG ≤ 10) 227,795 8.27 8 3.44 1 3 6 10 15 18
Investment grade (1=IG, 0=HY) 227,795 0.81 - - - - - - - -
Time to maturity (years) 227,795 8.53 5.25 7.93 1.08 1.42 3.00 11.58 25.58 26.83
Age (years) 227,795 6.52 5.42 3.81 3.08 3.17 3.92 7.58 15.17 21.42
Coupon (percent) 227,795 5.70 5.75 1.62 1.75 2.88 4.75 6.75 8.25 9.50
Yield to maturity (percent) 227,795 4.64 4.17 4.52 0.67 1.22 2.64 5.63 8.88 17.79
Modified duration (years) 227,795 5.77 4.47 4.08 1.08 1.34 2.71 7.98 13.98 15.71
Offering amount (million USD) 227,795 650.37 500.00 646.70 17.04 30.75 300.00 750.00 2000.00 3000.00
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Table 2.3: Summary statistics (Not CRSP/Compustat matched). In this ta-
ble we display the summary statistics of our sample when we do not match with the
CRSP/Compustat databases. Data from October-2005 to December-2018.

Percentiles
N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond total return (percent) 336,707 0.54 0.34 6.00 -11.78 -3.46 -0.38 1.30 4.58 12.52
Rating (1-21, 1=AAA, IG ≤ 10) 336,707 8.86 8 3.77 1 4 6 10 16 20
Investment grade (1=IG, 0=HY) 336,707 0.75 - - - - - - - -
Time to maturity (years) 336,707 8.81 5.50 7.88 1.08 1.42 3.17 13.25 25.50 26.83
Age (years) 336,707 6.84 5.58 4.05 3.08 3.25 4.08 7.92 16.17 21.83
Coupon (percent) 336,707 5.91 6.00 1.64 1.85 3.10 5.00 6.95 8.50 9.88
Yield to maturity (percent) 336,707 5.46 4.51 7.38 0.71 1.32 2.85 6.16 10.99 29.49
Modified duration (years) 336,707 5.83 4.60 3.98 1.08 1.36 2.79 8.38 13.72 15.52
Offering amount (million USD) 336,707 619.50 500.00 618.78 17.28 30.00 250.00 750.00 1998.33 3000.00

2.3.2 Bond, equity and financial characteristics

As far as the characteristics for the machine learning step are concerned,
Freyberger et al. (2020) compiled a comprehensive list of characteristics that
potentially provide incremental information for the cross-section of expected
returns. Due to their analysis being exclusively for equities, we also include
relevant bond market characteristics that are used in the literature. A com-
prehensive overview of all 67 characteristics used in this paper is given in
Table 2.4, while a detailed description of how each variable is constructed can
be found in Appendix 2.C. The characteristics are grouped into the following
categories: (1) past returns, (2) investment, (3) profitability, (4) intangibles,
(5) value, and (6) trading frictions. In contrast to Freyberger et al. (2020), we
use quarterly information whenever possible instead of yearly. We use the re-
lease date instead of the reporting date in order to avoid any forward-looking
bias.

For bond characteristics we use age, life, modified duration, offering amount
and rating. We include downside risk variables calculated from bond returns
as in Bai et al. (2019) and past bond returns for different momentum variables.
We also include the illiqudity variable of Bao et al. (2011) and value variables
constructed only from bond data as in Israel et al. (2018) and Houweling and
van Zundert (2017). In terms of the CRSP/Compustat data,6 we use accru-
als, operating leverage and tangibility as defined by Hahn and Lee (2009) for
intangibles. For profitability, we use a total of sixteen variables, with well-
known performance indicators such as return on equity (ROE) and return on
assets (ROA) among them. For trade frictions we use a total of four different

6Data from CRSP covers equity related data such as the stock price, trading volume,
etc., whereas data from Compustat covers balance sheet and income statement information.
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liquidity proxies for equities. For value we use a total of thirteen variables
with well established measures such as book-to-market and price-to-earnings
among them. Finally, we use equity past returns for different equity momen-
tum indicators.

2.4 Initial analysis: Portfolio sorts

In this part, we perform a preliminary analysis on the impact of the charac-
teristics on corporate bond returns. The purpose is twofold: Firstly, we are
interested in which factors appear to be significant and secondly, we want to
see which factors fail to replicate. For our initial analysis we rely on portfolio
sorts which is the workhorse method in traditional asset pricing. In his presi-
dential address Cochrane (2011) mentions that: “Looking at portfolio average
returns rather than forecasting regressions was really the key to understand-
ing the economic importance of many effects.”

Portfolio sorts are the most common way of mapping characteristics to re-
turns. The procedure is the following; for every month t, excess returns are
sorted in quantile portfolios based on a specific characteristic’s cross-sectional
rank. Then, the factor is constructed by taking the difference between the
returns of the two extreme portfolios. We follow Bai et al. (2019) and create
traded factors from bi-variate sorts where we use credit rating as the first
sorting variable, resulting in 25 (5x5) portfolios. Credit risk is a crucial driver
of corporate bond returns; using the rating as a first sorting variable allows
us to create portfolios with similar credit risk profiles. We construct each
factor as the value-weighted average return difference of the extreme quantile
portfolios among all credit rating portfolios.

To briefly illustrate how we construct each factor, consider that we have Ri,t

excess returns of N test assets, and we want to construct a factor for a single
characteristic Ci,t. Then we denote P 1,5

t the return at time t of a value-
weighted portfolio of assets that belongs in the 1st quantile concerning Cit

and the 5th quantile concerning credit rating. Then the factor is defined as:

Factort =
1

5

5∑︂
j=1

P 5,j
t − 1

5

5∑︂
j=1

P 1,j
t (2.2)

In Table 2.5 we summarize the results from our portfolio sorts. We report
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the mean of each factor and also the intercept from regressing each respective
factor on three baseline models:

Factort = α1 + βmkt
1 MKTt + ϵ1,t , (2.3)

Factort = α2 + βmkt
2 MKTt + βterm

2 TERMt + ϵ2,t , (2.4)

Factort = α3 + βmkt
3 MKTt + βterm

3 TERMt + βdef
3 DEFt + ϵ3,t . (2.5)

In summary we find strong evidence of value (Israel et al., 2018), short-term
equity momentum spill-over (Gebhardt et al., 2005), bond reversal (Chordia
et al., 2017) and quality (Israel et al., 2018; Houweling & van Zundert, 2017).
High profile factors like downside risk by Bai et al. (2019), bond long-term re-
versal by Bali, Subrahmanyam, and Wen (2021), bond momentum by Jostova
et al. (2013) and illiquidity by Bao et al. (2011) do not replicate in our sam-
ple. For our main results in Table 2.5 we use CRSP/Compustat matched
and default treated data. Therefore, bonds that do not have equity/financial
statement information in CRSP/Compustat and bond observations after a
positive default flag are removed. For further clarity, we report the results
from bi-variate sorts from alternative datasets in Appendix 2.A. In Tables
2.11 and 2.12, we report results using (1) not CRSP/Compustat matched and
(2) not CRSP/Compustat matched and not default treated data, respectively.
In Table 2.13, we report data for CRSP/Compustat matched, but not default
treated data. The not CRSP/Compustat matched dataset includes a higher
proportion of high yield and less liquid bonds while the not default treated
dataset includes also defaulted bonds. Results are in general stable across the
different datasets, however the different characteristics of the datasets raise
some interesting points which we discuss below.

Starting from bond characteristics, we see that none of the Age, Life, Mdur
and Offer-amt appear to be significant. The sign of Mdur is negative as re-
ported in the literature by Israel et al. (2018), Kelly, Palhares, and Pruitt
(2020), however, is not significant after controlling for rating. In our alterna-
tive datasets, we see that the impact of Mdur is stronger among high yield and
when we do not exclude defaults. We think that higher risk-adjusted returns
for lower duration bonds are more likely to be compensation for refinancing
risk rather than indication of a quality factor as indicated by Israel et al.
(2018). Size proxied by Offer-amt also appears to be positive but statistically
insignificant similar to Houweling and van Zundert (2017).

Downside risk variables appear to be insignificant despite the recent findings
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of Bai et al. (2019). Looking at results from the alternative datasets, we find
that VaR and ES are affected by the treatment of defaults. In our dataset,
we remove bonds after they default, however Bai et al. (2019) do not directly
control for defaulted bonds. Kelly et al. (2020) using data from Interactive
Data Corporation (ICE) data (ex Merrill Lynch Fixed Income Indexes) also
does not detect the VaR factor. We think these results offer support to our
argument since its common in the methodology of benchmark indexes to in-
clude only performing (non-defaulted) bonds.

For intangibles we find that a factor formed by going long/short the com-
panies with the highest/lowest operating accruals (OA) produces a positive
premium. The sign is opposite to the one found in equities, however, we think
the sign is in line with a risk reward paradigm for bonds. Accruals are a mea-
sure of cash flow quality. Companies with low cash flow quality carry a higher
credit risk and should offer higher returns to compensate investors. Chordia
et al. (2017) similarly report a positive sign but insignificant results. For the
investment category we find no significant results across our variables. These
results are in contrast to a negative relationship of investment and expected
corporate bond returns reported by Chordia et al. (2017) and Choi and Kim
(2018). For profitability variables, we report positive and significant signs for
∆(∆GM−∆S), while EPS, ROA and ROE are significant only after control-
ling for MKT and TERM effects. These findings point to the direction of a
quality factor as reported by Israel et al. (2018), Houweling and van Zundert
(2017) and Kelly et al. (2020).

For past returns we find strong evidence for equity momentum spillover and
bond reversal similar to the literature. However, we fail to replicate the clas-
sic momentum introduced by Jostova et al. (2013) using bond’s total returns.
We are aware that our sample is dominated by investment grade bonds and
bond momentum is reported to exist only in high yield, however, when adjust-
ing our sample to include only high yield, we still do not find any significant
relationship. Our results are in line with Kelly et al. (2020) that also fail
to replicate momentum effects in corporate bonds. Finally, we find reversal
effects for spread, i.e. going long/short the bonds that have experienced the
largest spread increase/decrease produces a positive premium.

For trade friction variables we find no significant evidence. The biggest sur-
prise is the illiquidity factor reported by Bao et al. (2011), where despite
getting the correct positive sign, results appear to be not significant after
controlling for rating. Finally for variables in the value category, we get
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strong positive and significant results for the value factor, Valueips, suggested
by Israel et al. (2018). The value factor suggested by Houweling and van Zun-
dert (2017), Valuehvz, has the correct sign but is not statistically significant.
Other value variables like C2D, E2P and Salesg appear to be positive and
significant after controlling for MKT and TERM.

We are aware that performing statistical testing for over sixty different char-
acteristics creates a multiple testing bias. The multiple testing bias has been
well known for many years in the statistics literature, however, its impact
on false discoveries in finance has been recently highlighted by Harvey et al.
(2016). Standard ways for controlling for multiple testing is the Bonferroni
correction and the Benjamini and Hochberg (1995) (BH). The Bonferonni
correction controls for the family-wise-error-rate (FWER) while the BH con-
trols for false-discovery-rate (FDR). However, applying those methods is not
straightforward as the correlation of the multiple hypothesis test significantly
impacts results. For an extreme example consider that if the hypothesis tests
were perfectly correlated, no multiple testing adjustment would be necessary.
For practical reasons we apply the two |t|-cutoffs of 2.78 and 3.39 proposed
by Harvey et al. (2016) and applied by Hou et al. (2020) in the most recent
and comprehensive equity anomaly replication study. Using the lower of the
two proposed cutoffs, we see that re1−0, r

b
1−0, ∆(∆GM−∆S) and Valueips are

significant. Using the stricter 3.39 limit, only rb1−0 survives. However, looking
at the different datasets, all 4 factors mentioned above appear to be rather
stable, which gives us further indication that they are true discoveries.

Despite the usefulness and ease of applicability of portfolio sorts, there are
also clear limitations. Using portfolio sorts, it quickly becomes cumbersome
to control for more than one or two variables. Assuming we live in a multi-
variate SDF world, this puts significant limitations. A straightforward way
to extend portfolio sorts – to accommodate for a larger set of variables – is
to use predictive regressions. As mentioned by Cochrane (2011) and demon-
strated by Freyberger et al. (2020), “Portfolio sorts are really the same thing as
non-parametric cross-sectional regressions, using non-overlapping histogram
weights.”
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Table 2.5: Factors from bi-variate sorts (CRSP/Compustat matched). For each
characteristic we first create quantile portfolios according to rating and then according to
the characteristic of interest. Factors are constructed as the difference between the high
and low quantile portfolios across all rating portfolios. In the first column we report the
mean and respective t-stat, whereas in the rest of the columns we report the intercept
from regressions of each factor on MKT, MKT + TERM and MKT + TERM + DEF,
respectively. Newey and West (1987) HAC robust standard errors, lag = 3 months. We
denote 5% and 1% significance level with * and **, respectively. Data from October-2005
to December-2018.

Factor α1 α2 α3

βb 0.17 -0.10 -0.03 -0.03
0.51 -0.96 -0.33 -0.32

Bond Characteristics:
Age 0.03 -0.01 -0.01 -0.01

0.35 -0.11 -0.19 -0.20
Life 0.00 -0.21 -0.01 -0.01

0.00 -2.08 -0.10 -0.09
Mdur -0.09 -0.29** -0.09 -0.09

-0.42 -2.80 -1.35 -1.38
Offer-amt 0.02 0.02 0.07 0.07

0.16 0.27 0.99 1.20
Downside risk:
ES10 0.25 -0.03 0.05 0.05

0.65 -0.25 0.41 0.40
VaR10 0.17 -0.10 0.00 0.00

0.48 -0.73 0.02 0.02
VaR5 0.22 -0.05 0.02 0.02

0.63 -0.41 0.16 0.16
Intangibles:
AOA -0.04 -0.03 0.03 0.03

-0.58 -0.45 0.50 0.55
OA 0.10* 0.10* 0.12** 0.12**

2.55 2.40 2.78 2.78
OL -0.09 -0.07 0.01 0.01

-0.95 -0.65 0.17 0.17
TAN 0.13 0.04 -0.01 -0.01

0.81 0.41 -0.15 -0.16
Investment:
∆CEQ -0.07 0.02 0.12 0.12

-0.52 0.27 1.39 1.60
∆PI2A -0.05 0.00 0.03 0.03

-0.42 0.01 0.42 0.44
∆Shout 0.17 0.10 0.01 0.01

1.37 1.19 0.14 0.14
INV 0.03 0.09 0.12 0.12

0.25 1.05 1.35 1.35
IVC 0.01 0.02 0.04 0.04

0.22 0.48 0.75 0.75
Returns:
Sprd6 0.54* 0.38* 0.34* 0.34*

2.05 2.27 2.10 2.16
re12−2 0.02 0.12 0.16 0.16

0.11 1.05 1.44 1.46

rb12−2 -0.12 0.02 0.12 0.12
-0.41 0.10 0.69 0.70

Factor α1 α2 α3

re12−7 -0.01 0.04 0.07 0.07
-0.09 0.38 0.83 0.82

rb12−7 -0.14 -0.05 -0.03 -0.03
-0.54 -0.28 -0.21 -0.21

re1−0 0.63** 0.61** 0.59** 0.59**
3.04 3.33 3.09 3.15

rb1−0 -0.40** -0.39** -0.35** -0.35**
-3.31 -3.14 -2.83 -2.85

re2−1 0.08 0.10 0.17 0.17
0.77 1.01 1.83 1.81

rb2−1 0.19 0.23 0.19 0.19
1.15 1.57 1.50 1.52

re36−13 -0.14 -0.10 -0.08 -0.08
-1.32 -1.02 -0.78 -0.77

rb36−13 -0.19 -0.18 -0.15 -0.15
-1.45 -1.34 -1.26 -1.27

re6−2 0.07 0.15 0.16 0.16
0.49 1.43 1.61 1.63

rb6−2 0.03 0.13 0.22 0.22
0.14 0.80 1.41 1.45

Profitability:
ATO -0.01 0.04 0.06 0.06

-0.07 0.50 0.70 0.70
CTO -0.15 -0.08 0.03 0.03

-1.34 -0.86 0.38 0.41
∆(∆GM − ∆S) 0.22** 0.24** 0.25** 0.25**

2.58 3.29 3.78 4.09
EPS 0.11 0.19 0.22* 0.22*

0.72 1.72 2.05 2.07
IPM 0.07 0.14 0.15 0.15

0.45 1.26 1.43 1.43
NOA -0.03 0.04 0.05 0.05

-0.21 0.45 0.67 0.70
PCM 0.13 0.18 0.18 0.18

0.91 1.44 1.72 1.73
PM 0.10 0.17 0.16 0.16

0.60 1.22 1.42 1.43
Prof 0.03 0.07 0.07 0.07

0.25 0.82 0.86 0.90
RNA -0.01 0.07 0.14 0.14

-0.08 0.77 1.54 1.53
ROA 0.10 0.20 0.22* 0.22*

0.57 1.92 2.31 2.32
ROC 0.05 0.09 0.10 0.10

0.53 1.39 1.40 1.39
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Factor α1 α2 α3

ROE 0.08 0.17 0.20* 0.20*
0.46 1.56 1.99 1.98

ROIC -0.11 -0.01 0.01 0.01
-0.66 -0.11 0.07 0.07

S2C -0.14 -0.06 0.04 0.04
-1.22 -0.72 0.41 0.50

SAT -0.12 -0.07 0.02 0.02
-1.18 -0.66 0.24 0.25

Trade Frictions:
AT 0.10 0.03 -0.02 -0.02

1.09 0.46 -0.19 -0.20

Tradebvol 0.08 0.07 0.07 0.07
1.21 1.25 1.24 1.11

Illiq 0.25 0.11 0.13 0.12
1.09 0.98 1.15 1.21

LME -0.01 0.02 -0.01 -0.01
-0.05 0.19 -0.06 -0.06

Lturn 0.15 0.09 0.07 0.07
1.01 0.86 0.69 0.69

Value:
A2ME 0.16 0.00 -0.04 -0.04

0.61 0.02 -0.32 -0.33
BEME -0.01 -0.06 0.00 0.00

-0.04 -0.58 0.04 0.06

Factor α1 α2 α3

C 0.15 0.08 0.03 0.03
1.11 0.90 0.29 0.34

C2D 0.04 0.14 0.17* 0.17*
0.29 1.61 2.11 2.12

D2P 0.15 0.01 -0.07 -0.07
0.63 0.04 -0.49 -0.50

∆SO 0.18 0.10 0.03 0.03
1.40 1.34 0.36 0.38

E2P 0.18 0.24* 0.28* 0.28*
1.25 1.96 2.16 2.17

NOP -0.11 -0.08 0.00 0.00
-1.33 -0.99 0.03 0.04

O2P -0.04 -0.02 0.01 0.01
-0.62 -0.36 0.15 0.14

Q 0.07 0.12 0.11 0.11
0.85 1.67 1.60 1.67

S2P 0.10 0.01 0.01 0.01
0.52 0.10 0.12 0.13

Salesg 0.08 0.17 0.29** 0.29**
0.68 1.89 2.96 3.03

Valuehvz 0.31 0.17 0.14 0.14
1.59 1.82 1.46 1.52

Valueips 0.66** 0.53** 0.46** 0.46**
2.95 3.97 3.92 4.20

2.5 Choosing factors

2.5.1 The (adaptive) Lasso

In our paper, we are interested in choosing factors that are able to pre-
dict expected excess returns. The conditional expectation of excess returns
E(Ri,t+1|Ci,t) has the following linear interpretation in the form of the fol-
lowing panel regression:

Ri,t+1 = x
′

i,tβ + ϵi,t+1, (2.6)

where Ri,t+1 is bond i’s excess return in time period t + 1, x
′

i,t = [1 Ci,t]
and Ci,t equals the vector of p bond, equity and financial characteristics. The

error is denoted by ϵi,t+1. If we denote y = Ri,t+1 and X = x
′

i,t we can write
the OLS estimator of equation (2.6) compactly using the following equation:

β̂ols = arg min
β

(︃
1

N
||y −Xβ||22

)︃
, (2.7)

where N refers to the number of total bond-month observations, ||y−Xβ||22 =∑︁
∀t
∑︁

∀i(Ri,t+1 − x
′

i,tβ)
2. The Lasso estimator is then defined by Tibshirani

(1996) as:
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β̂lasso(λ) = arg min
β

(︃
1

N
||y −Xβ||22 + λ||β||1

)︃
, (2.8)

where λ ≥ 0 is a penalty parameter and ||β||1 =
∑︁p

j=1 |βj |. The tuning
parameter λ is typically determined by cross-validation. Zou (2006) further
introduce the adaptive Lasso, which has a different penalization term, that
allows the weights to vary for each parameter. This is achieved by having
the assigned individual weights being inversely proportional to a first stage β
estimate. The adaptive Lasso has the same advantage that Lasso has: It can
shrink some of the coefficients to exactly zero, performing thus a selection of
variables due to the regularization. Lasso methods are therefore well suited
to our particular research question. The adaptive Lasso of Zou (2006) can be
expressed with the following formula:

β̂ada−lasso(λ) = arg min
β

⎛⎝ 1

N
||y −Xβ||22 + λ

p∑︂
j=1

|βj |
|β̂init,j |

⎞⎠ , (2.9)

where the parameters β̂init are determined in a first stage. There are several

different ways how β̂init is set. E.g. Zou (2006) suggest the use of the OLS

estimator, β̂init = β̂ols. If multicollinearity is an issue, Ridge regression can
also be considered as a viable alternative to the OLS. Bühlmann and van de
Geer (2011) set β̂init = β̂lasso.

In our analysis, we follow Messmer and Audrino (2017) in adopting an adap-
tive Lasso which has been shown to be superior in terms of selecting true
characteristics from a large set of potential characteristics. This is in part due
to certain scenarios where the (“regular”) Lasso is inconsistent for variable
selection. The adaptive Lasso on the other hand, enjoys the oracle properties.
Namely, it performs as well as if the true underlying model were given in
advance (Zou, 2006). To determine the value of the tuning parameter λ, we

employ a ten-fold cross-validation scheme. We estimate the parameters β̂init

in the first stage with a Ridge regression. For both the Ridge regression and
the subsequent adaptive Lasso estimation we use the “one standard error”
rule, i.e. we choose the most parsimonious model whose error is no more than
one standard error above the error of the best model.
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2.5.2 Data preparation

Before implementing the Lasso we have to deal with two issues. Firstly, we
need to correct for extreme and often erroneous observations in the set of
characteristics. To do so, we winsorize independent variables at the 5% level
cross-sectionally. Secondly, to apply the pooled estimation of Lasso, we have
to standardize our data in a way that preserves cross-sectional information
but adjusts for time variation. Similar to portfolio sorts, our analysis focuses
explicitly on the cross-sectional dimension of expected returns, essentially
disregarding any time series aspects. As such, we standardize equity and bond
characteristics cross-sectionally to have mean 0 and standard deviation of 1.
To better understand the last issue raised, consider any characteristic that
combines financial data with market data such as book-to-market, earnings-
to-price, or debt-to-market capitalization. Those characteristics will fluctuate
over time partly due to firm-specific reasons but also due to market-wide
movements. So we would expect to see lower book-to-market and debt-to-
market capitalization across the cross-section when equity markets are strong.
Standardizing at each point in time neutralizes the time dimension while
preserving the cross-sectional ranking. For the dependent variable, i.e. the
excess returns, we cross-sectionally winsorize at the 5% level and then demean.
Even though our excess returns do not have substantial outliers, we still find
that the stability of the Lasso results is improved, i.e. selection of variables
remains the same even due to the randomness arising from the cross-validation
procedure in order to set the tuning parameters.

2.5.3 Empirical results

In Table 2.6 we report the coefficients of the chosen model according to the
adaptive Lasso. The chosen model is a ten factor model with Valueips, rb1−0

and re1−0 being the top three factors in terms of the size of the coefficient.

The remaining factors of the chosen model are Mdur, rb6−2, Sprd6, VaR5,
rb36−13, A2ME and Rating. Contrary to equity studies, financial variables
from Compustat do not appear to have strong power in predicting corporate
bond returns. The adaptive Lasso results broadly align with the portfolio sort
analysis, finding value, bond reversal, and equity momentum spill-over as the
dominant factors. The adaptive Lasso proposes a model of larger dimension
than the one proposed by the portfolio sorts. However, we note that portfolio
sorts are inferior in detecting factors since we only control for a single variable.

In terms of the signs of the coefficients, the results appear in line with initial
results from portfolio sorts and existing literature. We find a positive rela-
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tionship for value and equity momentum spillover as reported by Israel et al.
(2018) and Gebhardt et al. (2005) and a negative relationship for the bond
reversal factor as first reported by Chordia et al. (2017). The Mdur has a
negative sign indicating that shorter duration bonds earn higher returns than
longer duration bonds. Momentum, spread reversal and VaR5 all have a pos-
itive sign as reported by Jostova et al. (2013), Israel et al. (2018) and Bai et
al. (2019), respectively. Finally, bond long term reversal (rb36−13) has a nega-
tive sign as in Bali et al. (2021) and rating has a positive sign meaning that
lower-rated companies earn higher returns, which is in line with a risk-reward
paradigm and the credit risk factor in Bai et al. (2019).

Table 2.6: Characteristics chosen by the adaptive Lasso. The table exhibits the
regression results for the adaptive Lasso, sorted by the absolute value of the coefficients.
Coefficient values are scaled by a factor of 1000. Data from October-2005 to December-
2018.

Characteristic Coefficient

re1−0 1.47
Valueips 0.90

rb1−0 -0.56
Mdur -0.49

rb6−2 0.44
Sprd6 0.44
VaR5 0.26

rb36−13 -0.18
A2ME -0.15
Rating 0.07

2.5.4 Representative bond

Allowing for multiple bonds for a single firm can lead to biases because we
implicitly focus on firms with more outstanding bonds. In addition, the num-
ber of outstanding bonds typically correlates to the firm’s overall size. As
a robustness check, we estimate the adaptive Lasso using the representative
bond approach, i.e., we select a single bond for each firm each month. We
follow Haesen, Houweling, and van Zundert (2017) and Israel et al. (2018)
to define the criteria applied to choose the representative bond, a detailed
description of the filtering criteria can be seen in Table 2.7. In essence, the
selection procedure aims to identify a sample of liquid and cross-sectionally
comparable bonds for each firm. Steps 1 to 4 in Table 2.7 select bonds on
the basis of (1) seniority, (2) maturity, (3) age and (4) size. Step 5 counters
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practical problems that arise if bonds are of the same issue size. A direct
consequence of using the representative bond approach is that it reduces the
sample size. Following the steps outlined in Table 2.7 to select a representa-
tive bond, our sample size reduces from originally 7,839 issues of 1,087 firms
with a total of 227,795 bond-month observations to 1,650 issues of 1,087 firms
with a total of 23,765 bond-month observations.

Table 2.7: Selection procedure for a representative bond. The table displays the
procedure to select a representative bond for each issuer, each month. Bonds are selected
on the basis of 1) seniority, 2) maturity, 3) age and 4) size with the goal of creating a liquid
and cross-sectionally comparable sample.

Step Decision rule

1
For each issuer only keep those bonds in which the rating corresponds
to the largest fraction of debt outstanding

2
If issuer has bonds with time-to-maturity between 5 and 15 years,
remove all other bonds for that issuer from the sample

3
If issuer has bonds that are at most 2 years old,
remove all other bonds for that issuer

4 Finally, pick the bond with the largest amount outstanding

5
(Bonds with same amounts outstanding will still remain; in this
case drop the one with shorter time-to-maturity)

Once we construct the representative bond sample, we then apply the pre-
dictive regression framework and the adaptive Lasso methodology described
above. In Table 2.8 we report the characteristics and coefficients of the chosen
characteristics. As we see our initial results using the full sample of bonds re-
main robust. The characteristics chosen are the same as the main analysis of
our paper in Table 2.6. The only difference that we observe is that despite the
fact that modified-duration is chosen, the coefficient is significantly smaller in
magnitude. We think this is a reasonable outcome since we restrict bonds to
have time to maturity between 5 and 15 years. In that sense we are reducing
the variability of the modified-duration characteristic which leads to a weaker
coefficient.
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Table 2.8: Characteristics and their coefficients chosen by the adaptive Lasso
(representative bond). The table exhibits the regression results for the adaptive Lasso,
sorted by the absolute value of the coefficients. Coefficient values are scaled by a factor of
1000. Data from October-2005 to December-2018.

Characteristic Coefficient

re1−0 1.55
Valueips 0.74

rb1−0 -0.63
Sprd6 0.47

rb6−2 0.42
VaR5 0.28

rb36−13 -0.23
A2ME -0.11
Rating 0.10
Mdur -0.06

2.5.5 Out-of-sample performance

We test our adaptive Lasso approach on an out-of-sample expanding window
setup in order to provide a practical application of our results and observe the
variability of the chosen factors. Due to the comparatively large number of
observations needed to perform machine learning exercises, we use 50 percent
of the sample observations as the initial training sample. Specifically, 50 per-
cent of the sample data is located prior to December 31st, 2013. Therefore,
data up until December 2013 serve as our initial training sample, where we
estimate the adaptive Lasso and build predictions for excess returns starting
in January 2014. Predictions for January 2014 are then formed based on the
values of the independent variables from December 2013. The initial training
sample is appended month by month until November 2018. In total, this gives
us 60 out-of-sample forecasts.

Figure 2.2 displays the frequency of the characteristics that were chosen over
the 60 out-of-sample forecasts, which can also be interpreted as a robustness
check. To this end, we can examine how the selected characteristics vary as
the sample composition changes. Ideally, the ten characteristics from our full
model in Table 2.6 are also frequently chosen in building our out-of-sample
forecasts. We can see that this is mostly the case, with the top nine chosen
characteristics in the out-of-sample exercise corresponding to the ones selected
in our full sample model. Most importantly, the top three characteristics of
our full sample adaptive Lasso, re1−0, Value

ips and rb1−0, are chosen in each of
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Figure 2.2: Frequency of selected characteristics. In this figure we display the fre-
quency that each characteristic is choosen during the 60 out-of-sample forecasts. Data from
January-2014 to December-2018.
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the 60 out-of-sample forecasts. We think that these results confirm the validity
of our full sample adaptive Lasso and the importance of re1−0, Value

ips and
rb1−0 for the cross-section of corporate bonds.

To evaluate the economic benefit for an agent who invests according to the
predictions of the adaptive Lasso, we build a composite factor (Flasso) by
going long/short the bonds with forecasted returns in the top/bottom 20%.
To evaluate the performance of the Flasso, we perform two types of analysis.
First, we test whether Flasso can be explained by existing models. We use
six competing models and run corresponding intercept tests. In our analy-
sis, we include the four-factor model proposed by Bai et al. (2019) and the
four-factor model proposed by Houweling and van Zundert (2017). For DRF,
CRF, LRF, and REV proposed by Bai et al. (2019) we use our sample and
construct the factors from bi-variate sorted portfolios. For the size (SIZE),
low-risk (LR), value (VALUE), and momentum (MOM) of Houweling and
van Zundert (2017) we use the publicly available data from the authors.7

7We note that the published factors of Houweling and van Zundert (2017) are long-only
and created separately for investment grade and high yield: https://www.robeco.com/en/
insights/2018/12/data-sets-factor-investing-in-corporate-bonds.html.

72

https://www.robeco.com/en/insights/2018/12/data-sets-factor-investing-in-corporate-bonds.html
https://www.robeco.com/en/insights/2018/12/data-sets-factor-investing-in-corporate-bonds.html


Chapter 2

The baseline models that we consider are the following: (1) MKT, (2) MKT,
TERM, (3) MKT, TERM, DEF, (4) MKT, TERM, DRF, CRF, LRF, REV,
(5) MKT, TERM, SIZEig, LRig, VALUEig, MOMig, and (6) MKT, TERM,
SIZEhy, LRhy, VALUEhy, MOMhy.

Table 2.9 displays the results of the intercept tests. The adaptive Lasso factor
generates significant monthly excess returns of 0.28%. The factor survives all
six intercept tests. The risk-adjusted excess return of the factor, expressed
by the intercepts, is significant and relatively stable, ranging from 0.24% to
0.32% even though we test for a large set of competing models. Our results
confirm that Flasso carries a positive and significant premium which can not
be explained by existing models.

Table 2.9: Intercept test. In this table panel we report the intercept and t-stat from the
regression of Flasso on each of the six baseline models. Newey and West (1987) HAC robust
standard errors, lag = 3 months. We denote 5% and 1% significance level with * and **.

Factor α1 α2 α3 α4 α5 α6

Flasso 0.28* 0.30* 0.31** 0.31** 0.24* 0.23* 0.32**
2.37 2.47 2.98 2.92 2.02 2.51 3.66

We further study the risk/return characteristics of the Flasso and the po-
tential benefits for an investor that follows this strategy. We compare the
Flasso against MKT and the corresponding multi-factor portfolios from Bai
et al. (2019) and Houweling and van Zundert (2017), which we construct by
forming equal-weight portfolios of the respective factors.8 In Table 2.10a we
report annualized mean return, volatility, Sharpe ratio, skewness, kurtosis and
beta to the market for the different strategies. As we see, the Flasso achieves
significantly higher returns than MKT, Fbai and Fhwz

ig and marginally lower

returns than Fhwz
hy . However, we need to keep in mind that our sample is

dominated by investment grade bonds while Fhwz
hy is a long only factor con-

structed only from high yield rated bonds, so it is expected to have higher
returns. In Figure 2.3 we show the cumulative performance of the different
factors, confirming the above observations. Looking at Sharpe ratios, we see
that Flasso achieves almost seven times the Sharpe ratio of the market and
double the Sharpe ratio of Fhwz

ig and Fhwz
hy .

We continue our analysis by performing Sharpe ratio tests between Flasso and

8For example Fbai is the equal-weight portfolio of DRF, CRF, REV and LRF.
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Figure 2.3: Cumulative performance of competing factors. In this figure we display
the cumulative performance of the five competing factors, namely Flasso, MKT, Fbai and
Fhwz
ig and Fhwz

hy . We construct multi-factor portfolios by forming equal-weight portfolios of
the respective factors. Data from January-2014 to December-2018.
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the respective baseline strategy. Given the limited size of our sample and the
non-normal characteristics of the factors, we employ the bootstrap method
of Ledoit and Wolf (2008) to perform inference, see Appendix 2.B. The null
hypothesis is that the Flasso and the respective baseline strategy have the
same Sharpe ratio. We perform hypothesis testing by constructing a boot-
strap interval at a 95% confidence level. It follows that the test rejects the
null hypothesis if zero is not contained in the interval. In Table 2.10b, we re-
port the difference of monthly Sharpe ratios and the corresponding upper and
lower bounds. For reference we also report the upper/lower bound from the
delta-method. As expected, the bootstrapped interval is more conservative.
Despite the considerable improvement achieved from Flasso, we see that the
results are not significant with the lower bound of the Sharpe ratio difference
being negative across both methods.

We think that the discrepancy between the intercept and Sharpe ratio test is
due to the short length of our data set and the increased volatility/outliers
of the particular period we examine. As we see from Table 2.10a, all the
competing strategies have kurtosis well above 3, which indicate the presence
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of heavy tails. The kurtosis of Flasso at 21.84 is much higher than the rest of
the factors and its due to a single observation. In this case, we argue that the
intercept test is more informative and has higher precision because part of the
volatility is explained from the factor loadings. We explore this hypothesis by
simply removing the month observation with the biggest draw-down across all
strategies. In that case, we find that Flasso leads to significant Sharpe ratio
improvement. We thus conclude that the diverging results are indeed due to
outliers.

Table 2.10: Performance statistics. In the left panel we report annualized performance
statistics. For the competing factor models of Bai et al. (2019) and Houweling and van
Zundert (2017) we create single factors by equal weighting each factor. In the right panel
we report monthly Sharpe ratio differentials and upper/lower confidence interval bounds
(UB∗/LB∗) at 95% level according to the bootstrap method of Ledoit and Wolf (2008).
Block length=5. We denote the delta-method upper/lower bounds as UB/LB. Data from
January-2014 to December-2018.

Flasso MKT Fbai Fhwz
ig Fhwz

hy

Mean 3.41 0.49 -0.00 1.15 3.92
Vol 3.62 3.58 3.48 2.12 7.22
SR 0.94 0.14 -0.00 0.54 0.54
Skew -3.65 0.21 -0.07 -0.05 0.57
Kurt 21.84 4.56 6.06 3.26 4.74

βmkt -0.33 - 0.86 0.55 1.72
t-stat -1.30 - 11.60 19.92 12.68

(a) Annualized performance statistics

Flasso MKT FBai Fhwz
ig Fhwz

hy

∆SR - 0.23 0.27 0.12 0.12
LB∗ - -0.60 -0.71 -0.65 -0.72
UB∗ - 1.06 1.25 0.88 0.95
LB - -0.24 -0.23 -0.34 -0.39
UB - 0.71 0.78 0.57 0.62

(b) Sharpe ratio
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2.6 Conclusion

In this paper, we study the cross-section of corporate bonds. We employ
a large dataset of bond, equity and financial characteristics and utilize the
adaptive Lasso in order to choose the most relevant characteristics for the
cross-section of corporate bonds. In the first part of our analysis, we use
portfolio sorts to get a first idea of our data and replicate famous factors doc-
umented in the literature. Interestingly, we find that downside risk factors
proposed by Bai et al. (2019), the momentum factor Jostova et al. (2013)
and illiquidity factor Bao et al. (2011) fail to replicate in our sample. Our
results about the downside risk factors are in line with the findings of Kelly
et al. (2020). Our hypothesis is that downside risk factors are sensitive to
the treatment of defaulted bonds. The results of the alternative datasets in
Appendix 2.A support such a hypothesis. From the portfolio sorts analysis
the dominant factors are the value factor proposed by Israel et al. (2018) and
the one-month bond reversal and equity momentum spill-over proposed by
Chordia et al. (2017) and Gebhardt et al. (2005), respectively. We also find
strong evidence for a quality factor proxied by ∆(∆GM−∆S).

While portfolio sorts are easy to implement and have appealing attributes,
they quickly suffer from the curse of dimensionality. For that purpose we
utilize the adaptive Lasso in a predictive regression setting. When running
the adaptive Lasso on our full dataset, the chosen model is a ten factor model
with Valueips, rb1−0 and re1−0 being the top three factors in terms of size of the

coefficient. The remaining factors of the chosen model are Mdur, rb6−2, Sprd
6,

VaR5, rb36−13, A2ME and Rating. The adaptive Lasso results are broadly in
line with the portfolio sort analysis, finding value, bond reversal and equity
momentum spill-over as the dominant factors. The adaptive Lasso proposes a
model of larger dimension than the one proposed by portfolio sorts, however,
we note that portfolio sorts are inferior, since they control only for a single
variable at a time.

In order to validate our results and test the usefulness of adaptive Lasso,
we run an out-of-sample exercise, where we use an expanding window ap-
proach and forecast the returns of the whole cross-section each month. The
out-of-sample results validate the selected characteristics from our full sam-
ple analysis. The top nine chosen characteristics in the out-of-sample exercise
correspond to those selected in our full sample model. Most importantly, the
top three characteristics of our full sample adaptive Lasso, re1−0, Value

ips and
rb1−0, are chosen in each of the 60 out-of-sample forecasts. We then construct a
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factor portfolio by going long/short the bonds with forecasted returns in the
top/bottom 20%. The adaptive Lasso factor generates significant monthly
excess returns of 0.28%. Using intercept tests we show that Flasso carries
a positive and significant premium which can not be explained by existing
models. The risk-adjusted excess return of the factor, expressed by the inter-
cepts, is significant and relatively stable, ranging from 0.24% to 0.32% even
though we test for a large set of competing models. We thus conclude that
the adaptive Lasso framework can deliver superior returns for an investor who
invests according to the forecasted returns of the model.
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2.A Alternative datasets

Table 2.11: Factors from bi-variate sorts (Not CRSP/Compustat matched). For
each characteristic we first create quantile portfolios according to rating and then according
to the characteristic of interest. Factors are constructed as the difference between the high
and low quantile portfolios across all rating portfolios. In the first column we report the
mean and respective t-stat, whereas in the rest of the columns we report the intercept from
regressions of each factor on MKT, MKT+TERM and MKT+TERM+DEF, respectively.
Newey andWest (1987) HAC robust standard errors, lag = 3 months. We denote 5% and 1%
significance level with * and **, respectively. Data from October-2005 to December-2018.

Factor α1 α2 α3

βb 0.21 -0.10 -0.09 -0.14
0.61 -0.56 -0.39 -0.58

Bond Characteristics:
Age 0.20* 0.14 0.08 0.06

1.99 1.72 0.83 0.61
Life 0.12 -0.13 -0.03 -0.04

0.42 -1.09 -0.19 -0.33
Mdur -0.12 -0.34** -0.20* -0.20*

-0.50 -3.07 -2.00 -2.22
Offer-amt -0.09 -0.04 0.04 0.09

-0.62 -0.33 0.33 0.74
Downside risk:
ES10 0.34 0.03 0.02 -0.02

0.93 0.19 0.11 -0.12
VaR10 0.30 -0.00 -0.01 -0.06

0.83 -0.01 -0.08 -0.34
VaR5 0.36 0.05 0.01 -0.04

0.98 0.35 0.08 -0.23
Returns:
Sprd6 0.72* 0.53* 0.42 0.39

2.15 1.99 1.64 1.55

rb12−2 -0.03 0.11 0.26 0.35
-0.10 0.47 1.18 1.65

Factor α1 α2 α3

rb12−7 0.14 0.20 0.26 0.31
0.78 1.20 1.71 1.99

rb1−0 -0.82* -0.76* -0.54 -0.52
-2.16 -2.05 -1.79 -1.75

rb2−1 0.37 0.37 0.11 0.06
1.12 1.25 0.44 0.22

rb36−13 -0.18 -0.19 -0.24 -0.23
-1.34 -1.50 -1.94 -1.79

rb6−2 0.05 0.18 0.35 0.44
0.23 0.82 1.86 2.34

Trade Frictions:

Tradebvol -0.01 -0.01 -0.01 0.04
-0.14 -0.20 -0.23 0.52

Illiq 0.40 0.22 0.14 0.09
1.53 1.42 1.18 0.81

Value:

Valuehvz 0.35 0.20 0.12 0.07
1.58 1.66 0.94 0.59

Valueips 0.75** 0.63** 0.58** 0.56**
2.92 3.09 2.82 2.61
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Table 2.12: Factors from bi-variate sorts (Not CRSP/Compustat matched/Not
Altman matched). For each characteristic we first create quantile portfolios according
to rating and then according to the characteristic of interest. Factors are constructed as
the difference between the high and low quantile portfolios across all rating portfolios.
In the first column we report the mean and respective t-stat, whereas in the rest of the
columns we report the intercept from regressions of each factor on MKT, MKT+TERM and
MKT+TERM+DEF, respectively. Newey and West (1987) HAC robust standard errors,
lag = 3 months. We denote 5% and 1% significance level with * and **, respectively. Data
from October-2005 to December-2018.

Factor α1 α2 α3

βb 0.21 -0.23 -0.20 -0.17
0.65 -1.36 -1.01 -0.91

Bond Characteristics:
Age 0.21* 0.10 0.05 0.07

2.28 1.52 0.52 0.97
Life 0.10 -0.26* -0.15 -0.13

0.36 -2.40 -1.28 -1.24
Mdur -0.27 -0.55** -0.36** -0.36**

-1.05 -3.77 -2.94 -2.90
Offer-amt -0.02 0.06 0.16 0.10

-0.13 0.53 1.40 1.56
Downside risk:
ES10 0.53 0.09 0.10 0.13

1.42 0.61 0.66 0.85
VaR10 0.48 0.04 0.00 0.04

1.32 0.27 0.01 0.24
VaR5 0.51 0.07 0.03 0.07

1.40 0.51 0.21 0.49
Returns:
Sprd6 0.80* 0.52 0.36 0.39

2.18 1.84 1.43 1.60

rb12−2 -0.21 -0.02 0.14 0.10
-0.77 -0.10 0.67 0.49

Factor α1 α2 α3

rb12−7 0.01 0.10 0.21 0.19
0.03 0.65 1.41 1.31

rb1−0 -0.91* -0.77* -0.47 -0.54*
-2.19 -2.09 -1.56 -1.95

rb2−1 0.34 0.30 0.07 0.14
1.17 1.23 0.27 0.79

rb36−13 -0.23 -0.25* -0.33** -0.31**
-1.51 -2.07 -2.71 -2.67

rb6−2 0.02 0.18 0.33 0.29
0.10 0.86 1.74 1.58

Trade Frictions:

Tradebvol 0.10 0.11 0.11 0.07
1.48 1.61 1.73 1.45

Illiq 0.49 0.23 0.16 0.19
1.78 1.73 1.45 1.89

Value:

Valuehvz 0.57* 0.33** 0.27* 0.29*
2.21 2.73 2.20 2.54

Valueips 0.78** 0.58** 0.54** 0.55**
2.79 3.10 2.81 3.01

83



Chapter 2

Table 2.13: Factors from bi-variate sorts (CRSP/Compustat matched/Not Alt-
man matched). For each characteristic we first create quantile portfolios according to
rating and then according to the characteristic of interest. Factors are constructed as
the difference between the high and low quantile portfolios across all rating portfolios.
In the first column we report the mean and respective t-stat, whereas in the rest of the
columns we report the intercept from regressions of each factor on MKT, MKT+TERM and
MKT+TERM+DEF, respectively. Newey and West (1987) HAC robust standard errors,
lag = 3 months. We denote 5% and 1% significance level with * and **, respectively. Data
from October-2005 to December-2018.

Factor α1 α2 α3

βb 0.25 -0.05 -0.00 -0.00
0.77 -0.51 -0.01 -0.04

Bond Characteristics:
Age 0.10 0.06 0.05 0.04

1.13 0.81 0.79 0.55
Life -0.02 -0.27 -0.07 -0.08

-0.08 -2.93 -1.05 -1.19
Mdur -0.15 -0.38** -0.18** -0.19**

-0.69 -3.97 -2.74 -2.78
Offer-amt 0.06 0.06 0.09 0.13

0.68 0.81 1.59 1.86
Downside risk:
ES10 0.37 0.04 0.11 0.08

0.96 0.34 0.89 0.76
VaR10 0.28 -0.02 0.06 0.04

0.81 -0.20 0.56 0.38
VaR5 0.34 0.03 0.08 0.05

0.96 0.28 0.71 0.51
Intangibles:
AOA 0.00 -0.00 0.07 0.05

0.01 -0.05 1.13 0.85
OA 0.10* 0.10* 0.12** 0.12**

2.27 2.25 2.80 2.82
OL -0.11 -0.09 -0.01 -0.04

-1.10 -0.90 -0.10 -0.63
TAN 0.26 0.16 0.10 0.10

1.58 1.59 0.99 0.95
Investment:
∆CEQ -0.07 0.02 0.14 0.14

-0.52 0.18 1.51 1.50
∆PI2A -0.11 -0.06 -0.03 -0.03

-1.00 -0.81 -0.41 -0.39
∆Shout 0.25 0.16 0.08 0.07

1.83 1.88 0.91 0.83
INV -0.09 -0.00 0.07 0.07

-0.74 -0.04 0.84 0.90
IVC -0.03 -0.01 0.01 0.01

-0.53 -0.20 0.27 0.13
Returns:
Sprd6 0.58* 0.39* 0.33 0.32

2.11 2.18 1.89 1.84
re12−2 -0.06 0.06 0.10 0.12

-0.31 0.51 0.98 1.13

rb12−2 -0.14 0.02 0.14 0.21
-0.44 0.08 0.75 1.33

Factor α1 α2 α3

re12−7 -0.06 -0.01 0.04 0.04
-0.51 -0.11 0.44 0.49

rb12−7 -0.17 -0.08 -0.05 0.01
-0.69 -0.45 -0.34 0.08

re1−0 0.64** 0.62** 0.59** 0.55**
3.09 3.41 3.16 3.25

rb1−0 -0.41** -0.40** -0.35** -0.34**
-3.54 -3.33 -2.94 -2.83

re2−1 0.04 0.07 0.15 0.12
0.46 0.63 1.62 1.33

rb2−1 0.23 0.27 0.24 0.24
1.29 1.78 1.83 1.76

re36−13 -0.19 -0.14 -0.10 -0.12
-1.66 -1.32 -0.92 -1.09

rb36−13 -0.26* -0.25 -0.21 -0.19
-1.97 -1.86 -1.79 -1.42

re6−2 0.05 0.14 0.16 0.17
0.36 1.32 1.51 1.61

rb6−2 0.07 0.17 0.27 0.33*
0.31 0.99 1.69 2.29

Profitability:
ATO -0.05 0.00 0.02 0.01

-0.53 -0.00 0.25 0.11
CTO -0.20 -0.14 -0.02 -0.04

-1.92 -1.44 -0.21 -0.49
∆(∆GM − ∆S) 0.22** 0.25** 0.25** 0.25**

3.00 3.74 4.04 4.14
EPS 0.06 0.14 0.19 0.19*

0.44 1.46 1.88 2.15
IPM 0.02 0.10 0.11 0.12

0.11 0.93 1.18 1.41
NOA -0.07 0.00 0.03 0.04

-0.54 0.03 0.30 0.47
PCM 0.12 0.17 0.18 0.20*

0.90 1.52 1.90 2.20
PM 0.08 0.15 0.15 0.17

0.49 1.14 1.42 1.61
Prof 0.01 0.06 0.08 0.07

0.13 0.76 1.06 0.96
RNA -0.04 0.05 0.13 0.11

-0.30 0.56 1.50 1.25
ROA 0.04 0.15 0.19* 0.19*

0.24 1.58 2.11 2.29
ROC 0.02 0.06 0.08 0.06

0.24 1.09 1.22 1.11
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Factor α1 α2 α3

ROE 0.01 0.11 0.17 0.16
0.08 1.12 1.71 1.82

ROIC -0.11 0.01 0.02 0.02
-0.65 0.06 0.26 0.24

S2C -0.16 -0.08 0.02 0.02
-1.40 -0.94 0.23 0.22

SAT -0.13 -0.09 0.01 -0.02
-1.49 -0.90 0.05 -0.21

Trade Frictions:
AT 0.10 0.03 -0.02 0.00

1.06 0.38 -0.17 -0.00

Tradebvol 0.11 0.10 0.09 0.13*
1.68 1.71 1.65 2.41

Illiq 0.34 0.18 0.18 0.15
1.51 1.61 1.73 1.58

LME -0.12 -0.08 -0.08 -0.07
-0.90 -0.74 -0.89 -0.79

Lturn 0.13 0.04 0.01 0.02
0.80 0.46 0.09 0.19

Value:
A2ME 0.28 0.10 0.03 0.03

1.07 0.78 0.27 0.29
BEME 0.01 -0.05 -0.01 0.02

0.07 -0.58 -0.06 0.24

Factor α1 α2 α3

C 0.20 0.12 0.06 0.04
1.50 1.49 0.77 0.54

C2D -0.00 0.10 0.15 0.14
-0.02 1.22 1.78 1.91

D2P 0.25 0.08 -0.02 -0.02
1.01 0.59 -0.13 -0.19

∆SO 0.27* 0.18* 0.11 0.11
2.04 2.38 1.32 1.36

E2P 0.12 0.19 0.24* 0.24*
0.87 1.65 1.98 2.18

NOP -0.14 -0.11 -0.03 -0.04
-1.71 -1.34 -0.26 -0.40

O2P -0.08 -0.06 -0.02 -0.04
-1.27 -0.92 -0.29 -0.58

Q 0.05 0.10 0.10 0.08
0.63 1.52 1.47 1.36

S2P 0.17 0.04 0.06 0.02
0.76 0.33 0.51 0.25

Salesg 0.05 0.14 0.27** 0.26**
0.39 1.47 2.71 2.67

Valuehvz 0.47* 0.30** 0.26* 0.22*
2.17 2.92 2.44 2.07

Valueips 0.61** 0.46** 0.39** 0.37**
2.68 3.52 3.28 3.10
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2.B Bootstrap inference for Sharpe ratio test-
ing

Consider two investment strategies i and j with excess returns Rit and Rjt.
The mean vector µ and the covariance matrix Σ are given by:

µ =

[︃
µi

µj

]︃
, Σ =

[︃
σ2
i σij

σji σ2
j

]︃
. (2.10)

The difference between the Sharpe ratio of the two strategies is given by:

∆ = Shi − Shj =
µi

σi
− µj

σj
. (2.11)

Let γi = E[R2
it] and γj = E[R2

jt] be the uncentered second moments and
υ = (µi, µj , γi, γj). Then we can express the Sharpe ratio difference ∆ as a
function of υ (∆ = f(υ)), with f(a, b, c, d) = (a/

√
c− a2)−(b/

√
d− b2). If we

assume that
√
T (υ̂− υ)

d−→ N(0,Ψ) then from the the delta method it follows
that:

√
T (∆̂−∆)

d−→ N(0,▽′f(υ)Ψ▽f(υ)) . (2.12)

The standard error of ∆̂ can be written as:

S(∆̂) =

√︄
▽′f(υ)Ψ̂▽f(υ)

T
, (2.13)

where Ψ̂ is a consistent estimator of Ψ and its typically estimated through
HAC robust estimation procedure such as Newey and West (1987) or Andrews
(1991). However, it is well-known that such HAC inference is often too opti-
mistic when tails are heavier than normal or sample sizes are small. Ledoit
and Wolf (2008) propose to test H0 : ∆ = 0 by inverting a symmetric stu-
dentized bootstrap confidence interval, with confidence level 1−α. It follows
that the null is rejected if zero is not contained in this interval. The process
they propose is the following:

First we generate bootstrap data by re-sampling with replacement individual
pairs of the two returns series. If there is serial correlation we can apply the

block bootstrap of Politis and Romano (1992). We then estimate ∆̂
∗
, which is

the Sharpe ratio difference estimated from the bootstrapped data. We repeat

this procedure for B times. Let z∗|·|,λ be the λ quantile of the |∆̂
∗
− ∆̂|/S(∆̂

∗
)

random variable, then the 1− α bootstrap confidence interval is given by:

86



Chapter 2

∆̂± z∗|·|,1−α S(∆̂) (2.14)

where ∆̂ is estimated from the original data and S(∆̂) is estimated from the
original data according to equation (2.13). When data are heavy tailed and
the sample is small, then z∗|·|,1−α is more conservative than its asymptotic
counterpart z1−α.

2.C Variable definition

βb: Beta of each bond with the market using last 36 months of returns. A
bond needs to have at least 24 observations out of 36 months in order to be
included in our calculation of the βb.

Bond Char.:

Age: Number of months since the issuance of the bond.

Life: Number of months until maturity of the bond.

Mdur: Modified duration of the bond.

Offer-amt: Offering amount of the bond in million USD.

Downside risk:

ES10: Defined by Bai et al. (2019) as the average of the four lowest monthly
return observations over the past 36 months (beyond the 10% VaR threshold).

VaR10: Defined by Bai et al. (2019) as the fourth lowest monthly return ob-
servation over the past 36 months. We then multiply the original measure by
−1 for convenience of interpretation.

VaR5: Defined by Bai et al. (2019) as the second lowest monthly return ob-
servation over the past 36 months. We then multiply the original measure by
−1 for convenience of interpretation.
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Intangibles:

AOA: We follow Bandyopadhyay, Huang, and Wirjanto (2010) and define
AOA as absolute value of operation accruals (OA) which we define below.

OA: We follow Sloan (1996) and define operating accruals as changes in non-
cash working capital minus depreciation (DP) scaled by lagged total assets
(AT). Non-cash working capital is the difference between non-cash current
assets and current liabilities (LCT), debt in current liabilities (DLC) and in-
come taxes payable (TXP). Non-cash current assets are current assets (ACT)
minus cash and short-term investments (CHE).

OL: Operating leverage is the sum of cost of goods sold (COGS) and selling,
general, and administrative expenses (XSGA) over total assets (AT) as in
Novy-Marx (2011).

TAN: We follow Hahn and Lee (2009) and defne tangibility as (0.715 × total
receivables (RECT) + 0.547 × inventories (INVT) + 0.535 × property, plant
and equipment (PPENT) + cash and short-term investments (CHE)) / total
assets (AT).

Investment:

∆CEQ: We follow Richardson, Sloan, Soliman, and Tuna (2005) in the defi-
nition of the percentage change in the book value of equity (CEQ).

∆PI2A: We define the change in property, plants, and equipment following
Lyandres, Sun, and Zhang (2008) as changes in property, plants, and equip-
ment (PPEGT) and inventory (INVT) over lagged total assets (AT).

∆Shout: We follow Pontiff and Woodgate (2008) in the definition of the per-
centage change in shares outstanding (SHROUT).

INV: We define investment as the percentage year-on-year growth rate in total
assets (AT) following Cooper, Gulen, and Schill (2008).

IVC: We define IVC as change in inventories (INVT) between t− 2 and t− 1
over the average total assets (AT) of years t− 2 and t− 1 following Thomas
and Zhang (2002).
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Returns:

Sprd6: Mom. 6m log(Spread) from Israel et al. (2018). Difference in logs of
current spread and spread 6 months ago. Spread is defined as the difference of
yield-to-maturity of a bond and its corresponding maturity-matched treasury
yield.

re12−2: Equity momentum. Total return from 12 months up until 2 months
ago.

rb12−2: Bond momentum. Total return from 12 months up until 2 months ago.

re12−7: Equity momentum. Total return from 12 months up until 7 months
ago.

rb12−7: Bond momentum. Total return from 12 months up until 7 months ago.

re1−0: Equity momentum. Total return over the past month.

rb1−0: Bond momentum. Total return over the past month.

re2−1: Equity momentum. Total return from 2 months up until 1 month ago.

rb2−1: Bond momentum. Total return from 2 months up until 1 month ago.

re36−13: Equity momentum. Total return from 36 months up until 13 months
ago.

rb36−13: Bond momentum. Total return from 36 months up until 13 months
ago.

re6−2: Equity momentum. Total return from 6 months up until 2 months ago.

rb6−2: Bond momentum. Total return from 6 months up until 2 months ago.

Profitability:

ATO: Net sales over lagged net operating assets as in Soliman (2008). Net
operating assets are the difference between operating assets and operating
liabilities. Operating assets are total assets (AT) minus cash and short-term
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investments (CHE), minus investment and other advances (IVAO). Operating
liabilities are total assets (AT), minus debt in current liabilities (DLC), mi-
nus long-term debt (DLTT), minus minority interest (MIB), minus preferred
stock (PSTK), minus common equity (CEQ).

CTO: We follow Haugen and Baker (1996) and define capital turnover as ratio
of net sales (SALE) to lagged total assets (AT).

∆(∆GM − ∆S): We follow Abarbanell and Bushee (1997) in the definition
of the difference in the percentage change in gross margin and the percent-
age change in sales (SALE). We define gross margin as the difference in sales
(SALE) and costs of goods sold (COGS).

EPS: We follow Basu (1977) and define earnings per share as the ratio of
income before extraordinary items (IB) to shares outstanding (SHROUT) as
of December t− 1.

IPM: We define pre-tax profit margin as ratio of pre-tax income (PI) to sales
(SALE).

NOA: Net operating assets are the difference between operating assets mi-
nus operating liabilities scaled by lagged total assets as in Hirshleifer, Kewei
Hou, Teoh, and Yinglei Zhang (2004). Operating assets are total assets (AT)
minus cash and short-term investments (CHE), minus investment and other
advances (IVAO). Operating liabilities are total assets (AT), minus debt in
current liabilities (DLC), minus long-term debt (DLTT), minus minority in-
terest (MIB), minus preferred stock (PSTK), minus common equity (CEQ).

PCM: The price to cost margin is the difference between net sales (SALE) and
costs of goods sold (COGS) divided by net sales (SALE) as in Gorodnichenko
and Weber (2016) and D’Acunto, Liu, Pflueger, and Weber (2018).

PM: The profit margin is operating income after depreciation (OIADP) over
sales (SALE) as in Soliman (2008).

Prof: We follow Ball, Gerakos, Linnainmaa, and Nikolaev (2015) and define
profitability as gross profitability (GP) divided by the book value of equity as
defined above.

RNA: The return on net operating assets is the ratio of operating income
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after depreciation to lagged net operating assets (Soliman, 2008). Net op-
erating assets are the difference between operating assets minus operating
liabilities. Operating assets are total assets (AT) minus cash and short-term
investments (CHE), minus investment and other advances (IVAO). Operating
liabilities are total assets (AT), minus debt in current liabilities (DLC), mi-
nus long-term debt (DLTT), minus minority interest (MIB), minus preferred
stock (PSTK), minus common equity (CEQ).

ROA: Return on assets is income before extraordinary items (IB) to lagged
total assets (AT) following Balakrishnan, Bartov, and Faurel (2010).

ROC: Return on capital is the ratio of market value of equity (ME) plus long-
term debt (DLTT) minus total assets to cash and short-term investments
(CHE) as in Chandrashekar and Rao (2009).

ROE: Return on equity is income before extraordinary items (IB) to lagged
book value of equity as in Haugen and Baker (1996).

ROIC: Return on invested capital is the ratio of earnings before interest and
taxes (EBIT) less nonoperating income (NOPI) to the sum of common equity
(CEQ), total liabilities (LT), and cash and short-term investments (CHE) as
in Brown and Rowe (2007).

S2C: Sales to cash is the ratio of net sales (SALE) to cash and short-term
investments (CHE) following Ou and Penman (1989).

SAT: We follow Soliman (2008) and define asset turnover as the ratio of sales
(SALE) to total assets (AT).

Trade Frictions:

AT: Total assets (AT) as in Gandhi and Lustig (2015).

Tradebvol: Cumulative trading volume of the bond in a given month.

Illiq: Defined by Bao et al. (2011) as: ILLIQt = −Covt(∆pitd,∆pitd+1) ,
where ∆pitd = pitd − pitd−1 is the log price change of bond i and day d of
month t.

LME: Size is the total market capitalization of the previous month defined
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as price (PRC) times shares outstanding (SHROUT) as in Fama and French
(1992).

Lturn: Turnover is last month’s volume (VOL) over shares outstanding
(SHROUT) as in Datar, Y. Naik, and Radcliffe (1998).

Value:

A2ME: We follow Bhandari (1988) and define assets to market capitalization
as total assets (AT) over market capitalization as of December t − 1. Mar-
ket capitalization is the product of shares outstanding (SHROUT) and price
(PRC).

BEME: Ratio of book value of equity to market value of equity. Book eq-
uity is shareholder equity (SH) plus deferred taxes and investment tax credit
(TXDITC), minus preferred stock (PS). SH is shareholders’ equity (SEQ). If
missing, SH is the sum of common equity (CEQ) and preferred stock (PS).
If missing, SH is the difference between total assets (AT) and total liabilities
(LT). Depending on availability, we use the redemption (item PSTKRV), liq-
uidating (item PSTKL), or par value (item PSTK) for PS. The market value
of equity is as of December t− 1. The market value of equity is the product
of shares outstanding (SHROUT) and price (PRC). See Rosenberg, Reid, and
Lanstein (1985) and Davis, Fama, and French (2000).

C: Ratio of cash and short-term investments (CHE) to total assets (AT) as in
Palazzo (2012).

C2D: Cash flow to price is the ratio of income and extraordinary items (IB)
and depreciation and amortization (DP) to total liabilities (LT).

D2P: Debt to price is the ratio of long-term debt (DLTT) and debt in cur-
rent liabilities (DLC) to the market capitalization as of December t− 1 as in
Litzenberger and Ramaswamy (1979). Market capitalization is the product
of shares outstanding (SHROUT) and price (PRC).

∆SO: Log change in the split adjusted shares outstanding as in Fama and
French (2008). Split adjusted shares outstanding are the product of Compu-
stat shares outstanding (CSHO) and the adjustment factor (AJEX).

E2P: We follow Basu (1983) and define earnings to price as the ratio of income
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before extraordinary items (IB) to the market capitalization as of December
t− 1. Market capitalization is the product of shares outstanding (SHROUT)
and price (PRC).

NOP: Net payout ratio is common dividends (DVC) plus purchase of com-
mon and preferred stock (PRSTKC) minus the sale of common and preferred
stock (SSTK) over the market capitalization as of December as in Boudoukh,
Michaely, Richardson, and Roberts (2007).

O2P: Payout ratio is common dividends (DVC) plus purchase of common and
preferred stock (PRSTKC) minus the change in value of the net number of
preferred stocks outstanding (PSTKRV) over the market capitalization as of
December as in Boudoukh et al. (2007).

Q: Tobin’s Q is total assets (AT), the market value of equity (SHROUT times
PRC) minus cash and short-term investments (CEQ), minus deferred taxes
(TXDB) scaled by total assets (AT).

S2P: Sales to price is the ratio of net sales (SALE) to the market capitaliza-
tion as of December following Lewellen (2015).

Salesg: Sales growth is the percentage growth rate in annual sales (SALE)
following Lakonishok, Shleifer, and Vishny (1994).

Valuehvz: Defined by Houweling and van Zundert (2017) as calculating cross-

sectionally a regression and generate fitted values: Spreadt
ˆ = c+βRATRATt+

βMATMATt + β∆S∆Spreadt,t−3. The percentage difference between the ac-
tual and the fitted spread is then the value characteristic.

Valueips: Defined by Israel et al. (2018) as calculating cross-sectionally a re-

gression and generate fitted values: Spreadt
ˆ = c+βRATRATt+βDURDURt+

βV OLVOLt,t−12. VOLt,t−12 refers to the bond’s volatility over the past year.
The percentage difference between the actual and the fitted spread is then the
value characteristic.
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Luck versus skill in the corporate
bond fund market

Co-author: Dimitrios Nteventzis

Abstract
In this paper, we evaluate the ability of U.S. corporate bond fund
managers to generate alpha. We apply the False Discovery Rate
(FDR) to distinguish between “skill” and “luck.” We find that
long-term outperformance remains elusive, with only 1% of the
funds able to generate significant alpha over their life. However,
fund managers are able to generate alpha over the short-term with
the proportion of skilled funds increasing to 13.5% when we exam-
ine three-year sub-periods. To confirm these findings, we design
an out-of-sample investment strategy where we invest in funds ac-
cording to their estimated “skill” from past returns. Our strategy
generates positive and significant alpha, which confirms the persis-
tence in outperformance over the short-run. Our results are eco-
nomically meaningful for investors suggesting that dynamic and
active manager selection pays off.
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3.1 Introduction

Are active managers able to outperform? This question is one of the oldest in
the field of finance and has profound welfare implications for investors. While
there have been numerous studies on the performance of U.S. equity fund
managers, there have been far less on U.S. bond funds and only a few for U.S.
corporate bond funds. This paper aims to fill the gap in the existing liter-
ature by explicitly studying the performance of U.S. corporate bond funds.
Most studies so far on the U.S. corporate space focus on the performance of
the average fund. Both theoretical and empirical results hint at the fact that
funds generate on average zero/negative alpha gross/net of fees (see Berk and
Green (2004)). It follows that active management is a zero-sum game, where
returns of unskilled managers (negative alpha) and skilled ones (positive al-
pha) are balanced out. We expand the existing literature by analyzing the
performance of individual funds. To this end, we are interested in testing
whether skilled managers that consistently outperform the market exist and
whether investors can identify them and receive superior returns.

To answer this question, we utilize established methods from the equity fund
literature. More specifically, we use the False Discovery Rate (FDR) which
was introduced by Storey (2002) and applied by Barras, Scaillet, and Werm-
ers (2010) to evaluate U.S. equity funds. The central issue in studying the
performance of individual funds is the multiple testing bias that arises. For
example, consider using a statistical significance level of 5%, and counting
the number of funds with significant alphas to determine how many managers
are skilled. In that case, we should expect that 5% of zero-alpha funds (funds
with zero alpha in population) will erroneously appear to possess skill just out
of luck. The FDR method is a practical and statistically sound approach to
control for false discoveries directly. Despite the sound theoretical framework
of the FDR, there has been recently a critique from Andrikogiannopoulou
and Papakonstantinou (2019) challenging the applicability of FDR on fund
evaluation. Their main argument is that FDR produces biased results that
typically underestimate the proportion of non-zero alpha funds if we use re-
alistic noise-to-signal ratios and sample size. We take into account the recent
findings on the shortcomings of the FDR in fund evaluation by performing
a detailed simulation study and also incorporating the comments of Barras,
Scaillet, and Wermers (2019) in their reply on the validity of FDR.

Apart from the statistical methodology used to evaluate fund returns, the
choice of the benchmark model is also crucial. In the equity space, there are
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asset pricing models that are widely accepted, such as the four-factor model
of Carhart (1997) that is being used in most equity mutual fund papers. How-
ever, there is no broad-based agreement in the corporate bonds space yet. In
addition, the lack of readily available bond factors has led researchers to use
augmented models from the equity literature to measure the performance of
bond funds. We contribute to the existing literature by utilizing corporate
bond-specific asset pricing factors. More specifically, our reference model is
the one suggested by Bai, Bali, and Wen (2019) that focuses on the downside,
credit, and liquidity risk.

From the existing literature, Ayadi and Kryzanowski (2011) and Brooks,
Gould, and Richardson (2020) are the papers that are most closely related
to our work. Ayadi and Kryzanowski (2011) examine the Canadian bond
fund market and use the bootstrap to examine the best/worst funds. They
find that bad luck is responsible for the left tail funds but find no real skill
for the right tail funds. Brooks et al. (2020) examine the U.S. bond mar-
ket and independently examine different segments of the bond fund market.
They examine the performance of individual funds; however, they do not
employ a formal statistical method but rather draw inference by imposing a
normal distribution with zero mean on the distribution of individual alphas.
To our knowledge, our paper is the first one that focuses on the performance
of individual U.S. corporate bond funds and uses the FDR methodology to
distinguish skill from luck.

First, we evaluate the performance of funds over the long-run by applying
the FDR approach on the full sample (158 funds, 198 months). We find that
1.15%, 12.27%, and 86.58% of the funds generate positive, negative, and zero-
alpha. Thus, we conclude that alpha generation is scarce over the long-run,
while most of the funds generate zero alpha. Our results are in line with the
mutual fund literature. Brooks et al. (2020) examine the U.S. bond mutual
fund and find no evidence of true skill. Barras et al. (2010) report that only
0.60% of equity fund managers can generate alpha, while they find that the
majority of the funds are zero-alpha.

Second, we evaluate the performance of funds over the short-run. Accord-
ing to the theoretical work of Berk and Green (2004), funds might be able
to outperform over the short-run before investors reduce their competitive
advantage by increasing inflows. To this end, we continue our analysis fo-
cusing on 3-year sub-intervals and treating each fund-period observation as
a separate fund. We find that performance is stronger than the full sample
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analysis, indicating that fund managers can generate alpha over the short-
run. We estimate the proportions of positive, negative, and zero-alpha to be
13.52%, 10.25%, 76.23%. Barras et al. (2010) find similar evidence examining
the U.S. equity mutual funds and Huij and Derwall (2008) find performance
persistence in U.S. bond funds using a dataset from 1990 to 2003.

Third, motivated by the fact that corporate bond funds exhibit outperfor-
mance over the short-run, we examine whether investors can use past per-
formance to identify talented managers and create a profitable strategy. We
follow Barras et al. (2010) and design a fund selection strategy based on the
FDR methodology. We show that we can successfully identify managers that
possess skill over the short-run. Our strategy generates an economically and
statistically meaningful annualized alpha of 1.75%. We also report the re-
sults of a simple strategy that invests every year in the funds with alpha
above/below a certain percentile threshold, as in Huij and Derwall (2008).
The results are similar to our FDR selection strategy and confirm the hy-
pothesis of short-term performance persistence and skill. However, similar to
Barras et al. (2010) we observe that the FDR method cannot meaningfully
outperform the naive strategy of portfolio formation according to past alpha.
We think that the concentration of skilled funds at the extreme right tail and
the increasing alphas the more one moves to the right tail are the two main
reasons for the inability of the FDR strategy to outperform. It follows that by
simply focusing on an extreme percentile like 90%, one can capture a mean-
ingful proportion of skilled funds. Furthermore, the benefits of identifying
skilled funds further on the left side of the distribution are diminishing, given
the lower alpha and higher proportion of unskilled funds.

Finally, given the recent critique of Andrikogiannopoulou and Papakonstanti-
nou (2019) on the bias of the FDR methodology, we perform a detailed simu-
lation study to evaluate the performance of FDR in our dataset. We use the
median size of our sample Tmed and calibrate the alpha and residual volatility
parameter from our data in line with the response of Barras et al. (2019).
While we confirm previous findings of bias in FDR estimates, our simulation
results are less pessimistic than Andrikogiannopoulou and Papakonstantinou
(2019) and closer to the recent response of Barras et al. (2019). Our simula-
tion results confirm that FDR can be successfully applied in the cross-section
of corporate bond mutual funds.

Our paper is organized as follows. The second section provides a detailed lit-
erature review of mutual fund performance analysis for equity and bond funds
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and an overview of the respective methods. In the third section, we present
our data, while in sections four and five, we present our empirical results and
simulation study.

3.2 Literature review

The majority of existing literature on fund performance has focused on eq-
uities. The results are sometimes conflicting depending on the methodology
used. However, the prevailing view is that long-term outperformance is scarce.
Early papers on mutual fund performance try to identify skill by testing for
persistence in fund returns. The idea is that if a manager outperforms due to
skill, this should also persist in the future. Carhart (1997) applies a four-factor
model including momentum and finds that the momentum factor can explain
previous evidence of performance persistence. Kosowski, Timmermann, Wer-
mers, and White (2006) use a bootstrap method to evaluate the performance
of individual equity funds. They show that while alpha for the broad indus-
try is negative, in line with the “equilibrium accounting theory,” a group of
“star” managers can persistently deliver significant alpha. Fama and French
(2010) perform a similar study to Kosowski et al. (2006) and conclude that
while many managers can generate alpha before costs, only a few can generate
alpha after costs. Barras et al. (2010) use the FDR in order to correct for false
discoveries. They find that only 0.6% of managers possess skill while 75% of
the U.S. equity mutual funds have zero alpha. They also find a significant
proportion (14.4%) of skilled investors before 1996 but almost none (0.6%)
by 2006. Similar findings of a declining ability to generate alpha have been
reported by Pástor, Stambaugh, and Taylor (2015). The dominating belief is
that increasing competition and market efficiency is restricting opportunities
for outperformance. More recently, Harvey and Liu (2018) proposed a new
structural approach to model skilled, unskilled, and zero alpha funds. They
find that 10% of the U.S. equity funds generate positive alpha, a finding that
is in contrast with the 1% reported by Barras et al. (2010).1

While there have been numerous studies on the return of actively managed eq-
uity funds, there has been less attention on bond funds and only a few studies
on corporate bond fund returns. In one of the first studies focusing on bond
funds, Blake, Elton, and Gruber (1993) examine government and corporate

1For a detailed literature review on equity mutual fund evaluation, see Cremers, Fulk-
erson, and Riley (2019).

98



Chapter 3

bond funds jointly. They find negative alphas for the aggregate industry and
weak results on performance persistence. Ferson, Henry, and Kisgen (2006)
examine government bond funds using the implied stochastic discount fac-
tor (SDF) from a continuous-time term structure model and report that the
average fund outperforms the benchmark. Huij and Derwall (2008) question
the existence of skilled bond fund managers by investigating the persistence
of relative performance of funds. Using a larger dataset than previous stud-
ies, they show that funds that outperform in the past tend to outperform
in the future, offering evidence to support the existence of skilled bond fund
managers. Ayadi and Kryzanowski (2011) examine the Canadian bond fund
market. In line with previous studies, they find on average negative alphas
net of fees. When applying the bootstrap technique of Kosowski et al. (2006)
to evaluate individual fund performance, they find no skill for the right tail of
alphas. Cici and Gibson (2012) focus on corporate bond funds and decompose
active returns in security selection, timing, and style. They report negative
results on the abilities of bond fund managers; however, their analysis is lim-
ited to the average corporate bond fund. Konstantinov and Fabozzi (2021)
examines the European bond mutual fund market across different segments
(government, investment grade (IG), high yield (HY), etc.). They find that
only funds that invest primarily in government bonds can generate alpha and
that alpha generation has declined significantly after the GFC (Global Finan-
cial Crisis) in 2008. Brooks et al. (2020) examine the U.S. bond market and
independently examine different segments of the bond fund market similar
to Konstantinov and Fabozzi (2021). They examine the performance of in-
dividual funds; however, they do not employ a formal statistical method but
rather draw inference by imposing a normal distribution with zero mean on
the distribution of individual alphas. They conclude that the average and in-
dividual active manager is not able to generate alpha. The results hold across
all bond categories. To our knowledge, this is the first paper that focuses on
the performance of individual U.S. corporate bond funds and uses the FDR
methodology to distinguish skill from luck.

Answering whether individual managers possess skills has specific method-
ological challenges since it involves multiple hypothesis testing. The boot-
strap technique of Kosowski et al. (2006) and Fama and French (2010) deals
with the non-normal distributional characteristics of fund returns but is not
able to correct for the multiple hypothesis bias. To limit the bias, the authors
restrict their analysis to key points of the cross-section of funds. On the other
hand, the FDR method of Barras et al. (2010) allows us to directly control for
false discoveries and estimate the proportions of skilled and unskilled man-
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agers. Despite the sound theoretical foundations of the FDR method, there
are empirical difficulties as highlighted by Andrikogiannopoulou and Papakon-
stantinou (2019). The authors argue that the low accuracy of estimating fund
alphas and the short sample period of individual funds makes the FDR esti-
mation biased, as shown in a detailed simulation study. However, Barras et
al. (2019) argue in their response that if we use realistic parameters for alphas
and residual volatility and incorporate the additional data available from the
original study in 2010, then the bias is significantly smaller than the one re-
ported by Andrikogiannopoulou and Papakonstantinou (2019). Harvey and
Liu (2018) in a recent study propose a structural approach that aims to reduce
the noise in estimating alphas by pooling information from the cross-sectional
distribution of alphas. Christiansen, Grønborg, and Nielsen (2020) perform
a detailed empirical study to measure the performance of different methods
in fund selection through a detailed simulation study. They adjust the simu-
lation parameters to accommodate for realistically short samples. They find
that the FDR and bootstrap method have the most attractive characteristics
while the more advanced method of Harvey and Liu (2018) performs worse
when applied to small samples. Given that the outperformance of newly
proposed methods remains uncertain, we prefer to use the established FDR
method and examine its accuracy through a detailed simulation study.

3.3 Mutual fund performance evaluation
methodology

3.3.1 Set up

Consider N actively managed mutual funds with excess returns net of fees Rt

and K asset pricing factors Ft that form the benchmark model. To evaluate
the performance of these funds, we estimate:

Rit = αi + βiFt + ϵit (3.1)

It follows that a fund manager can generate returns either due to its exposure
to systematic risk factors through βi or due to management skills through
αi. We focus on returns net of fees and define skill as the ability to generate
αi > 0 after costs. Accordingly, the N funds can be separated into three
categories:

• Unskilled funds: funds with managers that are unable to recover
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trading and management fees through their active management skills
(αi < 0).

• Zero alpha funds: funds with managers that are able to recover
trading and management fees through their active management skills
(αi = 0).

• Skilled funds: funds with managers that can generate alpha in excess
of trading and management fees through their active management skills
(αi > 0).

A simplistic approach for estimating the number of skilled/unskilled funds
would be to perform N tests with the null hypothesis being Hi

0 : αi = 0.
This is the no-luck approach, and the major issue is that it fails to account
for false discoveries. Figure 3.1 presents a simplified example in order to
demonstrate the empirical implications. In Figure 3.1a we demonstrate the t-
statistic distribution of unskilled, zero-alpha and skilled funds. For simplicity,
we assume a normal distribution centered across -3, 0 and 3, respectively. In
Figure 3.1b we demonstrate the cross-sectional t-statistic distribution, which
is a mixture of the three skill group distributions in Figure 3.1a, with the
weight of each distribution being equal to the proportion of unskilled, zero
alpha and skilled funds in the population (π−

A = 9% , π0 = 90%, π+
A = 1%).

Using a significance level of γ = 5% we would estimate the unskilled funds to
be 11% for the total population and the skilled funds to be 3%. The reason
for the bias is that we do not account for luck (lucky/unlucky funds with
zero-alpha but due to luck appear to have positive/negative alpha).

3.3.2 False Discovery Rate (FDR)

The FDR method applied by Barras et al. (2010) offers a robust statistical
framework to estimate the proportion of negative, zero, and positive alpha
funds while adjusting for false discoveries due to luck. From Figure 3.1a, we
see that at a given significance level γ, the probability that a zero-alpha fund
is wrongfully accepted as a skilled/unskilled fund is equal to γ/2. If π0 is
the proportion of zero-alpha funds in population, it follows that the expected
proportion of lucky/unlucky funds can be written as:

E(F+
γ ) = π0 × γ/2

E(F−
γ ) = π0 × γ/2 , (3.2)

where E(F+
γ ) denotes the expected proportion of lucky funds and E(F−

γ )
denotes the expected proportion of unlucky funds. Now to calculate the ex-
pected proportion of non-zero funds, we simply need to adjust the observed
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Figure 3.1: Example on bias for multiple testing. The left panel shows the distribution
of the fund t-statistics across the three skill groups (zero alpha, negative and positive). We
assume a normal distribution and that the respective distributions are centered around 0
and ±3. The right panel shows the cross-sectional distribution of the t-statistics, which is
a mixture of the three skill group distributions in the left panel, with the weight of each
distribution being equal to the proportion of unskilled, zero alpha and skilled funds in the
population (π−

A = 9%, π0 = 90%, π+
A = 1%).
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proportions for the impact of luck. It follows that the proportions of non zero
funds can be expressed as:

E(T+
γ ) = E(S+

γ )− E(F+
γ ) = E(S+

γ )− π0 × γ/2

E(T−
γ ) = E(S−

γ )− E(F−
γ ) = E(S−

γ )− π0 × γ/2 , (3.3)

where E(T+
γ ) and E(T−

γ ) denotes the expected proportions of skilled/unskilled
funds and E(S+

γ ) and E(S−
γ ) denote the proportion of funds with positive/

negative and significant t-statistics in sample.
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Figure 3.2: Distribution of p-values. The figure displays the p-value histogram of
N = 250 funds generated from the three skill distributions displayed in Figure 3.1 with
probability equal to the proportion of unskilled, zero alpha and skilled funds in the popu-
lation (π−

A = 9% , π0 = 90%, π+
A = 1%).

From equation (3.3) we see that the only parameter that we need in order
to estimate the true proportions of non-zero funds is the proportion of zero
funds, π0. For that, we can use the estimation approach developed by Storey
(2002). Consider we have N hypothesis to test (same as the number of funds)
and pî is the p-value of test i. The main two assumptions of the FDR are that:
(1) the p-values corresponding to true nulls will be uniformly distributed on
[0,1], and (2) the p-values corresponding to the alternative hypothesis will
be close to zero. From assumption (2), it follows that there is a threshold
λ∗ ∈ (0, 1) above which all p-values correspond to true nulls. We employ
a bootstrap method to determine λ∗ which we describe below. Given that
p-values of the null are uniformly distributed, we can estimate the proportion
of zero alpha funds (π̂0) by counting the number of p-values above λ∗, W (λ∗),
and extrapolate for the interval (0, λ∗). It follows that we can estimate the
proportion of zero alpha funds from:

π̂0(λ
∗) =

W (λ∗)

N

1

1− λ∗ , (3.4)

where W (λ∗)/N can be interpreted as the proportion of funds represented by
the four rectangles for λ > λ∗. Once we have estimated π̂0, we can simply
substitute π̂0 in equations (3.3) which gives as the proportions of positive and
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negative alpha after adjusting for false discoveries. Accordingly, the estimated
proportions of non zero funds can be written as:

π̂+
A = Ŝ

+

γ − F̂
+

γ = Ŝ
+

γ − π̂0 × γ/2

π̂−
A = Ŝ

−
γ − F̂

−
γ = Ŝ

−
γ − π̂0 × γ/2 (3.5)

3.3.3 Bootstrapped p-values

The p-values required to computeW (λ∗) in equation (3.4) are estimated using
the bootstrap method of Kosowski et al. (2006). Thus, allowing us to take
into account the non-normality and asymmetry of funds’ returns. To employ
the methodology of Kosowski et al. (2006) we first estimate the benchmark

model in equation (3.1) and save the estimated parameters βî and {ϵit̂, t =
Ti0, . . . , Ti1} for each fund. Time indexes Ti0, . . . , Ti1 denote the first and last
observation of fund i. Next, we draw with replacement a pseudo time series
of residuals {ϵ̂bitϵ , tϵ = sbTi0

, . . . , sbTi1
}, where b is an index for the bootstrap

simulation run and time indices sbTi0
, . . . , sbTi1

are drawn uniformly from the

original time indices Ti0, . . . , Ti1. We draw pseudo excess return, Rb
it, under

the null hypothesis (αi = 0) from:

Rb
it = βîFt + ϵ̂bitϵ (3.6)

Then we regress the pseudo returns on the set of original factors:

Rb
it = αb

i + βb
iFt + ϵ̃it (3.7)

We save αb
i and the corresponding t-statistic and repeat this procedure for

b = 1, . . . , 1000 bootstrap iterations and for all the funds i = 1, . . . , N . Since
the distribution of t-statistics might be asymmetric, we follow Davidson and
MacKinnon (2004) and estimate the p-value from:

p̂i = 2×min

(︄
1

B

B∑︂
b=1

I{ˆ︁tbi > ˆ︁ti}, 1B
B∑︂

b=1

I{ˆ︁tbi < ˆ︁ti}
)︄

, (3.8)

where B is the total number of bootstrap iterations and I{ˆ︁tbi > ˆ︁ti} is an
indicator function that takes the value one if the bootstrap t-statistic ˆ︁tbi is
higher than the t-static estimated from the actual sample ˆ︁ti.
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3.3.4 Determining the value of λ∗ and γ∗ from the data

We follow Barras et al. (2010) and determine λ∗ and γ∗ from the data, utilizing
a bootstrap approach. To determine λ∗ we first estimate π̂0(λ) for a grid of
λ values, (λ = 0.30, 0.35, 0.40, .., 0.70). For each value of λ we form 1,000
bootstrap replications by drawing with replacement from the Nx1 vector of
p-values. We estimate the Mean Squared Error (MSE) for each value of λ

and choose as λ∗ the value that minimizes the MSE, λ∗ = argminλˆ︁MSE(λ).

ˆ︁MSE(λ) =
1

1000

1000∑︂
b=1

[︃
π̂b
0(λ)−min

λ
π̂0(λ)

]︃2
(3.9)

The significance level γ∗ is typically determined by the researcher and defines
the segment of the tail to be examined for skill/luck. Since our primary focus
is to estimate the proportions of funds for the entire population, we need to set
a reasonably large value of γ∗ in order to keep Type-II error under control.
We follow the approach proposed of Barras et al. (2010) to determine γ∗

through bootstrap similar to λ∗. First we estimate π−
A(γ) from (3.5) using

λ∗ from the previous step, for a range of γ values (γ = 0.30, 0.35, .., 0.50).
Second, for each value of γ we form 1,000 bootstrap replications by drawing
with replacement from the Nx1 vector of p-values. We estimate the Mean
Squared Error (MSE) for each value of γ and choose as γ− the value that

minimizes MSE, γ− = argminγ ˆ︁MSE
−
(γ).

ˆ︁MSE
−
(γ) =

1

1000

1000∑︂
b=1

[︃
π̂b−
A (γ)−max

γ
π̂−
A(γ)

]︃2
(3.10)

We use the same approach to choose γ+. If minγ ˆ︁MSE
−
(γ) < minγ ˆ︁MSE

+
(γ)

then we set π̂−
A(γ

∗) = π̂−
A(γ

−) and to preserve the equality, we set π̂+
A(γ

∗) =

1 − π̂0 − π̂−
A(γ

∗). Accordingly, if minγ ˆ︁MSE
−
(γ) > minγ ˆ︁MSE

+
(γ), we set

π̂+
A(γ

∗) = π̂+
A(γ

+) and π̂−
A(γ

∗) = 1− π̂0− π̂+
A(γ

∗). We note that in our empir-
ical results we find that simply setting γ∗ at a reasonable large value (above
0.20) yields similar results to the bootstrap approach.
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3.4 Data description and performance
measurement

3.4.1 Mutual fund data

We use the CRSP Survivor Bias-Free Mutual Fund Database for the fund
returns. For funds with multiple share classes, we calculate size-weighted re-
turns across all share classes. Excess returns Rit are estimated by subtracting
the return of the one-month T-Bill. We proceed by filtering our data in order
to isolate corporate bond funds. (1) We keep funds with a Lipper classifi-
cation of A, BBB, GB, HY, IID, SII.2 (2) We match the fund return series
with the available corporate bond factors that span from Nov-2005 to Dec-
2018. (3) To avoid incubation bias,3 we remove funds with history less than
36 months and funds that do not grow more than 50 million USD. (4) We
remove Exchange Traded Funds (ETF) using the respective flag provided by
the dataset. (5) We remove funds with average corporate allocation below
50%. (6) We remove funds with average equity exposure more than 2.5%. (7)
We remove funds with an average allocation of other fixed-income above 30%.
(8) We remove short-duration funds based on whether they include the word
short in their name. The final dataset includes 198 unique funds and 19,833
observations. In Table 3.2 we describe in detail the filters we apply and the
number of observations in each step.

In Table 3.1 we see the descriptive statistics for the full sample and the IG
and HY funds separately. The filtering strategy successfully isolates funds
that invest primarily in corporate bonds, with the corporate bond allocation
being on average above 80%. The average fund in our sample delivers a
monthly return of 0.43%, while as expected, returns of HY funds are higher
at 0.51% vs. 0.31% for the IG funds. Expense ratios and management fees are
also higher for HY funds compared to IG funds. In terms of turnover ratio,
we see that the distribution is skewed with some very active funds pushing
the mean above 80% while the median of the sample is closer to 60%. Finally
in Figure 3.3 we plot the returns of the average IG and HY fund vs. the
respective Bloomberg corporate bond index. As we see, both categories are
highly correlated to their respective benchmark and generate lower returns
over the sample period.

2A-Corporate Debt Funds A rated, BBB-Corporate Debt Funds BB rated, GB-General
Bond Funds, HY-High Current Yield Funds, IID-Intermediate Intermediate Investment
Grade Debt Funds, SII-Short Intermediate Investment Grade Debt Funds.

3See Brooks et al. (2020) and Konstantinov and Fabozzi (2021).
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Table 3.1: Descriptive statistics full sample. In this table we present the descriptive
statistics for the full sample of fund returns and characteristics.

Obs Funds Mean 50th SD 5th 25th 75th 95th

Ret 19,833 198 0.43 0.47 2.01 -2.38 -0.26 1.25 3.08
Size (M USD) 19,833 198 1,459 416 3,004 22 107 1,334 6,466
Exp-ratio % 17,756 178 0.84 0.83 0.34 0.19 0.65 1.03 1.41
Mgmt fee % 17,762 178 0.44 0.48 0.45 0.05 0.37 0.60 0.76
Turn % 17,762 178 92.00 60.00 117.90 21.00 39.00 95.00 263.00
Corp % 13,525 167 84.87 89.75 13.35 56.43 79.33 93.83 97.69

(a) Full sample

Obs Funds Mean 50th SD 5th 25th 75th 95th

Ret 8,012 88 0.31 0.29 1.36 -1.55 -0.20 0.91 2.18
Size (M USD) 8,012 88 1,358 467 3,095 29 122 1,169 5,789
Exp-ratio % 7,253 81 0.72 0.72 0.34 0.11 0.56 0.96 1.25
Mgmt fee % 7,259 81 0.35 0.40 0.27 0.00 0.30 0.48 0.62
Turn % 7,259 81 105.29 63.00 126.49 18.00 36.00 119.00 325.00
Corp % 5,125 64 79.37 82.35 15.15 50.59 69.08 92.02 97.15

(b) Investment grade

Obs Funds Mean 50th SD 5th 25th 75th 95th

Ret 11,079 103 0.51 0.67 2.35 -2.73 -0.37 1.49 3.69
Size (M USD) 11,079 103 1,433 354 2,777 19 98 1,447 6,665
Exp-ratio % 9,761 90 0.95 0.89 0.31 0.55 0.76 1.10 1.52
Mgmt fee % 9,761 90 0.50 0.56 0.55 0.16 0.46 0.66 0.80
Turn % 9,761 90 80.17 58.65 109.91 25.00 41.00 82.00 162.00
Corp % 7,893 97 88.91 91.44 9.51 69.64 87.27 94.44 97.97

(c) High yield
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Table 3.2: Sample set up. In this table we describe the evolution of our dataset according
to the filter/restrictions we apply. Obs refers to the month-fund observation in each sample,
while the rest of the variables refer to the number of funds in each respective sample.

Filter Obs Num. Funds IG Funds HY Funds IG Obs HY Obs

Initial sample 189,015 2,866 1,536 623 104,466 41,896
- Keep only IG/HY 146,377 2,127 1,535 623 104,463 41,896
- Match with factor data 120,011 1,917 1365 581 84,367 35,647
- Remove < 36 months 107,664 1,093 789 326 75,987 31,680
- Remove < 50 M USD 100,456 980 706 295 70,560 29,898
- Remove ETF 94,185 894 644 270 65,933 28,254
- Remove corp alloc < 50% 48,918 472 237 249 22,062 26,856
- Remove equity alloc > 2.5% 31,988 323 190 143 17,522 14,466
- Remove other FI alloc > 30% 27,635 279 147 140 13,316 14,319
- Remove short maturity funds 19,833 198 95 110 8,199 11,634

Figure 3.3: Returns of average IG/HY fund and Bloomberg benchmark index. In
this figure we report the cumulative returns of the average IG/HY fund against the return
of the respective benchmark.
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3.4.2 Performance measurement and asset pricing
factors

This section describes the asset pricing models that we utilize for the perfor-
mance evaluation of corporate funds. Most of the papers that examine cor-
porate mutual funds’ performance have utilized asset pricing models from the
equity literature. For example Konstantinov and Fabozzi (2021) and Ayadi
and Kryzanowski (2011), both use the Carhart (1997) 4-factor equity model,
augmented with a term-spread4 factor and bond-specific market factor. We

4Term-spread is defined as the difference between 30-year U.S. Treasury and 1-month
U.S. Treasury.
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differentiate from previous papers by utilizing corporate bond-specific asset
pricing factors. More specifically, our reference model is the one suggested
by Bai et al. (2019). They propose a six-factor model that includes: market
(MKT), term-spread (TERM), downside-risk (VAR), liquidity (LIQ), credit
risk (CRF) and one month return reversal (REV). We compare our reference
model with: (i) the two-factor model of Fama and French (1993) that includes
the market factor and term and (ii) the two-factor model augmented with the
equity factors5 of size (SMB), value (HML) and momentum (MOM).

To construct bond factors, we utilize the dataset from TRACE that pro-
vides prices and characteristics of the full cross-section of U.S. corporate
bonds. Details about the TRACE dataset and cleaning procedure can be
found in Appendix 3.B. We construct the bond factors according to Bai et
al. (2019). To measure downside-risk, we use the 5% VaR over the last 36
months, which is equivalent to the second-worst return over the same period.
Bond illiquidity is measured according to Bao, Pan, and Wang (2011). To be
more specific, illiquidity is defined as ILLIQt = −Covt(∆pitd,∆pitd+1), where
∆pitd = pitd − pitd−1 is the log price change of bond i and day d of month
t. For the credit risk factor, we use the credit rating and for the one-month
reversal factor we use the last month return.

We create traded factors from bi-variate sorts where we use credit rating as the
first sorting variable, resulting in 25 (5x5) portfolios. Credit risk is a crucial
driver of corporate bond returns; using the rating as a first sorting variable
allows us to create portfolios with similar credit risk profiles. To create the
credit-risk factor (CRF), we use the VaR 5% as the first sorting variable. We
construct each factor as the value-weighted average return difference of the
extreme quantile portfolios among all credit rating portfolios. To briefly illus-
trate how we construct each factor, consider that we have Rit excess returns
of N test assets, and we want to construct a factor for a single characteristic
Cit. Then we denote P 1,5

t the return at time t of a value-weighted portfolio
of assets that belongs in the 1st quantile concerning Cit and the 5th quantile
concerning credit rating. Then the factor is defined as:

Factort =
1

5

5∑︂
j=1

P 5,j
t − 1

5

5∑︂
j=1

P 1,j
t (3.11)

To evaluate the performance of the models, we estimate Fama-MacBeth cross-

5Data for the equity factors are from the Fama and French website: https://mba.tuck
.dartmouth.edu/pages/faculty/ken.french/data library.html.
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sectional regressions for each model. To estimate the beta loading of the fac-
tors, we use the full sample available. As we see from results in Table 3.3,
only DRF and LIQ are statistically significant from the full model of Bai
et al. (2019). Thus, we choose to use a restricted version of the full model
that includes market, term, downside risk, and liquidity. We think it is rea-
sonable that CRF and REV are not significant in our sample. First of all,
using TRACE data to generate the factors, we find that CRF is not sta-
tistically significant in contrast to Bai et al. (2019). Second, while REV is
significant in our sample, the reversal phenomenon is attributed to informa-
tion asymmetry according to Ivashchenko (2019). As such, while one-month
reversal appears significant for pricing individual bonds, we think that it is
reasonable to assume that long-only funds can not efficiently exploit a market
microstructure-driven factor. Moving to the remaining two models that we
consider, we see that both perform worse than the 4-factor version of Bai et
al. (2019). More specifically, we see that traditional equity factors cannot
explain the cross-section of corporate bond funds. These results align with
recent literature highlighting the complexity of the cross-section of corporate
bonds and the need to develop bond-specific models instead of relying on es-
tablished models from the equity literature. Given that CRF and REV are
not statistically significant in pricing the cross-section of our sample, we con-
tinue our analysis using the reduced version of the Bai et al. (2019) model
using MKT, TERM, DRF, and LIQ:

Rit = αi + β1,iMKTt + β2,iTERMt + β3,iDRFt + β4,iLIQt + ϵ3,i,t (3.12)

Table 3.3: Fama-Macbeth regressions. In this table we report results from Fama-
Macbeth cross-sectional regressions. The standard errors are estimated using the Newey
and West (1987) methodology and lag=6. Number of funds=198, T=158. We use *, **
and *** to indicate significance at the 10%, 5%, and 1% levels.

MKT TERM DRF LIQ CRF REV SMB HML MOM R2

(1)
0.40** 0.24** 0.64** 0.56* 0.04 0.74 - - -

0.61
2.07 2.05 1.99 1.94 0.18 1.55 - - -

(2)
0.40** 0.12 0.68** 0.45** - - - - -

0.62
2.07 0.96 2.04 1.98 - - - -

(3)
0.39* 0.11 - - - - - - -

0.54
1.79 0.89 - - - - -

(4)
0.39* 0.15 - - - 0.40* -0.07 -0.34

0.57
1.81 1.14 - - - - 1.81 -0.22 -0.49
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3.5 Empirical Results

3.5.1 Skill and luck in long-term performance

We begin our analysis by utilizing the entire sample and the FDRmethodology
to estimate the proportion of skilled/unskilled fund managers. From Table 3.4
we see that only a small percentage of funds can generate alpha, while most of
the funds are classified as zero-alpha, meaning they possess just enough skills
to retrieve costs but not enough to outperform. We find that 1.15%, 12.27%,
and 86.58% of the funds have positive, negative, and zero-alpha, respectively.
We conclude that alpha generation is scarce over the long-run, while most
of the funds possess some skill to recover trading costs and management ex-
penses. Our results are in line with the mutual fund literature. Brooks et al.
(2020) examine the U.S. bond mutual fund and find no evidence of true skill.
Barras et al. (2010) report that only 0.60% of equity fund managers can gen-
erate alpha, while they also find that the majority of the funds are zero-alpha.

In panel 3.4b of Table 3.4 we demonstrate the impact of luck on identify-
ing skill. In particular, we estimate the proportion of significant alphas re-
sulting from a simple t-statistic comparison, for a grid of significance levels
γ = {0.05, 0.10, 0.20, 0.30}. We also report the lucky/unlucky funds and the
skilled/unskilled funds resulting from the FDR for the same grid of γ val-
ues. To demonstrate the impact let us consider the right tail and the case
of γ = 0.20. If we simply count the funds with significant positive alpha we
would erroneously conclude that 10% are able to generate alpha. However
in reality 8.66% of those funds were just lucky and the true skilled funds are
only 1.44%. We also provide details on the expense ratio and turnover-ratio
for the average fund in each segment. First observation is that the expense
ratio is similar for funds on the left/right tail and close to the median 0.83%
of our sample. That means that unskilled managers are able to charge similar
fees to the average of the industry while successful managers cannot claim
bigger fees. In terms of turnover-ratio we see that funds on both skilled and
unskilled funds exhibit higher trading activity than the median of our sample
60%.
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Table 3.4: Long-term performance. The table displays the estimated proportions of
zero-alpha, skilled and unskilled funds (π0, π+, π−) for the full sample. Proportions are
estimated using bootstrapped p-values according to Kosowski et al. (2006). In panel 3.4b
we display the impact of luck on identifying skill. The standard errors are estimated using
the Newey and West (1987) methodology and lag=6.

π0 π− π+

Proportion 86.58 12.27 1.15

(a) Proportions of skilled/unskilled funds

Left Tail Right Tail

γ 0.05 0.10 0.20 0.30 0.30 0.20 0.10 0.05 γ

Signif. 7.58 13.64 21.72 25.25 14.14 10.10 6.57 3.54 Signif.
Unlucky 2.16 4.33 8.66 12.99 12.99 8.66 4.33 2.16 Lucky
Unskilled 5.41 9.31 13.06 12.27 1.15 1.44 2.24 1.37 Skilled
αann -2.25 -2.52 -2.53 -2.38 1.50 1.49 1.58 1.46 αann

Exp. 0.94 0.83 0.84 0.84 0.83 0.78 0.85 0.78 Exp.
Turn. 85.70 106.13 105.99 111.41 129.61 105.12 97.21 97.04 Turn.

(b) Impact of luck in the left/right tails

3.5.2 Skill and luck in short-term performance

Our results so far indicate that only a small portion of U.S. corporate bond
managers are able to outperform over the long-run. However, theory suggests
that outperformance can still exist over the short-term. More specifically
Berk and Green (2004) propose a mechanism, where investors that chase bet-
ter returns allocate heavily to skilled funds, increasing their size to the point
that they lose their competitive edge in generating alpha. In this section,
we examine whether mutual funds can generate alpha over the short-run. To
this end, we partition our data in four non-overlapping sub-samples of three
years.6 Since we are interested in the short-term performance of each fund,
we treat each fund during each sub-sample as a separate fund. After pooling
our data from the four sub-periods we obtain a total of 458 p-values. We then
apply the FDR methodology on the pooled p-values.

In Table 3.5a we see the results from our sub-sample analysis. As we see,
performance is stronger compared to the full sample analysis, indicating that

6We exclude funds that have less than 24 monthly observations in the three year sub-
period.
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fund managers can generate alpha over the short-run, More specifically, we
estimate the proportions of positive, negative and zero-alpha to be 13.52%,
10.25%, 76.23%. Our results are in line with existing literature that find evi-
dence of mutual fund short-term over-performance. Barras et al. (2010) find
similar evidence examining the U.S. equity mutual funds and Huij and Der-
wall (2008) find performance persistence in U.S. bond funds using a dataset
from 1990 to 2003. In Appendix 3.A we provide the results of the FDR for
the long-term and short-term performance using asymptotic values. While
proportion estimates are more optimistic the conclusion is the same, funds
are able to generate alpha over the short-term but not over the long-term.
Finally, given the non-normality of residuals, we consider the bootstrapped
p-values to be more appropriate in drawing inference.

Table 3.5: Short-term performance. The table displays the estimated proportions of
zero-alpha, skilled and unskilled funds (π0, π+, π−) for sub-periods of three years. We
treat each fund during each sub-sample as a separate fund. Proportions are estimated
using bootstrapped p-values according to Kosowski et al. (2006). In panel 3.5b we display
the impact of luck on identifying skill. The standard errors are estimated using the Newey
and West (1987) methodology and lag=6.

π0 π− π+

Proportion 76.23 10.25 13.52

(a) Proportions of skilled/unskilled funds

Left Tail Right Tail

γ 0.05 0.10 0.20 0.30 0.30 0.20 0.10 0.05 γ

Signif. 3.49 8.08 15.50 21.62 24.89 20.74 12.45 7.21 Signif.
Unlucky 1.89 3.79 7.58 11.37 11.37 7.58 3.79 1.89 Lucky
Unskilled 1.60 4.29 7.92 10.25 13.52 13.16 8.66 5.31 Skilled
αann -2.33 -2.90 -2.86 -2.82 3.59 3.95 4.49 4.54 αann

Exp. 0.86 0.79 0.78 0.83 0.84 0.85 0.84 0.84 Exp.
Turn. 80.06 85.27 110.93 115.19 77.21 82.33 78.90 77.73 Turn.

(b) Impact of luck in the left/right tails

Performance persistence is another method often used to test for skill in the
short-term. The main argument is that if past outperformance was due to
luck, it should not persist in the future, see Carhart (1997). We further ex-
amine the hypothesis that fund managers possess skill in the short-term by
creating contingency tables of past/future alpha. Every year we estimate the
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past alpha of the funds using the last thirty-six/twelve months of data and
sort the funds into four quantiles according to their past alpha. We subse-
quently sort each quantile of funds according to the future alpha estimated
using the following twelve months of data.

Table 3.6 shows the conditional probabilities using thirty-six and twelve months
to estimate the past alpha. More specifically, in cell(i, j) of Table 3.6, we show
the conditional probability of achieving a subsequent ranking of quantile j,
given an initial ranking of quantile i. If the past performance had no impact
on future performance, we would expect the conditional probabilities to be
close to 25%, i.e., any subsequent ranking is equally likely. However, in Table
3.6, we observe strong patterns of performance persistence that hold across
the two different periods that we use to estimate past alpha. For example, in
panel 3.6a we see that given an initial rank at the lowest percentile, there is a
38% probability of this fund remaining in the lowest quantile in the next 12
months, while only a 17% probability that it moves to the top quantile. The
same pattern holds for funds with an initial rank at the highest quantile. The
probability of remaining at the top quantile in the next 12 months is 35%,
while the probability of moving at the lowest quantile is 17%.

Table 3.6: Contingency table of αi. The table displays the conditional probability of
achieving a subsequent ranking of quantile j, given an initial ranking of quantile i. In the
vertical dimension we show quantile rankings of past alpha while in the horizontal dimension
we show quantile rankings of future alpha.

Low 2 3 High

Low 37.7 23.9 20.8 17.5
2 24.6 27.9 25.2 22.3
3 21.6 22.2 32.1 24.1

High 16.9 26.0 21.7 35.4

(a) 36 month formation period

Low 2 3 High

Low 31.2 26.8 21.9 20.0
2 27.7 25.8 25.0 21.5
3 22.3 23.6 27.3 26.8

High 19.1 23.9 25.9 31.2

(b) 12 month formation period

3.5.3 Performance persistence – Out-of-sample

Although fund outperformance over the long-run remains elusive, our results
indicate that fund managers can generate alpha over shorter periods. An
interesting question with direct practical implications is whether investors
can identify those funds that will outperform over the next period. To answer
this question, we perform an out-of-sample fund selection analysis by following
the methodology of Barras et al. (2010). In order to choose among funds we
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use the proportion of lucky funds in the portfolio at the significance level γ:

ˆ︁FDR
+

γ =
F̂

+

γ

Ŝ
+

γ

=
π̂0 × γ/2

Ŝ
+

γ

, (3.13)

where FDR+
γ is the proportion of lucky funds and Ŝ

+

γ is the proportion of

funds with positive and significant t-statistic. Using the ˆ︁FDR
+

γ we can set

a simple portfolio formation rule. First, we choose a ˆ︁FDR
+

γ target, which
reflects how conservative we want to be concerning lucky funds. For example,

setting ˆ︁FDR
+

γ = 10%, we are willing to tolerate 10% of lucky funds in our
portfolio. It follows that the higher the target, the higher the proportion of
lucky funds we are willing to tolerate. The portfolio formation rule proceeds
as follows. Each year we estimate the alpha p-values of all existing funds

using the previous 3-year period. Then we estimate ˆ︁FDR
+

γ from equation
(3.13) for a grid of γ values (γ = 0.01, 0.05, . . . , 0.50) and choose γ such that

ˆ︁FDR
+

γ is closer to the target. We select funds with positive alphas and p-
values smaller than γ and form an equally weighted portfolio that we hold for
a year. If funds cease to exist within the holding period, we reallocate to the
remaining selected funds equally. We repeat this process every year until the
end of our sample.

In Table 3.7 we report the results of our selection. As we see, the FDR strat-
egy is able to deliver economically and statistically significant alpha when we
set a reasonably conservative target of lucky funds between 10% and 20%.
More specifically, allowing for up to 10% of lucky funds, our strategy gener-
ates 1.75% and 1.69% of annualized alpha and is significant at a 5% level. As
we increase the proportion of lucky funds allowed, the strategy’s performance
reduces as we go further out to the right tail of the distribution. We also re-
port the results of a simple strategy that invests every year in the funds with
alpha above/below a certain percentile, similar to Huij and Derwall (2008).
The results are similar to our FDR selection strategy and confirm the hy-
pothesis of performance persistence and skill over the short-term.7 However,
we observe that the FDR method cannot meaningfully outperform the naive
strategy of portfolio formation according to past alpha. Barras et al. (2010)
report similar findings for U.S. equity funds.

7Performance persistence is another method used to evaluate skill in the fund industry.
The main argument is that if past outperformance was due to luck, it shouldn’t persist in
the future, see Carhart (1997).
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We acknowledge that our results can put into question the effectiveness of the
FDR approach in adjusting for luck. For that reason, we discuss in detail these
findings. We think there are two main reasons for the inability of the FDR
strategy to outperform. First, as we see from Table 3.5a, skilled funds are
concentrated at the extreme right tail, with 65% of skilled funds at γ = 10%.
Second, we see that funds at the extreme rights tail also have higher alphas
(4.49% for γ = 10% vs. 3.59% for γ = 30%). It follows that by simply focus-
ing on an extreme percentile like 90% we can capture a meaningful proportion
of skilled funds while the benefits of identifying skilled funds further on the
left are diminishing given the lower alpha and higher proportion of unskilled
funds. We note that the purpose of the FDR methodology is to provide a
conservative estimate of the proportions of skilled/unskilled managers and
not to maximize out-of-sample performance. We further acknowledge that
the precision of the FDR method can also influence the performance of the
out-of-sample strategy. To this end, we evaluate the overall precision of the
FDR in a detailed simulation study in the following section.

Table 3.7: Out-of-sample performance. In this table we display the out-of-sample
performance of the FDR selection strategy. We also display a portfolio formation strategy
based on a percentile rule on the estimated α̂i. The standard errors are estimated using the
Newey and West (1987) methodology and lag=6. Number of funds=198, T=158. We use
*, ** and *** to indicate significance at the 10%, 5%, and 1% levels. Sample from Jan-2007
to Dec-2017, T=120.

Mean Std SR αann t-stat

FDR10 0.56 1.25 0.45 1.75** 2.03
FDR20 0.54 1.26 0.43 1.69* 1.95
FDR40 0.51 1.26 0.40 1.04 1.10
FDR60 0.47 1.26 0.37 1.00 0.98

Perc90 0.49 1.29 0.38 2.09** 1.99
Perc75 0.53 1.31 0.41 1.90* 1.92

Perc10 0.44 1.46 0.30 -1.13** -2.01
Perc25 0.49 1.45 0.34 -0.85* -1.76

3.6 FDR simulation

In their critique of the FDR applicability for fund performance evaluation,
Andrikogiannopoulou and Papakonstantinou (2019) argue that the simulation
in the influential study of Barras et al. (2010) overstates the accuracy of FDR.
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In particular, the authors raise two main points. First, they argue that the
assumption that the number of months (Ti) available for each fund is equal to
the total months observed in the sample (Tmax) overstates the typical time-
series length of fund returns. Second, Barras et al. (2010) use large values for
the true alphas, assuming smaller alphas the FDR is inaccurate due to low
signal-to-noise ratio. In their response Barras et al. (2019) argue that the size
of alpha and fund volatility are related, i.e., funds with higher alpha usually
exhibit higher volatility and vice-versa. Reducing the size of alpha and keeping
the assumed volatility of funds constant is implicitly reducing the signal-to-
noise ratio. To this end, they propose a simple approach to calibrate the two
parameters according to the empirical dataset. In this section, we perform
a detailed simulation study to evaluate the accuracy of the FDR procedure
in our dataset, incorporating the insights of both papers. First, we generate
returns according to the linear model:

Rit = αi + β1,iMKTt + β2,iTERMt + β3,iDRFt + β4,iLIQt + ϵi,t (3.14)

For the distribution of the residuals, we consider two distinct cases. In the
first case, we assume that the errors are homogeneous, homoscedastic, and
cross-sectionally independent distributed according to ϵit ∼ N(0, σ2

ϵ ), with
σ2
ϵ being the average variance across all funds in our sample. While this as-

sumption is likely to be unrealistic, it allows us to compare results across the
different simulation studies. In the second case, we consider a more com-
plex distribution set-up for the residuals where we allow for cross-sectional
dependence. We generate alphas from a discrete distribution with three point
masses (δ0, δ−, δ+), representing the zero, negative and positive alpha cate-
gories of funds. The exact distribution of alpha can be seen below:

α ∼ π0δ0 + π−δ− + π+δ+ . (3.15)

We initially calibrate the proportion of funds (π0, π−, π+) according to our
sample to 90%, 9% and 1% respectively. To evaluate the impact of proportions

on the bias, we vary π0 by 10%, keeping the ratio π−

π+ = 9 constant. We
calibrate the remaining simulation parameters in the following way:

• Length of time-series: We assume a balanced panel and use the
median Tmed = 116 as the length parameter instead of Tmax = 158.

• Residual volatility: We use the median volatility across all funds in
order to reduce the impact of outliers, similar to Barras et al. (2019).

117



Chapter 3

• Relation between fund parameters: We create three bins that cor-
respond to annualized alpha of αann = {1%, 1.5%, 2%}. We choose
alphas that are conservative in terms of size but remain economically
significant, representing 20%, 30%, and 40% of the annualized return of
our sample. For each bin, we identify funds that fall within αann±0.25%
and estimate the median of the residual volatility across those funds (see
Table 3.8).

Table 3.8: Simulation parameters. This table displays the median residual volatility for
different values of the true alpha αann. For each bin we identify funds that have estimated
alpha α̂annthat falls within αann±0.25% and estimate the median of the residual volatility
across those funds.

αann 1 1.50 2.00

σϵ 0.70 0.89 0.96

For each value of αann and σϵ, we generate artificial fund returns R̃it from
equations (3.14) and (3.15), assuming a balanced panel of returns with length
Tmed. Factor returns and betas are drawn from a normal distribution with
parameters equal to the sample counterparts. We then estimate the propor-
tions of zero-alpha, negative and positive alpha funds. We repeat this process
for B=1,000 times. Finally, to measure the bias of the FDR, we calculate the
miss-classification probability δ(λ):

δ(λ) =
πA − E[π̂A(λ)]

πA
(3.16)

where πA is the proportion of non-zero alpha funds in population and E[π̂A(λ)]
is the average of the simulation estimates. For example a value of 20% implies
that there is a 20% probability of non-zero alpha funds being miss-classified
as zero-alpha.

3.6.1 i.i.d errors

In Table 3.9 we report the simulation results for the different combinations
of parameters. First, we observe that the FDR method appears to be con-
servative in estimating non-zero alpha funds. On average, we see that the
proportion of zero-alpha funds is higher than the true proportion in popula-
tion and the proportion of non-zero alpha funds tends to be smaller. These
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results are in line with the findings of Andrikogiannopoulou and Papakon-
stantinou (2019) and the objective of the FDR to provide a strong control
for Type-I error. The miss-classification probability δ(λ) is higher for smaller
values of αann and π0. The size of αann is the most important parameter
with δ(λ) ranging from 39.2% to 49.9% for αann = 1, 31.6% to 38.2% for
αann = 1.5 and 4.9% to 12.1% for αann = 2.

Comparing simulation results for different datasets is not straightforward.
However, we think it is reasonable to compare the bias of our conserva-
tive case αann = 1 and the base case αann = 2 for equity mutual funds
reported in Andrikogiannopoulou and Papakonstantinou (2019) and Barras
et al. (2019). More specifically, Andrikogiannopoulou and Papakonstantinou
(2019) report a 65% miss-classification probability in that case while Barras
et al. (2019) report 48%. Our simulation results are less pessimistic than
Andrikogiannopoulou and Papakonstantinou (2019) and closer to the recent
response of Barras et al. (2019). Moreover, it is encouraging that for α = 1.5
(the alpha values we observe in sample), the miss-classification probability
declines to a range of 31.6% to 38.2%. Overall, our simulation results are
comparable to those for equity mutual funds. Thus, we conclude that the
FDR can be successfully applied in the cross-section of corporate bond mu-
tual funds.

3.6.2 Cross-sectionally dependent errors

We further evaluate the accuracy of the FDR in our sample for the case that
the errors are cross-sectionally dependent. We follow Barras et al. (2010) and
use the residuals factor specification proposed by Jones and Shanken (2005).
The residuals of each fund i are specified according to:

ϵit = δGt + δG−
t Iαi<0 + δG+

t Iαi>0 + ξit . (3.17)

We assume that the errors of all the funds have exposure to a common fac-
tor Gt, while only negative/positive alpha funds load on factors G−

t and G+
t ,

respectively; δ is the common loading of the funds on these factors. Finally,
ξit is the independent part of the error and is normally distributed according
to ξit ∼ N(0, σ2

ξ ). We further assume that Gt, G
−
t and G+

t are orthogonal to
each other and follow a normal distribution N(0, σG). We calibrate param-
eters σG and δ from our sample. We set σG = 0.024, which is equal to the
average standard deviation of DRF and LIQ. We set δ = 0.14, equal to the
average beta of the funds on DRF and LIQ. We fix σξ, such that the standard
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deviation of residuals σϵit of each fund equals to the median residual volatility
described in Table 3.8.

In Table 3.10 we report the simulation results for the residual factor depen-
dence specification. The miss-classification probability δ(λ) ranges from 39.4%
to 49.1% for αann = 1, 26.8% to 38.8% for αann = 1.5 and 3.8% to 12.9% for
αann = 2. As we see, our results are comparable to the baseline case of i.i.d
errors. Barras et al. (2010) come to a similar conclusion, finding no impact on
the performance of the FDR for the case of cross-sectionally dependent errors.
Overall, we conclude that the assumptions about the true value of alpha and
proportions of funds have the biggest impact on the performance of the FDR.
Our simulation study uses a wide range of economically sensible parameters
for the true alpha and proportions of funds. We find that the FDR performs
adequately even under conservative assumptions.

Table 3.9: Simulation results (i.i.d errors). The table displays the average value of
the estimated proportions of funds with zero, negative and positive alpha (π0, π+, π−)
across the different simulated scenarios. Errors are assumed to iid. At the bottom of each
sub-table we report the miss-classification probability δ(λ)sim. T=116, B=1000.

αann 1.0 1.5 2.0

π0 = 90 93.1 92.6 90.2
π− = 9 5.7 6.3 8.6
π+ = 1 0.3 0.5 0.9

δ(λ)sim 39.2 31.6 4.9

αann 1.0 1.5 2.0

π0 = 80 88.5 86.8 81.6
π− = 18 10.4 12.1 16.3
π+ = 2 0.3 0.5 1.6

δ(λ)sim 46.2 36.6 10.5

αann 1.0 1.5 2.0

π0 = 70 83.5 80.1 73.1
π− = 27 15.5 18.3 24.3
π+ = 3 0.2 0.8 2.2

δ(λ)sim 47.7 36.3 11.6

αann 1.0 1.5 2.0

π0 = 60 78.9 74.4 64.2
π− = 36 20.1 23.9 32.2
π+ = 4 0.0 0.8 2.9

δ(λ)sim 49.9 38.2 12.1
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Table 3.10: Simulation results (cross-sectionally correlated errors). The table dis-
plays the average value of the estimated proportions of funds with zero, negative and posi-
tive alpha (π0, π+, π−) across the different simulated scenarios. Errors are assumed to be
cross-sectionally correlated according to equation (3.17). At the bottom of each sub-table
we report the miss-classification probability δ(λ)sim. T=116, B=1000.

αann 1.0 1.5 2.0

π0 = 90 93.0 92.0 90.0
π− = 9 5.6 6.6 8.6
π+ = 1 0.5 0.7 1.0

δ(λ)sim 39.4 26.8 3.8

αann 1.0 1.5 2.0

π0 = 80 88.3 86.5 81.5
π− = 18 10.5 12.3 16.5
π+ = 2 0.3 0.7 1.6

δ(λ)sim 45.9 35.4 9.7

αann 1.0 1.5 2.0

π0 = 70 83.3 79.8 73.3
π− = 27 15.5 18.4 24.3
π+ = 3 0.3 0.8 2.0

δ(λ)sim 47.6 35.9 12.1

αann 1.0 1.5 2.0

π0 = 60 78.6 74.4 64.8
π− = 36 20.3 23.7 32.0
π+ = 4 0.1 0.7 2.8

δ(λ)sim 49.1 38.8 12.9

3.7 Conclusion

In this paper, we analyze the performance of U.S. corporate mutual funds
and attempt to distinguish skill from luck for individual fund managers. We
utilize the FDR methodology of Barras et al. (2010) and a reduced version
of the asset pricing model introduced by Bai et al. (2019). We first analyze
the ability of fund managers to outperform over the long-run. To this end,
we apply the FDR approach to the full sample and find that 1.15%, 12.27%,
and 86.58% of the funds generate positive, negative, and zero-alpha. Thus,
we conclude that alpha generation is scarce over the long-run, and most funds
generate zero-alpha. We continue our analysis by evaluating the performance
of funds over the short-run. According to the theoretical work of Berk and
Green (2004), funds might be able to outperform over the short-run before in-
vestors reduce their competitive advantage by increasing inflows. We find that
performance is stronger compared to the full sample analysis, indicating that
fund managers can generate alpha over the short-run. We estimate the pro-
portions of positive, negative, and zero-alpha to be 13.52%, 10.25%, 75.80%.
Motivated by the fact that corporate bond funds can outperform over the
short-run, we examine whether investors can use past performance to iden-
tify talented managers and create profitable strategies. We create a selection
strategy based on the FDR methodology and show that we can identify man-
agers that possess skill. Our strategy generates economically and statistically
significant annualized alpha of 1.75%. Our results are economically meaning-
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ful for investors suggesting that dynamic and active manager selection pays
off. Finally, given the recent critique of Andrikogiannopoulou and Papakon-
stantinou (2019) on the bias of the FDR methodology, we perform a detailed
simulation study to evaluate the performance of FDR in our dataset. We
use the median size of our sample Tmed and calibrate the alpha and residual
volatility parameter from our data in line with Barras et al. (2019). While we
confirm previous findings of bias in FDR estimates, our simulation results are
less pessimistic than Andrikogiannopoulou and Papakonstantinou (2019) and
closer to the recent response of Barras et al. (2019). Overall, our simulation
results are comparable to those for equity mutual funds. Thus, we conclude
that the FDR can be successfully applied in the cross-section of corporate
bond mutual funds.
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3.A Results with asymptotic p-values

Table 3.11: Long-term performance. The table displays the estimated proportions of
zero-alpha, skilled and unskilled funds (π0, π+, π−) for the full sample. Proportions are
estimated using asymptotic p-values. In panel 3.11b we display the impact of luck on
identifying skill. The standard errors are estimated using the Newey and West (1987)
methodology and lag=6.

π0 π− π+

Proportion 77.92 16.59 5.48

(a) Proportions-Asymptotic p-values

Left Tail Right Tail

γ 0.05 0.10 0.20 0.30 0.30 0.20 0.10 0.05 γ

Signif. 10.10 17.68 22.73 28.28 17.17 13.64 7.07 6.57 Signif.
Unlucky 1.95 3.90 7.79 11.69 11.69 7.79 3.90 1.95 Lucky
Unskilled 8.15 13.78 14.94 16.59 5.48 5.84 3.17 4.62 Skilled
αann -2.34 -2.56 -2.41 -2.26 1.47 1.56 1.63 1.65 αann

Exp. 0.86 0.82 0.79 0.85 0.81 0.83 0.84 0.80 Exp.
Turn. 95.33 109.70 109.85 124.03 121.16 133.23 116.45 118.30 Turn.

(b) Impact of luck-Asymptotic p-values
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Table 3.12: Short-term performance. The table displays the estimated proportions
of zero-alpha, skilled and unskilled funds (π0, π+, π−) for sub-periods of three years. We
treat each fund during each sub-sample as a separate fund. Proportions are estimated using
asymptotic p-values. In panel 3.12b we display the impact of luck on identifying skill. The
standard errors are estimated using the Newey and West (1987) methodology and lag=6.

π0 π− π+

Proportion 64.88 15.60 19.53

(a) Proportions-Asymptotic p-values

Left Tail Right Tail

γ 0.05 0.10 0.20 0.30 0.30 0.20 0.10 0.05 γ

Signif. 9.83 14.63 19.43 25.33 29.26 25.11 21.18 15.72 Signif.
Unlucky 1.62 3.24 6.49 9.73 9.73 6.49 3.24 1.62 Lucky
Unskilled 8.20 11.38 12.94 15.60 19.53 18.62 17.94 14.10 Skilled
αann -2.80 -2.97 -2.75 -2.77 3.26 3.55 3.94 4.37 αann

Exp. 0.78 0.79 0.80 0.85 0.85 0.84 0.84 0.84 Exp.
Turn. 92.13 114.37 117.07 114.02 75.28 77.68 81.59 88.49 Turn.

(b) Impact of luck-Asymptotic p-values
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3.B Factor data

We use OTC bond transaction data which is available directly through Fi-
nancial Industry Regulatory Authority’s (FINRA) Trade Reporting and Com-
pliance Engine (TRACE). TRACE was introduced by the National Associ-
ation of Securities Dealers (NASD) in 2002, to improve transparency in the
OTC corporate bond market. From February 2005 onwards, 99 percent of
all TRACE-eligible bond transactions are covered on an intra-day basis. The
information covered in the TRACE database is listed by transaction, and key
variables include transaction date, time, price, and traded volume. There-
fore, TRACE is the most comprehensive source of pricing information when
it comes to research questions concerning the U.S. corporate bond market. We
use the enhanced version of the TRACE database, which has no volume cap
on reported trades and thus captures a broader range of the U.S. corporate
bond market. Our data extend from July 2002 to December 2018. Since the
TRACE data is dealer reported, errors can happen. Instead of correcting the
data in the database directly, trade messages are appended, indicating either
cancellations, corrections, or reversals. Trades can also be double counted in
the TRACE system because various parties can report the same trade. We
follow the steps outlined in Dick-Nielsen (2009) and Dick-Nielsen (2014) to
take care of the cancellation, correction, reversal, and double counting issues.

In our effort to clean the TRACE data, we follow the cleaning steps outlined
in Bessembinder, Kahle, Maxwell, and Xu (2009) and Bai et al. (2019). In
particular, we remove transaction records with a trading volume of less than
10,000 USD, are labeled as when-issued, locked-in, have special sales condi-
tions, have more than a two-day settlement, and are flagged as equity-linked
notes. In order to minimize the effect of bid-ask spreads in prices, we calcu-
late the daily clean price as the trading volume-weighted average of intra-day
prices. We continue by following Bai et al. (2019) in removing trade records
that feature a transaction price under 5 or above 1,000 USD. This step im-
plicitly removes some defaulted bonds. However, this is a very low threshold
in our view since many defaulted bonds tend to trade above 5 USD. Including
defaulted bonds in our study can create biased results for three main reasons:
1) defaulted bonds typically do not accrue interest, 2) liquidity is typically
very low after a default, and 3) actual recovery is deal-specific and hard to es-
timate. For these reasons and in contrast to previous papers such as Bai et al.
(2019), we choose to control for defaulted bonds directly. We incorporate the
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issue-level default data information from the Altman8 database and exclude
all future bond observations post a given default date. In the initial results,
we observed an overly strong reversal factor. After checking data manually,
we found that extreme day-to-day reversals exist due to prices of small trades
and thus is a type of an outlier. For this reason, we implemented a reversal
rule, where we exclude trade records that featured a daily reversal of more
than 10 USD in absolute terms. E.g. if a bond trades at 100 on Monday,
drops to below 90 on Tuesday, and then features again a price of over 100 on
Wednesday, we exclude the trade record for Tuesday for that particular bond.
We then aggregate the daily bond price data to the monthly frequency. We
follow Bai et al. (2019) in only considering a bond’s monthly end price as a
non-missing value if it falls within the last seven weekdays of that particular
month. The monthly traded volume for each bond is generated by first aggre-
gating it to the daily level by taking the intra-day sum for all days and then
taking the sum over all days in a particular month.

We then match the bond CRSP link database to get the corresponding firm
identifier for each bond and match the corresponding equity and financial vari-
ables from CRSP and Compustat. We retrieve bond issue information such
as the maturity date, coupon rate, coupon payment frequency, etc., from
the Mergent FISD database. A key metric of a bond is its rating and how
it changes over time. We access the historical rating history of each bond
through Mergent FISD’s historical bond rating database. It includes ratings
from Standard & Poor’s, Moody’s, and Fitch. We follow the industry con-
vention and form composite ratings by applying the following methodology:
if three outstanding ratings are available, we choose the middle rating; if two
ratings are outstanding, we choose the more conservative one, and if only one
rating is outstanding, we choose the one that is available.

We use information from the Mergent FISD database in order to further filter
our data. We exclude bonds that are not listed or traded in the U.S. public
market. That includes private placements, 144A bonds, bonds that do not
trade in U.S. dollars, and issuers not located in the U.S. We further remove
structured notes, mortgage-backed securities, asset-backed securities, agency-
backed bonds, and convertible bonds. We only keep bonds with a fixed or a
zero-coupon and exclude all bonds with a variable or floating coupon rate. In
addition to excluding perpetuals (bonds without a fixed maturity), we exclude
bonds with a remaining lifetime of more than 30 years since these bonds tend
to be illiquid. If a bond trades close to maturity, i.e. less than one year, it

8Altman Kuehne NYU Salomon Center Corporate Bond Default Master Database.
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is delisted from major corporate bond indices, thus reducing its liquidity. We
thus remove bonds with less than one year remaining to maturity.

Afterwards, we calculate for each bond-month observation its corresponding
yield-to-maturity and modified duration. Both of these variables are key met-
rics needed in the construction of characteristics. In order to calculate the to-
tal return of a bond, we also need to incorporate information on when coupon
payments were made and what the accrued interest amounted to at each point
in time for each individual bond issue. The coupon payment schedule can be
backed out by going backwards from the last coupon payment by the bond’s
coupon payment frequency. Accrued interest is the amount of interest that
accrues from one coupon payment to the next. We follow Bessembinder et al.
(2009) in their calculation of a bond’s total return:

ri,t =
Pi,t +AIi,t + Ci,t

Pi,t−1 +AIi,t−1
− 1, (3.18)

where Pi,t is the transaction price (i.e. the clean price), AIi,t accrued inter-
est and Ci,t the coupon payment if any, of bond i in month t. We denote
bond i’s excess return as Ri,t = ri,t − rf,t, where rf,t is the return of the
one month T-Bill. As a final step in our sample setup, we adopt the same
bond trading/liquidity restriction Bai et al. (2019) does. In particular, for a
bond-month observation to be considered in our analysis, we require that it
had a valid return (i.e. a price in the last 7 weekdays of a month) for at least
24 out of the past 36 months.

Table 3.13: Sample setup. In this table we describe the detailed steps we take to filter
the TRACE dataset and the impact of those steps on the dimensions of our dataset.

issues firms frequency obs
starting sample, TRACE raw data 184,645 intra-day 223,961,512
- daily aggregation 173,017 daily 22,063,238
- remove trade records, price < 5, > 1000 USD 172,422 daily 22,024,034
- remove trade records, price reversal > |10| USD 172,422 daily 22,005,801
- monthly aggregation 66,026 monthly 1,594,457
- match bond CRSP link database 48,618 3,022 monthly 1,152,419
- match bond default database 48,598 3,015 monthly 1,142,465
- match Mergent FISD issue database 25,994 1,889 monthly 738,947
- match Mergent FISD ratings database 24,002 1,775 monthly 696,258
- remove trade records, < 24 out of 36 months traded 22,955 1,744 monthly 619,498
- match bond variables 10,836 1,254 monthly 336,707

Table 3.13 shows the sample setup grouped into the main cleaning categories
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described above. The sample starts with the intra-day level frequency of the
raw TRACE data consisting of 184,645 bond issues and ends with a final
sample size of 7,839 bond issues from 1,087 unique firms. The step with
the largest loss of observations is aggregating the daily observations to the
monthly level. This step reduces the amount of issues roughly by 60 percent.
This is largely due to our restriction that in order to have a non-missing re-
turn in a given month, the bond needs to trade in the last 7 weekdays of two
consecutive months. Our above mentioned filtering criteria after matching in
the Mergent FISD issue database reduces the amount of issues covered from
48,598 to 25,994. Only few observations were lost due to non-available rating
information. These in part were also due to withdrawal of ratings due to im-
minent maturity. A sizeable fraction of observations was lost at the end due
to the necessity of a 36 month rolling window in calculating specific key bond
characteristics such as the value at risk or expected shortfall metrics from Bai
et al. (2019).

Table 3.14 shows the main summary statistics for our sample of corporate
bonds. The mean, median, standard deviation and percentiles were calcu-
lated by pooling all bond-month observations. On average, corporate bonds
exhibited a total return of 0.54 percent in a given month. 75 percent of obser-
vations can be categorized as investment grade. Bonds on average were issued
6.52 years ago and have a remaining 8.53 years until maturity. The average
coupon and yield to maturity are 5.70 and 4.64 percent, respectively. 650.37
million USD is the average amount issued.

Table 3.14: Summary statistics (Not CRSP/Compustat matched). In this ta-
ble we display the summary statistics of our sample when we do not match with the
CRSP/Compustat databases. Data from October-2005 to December-2018.

Percentiles
N Mean Median SD 1st 5th 25th 75th 95th 99th

Bond total return (percent) 336,707 0.54 0.34 6.00 -11.78 -3.46 -0.38 1.30 4.58 12.52
Rating (1-21, 1=AAA, IG ≤ 10) 336,707 8.86 8 3.77 1 4 6 10 16 20
Investment grade (1=IG, 0=HY) 336,707 0.75 - - - - - - - -
Time to maturity (years) 336,707 8.81 5.50 7.88 1.08 1.42 3.17 13.25 25.50 26.83
Age (years) 336,707 6.84 5.58 4.05 3.08 3.25 4.08 7.92 16.17 21.83
Coupon (percent) 336,707 5.91 6.00 1.64 1.85 3.10 5.00 6.95 8.50 9.88
Yield to maturity (percent) 336,707 5.46 4.51 7.38 0.71 1.32 2.85 6.16 10.99 29.49
Modified duration (years) 336,707 5.83 4.60 3.98 1.08 1.36 2.79 8.38 13.72 15.52
Offering amount (million USD) 336,707 619.50 500.00 618.78 17.28 30.00 250.00 750.00 1998.33 3000.00
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