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Summary

The three articles presented in this dissertation are addressing various topics in market

microstructure in and around closing auctions in equity markets. Despite the growing

market share of closing auctions relative to the continuous trading phase, academia has

devoted relatively little research towards closing auctions. This dissertation in particular

has been composed in cooperation with SIX Securities & Exchanges (SIX), using granular

order-level data from their lit equities exchange of Swiss stocks.

The first chapter of this dissertation focuses on the volume traded in closing auctions.

The analysis gauges the aggregated level of patience across all investors following contin-

uous trading phases with varying underlying market conditions. The market conditions

investigated contain both execution risk and liquidity. Moreover, the analysis explores

how the marginal effect with respect to these market conditions varies when including

expectations of how much volume will be traded in the subsequent closing auction.

The second chapter focuses on closing auctions on a more granular level, in that it

investigates the process of price discovery throughout the 10-minute auctions. For this

purpose, snapshots of the order book at various times during the auction are taken and

uncrossed, in order to capture inflows and outflows of liquidity and the respective effect

on hypothetical closing price. The paper thereby underlines the different roles investors

using market- or limit orders assume during closing auctions.

The third and final chapter studies the compositions of closing order books at the end of

the auction. It simulates the outflow of various percentages of liquidity from the top of the

order book to visualize the distribution of price dislocations. Subsequently, the effects of

the ratio between market- and limit orders on overnight returns are investigated. Finally,

the chapter depicts a normalized version of the weighted price discovery contribution

metric in order to compare the information content of closing returns to overnight returns.
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Zusammenfassung

Die drei in dieser Dissertation vorgestellten Artikel befassen sich mit verschiedenen The-

men der Marktmikrostruktur innerhalb von Schlussauktionen in Aktienmärkten. Trotz

des wachsenden Marktanteils von Schlussauktionen im Vergleich zur kontinuierlichen Han-

delsphase hat sich die akademische Forschung bisher relativ wenig mit Schlussauktio-

nen befasst. Diese Dissertation wurde in Zusammenarbeit mit der SIX Securities &

Exchanges (SIX) verfasst, wobei granulare Daten auf Ebene von einzelnen Orders in

Schweizer Aktien analysiert wurden.

Das erste Kapitel dieser Dissertation befasst sich genauer mit dem Handelsvolumen in

Schlussauktionen. Die Analyse misst das aggregierte Niveau der Geduld über alle Mark-

tteilnehmer nach der kontinuierlichen Handelsphase mit unterschiedlichen Marktbedin-

gungen. Die untersuchten Marktbedingungen beinhalten sowohl das Ausführungsrisiko

als auch die Liquidität. Darüber hinaus wird untersucht, wie der marginale Effekt in

Bezug auf diese Marktbedingungen variiert, wenn Erwartungen über die Höhe des Han-

delsvolumens während der Schlussauktion berücksichtigt werden.

Das zweite Kapitel analysiert den Prozess der Preisfindung während der 10-minütigen

Schlussauktionen auf einer detaillierteren Ebene. Zu diesem Zweck werden Momen-

taufnahmen des Orderbuchs in kurzen Intervallen über die ganze Auktion erfasst und

aufgeschlüsselt. Dadurch können Liquiditätszuflüsse und -abflüsse und die jeweiligen

Auswirkungen auf den hypothetischen Schlusskurs erfasst werden. Auf diese Weise wird

deutlich, welche verschiedenen Rollen durch die Verwendung von Markt- oder Limi-

taufträge während der Schlussauktion von Marktteilnehmern eingenommen werden.

Im dritten und letzten Kapitel wird die Zusammensetzung der Orderbücher am Ende

der Schlussauktion untersucht. Dabei wird der Abfluss verschiedener Prozentsätze von

Liquidität aus dem oberen Teil des Orderbuchs simuliert zur Veranschaulichung der

Verteilung von Preisabweichungen. Anschließend werden die Auswirkungen des Verhält-

nisses zwischen Markt- und Limit Orders auf die Übernachtrenditen untersucht. Schließlich

wird eine normalisierte Version der gewichteten Preisentdeckungsbeitragsmetrik dargestellt,

um den Informationsgehalt Preisschwankungen während Schlussauktionen und über Nacht

zu vergleichen.
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Investor Participation in Closing
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Investor Participation in Closing Auctions∗

Louis Müller†
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Working Paper

Abstract

In an environment where closing auctions are increasingly favoured over the continuous trad-

ing phase, policymakers may be tempted to regulate further outflow from the latter to the

former. This study analyses what factors affect the choice between these two trading facili-

ties and thus investor patience in some form. The results indicate that the degree of investor

patience varies based on market conditions during the continuous trading phase. Increases in

effective spreads and quoted depth enhance investor patience, whereas increases in intraday

volatility and price impact have the opposite effect. For high-volume stocks, investors tend

to be more patient when market quality deteriorates in comparison to low-volume stocks in

the sample. Subsequently, a quantile regression framework is applied to investigate whether

investors anticipate closing volume and thus adjust their sensitivities towards market condi-

tions. There is evidence that investors become increasingly patient during periods of high

intraday volatility, large intraday price movements and effective spreads on days when closing

volume is large. These results imply that investors anticipate higher closing volume, which

increases their propensity to trade in the closing auction.

Keywords: Closing auctions, intraday trading, market liquidity, trader patience

JEL Codes: G12, G14

∗This work has been enabled by the cooperation of SIX Securities & Exchanges (SIX) and the Institute for
Operations Research and Computational Finance (ior/cf-HSG) at the University of St. Gallen. I would hereby
like to thank SIX for supplying detailed and granular order-level data for Swiss equities.

†University of St. Gallen, Switzerland: louis.mueller@unisg.ch



1 Introduction

The fact that closing auctions have become an integral part of daily trading cannot be

denied anymore. Countless academic and non-academic studies show that market shares

of closing auctions have steadily increased throughout the last decade. This tendency

is being observed around the world and independent of regulatory environment, even

through the extent of it varies substantially. In France, for instance, the market share of

closing volume with respect to total volume has almost doubled from around 22% in late

2015 to over 40% in 2019 (Raillon, 2020).

One of the most plausible reasons for this development comes from the fact that there

has been a shift from actively managed funds to passive exchange-traded funds (ETFs).

ETFs are designed to track a predetermined index as closely as possible without any room

for diverging investment strategies. In other words, their performance mirrors the market

as closely as possible. In order to accurately reflect their underlying securities, ETFs

require frequent rebalancing of positions. Closing auctions on major stock exchanges

provide a reliable and representative end-of-day price, which is often used as a market-

wide reference price. Such increased volumes during the close may also trigger a feedback

loop. Execution algorithms of large institutional orders are usually trained to obtain the

volume-weighted average price (VWAP) within a given trading day for their trades. With

increased closing volume, end-of-day auctions gain more importance for such algorithms,

consequently reinforcing the effect.

Concurrently, all other market participants have to make a choice of whether to par-

ticipate during continuous trading hours or in the closing auction in order to execute

their trades. With this decision in aggregation, investors reveal information about their

(im)patience to trade. Unlike some theoretical models such as Foucault et al. (2005),

Roşu (2009) this paper does not look at patience on a granular level, where impatient

traders use market orders for instant execution as opposed to patient traders using limit

orders. Nonetheless, both papers predict that liquidity demanders (using market orders)

will act less aggressively if they are given an additional opportunity to trade. This work

looks at this from a higher level with the choice of trading phase being the issue in fo-

cus here. This is more comparable to the work of Madhavan (1992), where investors see

closing auctions as their last chance to trade. However, it would be an oversimplification

to assume investor patience to be constant and independent of market conditions. More

specifically, investors have the opportunity to observe order flow throughout the day and

additionally decide when to execute. It is important to note, that postponing trades into

the closing is associated with the loss of immediacy, i.e. there is a possibility that prices

move against the investor in the meantime. For risk-averse investors, foregoing execution
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in the continuous phase introduces waiting costs. Under all these considerations, this

paper attempts to shed light on the competitive dynamics between continuous trading

and the closing auction.

This topic is highly relevant for both investors and regulators alike. Particularly

with respect to the recent scrutiny about order flow concentration in the closing and the

resulting impact on price efficiency. For policy makers, it is important to understand under

which conditions investors choose to participate in closing auctions instead of continuous

trading and vice-versa. This knowledge enables them to make more effective regulations

to control the distribution of order flow throughout the trading day by setting the right

incentives.

In order to address these issues, this paper aims to answer three main research ques-

tions. First, it explores how market conditions during the continuous trading phase affect

participation in the closing auction. This paper sheds light on the impact of certain mar-

ket conditions may have. Market conditions in the context of this study refers to the

combination of both execution risk and liquidity. Execution risk in the context of this

study is defined as risk for investors that the price may move against them if they don’t

execute immediately. This risk is mainly driven by realized volatility, which is measured

through standard deviations over various time horizons 1. For robustness purposes, execu-

tion risk is additionally also quantified through absolute order imbalances in the context

of this study. In contrast to this, liquidity is a more elusive concept. In this context here,

liquidity shall be defined following the definition of Kyle (1985, p. 1316) who pointed

out three aspects of a liquid market. The first aspect is tightness, which refers to the

bid-ask spread of a security. In liquid market, such spreads are low, which allows for

cheap round-trip trades given no change in price. The second aspect is depth, quantifying

the amount of one-sided order flow required in order to change the bid or ask against it.

Markets with many available securities at the bid or ask are therefore considered deep.

The third aspect is resilience, which quantifies the ability of a market to revert to the

original price after a large one-sided uninformed shock. A shock is uninformed if it occurs

out of randomness and does not predict the future course of the stock price. In summary,

a liquid market is capable of absorbing large buy- or sell-order without high trading costs

and persistent price adjustments. The second research question addressed in this paper

is the exploration of whether market participants adjust their behavior based on the an-

ticipation of closing volume. Raillon (2020) conceptually proposed that this anticipation

could lead to the accumulation of investors using VWAP algorithms in order to optimize

their execution.

1Volatility is measured over multiple time horizons in order to obtain more robust results as there
are different kinds of volatility, such as very short-term quote flickering or more persistent price swings.
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Even though the end-of-day closing of trading days is becoming more prominent in

recent academic literature the topic of closing market share has not yet been thoroughly

researched in current market conditions. There have been some studies two decades ago,

scrutinizing the introduction of closing auctions by means of an event study, e.g. by

focusing on measures of liquidity before and after the introduction of the new closing

mechanism. Some existing empirical work that comes closest to this paper is by Pagano

et al. (2013), who analyze the introduction of closing auctions on the NASDAQ in parallel

to its existing continuous market. The new call auction mechanism (introduced in 2004)

significantly reduced both spreads and volatility in the continuous market at the end

of the day. In contrast, opening call auctions had much less effect on continuous hours.

Moreover, the authors find that the event did not remarkably affect overall trading volume,

i.e. volume from continuous trading hours merely shifted into closing auctions, but there

was no new volume entering the aggregated market. In a comparable setting, Kandel et al.

(2012) analyze the introduction of closing auctions in Italy and France. They yield very

similar results, indicating a reduction of both volatility and spreads before the closing,

but no impact on continuous trading otherwise. Moreover, they also observe a significant

shift of volume from continuous trading to closing auctions, thus confirming the findings of

Pagano et al. (2013). Importantly, Kandel et al. (2012) found that closing auctions attract

significantly more volume, if their outcome represents the market-wide reference price.

This endorses the fact that closing prices serve as an important market-wide reference

beyond a single venue. Other noteworthy studies that find improved liquidity around the

close and reason this with increased trader patience caused by the introduction of closing

auctions include Aitken et al. (2005), Hagströmer and Nordén (2014), Inci and Ozenbas

(2017), Kuo and Li (2011), and Pagano and Schwartz (2003). In summary, the evidence

strongly for closing call auctions as a tool to enhance liquidity at the end of the day.

However, there are also critical voices in academia about the call auction mechanism in

particular. While the previously mentioned papers found evidence in support of opening

and closing using the call auction mechanism, this may depend heavily on the size of the

stock. Call auctions are certainly a preferred solution if they are blessed with abundant

liquidity. Importantly, call auctions have a chance of failure2, in which case no shares are

traded whatsoever. To underline this point, Ellul et al. (2005) analyze whether investors

on the London Stock Exchange (LSE) preferred the call auction instead of an off-exchange

dealership with guaranteed execution for their trades. The authors find that investors tend

towards the dealership solution for smaller stocks, despite the inferior price efficiency.

Similarly, Ibikunle (2015) find that small-cap stocks suffer from high failure rates at the

2Auction failure can occur in cases when the order book cannot be crossed, such that the lowest ask
is higher than the highest bid.
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opening due to lack of volume. Both of these studies imply that call auctions may not be

the optimal solution for smaller stocks.

Another related strand of literature on auctions is more concerned with the accuracy

of auction prices. From this angle, call auctions also seem to have a positive impact on

market quality. For instance, Chang et al. (2008) analyze the introduction of call auctions

on the Singaporean stock exchange in the year 2000. They find remarkable reductions

in volatility, implying that prices with call auctions are more accurate and have less

transitory noise incorporated. Moreover, they find that the introduction of call auctions

significantly removed correlations between intraday- and overnight returns as well as a

reduction of price reversals after the market re-opens in the morning. Similar results have

been found after the tiered introduction of call auctions on the Paris stock exchange in

1996 and 1998 (Pagano & Schwartz, 2003), and additionally in an aggregated sample of

43 stock exchanges worldwide (Cordi et al., 2018).

While this study is not attempting to discredit any of the findings in the studies

previously mentioned, markets (including closing auctions) have changed considerably in

the last two decades, mostly through the migration to electronic trading and increasing

removal of the human aspect from execution. More recent empirical work on closing

auctions has been done by Bogousslavsky and Muravyev (2020). They find that the

closing auction only has a small contribution to price discovery due to the influence

large rebalancing activities by ETFs. This distorts closing prices with respect to the

last observed midquote prior to the auction. However, this distortion is not based on

new information on fair value but rather caused by large institutional order imbalances.

Similarly, Hu and Murphy (2020) show that closing prices are much less efficient (i.e.

revert over night) on so-called triple-witching days3, when much uninformed volume is

traded in the closing auction.

What the majority of these papers have in common, is that they find some (mostly

positive) effect of call auctions on the remainder of the trading day. In contrast to those

results, this paper focuses on the impact market conditions have on investors participating

in these auctions. For this purpose, the participation in the closing auction for trade exe-

cution is interpreted as a choice for investors. Therefore, the propensity to wait until the

closing auction for execution is a manifestation of investor patience (Kandel et al., 2012).

In contrast to this, impatient investors prefer the immediacy of the continuous trading

phase, which precedes the closing auction. Hence, investors have the choice between these

two trading facilities based on their level of patience. However, each of these facilities has

3Triple-witching days occur on days when index futures, index options and stock options expire all
on the same days. Delta neutral market participants who have exposure to any of these instruments will
be required to offset their positions on that day to remain neutral.
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different properties that may be preferred under varying market conditions.

The main contributions of this paper to the existing literature are two-fold. The first

contribution is the presentation of evidence that investors tend to adjust their partici-

pation in closing auctions based on intraday market conditions. This speaks in favor of

the hypothesis of Pagano (1989b), under which different trading facilities offer different

features. It shows that investors actively monitor market conditions in order to decide

which facility offers superior execution quality. The second contribution of this paper is

related to the clustering of volume over the trading day. More specifically, it is shown that

there exists a pull-equilibrium across trading facilities. In other words, there is evidence

that the propensity of investors to trade in the closing auction increases when they expect

the volume to be larger.

The paper takes advantage of comprehensive order-level data from SIX Securities &

Exchanges (SIX), sampled over the entirety of 2018 and 2019, consisting of 498 trading

days. The data comprises of all the 30 Blue Chip constituents of the Swiss Leadership

Index (SLI). In order to evaluate investor patience, this study takes advantage of the

fact that on SIX the continuous and closing auctions are strictly non-overlapping. This

allows for the clear temporal separation of order flow across time. Therefore, the realized

volume in the closing auction cannot have a direct effect on continuous market condi-

tions. This convenient feature mitigates issues of endogeneity based on a Granger (1969)

type argument. In addition to this, there are numerous factors that influence the closing

volume, that are not in the scope of this paper. Therefore, a set of control variables is

introduced, which includes metrics like dummy variables for the closing of derivative posi-

tions, expected- and unexpected continuous volume as well as continuous absolute returns.

These metrics alone are able to explain around 41% of the variance of closing volumes.

In contrast to this, market condition metrics of interest are divided into execution risk

(intraday volatility and order imbalance) on the one hand and liquidity (tightness, depth,

resilience (Kyle, 1985)) on the other hand.

The first set of results in this paper are based on a panel regression framework, which

controls for all the out-of-scope metrics listed above. The results indicate that investors

adjust their choice of participation in the closing auction based on continuous market

conditions. More specifically, marginal changes in market quality during this phase have

an impact on how much volume is executed in the closing auction. The evidence shows

that a deterioration of execution quality has the opposite effect on closing participation as

a deterioration in liquidity. On one hand, elevated levels of execution risk make investors

less patient, in that they prefer immediate execution and therefore chose the continuous

phase over the closing auction. On the other hand, deterioration of liquidity has the

opposite effect, making investors more patient.

12



The second part of the results is extracted by modeling the anticipation of investors

with respect to closing auction volume. For this reason, it extends the previous analysis

by a quantile regression, which aims to explain the within variance of stocks. A quantile

regression is an appropriate statistical technique, since it estimates one set of coefficients

for each quantile of the dependent variable. If there are no expectations about the closing

volume whatsoever, the coefficients (i.e. the sensitivities towards a change in market

conditions) for each quantile would be identical. The results presented clearly reject this

hypothesis. There is strong evidence that the propensity to choose the closing auctions

upon change in market conditions increases when anticipated closing volume is high. This

speaks in favour of a pull-equilibrium (similar to Pagano (1989a)) between the two trading

facilities.

The remainder of this paper is structured as follows. Section 2 provides information

about the market structure and institutional background. Section 3 will elaborate the

data in detail and provide summary statistics. Section 4 will build a variety of testable

hypotheses with respect to closing participation. Section 5 will build and explain the

basic methodology used. Subsequently, section 6 will summarize all findings and either

approve or reject the hypotheses stated prior. Finally, section 7 will conclude this work.

2 Institutional Background

The recent increase in closing volumes as opposed to the rest of the trading day can

be explained by various factors. Raillon (2020) for instance, argues that this trend is

facilitated mainly by four developments in the trading landscape:

(i) Passive investing has seen massive inflows through ETFs in recent years. Closing

prices provide a precise benchmark on how to rebalance positions of passive funds.

Moreover, index funds engage in huge block trades which require high liquidity.

Participation in closing auctions provides ETFs with an opportunity to trade with

superior liquidity and minimal tracking error.

(ii) Best-execution requirements, that were introduced under the Markets in Financial

Instruments Directive (MiFID) II (effective early 2018), force brokers to trade in the

best interest of their clients, i.e. with the lowest execution costs. Since closing

prices are set in one single market only, brokers do not have to compare quotes

across different venues. Instead, they can be certain to obtain the best execution

price on behalf of their clients.

(iii) Adverse selection is an important consideration for traders during the day. In

13



this context, it refers to the situation where some market participants have more in-

formation and are therefore making a profit at the expense of less informed traders.

This is particularly problematic during the continuous trading phase with high mar-

ket fragmentation. In this case, it is possible that the same security has different

prices on other platforms for brief periods in time (Budish et al., 2015). Very fast

trading strategies can thrive in those conditions (Biais et al., 2015).

(iv) Execution algorithms are learning that there is higher liquidity and potentially

better execution quality during closing (according to (iii)). This in turn emphasizes

end-of-day trading even stronger, eventually triggering a positive feedback loop. A

similar argument is made in Pagano (1989b).

From these four points it becomes clear that the closing auction through its design has

a structural advantage over continuous trading in several regards. The most important

factor, however, is the reference price function of the closing price. This fact has been

shown empirically by Kandel et al. (2012), where the closing auction attracts significantly

more volume when it is equated to the market-wide reference price. This observation

suggests that market participants are generally risk-averse by their willingness to settle for

the reference price and foregoing potentially better prices. This logic can be extrapolated

to the rest of the trading day. In this case, market participants would be more inclined to

trade during the closing auction when intraday volatility is high. Since higher volatility

entails potentially larger discrepancy between the obtained price and the closing price,

investors would rather chose the same-day reference price. This is particularly true for

brokers who must adhere to best-execution requirements, since finding the best price in

fragmented markets on a volatile trading day may be extremely difficult.

For the analysis in this paper the focus lies on the equity market of Switzerland’s main

stock exchange SIX Securities & Exchanges (SIX). On this specific exchange, the trading

day is split into three main trading periods. In the morning, the day is started by an

opening auction which takes place before 9:00am in the morning. The opening auction is

followed by a continuous trading phase starting 9:00am and lasting until 5:20pm, lasting

for 500 minutes. It therefore constitutes the longest phase and also the most significant

in terms of trading volume (see table 1). Finally, the trading day is concluded with

a closing auction from 5:20pm until 5:30pm. In contrast to many other exchanges in

Europe, closing on SIX lasts for 10 minutes instead of the more common 5 minutes on

other European exchanges. Despite trading being possible during all three periods, they

employ two fundamentally different types of market structure as defined by Madhavan

(1992):

14



1. Order-driven market. This type of market structure allows for continuous trading

and is therefore implemented during the continuous trading phase. The market con-

sists of limit orders signaling the willingness to either buy or sell at a predetermined

price. Investors who want to trade at the prevailing prices have the opportunity to

execute against the best limit orders of either side. This results in a dynamically

changing limit order book. On the one hand, liquidity providers continuously adjust

their limit orders to reflect the current state of information. On the other hand,

liquidity demanders have the option to trade when they see prices dislocated from

fundamental values.

2. Call auctions. In contrast to order-driven markets, call auctions aggregate orders

over a period of time into a single price. The resulting price is determined through

crossing the aggregated demand and supply of all orders that have been submitted

during the period. Hence, this price is often referred to as the uncrossing price. Call

auctions can therefore be understood as the consolidation of order flow over a given

time period (Madhavan, 1992). This mechanism is particularly adequate for both

opening and closing of the trading day. It has been shown empirically, that the

introduction of call auction markets at either the beginning or ending of the trading

day has positive effects on market quality. The beneficial effects mainly consist of

a reduction in volatility and bid-ask spreads4, improved price efficiency5 and less

price manipulation6.

The closing auctions on the Swiss stock exchange are designed like call auctions. Over the

course of the auction, investors receive several pieces of information that are continuously

updated. Those include a hypothetical closing price and -volume, and the state of the

order book on the main exchange. Despite most orders for the auction being submitted

during the auction between 5:20pm and 5:30pm, the exchange allows investors to enter

so-called ATC (at-close) orders during the continuous trading phase. These orders are

invisible to other market participants and are activated once the auction starts7.

4See Aitken et al. (2005), Hagströmer and Nordén (2014), Inci and Ozenbas (2017), Kuo and Li
(2011), and Pagano et al. (2013).

5See Barclay et al. (2008), Bellia et al. (2017), Biais et al. (1999), Comerton-Forde et al. (2007), Cordi
et al. (2018), and Pagano and Schwartz (2003).

6See Comerton-Forde and Putniņš (2011) and Hillion and Suominen (2004).
7Less than 1% of orders for closing auctions are submitted before the start of the auction. Therefore,

the vast majority of orders are submitted within the closing auction

15



2018 Apr Jul Oct 2019 Apr Jul Oct 2020
0%

20%

40%

60%

80%

100%

M
ar

ke
t

sh
a
re

[%
]

Closing Continuous Opening

Figure 1: Daily average market share of different trading periods. The market shares by volume of each period were computed in
daily frequency and divided by total volume for each individual stock in the sample. The plot includes the respective 99% confidence
interval calculated daily using 500 bootstraps. The dotted vertical line represents the day when the European Union (EU) repealed
the equivalence status of the Swiss stock exchange on July 1, 2019, which drove a lot of additional order flow into the local market.
The top line, represents the continuous trading phase with the highest share of trading volume. The middle line represents the
share of closing volume. The bottom line represents the share of trading volume during the opening auction.

3 Data

This study relies on level 2 order book data obtained directly from SIX. The sample

period comprises the two full calendar years of 2018–2019 and only contains orders and

trades in Swiss equities. The sample was deliberately terminated before the start of 2020

in order to avoid the extreme market conditions caused by the pandemic outbreak in the

beginning of the subsequent year. The selected two-year time frame includes 116 million

trades as well as 3.4 billion orders.

Figure 1 shows the evolution of market shares of trading volume throughout the sam-

ple. The volume is segmented by trading period and averaged across stocks in order to

obtain the average market share in the cross-section of stocks. The chart reveals how the

continuous phase dominates by market share, followed by the closing auction. Moreover,

the chart visually reveals a steady increase of closing market share (approx. from 20%

to 40%) at the expense of continuous market share (approx. from 80% to 60%) over the

course of 1.5 years prior to the removal of exchange-equivalence8. After the structural

break on July 1st 2019, this trend has resumed. This observation underlines the increas-

ing importance of closing auctions throughout time, similarly stated in Raillon (2020) for

the French market of CAC40 titles on Euronext Paris.

8On July 1st 2019, the EU commission decided to repeal the status of SIX which treated them as an
equivalent trading platform to any other European venue. Consequently, European stocks could not be
traded on SIX anymore and vice-versa.
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In addition to this, the chart also shows frequent spikes of auction market shares in

regular intervals at the expense of continuous trading. The reason for these irregularities

are expiration dates of various derivatives contracts, such as options and futures. Market

participants who still have open interest in such contracts at expiration may close their

positions on the equity market. Therefore, events in the derivatives markets have clearly

visible effects on the equity market depicted in fig. 1. On SIX there are two important

events in this regard. First, option contracts can be bought with monthly expiration dates

that are set to the third Friday of each month. Second, futures contracts expire quarterly

on the third Friday of the months March, June, September and December.

In order to mitigate the problem of failing call auctions due to lack of limit or-

ders (Ibikunle, 2015), the study only includes the 30 constituents of the SLI at the end

of the sample period. Additions and removals from the index are not considered. Con-

sequently, both ALC and SIKA have fewer observations due to its later addition to the

SLI. All of the measures considered in this paper are directly extracted from the raw

order book data, without reliance on any third-party vendors. The descriptive statistics

in table 1 are presented on the basis of all stocks included in the sample. The table shows

that there are substantial differences in terms of trading volumes in the cross-section of

stocks, particularly in terms of the closing volume, ranging from an average of CHF 7mn.

to CHF 132mn. In total, SIX facilitates around CHF 2.18bn. in continuous trading and

almost CHF 900mn. in closing volume on an average trading day.

4 Hypothesis Development

It has been a long known fact that trading volume is clustered throughout the trading

day. Admati and Pfleiderer (1988) were among the first to point out persistent patterns

based on the existence of informed and uninformed traders. Their Kyle (1985) type

model predicts that both types of traders will cluster around the same periods during the

trading day which leads to pronounced patterns over time. What Admati and Pfleiderer

(1988) call discretionary liquidity traders, i.e. market participants that are unconstrained

in the timing of their execution, are at the core of this study. A similar argument is

made by Pagano (1989a), who develops a theoretical prediction that the lack of volume

can trigger a vicious cycle through increased volatility, which in turn will make trading

even less attractive. Other notable studies include empirical evidence from McInish and

Wood (1992, p. 760), who visually document a reverse J-shaped pattern, with the highest

volume at the opening. The existence of such trading patterns indicates, that investors are

flexible in terms of when they are willing to execute their orders throughout the trading
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day.

When analyzing trading clusters, the consideration of trader patience plays an impor-

tant role. Two of the most influential papers on this topic come from Foucault et al. (2005)

and Roşu (2009), who both develop theoretical models with market participants, that are

either patient or impatient. Both papers find that in equilibrium, patient(impatient)

market participants prefer limit(market) orders. A different approach to quantify trader

patience has been taken by Pascual and Veredas (2009), who propose a sequential or-

dered Probit model to disentangle patient from impatient traders. They find that the

composition of the limit order book has a significant impact on the order choice investors

make.

This concept of trader patience can also be extrapolated from a top-down perspective

within each trading day. It has been shown that institutional investors use algorithms

to execute large orders throughout one or several trading days in small increments in

order to obtain optimal execution conditions and prevent other market participants from

front-running their orders. Examples for this are well documented in Korajczyk and

Murphy (2019) and Van Kervel and Menkveld (2019). These algorithms observe the

same market signals and react to certain market conditions in potentially similar ways.

These observations may in return trigger adjustments in trading strategies of each market

participants in similar ways.

Consequently, trading patterns of market participants may be correlated during the

trading day, which also includes the choice between the continuous trading phase and

the closing auction, particularly with respect to the increasing importance of the closing

auctions with respect to the remainder of the trading day. This trend has been observed

throughout the last decades and particularly on European exchanges (Raillon, 2020). In

the following sections, this study analyses two ways in which the allocation between these

continuous trading phase and closing auction can be influenced, i.e. market conditions

and expectations of closing volumes.

4.1 Continuous Market Conditions

The first set of hypotheses is designed to scrutinize the aggregated participation of market

participants in the closing auction after observing market conditions during the continu-

ous trading phase. Since there is no overlap between these two trading phases the issue of

endogeneity at least is mitigated. Naturally, there are many factors during the continuous

phase that may drive investor behavior. This set of hypotheses mainly focuses on two

types of market conditions that are essential to investors in order to perceive a market to

be of high quality. The term market conditions will later be used in the development of hy-
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potheses and encompasses both execution risk and liquidity, as defined in the introduction

above. It shall be noted that this study does not take price efficiency9 into consideration

as this is less important for the execution of trades unless there is speculative motivation.

In the past, various studies have been conducted on the reaction of investors with

respect to market conditions. For instance, it can be observed that momentum strategies

are commonly used by investors during the continuous trading hours. Empirical evidence

of this can be found in Duffie (2010) and Gao et al. (2018), and a theoretical reasoning in

Bogousslavsky (2016) who explains this by the infrequent rebalancing of slow capital from

financial institutions. This supposes that some market participants react more quickly to

changing market conditions than others. Therefore, some market participants may decide

to execute their planned trades as soon as possible instead of waiting until the closing

auction on days with increased execution risk. One reason for this behavior may be to

prevent prices from further moving against them and hence revealing a certain degree

of risk-aversion when volatility is high. For closing auctions, such behavior entails an

outflow of volume from market participants who become impatient during the trading day.

Another reason for this behavior may be founded in the argument of Foucault (1999), who

predicts that investors are more likely to use more aggressive limit orders when volatility

is low. This implies that investors are afraid of their limit orders being stale and having

someone else taking advantage of this. Consequently, investors become less patient with

their execution when volatility is high as immediacy becomes more important under the

possibility of sub-optimal execution at close.

In addition to price-related measures such as price volatility and price movements,

market conditions importantly also include liquidity-related measures. Both liquidity and

volatility are closely related conditions in the market. Glosten and Milgrom (1985) and

Kyle (1985) for instance explain the link between a deterioration of liquidity under in-

creased price volatility. In particular, spreads become wider and depth becomes shallower

when prices are more noisy. This can be explained by market makers or dealers adjusting

their quotes based on the uncertainty and potential adverse selection that they are facing

on a given trading day. Moreover, on volatile trading days, execution costs are expected

to be higher, particularly for very large trades as liquidity becomes a decisive factor in

order to minimize slippage10. It needs to be noted, however, that high volatility is not a

necessary precondition for a deterioration in liquidity. In line with the previous argument,

sub-par intraday liquidity may reduce investor patience and increase the inclination for

9Price efficiency is obtained if the security price in a market does not have any auto-correlation, such
that it is martingale.

10Slippage is defined as the amount the price moves against the trader when executing a trade. For
instance, if an institution wants to buy a large amount of stock, the price will tend to rise throughout
execution.
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immediate execution. On days with less liquidity during the continuous trading phase,

investors may either expect the situation to not improve or even deteriorate until the

end of the day. This makes such investors less likely to wait until the closing auction,

consequently shifting volume into the continuous trading phase at the expense of the

closing auction. Under this scenario, investors are becoming less patient when liquidity

deteriorates.

Hypothesis 1 (H/1). Trading volume in closing auctions decreases when continuous

market conditions deteriorate.

This argument can also credibly be made from the opposite direction, where investors

are becoming more patient when market conditions deteriorate. Under this inverse hy-

pothesis, investors do not want to execute their trades in order to avoid potential unfa-

vorable execution and minimize tracking error. A similar argument is made by Raillon

(2020), who suggests that recently implemented best-execution requirements motivates

the participation in closing auctions in order to obtain the market-wide reference price.

The more strict best-execution requirements under MiFID II increasingly emphasizes the

process of trade execution by brokers in terms of their client orders. In an increasingly

fragmented market, obtaining optimal execution may be costly as quotes across venues

may differ for short periods in time (Budish et al., 2015). Large intraday volatility makes

this process only more complicated. Therefore, it can be expected that price swings or

intraday noise may have an effect on closing participation. This mechanism would be even

stronger on more volatile days, when efficient execution is more challenging. On those

days, the closing auction offers safer execution with less price uncertainty. In addition to

this, financial institutions have sophisticated algorithms nowadays in order to minimize

their trading cost. For such algorithms, liquidity is a central concept required for optimal

execution. Algorithms observing an illiquid intraday market (i.e. following the definition

of Kyle (1985) through large spreads, low depth and/or low resilience) may be tempted to

wait until the closing auction for more certainty in execution and less slippage. If many

investors simultaneously make the same decision, i.e. through highly correlated trad-

ing algorithms, an increasingly liquid closing auction becomes a self-fulfilling prophecy.

Meanwhile, volume is drained from the continuous trading phase as market participants

become more patient in aggregation.

Hypothesis 2 (H/2). Trading volume in closing auctions increases when continuous

market conditions deteriorate.
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4.2 Volume Clustering

The second contribution of this paper is concerned with the clustering of volume across

the trading day. Academic literature has found this phenomenon in various studies within

the continuous trading phase. However, it has not been explored across different trading

phases or -facilities on the same trading platform. Examples of existing academic work

most importantly include Admati and Pfleiderer (1988), who show theoretically that

traders with private information will execute their trades when liquidity is highest, in

order to minimize price impact and optimize their returns. This implies that they are

patient enough not to require immediate execution. Consequently, volume will cluster

across the continuous trading phase through a virtuous cycle. Similarly, Pagano (1989a)

presents a theoretical model in which investors seek the highest liquidity11 intraday in

order to execute their trades without taking into consideration private information. This

phenomenon has been well explored empirically, resulting in volume clustering after the

opening and before the closing of the continuous trading phase. For instance, McInish and

Wood (1992) observe a reverse J-shaped volume within each trading day. They attribute

this to investors wanting to trade on new information that has surfaced overnight and

to investors who have to reach their target allocation before the end of the day. The

latter observation already indicates a reduction of investor patience towards the end of

the trading day.

More applicable to closing auctions, Pagano (1989b) shows that competing trading

platforms with identical properties cannot exist in equilibrium. The reasoning behind this

is that investors would seek the platform with superior liquidity since there is no other

measure to discriminate between the platforms. Consequently, all the volume will shift

onto one platform making the other one obsolete. This argumentation can be extrapolated

to the continuous trading phase and the closing auction. Both of these trading facilities

compete for volume. However, in contrast to the assumptions from Pagano (1989b), these

facilities have widely varying properties and are preferred by different investors. Therefore,

the migration of all volume into one of these facilities is not being argued here, but rather

that the set of market participants who is agnostic may choose in favor of where liquidity

is superior12. This is the same logic behind trading algorithms who allocate their orders

based on the expected volume, thus creating a positive feedback loop as argued by Raillon

11Liquidity in the context of Pagano (1989a) is defined in the sense of the depth market, i.e. how much
passive volume is accessible to incoming market orders. Hence it captures periods when large orders can
be executed without significantly affecting price.

12It also needs to be addressed that since the theoretical predictions of Pagano (1989b), capital markets
have changed dramatically due to the introduction of electronic trading platforms and high-frequency
traders (Carrion, 2013; Conrad et al., 2015; Hagströmer & Nordén, 2013; Hasbrouck, 2018). This led to
significantly better price efficiency across platforms with diminishing mispricing (Budish et al., 2015).
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(2020).

Hypothesis 3 (H/3). Investors are more willing to choose the closing auction if they

expect high closing participation.

This hypothesis implies a game-theoretic pull equilibrium among trading phases, where

investors simultaneously decide on where to allocate their volume under the expectation

of how other market participants will decide. Therefore, a clustering of volume in the

closing auction should be observed to a larger extent when market conditions are more

extreme.

5 Methodology

Quantifying investor patience is hard to achieve empirically. The disentangling of endo-

geneity issues arising with respect to other factors such as liquidity is particularly hard

to obtain. One attempt to address this problem has been done by Pascual and Veredas

(2009), who study the influence of liquidity on trader patience on a very granular basis on

the Spanish Stock Exchange13. Similar to Foucault et al. (2005) and Roşu (2009), they

assume that patient(impatient) traders have a preference for limit(market) orders. They

find that in fact investors adjust their orders based on both the best quotes as well as the

shape of the order book beyond the best quotes.

5.1 Regression Framework

Similar to Pascual and Veredas (2009), this study isolates trader patience from other

market conditions. However, this study views patience from a much more top-down

perspective over the entirety of the trading day and not on the level of the limit order book.

For this purpose, the volume from the continuous trading phase is separated from volume

of the closing auction, keeping in mind that the latter is determined strictly after the

former. In other words, market conditions during the closing cannot impact the continuous

auction, but the other way around is very well possible. Consequently, investors can

decide to postpone their trades from the continuous trading phase to the closing based on

unfavorable market conditions but not the other way around. This approach is somewhat

similar to classic Granger (1969) causality, where causal relationships are expressed by

shocks in one time-series leading another.

13Pascual and Veredas (2009) propose a sequential ordered Probit model that is separated into two
steps. The first step determines the likelihood of an incoming trader to be either patient or impatient
based on the state of the limit order book. In the second step, the arriving trader decides on the type of
order to submit with respect to the current limit order book
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Even after accounting for the temporal separation of both trading phases, it is impor-

tant to account for potential correlation of volume shocks across securities. Such shocks

can be caused by a variety of factors, e.g. macro news or release of company earnings.

The challenge in this research design is mainly the distinction between expected and un-

expected order flow. In econometric terms, the latter can be interpreted as the deviation

from an expectation given in a pre-defined system. In order to account for unexpected

shocks, a methodology similar to Barclay and Hendershott (2008) is applied. In their

work, they attempt to determine the informativeness of opening prices segmented by ex-

pected and unexpected shocks, using autoregressive processes. In a similar manner, this

paper replicates the expectation of trading volumes, based autoregressive processes esti-

mated for the entire sample period. In order to keep the changes in volumes comparative

for inferential reasons later on, all volumes are measured as logarithms of trading volumes

with base two as

log2[V ] ∀ V ∈ {Vcont, Vclose}

where Vcont represents the trading volume in currency terms during the continuous trading

phase and Vclose for the closing auctions. This procedure has the advantage of measuring

the variances of volumes on a comparable scale for both large and small stocks, while

constant differences can be accounted for by a simple constant term. Since this procedure

is a strictly monotonous transformation of volumes, it preserves important statistical

properties of each time series. One of these properties is non-stationarity in the time

series. Since the aim of this paper is to determine how volume flows in and out of

closing auctions, stationarity is a condition for meaningful inference and for the prevention

of spurious regressions. For this purpose, a set of cross-sectionally augmented Dickey-

Fuller (CADF) regressions is applied to volumes y ∈ {log2[Vcont], log2[Vclose]}. They differ

from ordinary augmented Dickey-Fuller tests, in that CADF allows for joint testing of

non-stationarity within groups. For this purpose, the methodology described in Baltagi

(2005, Section 12.3) is followed, which proposes individual regressions for each stock s,

whereas d represents the trading day. The CADF regressions are estimated over p = 5

lags to represent the last five trading days (including the same weekday one week prior).

∆ys,d = αs + ρ∗sys,d−1 + δ0yd−1 +

p∑
j=0

δj+1∆yd−j +

p∑
k=1

φk∆ys,d−k + εs,d (1)

In this equation, the cross-sectional average for each time period is included in the

regression where yd = N−1
∑

ŝ yŝ,d. Moreover, the differences in the variable of question

are defined as ∆ys,d = ys,d−ys,d−1 and ∆yd = yd−yd−1. In order to derive the test statistic,

Pesaran (2007) proposes to isolate all the t-statistics Ts of the lagged value ρ∗s coefficients
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across regressions in (1). The t-statistics are then aggregated as an average to receive

the test statistic CISP = E [Ts]. This results in tests statistics of −5.892 for continuous-

and −6.123 for closing volumes. Given the critical values14 derived in Pesaran (2007),

this result is highly significant for both time series and clearly rejects non-stationarity.

Consequently, the problem of a spurious panel regression is ruled out for the volumes of

both trading facilities.

In the further course of this paper, it is important to accurately control for the corre-

lation between continuous- and closing volume as suggested in Barclay and Hendershott

(2008). For that purpose, a set of AR(p) models is estimated that are computed for each

stock s individually

log2[V ]s,d = αs + γs · d+

p∑
l=1

ϕs,l · log2[V ]s,d−l + εs,d ∀ V ∈ {Vcont, Vclose}. (2)

All models were estimated using a constant αs with a linear time trend γs. Figure 6

in the appendix shows the information criteria of different model specifications with p ∈
{0, 1, . . . , 10} to predict volumes for both continuous- and closing volumes (denoted as

V ∈ {cont, close}) separately. For the continuous trading phase, the volume follows some

autoregressive pattern with at least one lag in terms of all information criteria. Models

with two lags explain around half the variance in continuous volume with an average R2

of around 39% across stocks on a daily basis. For closing auctions, however, this is not the

case. They are less predictable based on past realizations, with the BIC and HQIC (being

the more strict information criteria) suggesting 0 lags (i.e. no autoregressive properties)

as the optimal look-back period15.

In a next step, the same specification of p = 6 is applied to compute the in-sample

fitted values ̂log2[Vcont] as well as the error term e(log2[Vcont]). This estimation is only

computed on the continuous trading volumes as the closing volumes do not have any

autoregressive properties. Based on this procedure, the former will be referred to as

expected volume and the latter as unexpected volume in the continuous trading phase.

This decomposition is similarly executed by Barclay and Hendershott (2008) for opening

price efficiency on the Nasdaq in order to account for variance in volumes.

log2[Vcont]s,d = ̂log2[Vcont]s,d︸ ︷︷ ︸
expected

+ e(log2[Vcont])s,d︸ ︷︷ ︸
unexpected

(3)

14Critical values depend on both the number of cross sections N and the number of time periods T .
For the case of an intercept (see (1)) with N = 30 and T = 500, Pesaran (2007, p. 280) the critical values
for CISPas follows: −3.84 (1%), −3.24 (5%) and −2.92 (10%).

15This decision of lags is based on visual evidence from fig. 6
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Since the primary focus of this analysis is the prediction of closing volume at the end of

the day, this setup requires a good environment which is less prone to issues of endogeneity.

This comes from the fact that investors are given the chance to decide between continuous-

and closing phase throughout the entirety continuous phase. Consequently, the outcome

of the closing auction cannot influence the market conditions in the continuous phase. In

order to isolate the effects of said market quality measures, the analysis is extended with

three additional dummy variables. First, Dmonth equals 1 on days when options expire.

Second, Dquarter equals 1 on days when futures expire in March, June, September and

December. Consequently, the days of future expiry dates is a strict subset of all option

expiry dates. Third, Dequival equals 1 after the repeal of the exchange equivalence on July

1st 2019.

In addition to dummy variables and (un)expected continuous volumes, this analysis

also corrects for absolute intraday returns that are likely to influence the participation

of the closing auction. Many financial institutions (particularly passively managed in-

vestment funds) have strict guidelines on their asset allocation. Large intraday price

movements can skew this allocation and trigger correlated portfolio rebalancing across

market participants. To take advantage of the high liquidity at the closing auction, an

inflow of closing volume after large same-day continuous returns is to be expected. In this

context, the continuous return is defined as

RET conts,d = ln
[
M5:20pm

s,d

]
− ln

[
M9:01am

s,d

]
(4)

where M5:20pm is the midquote just before the start of the closing auction and M9:01am is

the midquote just after the settlement the opening auction. Therefore,
∣∣∣RET conts,d

∣∣∣ repre-

sents the absolute log return of the continuous trading phase. For inferential purposes,

this analysis is based on the following pooled OLS regression equation:

log2[Vclose]s,d = αs + β1 ·Dmonth
s,d + β2 ·Dquarter

s,d + β3 ·Dequival
s,d

+ β4 ·
∣∣∣RET conts,d

∣∣∣+ β5 · ̂log2[Vcont]s,d + β6 · e(log2[Vcont])s,d + εs,d
(5)

In order to dissect the effects more precisely by trading volume in the continuous

auction, the 30 SLI stocks are distributed into terciles, based on their trading volume

during the continuous trading phase. These terciles are reassigned on a daily basis. The

resulting quantiles reflect the most-traded (Q1), neutral, (Q2) and least-traded (Q3) stocks

in terms of trading volume. The descriptive statistics for these terciles can be found in

table 2, which shows descriptive statistics within each of the terciles in million CHF. The

table reveals that high-volume stocks in Q1 have on average around three times the trading
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Panel A: Continuous trading

obs. µs,d σ min 25% 50% 75% max

Q1 4870 149.74 93.42 29.34 81.49 115.68 198.98 910.22

Q2 4663 49.65 16.88 9.23 38.03 46.93 57.79 217.86

Q3 4980 25.22 9.18 6.65 18.47 24.11 30.46 85.35

Panel B: Closing auctions

obs. µs,d σ min 25% 50% 75% max

Q1 4870 63.44 62.45 6.30 30.57 42.38 84.89 1141.42

Q2 4663 19.21 9.77 3.01 13.41 17.35 22.39 112.00

Q3 4980 9.52 5.01 0.00 6.25 8.65 11.58 69.54

Table 2: Descriptive statistics by volume tercile. All the 30 Blue Chip constituents of the SLI are reassigned daily into volume
terciles which are based on trading volume during the continuous phase. Q1(Q3) represents stocks with the most(least) trading
volume during the continuous phase. Q2 is the neutral tercile.

volume in both continuous phase and closing auction compared to Q2. Similarly, Q2 has

on average around double the trading volume compared to Q3. Despite all 30 constituents

counting as Blue Chips, these discrepancies in trading volume are substantial.

To determine adequate standard error correction for robust inference, a Durbin-Watson

test for autocorrelation of the panel residuals ûs,d has been conducted. The test has been

adjusted to account for the fact that the data is in panel format over a long period of

time. The test statistic dw was therefore calculated as

dw =

∑N
i=1

∑T
t=2

(
ûs,d − ûi,t−1

)2∑N
i=1

∑T
t=2 ûs,d

and resulted in a value of 1.613. By extrapolating the adjusted critical values from

Bhargava et al. (1982) (as opposed to a simple one-dimensional Durbin-Watson test),

this result is below the lower-bound critical value. Consequently, the panel is subject

to positive autocorrelation in residuals. In an alternative test, an approach derived in

Wooldridge (2010, Subsection 10.5.4) is applied. This requires a pooled OLS estimation

of the equation ûs,d = ρûi,t−1 + εs,d, using heteroskedasticity and autocorrelation (HAC)

robust standard errors. The result of this tests indicates serial correlation with a p-value

of 0.000 and ρ̂ = 0.191. In order to account for this feature of the analysis, HAC robust

standard errors are computed, derived from the covariance matrix derived by Driscoll and

Kraay (1998). These standard errors are robust to cross-sectional correlation as well as

autocorrelation in residuals and are an extension of Newey and West (1987) to a panel

27



(1) (2) (3) (4) (5) (6)

Dep. Variable log2[Vclose] log2[Vclose] log2[Vclose] log2[Vclose] log2[Vclose] log2[Vclose]

N 14362 14361 14361 14361 14361 14361

Adj. R2 0.1574 0.2174 0.2698 0.3627 0.4206 0.4263

Dmonth 0.1043** 0.1136** 0.0799 0.1225*** 0.0872* 0.0883*

(2.1547) (2.3969) (1.6013) (2.6986) (1.8901) (1.9432)

Dquarter 1.6999*** 1.7071*** 1.7489*** 1.6071*** 1.6491*** 1.6562***

(23.722) (24.499) (23.351) (20.760) (20.044) (20.475)

Dequival -0.0894** -0.0810** -0.1147*** -0.1148*** -0.1510*** -0.1493***

(-2.5335) (-2.4308) (-3.6287) (-3.6833) (-4.7110) (-4.7138)∣∣RET cont∣∣ 0.2720*** 0.2526*** 0.1318*** 0.1087***

(3.8996) (3.6537) (3.0597) (2.6492)

̂log2[Vcont] 0.4014*** 0.4223*** 0.3992***

(13.215) (14.098) (13.087)

e(log2[Vcont]) 0.5127*** 0.5227*** 0.4978***

(22.849) (23.850) (23.044)

Q1×
∣∣RET cont∣∣ 0.2077***

(5.5988)

Q2×
∣∣RET cont∣∣ 0.1265***

(3.8324)

Q3×
∣∣RET cont∣∣ 0.0200

(0.7387)

Fixed Effects Entity Entity Entity Entity Entity Entity

Table 3: Methodological framework results. This table regresses normalized closing auction volume log2[Vclose] onto a set of
control variables derived from continuous trading without including any measures of market quality yet. L1(log2[Vclose]) is the
lagged dependent variable by one day. Dummy variables equal 1 on option expiration dates (Dmonth), on future expiration dates

(Dquarter) and after the repeal of exchange equivalence (Dequival). In terms of continuous volumes, ̂log2[Vcont] represents
the expected component and e(log2[Vcont]) represents the unexpected component. All 30 SLI stocks are reassigned into volume
terciles on a daily basis based on their continuous trading volume from highest (Q1) to lowest (Q3) volume stocks. The panel
was estimated using entity-fixed effects. Reported standard errors are derived using the Driscoll-Kraay covariance matrix. *, **
and *** denote significance at the 1%, 5% and 10% confidence level respectively.

setting using a Bartlett kernel function16.

Table 3 reports how the derived control variables influence logarithmic closing volumes

without taking into account any continuous market quality metrics yet. Lagged closing

volumes are disregarded for two reasons. First, the fact that closing volumes do not

behave like an autoregressive process17 is questioning the predictive power of a lagged

term. Second, the inclusion of a lagged term would violate the assumption of strict

16This approach is recommended by Hoechle (2007) for long panels where (N � T ).
17This is also being indicated in Panel B of fig. 6.
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exogeneity in fixed-effects panel settings, which would yield biased estimates.

The effect on volume flowing into closing auctions on derivative closing dates, how-

ever, are highly significant. This is particularly true on futures expiration dates which

happen quarterly, when closing volume is 21.6999 ≈ 3.25 times the volume compared to

usual trading days. Days of option expiration have much less impact on closing volumes

with only around 7% more volume than usual, but are still highly significant. Overall,

table 3 suggests that the dummy variables alone are able to explain roughly 28% of the

entire within variance. Moreover, investors have withdrawn approximately 6% of their

volume from the closing auction after the repeal of exchange equivalence. All of these

results can be visually confirmed in fig. 1. Another interesting observation can be made

when looking at absolute returns throughout the continuous trading phase. These re-

turns have a clearly positive impact on the volume in closing auction. Per percentage

point continuous return, there is an inflow of approximately 20% into the closing auction.

This speaks in favour of the hypothesis in Raillon (2020), that passively managed funds

are forced to rebalance their portfolios after large intraday price movements shifts. This

is true for both positive and negative returns. Interestingly, however, this effect is only

pronounced for the more heavily traded stocks in Q1 and Q2. This implies that there is

much less interest from passive funds in Q3 stocks with low daily volume, as there is no

significant effect on closing volume after large intraday price movements. In terms of ex-

pected and unexpected volumes throughout the continuous trading phase, table 3 shows

clearly positive coefficients. This indicates that the volumes of the continuous phase and

the closing auction are positively correlated. This observation indicates that overall, posi-

tive(negative) liquidity shocks in the continuous phase are not driven by outflows(inflows)

at the closing auction. However, unexpected shocks during the continuous auction are

able to explain more of the variance in closing auctions in terms of R2 improvement than

expected continuous volume.

5.2 Variables of Market Conditions

So far, a set of control variables has been derived, all of which have a significant impact

on closing volume but are not the primary focus of this study. Section 4 lined out that the

market conditions of interest are related to both execution risk and liquidity. Despite these

two properties having a certain amount of overlap, they are approximated with a distinct

set of variables that are all widely used in academic literature on market microstructure.

To begin with, we will look at execution risk measures.

In order to capture this property, the first measure to be computed is realized in-

traday volatility. For this purpose, the continuous trading phase is subdivided into a

29



number of sub-intervals, each lasting for h minutes. These equally-sized intervals con-

sequently sum up to K(h) = 500 · h−1 as the total of intervals for each trading day, de-

pending on the length of each interval. The return over each interval k is defined as

the logarithmic difference of midquotes M at the beginning and at the end such that

RETk,i,t = log(Mk,i,t) − log(Mk−1,i,t). Consequently, RET conts,d =
∑K(h)

k=1 RET
(h)
k,i,t holds for

each choice of h. In order to achieve this, the population standard deviation over the

interval returns RET (h) are computed and subsequently normalized to one trading day

to ensure comparability among interval sizes18. This is achieved using the equation

IV OLA
(h)
s,d =

√√√√K(h)∑
k=1

(
RET

(h)
k,i,t −

[
RET conts,d /K(h)

])2

(6)

where the measure realized volatility is estimated over several time horizons h ∈ {1, 5, 10, 20}
minutes. Despite the normalization to the whole trading day, the resulting value heavily

depends on the chosen interval h. A small choice of h of 1 minute will capture much of the

flickering of orders that can be caused by algorithmic market makers (Hasbrouck, 2018),

whereas the choice of a larger interval (e.g. h = 20) does not account for transitory noise,

but rather captures intraday price swings.

Another measurement that is related to volatility is order imbalance. The concept

of order imbalance is a familiar concept in academic literature. One of the most well-

known applications of it is by Chordia et al. (2008), who analyse the predictability of

stock returns when looking at order imbalances over various time horizons. They use

this predictive power as an inverse indicator of market efficiency. Order imbalance is a

measure of whether the market shows buy- or sell pressure, when looking at the imbalance

of market orders. For this reason, V OLbuy(V OLsell) is defined as the volume initiated by

buy(sell) market orders. The order imbalance is therefore defined as:

OIBs,d = log2

[
V OLbuys,d

V OLsells,d

]
. (7)

Hereby, order imbalance is defined somewhat differently from Chordia et al. (2008), in

that it is not bounded19. Consequently, the measure defined in eq. (7) is able to capture

more of the variance in case there is a large mismatch between buy- and sell-volume,

18This is the reason, why the sum of squares is not divided by the number of intervals K(h) in the
equation.

19Chordia et al. (2008) define order imbalance as follows:

ALTOIBs,d =
V OLbuy

s,d − V OLsell
s,d

V OLbuy
s,d + V OLsell

s,d

,
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whereas in the other measure would merely converge to either -1 or 1.

Another aspect of market conditions analyzed in this paper is liquidity, which can

be used quite loosely in the literature. In the context of this paper, the work of Kyle

(1985) is referenced for the definition of liquidity, postulating three dimensions of liquidity:

Tightness, depth, resiliency. All three of these dimensions are indispensable to the concept

of liquidity and can also be measured numerically in markets.

The first of these dimensions, tightness, represents the cost of a round-trip trade.

Since limit order books always have a spread between the best bid and the best ask, this

spread represents the minimum cost that an investor must bear when using market orders.

Thereby, liquidity is inversely related to the size of the bid-ask spread. In this paper, two

types of bid-ask spreads are defined, which are also widely used in the literature. First,

the quoted spread measures the quoted bid-ask spread as the difference between best bid

and ask prices. The quoted spread is re-evaluated with each event at time t in the order

book and expressed in basis points:

QSs,d,t =
P

(ask)
s,d,t − P

(bid)
s,d,t

Ms,d,t

· 104

where P
(bid)
s,d,t (P

(ask)
s,d,t ) represents the best bid(ask) price in stock s on day d at time t. Mt

is the midquote defined as the arithmetic mean of the best bid- and ask prices. Since

we are operating in a continuous environment, the resulting spreads are time-weighted in

order to account for sequences of rapid quote adjustment20, which results in the weighted

quotes spread (WQS) measure.

In a very similar manner, the effective spread is computed. In contrast to the quoted

spread, the effective spread only takes into account an executed trade which is expressed

as an event at time t in this context. By only taking into account trades instead of

all quote adjustments, it implies that an investor deemed the spread small enough to

submit a market order. It therefore does not only consider the willingness of the liquidity

provider to post limit orders, but also the liquidity taker who executes against it. In

market microstructure literature, this is often referred to as a more accurate measure of

actual transaction costs. In practice, the effective spread is defined as

ESs,d,t = qs,d,t ·
Ps,d,t −Ms,d,t

Ms,d,t

· 104

where ALTOIB ∈ [−1, 1] is bounded on both sides. This property might lead to statistical issues for the
panel regression approach presented in this paper.

20This phenomenon is also referred to as quote flickering (Hasbrouck, 2018). Without adjusting for
this, periods of high volatility would receive oversized weight over more quiet periods.
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where qs,d,t represents the direction of market order that initiated a trade in stock s on

day d at time t, i.e. 1 for a buy and -1 for a sell. Given this indicator for direction, the

effective spread always results in a positive value. Furthermore, the same time-weighted

adjustment is done as with the quoted spreads above, resulting in the weighted effective

spread (WES).

The second dimension, which is depth, refers to how much one-sided order flow is

required to affect the price. In deep markets, even large orders will not affect the price

substantially. Applying this concept to limit order books, one can measure how many

securities are ready for purchase or sale on top of the book. For this purpose, quoted depth

is measured at various levels of the order book g:

QD
(g)
s,d ∀ g ∈ {1, 4, 8}.

The quoted depth is thereby the sum of all securities available up to the given level g.

Consequently, the depth is monotonously increasing the farther out from the midquote it

is measured ceteris paribus. Moreover, quoted depth is determined in currency terms, in

order to account for different price levels of the securities analyzed.

The last liquidity dimension after Kyle (1985), resiliency, is more difficult to measure.

It captures the ability of the market to quickly revert to the original price before a shock,

e.g. caused by a large market order sweeping limit orders across multiple prices on the

opposite side of the book. In the context of a limit order book, that means we are including

a temporal dimension through the price impact, which measures how the price changes

in a given time interval of h minutes after each trade executed at time t. Similar to the

effective spread, qt denotes the direction of the market order initiating the trade:

PI
(h)
t,s,d = qt,s,d ·

Mt+h,s,d −Mt,s,d

Mt,s,d

· 104 ∀ h ∈ {1, 5, 10}. (8)

This measure essentially yields a positive result if the midquote changes in the direction

of the incoming market order after h minutes. Consequently, a resilient market exhibits

a price impact of close to zero and a positive value otherwise. Price impact is a common

measure in market microstructure literature and has also been applied in Carrion (2013),

Conrad et al. (2015), and Hendershott et al. (2011). All of these paper extend this further

by a full spread decomposition based on the framework of Glosten and Milgrom (1985).
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6 Results

The methodology derived in section 5 will be used as a base for the presentation of all

further empirical results. According to the hypotheses derived earlier, this section is

subdivided into two subsections with analyses of intraday market conditions and volume

clustering.

6.1 Continuous Market Conditions

The first set of results is based heavily on the regression framework derived in section 5.1,

where the control variables were introduced. This section extends that approach by adding

each variable considered in section 5.2 individually. However, the goal here is not to show

the overall direct effect, but to discuss the effect in more granularity. More specifically,

this section focuses on the changes in sensitivities with respect to the underlying market

conditions

MarketCond ∈ {IV OLA(h), OIB,WQS,WES,QD(g), P I(h)}.

In order to achieve this, the trading days are segmented into five quintiles with the

respective dummy variable M ∈ {M1,M2, . . . ,M5} based on a given market condition.

These quintiles are determined individually for each stock s in order remove structural

differences between groups. For instance, if MarketCond refers to quoted spreads, M1

equals 1 for the 20% of trading days with the largest spreads and equals zero otherwise.

These market quintiles are additionally interacted with the dummy variables for terciles

Q ∈ {Q1, Q2, Q3} for intraday trading volume. All of these steps result in the following

expression:

log2[Vclose]s,d = αs + β1 ·Dmonth + β2 ·Dquarter + β3 ·Dequival

+ β4 · e(log2[Vcont])s,d + β5 · ̂log2[Vcont]s,d

+
3∑

k=1

Qk ×
[
βk6 ·

∣∣∣RET conts,d

∣∣∣+
5∑
j=1

Mj ×
(
γkj · log2[MarketConds,d]

)]
(9)

Following this expression, we can see that all stockdays are separated into 15 buckets,

based on a grid of intraday volume tercile as well as their market condition quintile. For

each of these buckets, one coefficient γkj is estimated respectively without any overlap,

resulting in 15 coefficients. This approach enables the determination of varying sensitiv-

ities towards market conditions, i.e. second-order effects. In addition to this, all market
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conditions are transformed using logarithms with base 2, in order to retain comparability

between the values. This step has to be done because there are inevitable differences in

market conditions in different quintiles M . Logarithmization makes it possible to compare

market conditions across buckets. Each of the 15 estimated coefficients γkj thus represents

the marginal effect of a doubling of MarketCond from the average within each bucket.

To test for differences within the γkj coefficients standard Wald tests are applied following

Baltagi (2011, Section 7.9).

The results in the following tables are organized to only focus on the estimates of the

15 unique γkj coefficients per regression. The coefficients are organized by volume tercile

(in rows) and market condition quintiles (in columns). The bottom row of each panel

represents the difference between the most and least liquid stocks (Q1 − Q3). Similarly,

the right-most column represents the difference of extreme quintiles with respect to market

condition (M1 −M5).

The first set of results in table 4 are representative of analysis concerning measurements

of execution quality. Specifically, the variables of interest here are intraday volatility as

well as order imbalance. For this section, the results for intraday volatility are presented at

the horizons over 1 and 20 minutes together with the results for market order imbalances.

The results for other horizons for robustness purposes can be found in the appendix21.

The results presented here show that intraday volatility has a clearly negative effect on

closing auction volume. Therefore, higher intraday volatility coincides with an outflow of

volume at the close. This is true for each of the two volatility horizons considered. Hence

very short term quote flickering and intraday price swings have the same directional, albeit

the latter has a larger impact on closing participation. It is important to remember that

both the dependent variable as well as the independent variables of interest are measured

in logarithmic terms with base 2. When looking at panel B for example, a coefficient of

-0.1 can be interpreted as the outflow of 7% when volatility intraday doubles22.

Another interesting observation concerning the volatility-related coefficients can also

be made in terms of their extent. The coefficients in Panel B of table 4 are around 2–3

times as large as in Panel A, indicating that market participants react more sensitively

to an increase in volatility measured over 20-minute horizons than the 1-minute counter-

part. Keep in mind that by the definition in eq. (6), measurements of intraday-volatility

across all horizons h are normalized to one trading day. Therefore, the volatility over

the shorter time horizon does not need to be scaled in order to compare both measure-

ments. Consequently, a doubling of 20-minute volatility makes market participants more

21See table 7 for further intraday volatility time horizons.
22This is given by the fact that the doubling of the volatility reduces the logarithmic trading volume

by 0.1 leading to 2−0.1 ≈ 0.93, indicating a 7% reduction of volume in currency terms.
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Panel A: log2[IV OLA
(1)] — R2 = 0.4359

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0987*** -0.0640*** -0.0559*** -0.0446*** -0.0349*** -0.0638***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0006) (0.0000)

Q2 -0.0470*** -0.0311** -0.0164 -0.0238** -0.0071 -0.0399***

(0.0025) (0.0128) (0.1123) (0.0161) (0.3995) (0.0008)

Q3 0.0218 0.0258* 0.0215* 0.0278** 0.0324*** -0.0105

(0.2541) (0.0737) (0.0794) (0.0125) (0.0017) (0.4419)

Q1 −Q3 -0.1205*** -0.0897*** -0.0774*** -0.0724*** -0.0672*** -0.0533***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Panel B: log2[IV OLA
(20)] — R2 = 0.4384

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.1607*** -0.1476*** -0.1255*** -0.1211*** -0.1028*** -0.0579***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Q2 -0.1171*** -0.1009*** -0.0903*** -0.0891*** -0.0732*** -0.0439***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002)

Q3 -0.0599** -0.0446** -0.0503** -0.0385** -0.0332** -0.0267*

(0.0287) (0.0448) (0.0164) (0.0460) (0.0498) (0.0624)

Q1 −Q3 -0.1007*** -0.1030*** -0.0752*** -0.0826*** -0.0696*** -0.0312***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0024)

Panel C: OIB — R2 = 0.4299

M1 M2 M3 M4 M5 M1 −M5

Q1 1.1072*** 1.8122*** 2.8768*** 5.7020*** 12.6303*** -11.5231***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Q2 0.5735*** 0.5277* 0.9497** 1.9184** 4.2829*** -3.7094**

(0.0001) (0.0622) (0.0251) (0.0102) (0.0054) (0.0110)

Q3 -0.6040*** -0.9656*** -2.2199*** -3.5258*** -8.7803*** 8.1763***

(0.0002) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

Q1 −Q3 1.7112*** 2.7778*** 5.0967*** 9.2277*** 21.4106*** -19.6994***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 4: Results of binning regressions for measures of execution risk. This table presents the binned γ coefficients from (9).
Both the dependent and independent variables are measured in logarithms with base 2 to assure comparability across market
quintiles. Each panel represents an independent estimation of coefficients. Panel A(B) shows the result when including the logs
of intraday volatility measured over a time horizon of 1(20) minutes as defined in (6). Panel C exhibits the results based on order
imbalance derived in (7) as an independent variable. Each panel was estimated using entity-fixed effects. Reported standard errors
are derived using the Driscoll-Kraay covariance matrix. *, ** and *** denote significance at the 1%, 5% and 10% confidence
level respectively. Additionally, each panel tests for equality of the largest and smallest quantile using Wald tests.
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impatient than a doubling of volatility over a 1-minute horizon, i.e. quote flickering. This

observation is true across all volume terciles.

The results for order imbalance in table 4 are more ambiguous in that large stocks react

positively in contrast to smaller stocks. Consequently, investors become more patient

with their execution in large(small) stocks when order imbalances are large(small). In

this regard, order imbalances have a different effect on closing participation than intraday

volatility, since large stocks react more sensitively towards increases in volatility. In other

words, investors become more impatient when volatility rises in large stocks, whereas they

are calmer when volatility rises in smaller.

When analyzing the effects of execution risk across the market condition quintiles

M , the patterns are more straightforward. When it comes to large- and medium-sized

stocks, market participants are significantly less patient with higher execution risk during

continuous trading hours, i.e. low intraday volatility or order imbalances. This implies

that market participants prefer to execute their trades more immediately when volatility

or order imbalances are large. Regarding small stocks, this phenomenon is observed

to a much smaller extent for intraday volatility and in the opposite direction for order

imbalance. Consequently, investors do not exhibit such impatient behavior on days with

higher execution quality for small stocks. Overall, these results speak in favor of H/1 at

the expense of H/2. Additionally, these findings particularly contradict the hypothesis

of Raillon (2020) according to which investors tend to seek the closing auction as it is

harder to otherwise achieve optimal execution. In this sample, the opposite behavior can

be observed.

The results for the next type of market conditions, namely tightness, are exhibited in

table 5 and are expressed in logarithms of quoted and effective spreads. Interestingly, the

point estimates for the coefficients are estimated to be opposite. To begin with, quoted

spreads exhibit slightly negative effects on closing participation, i.e. making investors

less patient. In contrast to this, effective spreads increase investor patience in most cases

(apart from small cap stocks on days with small effective spreads). One possible explana-

tion for this divergence are potential correlations with other variables of market quality.

Neither quoted spreads nor effective spreads are strictly exogenous, but depend on other

market conditions. Nonetheless, reverse causality between the dependent and independent

variables can be disregarded due to the temporal separation of the two measurements.

The second order implications approximated by the Wald tests for equality of the

extreme quantiles in both dimensions are identical for both quoted and effective spreads.

In both cases, investors tend to be more patient in larger stocks compared to smaller ones

by a significant amount. The differences in coefficients of around 0.1 to 0.2 indicate a

proportional volume difference of 7% respectively 15%. This result indicates that investors
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Panel A: log2[WQS] — R2 = 0.4410

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0675*** -0.0581* -0.0575** -0.0535* -0.0463 -0.0212

(0.0092) (0.0532) (0.0484) (0.0969) (0.2093) (0.1778)

Q2 -0.0972*** -0.1213*** -0.1215*** -0.1268*** -0.1204*** 0.0233

(0.0001) (0.0000) (0.0000) (0.0000) (0.0006) (0.1215)

Q3 -0.1648*** -0.1902*** -0.2097*** -0.2133*** -0.2075*** 0.0427***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0028)

Q1 −Q3 0.0974*** 0.1321*** 0.1521*** 0.1598*** 0.1612*** -0.0639***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Panel B: log2[WES] — R2 = 0.4817

M1 M2 M3 M4 M5 M1 −M5

Q1 0.1311*** 0.0969*** 0.0807*** 0.0721*** 0.1029*** 0.0281

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1177)

Q2 0.0929*** 0.0651*** 0.0312** 0.0012 0.0165 0.0764***

(0.0000) (0.0000) (0.0183) (0.9324) (0.4681) (0.0000)

Q3 0.0309*** -0.0087 -0.0508*** -0.0841*** -0.0798*** 0.1106***

(0.0098) (0.4948) (0.0005) (0.0000) (0.0008) (0.0000)

Q1 −Q3 0.1002*** 0.1056*** 0.1315*** 0.1563*** 0.1827*** -0.0825***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Table 5: Results of binning regressions for measures of tightness. This table presents the binned γ coefficients from (9). Both
the dependent and independent variables are measured in logarithms with base 2 to assure comparability across market quintiles.
Each panel represents an independent estimation of coefficients. Panel A shows the result when including the logs of the weighted
quoted spreads. Panel B exhibits the results based on weighted effective spreads as an independent variable. Each panel was
estimated using entity-fixed effects. Reported standard errors are derived using the Driscoll-Kraay covariance matrix. *, ** and
*** denote significance at the 1%, 5% and 10% confidence level respectively. Additionally, each panel tests for equality of the
largest and smallest quantile using Wald tests.

expect execution during the auction to be cheaper in small stocks compared to larger

stocks, and thus there is less need for immediate execution. In addition to this, investors

are not affected by differences in spreads among large stocks. In the cross-section of

small stocks, investors become increasingly more patient with increasing spreads, however.

Conclusively, investors become more patient on days when measures of market tightness

deteriorate.

Finally, table 6 presents the results based on measures of market depth as well as

resilience. Further results on these measures can be found in the appendix23. To begin

with, the results on market depth show that only the point estimates for the small stocks

have a significant impact on closing participation. More specifically, increased depth in

23See table 8 for more results on depth, and table 9 for resilience.
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Panel A: log2(QD
(8)) — R2 = 0.4367

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0214 -0.0759** -0.0502* -0.0665*** -0.0347* 0.0133

(0.6307) (0.0146) (0.0698) (0.0013) (0.0778) (0.7145)

Q2 0.0322 0.0094 0.0005 -0.0139 -0.0060 0.0382**

(0.3329) (0.7339) (0.9862) (0.5489) (0.7696) (0.0421)

Q3 0.1592*** 0.1123*** 0.0912*** 0.0790*** 0.0663*** 0.0930***

(0.0000) (0.0002) (0.0008) (0.0010) (0.0016) (0.0000)

Q1 −Q3 -0.1807*** -0.1882*** -0.1414*** -0.1455*** -0.1010*** -0.0797**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0184)

Panel B: log2(PI
(1)) — R2 = 0.4404

M1 M2 M3 M4 M5 M1 −M5

Q1 0.0149 0.0877*** 0.0824*** 0.1335*** 0.0828*** -0.0679**

(0.3888) (0.0022) (0.0025) (0.0005) (0.0090) (0.0182)

Q2 -0.0071 -0.0019 0.0138 0.0403 0.0641** -0.0711***

(0.5816) (0.9146) (0.4955) (0.1588) (0.0458) (0.0081)

Q3 -0.1255*** -0.1220*** -0.1392*** -0.1213*** -0.1421*** 0.0166

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4891)

Q1 −Q3 0.1404*** 0.2096*** 0.2216*** 0.2548*** 0.2249*** -0.0845**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0153)

Table 6: Results of binning regressions for measures of depth and resilience. This table presents the binned γ coefficients from (9).
Both the dependent and independent variables are measured in logarithms with base 2 to assure comparability across market
quintiles. Each panel represents an independent estimation of coefficients. Panel A shows the result when including the logs
of the quoted depth at the top eight levels of the order book. Panel B exhibits the results based on price impacts as defined
in (8) determined over the course of one minute as an independent variable. Each panel was estimated using entity-fixed effects.
Reported standard errors are derived using the Driscoll-Kraay covariance matrix. *, ** and *** denote significance at the 1%,
5% and 10% confidence level respectively. Additionally, each panel tests for equality of the largest and smallest quantile using
Wald tests.

those stocks makes investors significantly more patient, whereas a deterioration has the

opposite effect. This indicates that investors do not feel the need to just get the job done.

Even though this phenomenon can be observed across all market quintiles of the small

stocks, investors become increasingly patient on days with deep order books. In contrast

to this, investors in large stocks are more likely to take advantage of more convenient

market conditions during the continuous trading phase, however, this effect is lesser in

magnitude.

In terms of the third of the Kyle (1985) liquidity dimensions, resilience, most coeffi-

cients result in opposite signs. However, it is important to keep in mind that large depth

indicates good liquidity, whereas large price impact has the opposite effect. Hence, it is

desirable for a market to achieve price impact as low as possible in order to be viewed as
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liquid. The results on resilience overall show that particularly small stocks are very sensi-

tive when price impact deteriorates. In that case, investors become much more impatient

and execute their orders prior to the closing auction. In large stocks, the opposite effect

can be observed, such that market participants tend to wait for the closing auction when

they expect executions in the continuous phase to affect the price to a higher degree.

When looking at the coefficient tests for equality across the five quintiles of market con-

ditions, there are some negative second order effects for large and medium-sized stocks.

In these stocks, investors are significantly more impatient in the quintile of days with the

highest price impact.

After seeing all the results on the three liquidity dimensions following Kyle (1985)

in tables 5 and 6, it becomes clear that market participants react differently in large

and small stocks. Despite all the stocks in the sample being Blue Chip titles, there

are significant differences. Overall, it can be said that investors in smaller stocks are

much more sensitive towards deteriorating market conditions, particularly in terms of the

liquidity measures. In these cases, investors tend to become more impatient and execute

their trades earlier instead of during the closing auction. Therefore, H/2 seems to hold for

smaller titles. In contrast to this, investors tend to become more patient when liquidity

deteriorates in larger titles. This observation speaks more in favor of H/1. One reason for

these opposite observations separated by market cap may lie in the expected volume in the

closing auctions. Large stocks have an almost guaranteed abundance of liquidity in these

auctions. Investors who experience sub-par liquidity conditions intraday are therefore

inclined to rely on the closing auction. In smaller stocks, this abundance of liquidity is

not guaranteed. Investors may thus expect either distortions of the closing price or even

events where the auction does not cross (Ellul et al., 2005; Ibikunle, 2015). Conditions of

illiquidity during the continuous trading phase may then be interpreted as a harbinger for

an illiquid closing auction. In this case, investors may prefer to execute their trades during

an illiquid continuous trading phase instead of a call auction with the same properties.

This behavior could explain the differences between small and large stocks.

6.2 Volume Clustering

After having discussed the first half of the results on the impact of market conditions

on closing volume, this section will shed light on the factors influencing the distribution

of volume across the trading day in consideration of certain clusters. Previously, both

theoretical work (Admati & Pfleiderer, 1988; Pagano, 1989a) as well as empirical evi-

dence of volume clustering throughout the continuous phase of the trading day has been

discussed in a previous section. However, one contribution of this paper is about the
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clustering across trading facilities. In order to achieve this, the methodology derived in

section 5 is extended with the application of a quantile regression framework. Quantile

Regression has not been used frequently in the literature of financial economics, but has

rather been used in labor economics (Arias et al., 2002; Chamberlain, 1994; Fitzenberger

& Franz, 1999) or micro-economics (Bassett et al., 2003; Eide & Showalter, 1998; Poterba

& Rueben, 1995).

The concept of quantile regression was first introduced by Koenker and Bassett (1978)

and subsequently extended by Koenker and Hallock (2001). The idea behind quantile

regression comes from the observation that different quantiles of the dependent variable

may be influenced in a different way by the independent variables. For instance, Yu et al.

(2003, p. 335) provide an example of the weight of children by age. They argue that in

order to make accurate predictions about the expected weight profile over the course of

their lives, it is important to not infer measures based on averages. More specifically,

under- or overweight children may behave differently from children with median weight

given the same conditions otherwise. Another example presented in Koenker and Hallock

(2001, p. 146) is concerned with the relationship between income and food expenditure

on a household-level. Intuitively, households with lower income have larger marginal food

expenditure. This non-linearity in the data can be well captured by estimating different

sets of parameters for each quantile of the dependent variable. Consequently, quantile

regressions can provide a more granular insight into the data as opposed to mean-based

methods of estimation.

In contrast to panel regressions, quantile regressions allow the inclusion of one addi-

tional dimension, which is the quantile of the dependent variable. Instead of minimizing

the squared errors as in the case for ordinary least squares (OLS), quantile regressions

optimize a different set of parameters for each τth quantile of the dependent variable,

where τ ∈ (0, 1). For this purpose, let ρτ ( · ) be a tilted absolute value function (Koenker

& Hallock, 2001), which represents the loss function of the form

ρτ (u) = u ·
(
τ − I[u<0]

)
∀ u ∈ R, (10)

where I[u<0] is an indicator function which results in 1 when u is negative and 0 otherwise.

Due to the indicator function in (10), the output of the loss function is strictly non-

negative. Additionally, the loss function is linear in u. Following Koenker and Hallock

(2001), this loss function is applied to the residuals of the regression Qτ
(
Y | X

)
= Xβτ
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for each quantile individually, such that

β̂τ = arg min
β∈Rk

n∑
i=1

ρτ (yi − xiβ)

= arg min
β∈Rk

(τ − 1)
∑
yi<xiβ

(yi − xiβ) + τ
∑
yi≥xiβ

(yi − xiβ)

 .
Consequently, quantile regression minimizes the absolute error with respect to the τ quan-

tile instead of the squared error in the case of OLS. This makes the procedure more robust

with respect to outliers, that are known to distort OLS parameter estimates. Koenker and

Hallock (2001) refer to the optimization of a quantile regression as minimization of the

sum of asymmetrically weighted absolute residuals. In addition to this, we get a distinct

set of optimal parameters β̂τ for each quantile τ of the dependent variable y. In contrast

to this, OLS solely provides one set of parameters which is derived over the whole sample

average.

In this application of quantile regression, the goal is to determine whether there is a

certain expectations channel active when it comes to predicting closing volume. In other

words, it aims to determine whether market participants adjust their sensitivities towards

market conditions based on the expected closing volume. If there are any systematic

differences between the reactions of investors, this would imply that investors indeed take

into account the volume which is expected to be traded at the close. For this purpose,

the dependent variable of choice remains the closing volume log2[Vclose]. In the first set of

results, the quantile regression will only consider the absolute returns of the continuous

trading phase
∣∣∣RET conts,d

∣∣∣ as defined in (4). This results in the following regression equation:

Qτ
(

log2[Vclose]
∗
s,d

)
= α + βτ1 ·Dmonth + βτ2 ·Dquarter + βτ3 ·Dequival

+ βτ4 · e
(
log2[Vcont]

)∗
s,d

+ βτ5 · ̂log2[Vcont]
∗

s,d + γτ ·
∣∣∣RET conts,d

∣∣∣ (11)

This regression equation is estimated individually for each τ ∈ {0.05, 0.1, . . . , 0.95} and for

each size tercile, resulting in a total of 57 estimations per variable of interest. For this rea-

son, all volume-related variables of the regression are de-meaned within each stock, which

is denoted by an asterisk (∗). This methodology is similar to the within-transformation

for panel regressions in that it disregards the variance between groups. Since we are

only interested in the variance within each size tercile and not between them, there are

no fixed-effects or stock-based dummy variables added back to the equation. Confidence

intervals were derived based on the asymptotic statistics laid out in Koenker (1994).

The results of the quantile regression with continuous returns are presented in fig. 2.
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Figure 2: Results of the quantile regression on intraday returns. This figure presents the results from the quantile regression on

the returns from the continuous trading phase
∣∣∣RET cont

s,d

∣∣∣. The regression equation is defined in (11). Each panel represents

an independent estimation of the regression equation. The horizontal axis represents the quantile of the dependent variable, i.e.
the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The

vertical axis exhibits the coefficient of the independent variable of interest. The dotted lines represent the confidence intervals at
the level of 95% significance.
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The horizontal axes of the panels shown represent the quantile of the dependent vari-

able, i.e. the de-meaned logarithmic closing volume. Therefore, the plotted line can be

interested as the marginal effect of an independent variable depending on the quantile τ .

The figure shows a consistent pattern across all three size terciles, in that the results are

upward sloping. This indicates that investors become increasingly more patient with re-

spect to each percentage point of absolute continuous return. Small and medium stocks in

particular exhibit the most significant increases from the lowest to the highest τ quantile

under consideration of the presented confidence intervals.

The results in table 3 already implied a positive impact of continuous returns on

closing volumes24, the reason being large passive investors being required to rebalance

their portfolios after intraday price swings. The novelty of the results in fig. 2 lies in

the observation, that investors are more willing to postpone their trades into the closing

auction when they expect liquidity to be higher. Particularly on days with very low closing

volumes, an additional percent in continuous return has barely any effect on the closing

volume. This increase in sensitivity towards continuous returns is indicative of investor

awareness of optimal execution. On days where investors expect large closing volumes,

the closing auction automatically becomes a more viable option to execute trades.

In a next step, this quantile regression approach is extended by the variables of market

conditions introduced in section 5.2, represented as MarketCond. Similar to to the results

on market conditions, the basic regression equation is extended by each of the variables

for market conditions individually. This results in the following equation:

Qτ
(

log2[Vclose]
∗
s,d

)
= α + βτ1 ·Dmonth + βτ2 ·Dquarter + βτ3 ·Dequival + βτ4 ·

∣∣∣RET conts,d

∣∣∣
+ βτ5 · e

(
log2[Vcont]

)∗
s,d

+ βτ6 · ̂log2[Vcont]
∗

s,d + γτMarketCond∗s,d

(12)

This equation represents an extension to (11), in that it also includes the market condition

with the relevant γτ coefficient, which will be the subject of the following plots.

The results for measures of execution risk are presented in fig. 3, including intraday

volatility computed over the time horizons of 1 and 20 minutes25, and order imbalance

on a given day. Akin to the results for absolute continuous returns above, the curves for

intraday volatility are upward sloping, particularly for the volatility over the 20-minute

horizon. This implies that investors become more patient and willing to wait for the

closing auction if they expect the volume to be larger. Under the expectation of small

24This effect has been found to hold for large and medium stocks. Small stocks have not shown any
effect in the panel setting.

25For robustness purposes, further time horizons of intraday volatility are presented in fig. 7 in the
appendix.
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Figure 3: Results of the quantile regression on measures of execution risk. This figure presents the results from the quantile
regression on measures of execution risk, namely intraday volatility at the 1- and 20-minute time horizons (defined in (6)) as
well as order imbalance (defined in (7)). The regression equation is defined in (12). Each panel represents an independent
estimation of the regression equation. The horizontal axis represents the quantile of the dependent variable, i.e. the de-meaned
logarithm of the closing volume log2[Vclose]

∗
s,d. The regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The vertical axis

exhibits the coefficient of the independent variable of interest. The dotted lines represent the confidence intervals at the level of
95% significance.

closing volumes, however, investors become much more impatient with each additional

percentage point of intraday volatility, as described in table 4. The results of order

imbalances also tend to have positive slopes, but due to the wider confidence bands this

cannot be underlined with statistical significance. Overall, however, investors tend to

become more patient with respect to their reaction to measures of execution risk when

they expect higher volume during the closing auction, which is in line with the pull-

equilibrium hypothesis H/3.

Transitioning into the three measures of liquidity by Kyle (1985), fig. 4 presents the

results for tightness, namely quoted and effective spreads. Both of these measures show an

upward sloping trend with comparatively small confidence intervals, particularly for the
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Figure 4: Results of the quantile regression on measures of tightness. This figure presents the results from the quantile regression
on measures of execution risk, namely the weighted quoted spreads WQS as well as weighted effective spreads WES. The
regression equation is defined in (12). Each panel represents an independent estimation of the regression equation. The horizontal
axis represents the quantile of the dependent variable, i.e. the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The

regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The vertical axis exhibits the coefficient of the independent variable of
interest. The dotted lines represent the confidence intervals at the level of 95% significance.

weighted effective spread measure. This is in line with the previous results on quantile re-

gression, indicating higher inclination to wait for the closing auction when the expectation

for larger closing volume is high.

Finally, the results for depth and resilience are presented in fig. 5. More specifically,

this figure presents the results for depth of the top 8 levels of the book26 as well as the

price impact over the 5-minute time horizon27. The estimated γ coefficients for depth are

negatively sloping. It is important to note that depth has an inverse relationship with

liquidity. Therefore, the results on quoted depth imply that under the expectation of

large closing volume, investors become more impatient when depth increases. However,

this also entails increased patience if depth decreases, i.e. liquidity deteriorates, which is

in line with the previous findings. For price impact, the figure shows similar results, albeit

less pronounced and significant, particularly for large stocks. Nonetheless, the positive

slope in terms of price impact remains.

In conclusion, the approach of quantile regression revealed a consistent pattern through-

out all measures of execution risk as well as liquidity. On all accounts, the marginal

propensity to choose the closing auction under an incremental deterioration of market

26For robustness purposes, fig. 8 shows more detailed results on market depth.
27For robustness purposes, fig. 9 shows more detailed results on market resilience.
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Figure 5: Results of the quantile regression on measures of depth and resilience. This figure presents the results from the quantile
regression on measures of execution risk, namely the logarithm of quoted depth at the top 8 levels of the order book as well as the
price impact over a time horizon of 5 minutes (defined in (8)). The regression equation is defined in (12). Each panel represents
an independent estimation of the regression equation. The horizontal axis represents the quantile of the dependent variable, i.e.
the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The

vertical axis exhibits the coefficient of the independent variable of interest. The dotted lines represent the confidence intervals at
the level of 95% significance.

conditions is larger when the expected closing volume is high. In more simplified terms,

this means that investors adjust their sensitivities towards market conditions based on

their expectations. Given the same deterioration of market conditions, investors become

more patient when they expect the closing auction will offer higher liquidity. This ev-

idence speaks in favour of H/3, which has already been shown during the continuous

trading phase (Admati & Pfleiderer, 1988; Pagano, 1989a). However, this work shows

that these forces are also in place across subsequent trading facilities with varying market

structures.

7 Conclusion

In recent years, the closing auction has become an increasingly important part of the trad-

ing day, in that it attracts a growing amount of volume at the expense of the continuous

trading phase. This phenomenon has been observed in equity markets around the world,

but it is particularly pronounced in European markets. Regulators are aware of this trend

and fear that such outflows from the continuous trading phase may lead to a deterioration

in market quality. Therefore, research into the drivers of participation is of timely interest.
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Regulators may be particularly interested in finding on the driving factors for the choice

of participation in the closing auction over the continuous trading phase. Ultimately, this

is an important piece of information when introducing new regulations aiming to limit

the outflow into the closing auction by setting the correct incentive structures.

Using order-level data from SIX Securities & Exchanges (SIX) over a two-year horizon,

this study finds evidence that investors indeed carefully monitor market conditions during

the continuous trading phase and subsequently decide whether to enter the closing auction.

To reach this conclusion, the fact that the continuous trading phase is strictly preceding

the closing auction without overlap is taken advantage of. In a first step, a panel regression

reveals a set of control variables that must be accounted for in order to better isolate the

impact of market conditions. For the scope of this paper, the term market conditions

includes variables with respect to execution risk and liquidity.

In terms of results, this study offers two main contributions to the existing literature.

First, it finds that investors react differently to changes in execution risk and liquid-

ity. With respect to execution risk, which comprises measures of volatility and order

imbalance, investors become increasingly impatient upon deterioration, leading to out-

flows of closing volume. However, as liquidity during the continuous phase gets worse,

investors become more patient, leading to an increase in closing volume. In addition to

this, this study finds significant differences in how investors react to stocks of varying

sizes despite all of stocks in the entire sample being Blue Chips. More specifically, in-

vestors in the largest stocks become significantly more patient than small stocks under

the same incremental increase of volatility. For measures of liquidity, the opposite can be

observed. Investors in high-volume stocks are more patient and rely on the liquidity of

closing auctions. Finally, when market conditions are already unfavorable for investors,

the sensitivity with respect to patience increases further.

The second contribution of this paper lies in the evidence for a pull equilibrium with

respect to closing volume. To show this, a quantile regression approach is implemented,

thereby modeling an expectations channel for investors. The results show that investors

become increasingly patient with their order submission if they expect higher liquidity

in the closing auction overall. For instance, an absolute intraday return of one percent

makes investors relatively more patient if they expect larger closing volume than if they

don’t. For deterioration in other market conditions, this finding is replicated, particularly

for measures of liquidity such as effective spreads.

Based on these results, it can be concluded that closing auctions are a very important

phase of the trading day, as investors can chose them for their executions in order to

obtain superior execution on particularly illiquid days. Regulations intended to limit

consolidation of volume in the closing auction should take this into account. However,
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more research is needed to fully understand the choices of different trading facilities that

market participants face today. This must be further investigated with particular regard

to the increasing fragmentation of equity markets nowadays.
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Figure 6: Distribution of optimal lag by information criterion. The underlying AR(p) models to this figure are estimated using
a constant and linear time trend. Panel A reports information criteria for volumes of the continuous trading phase. Panel B
reports information criteria for volumes of the closing auction. The analysis includes estimations of three common information
criteria: Akaike (AIC), Bayesian (BIC) and Hannan-Quinn (HQIC). The information criteria were calculated for all AR(p) models
for p ∈ {0, 1, . . . , 10}. All the autoregressive models are estimated with a constant and a linear trend, in order to account for
changes in levels. The models were fitted for each individual stock of the sample. Out of these three criteria, the BIC offers the
most restrictive properties and is therefore assigned the highest importance for the further analysis.

53



−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

γ
τ

IV OLA(1) — Q1 IV OLA(1) — Q2 IV OLA(1) — Q3

−0.20

−0.15

−0.10

−0.05

0.00

0.05

γ
τ

IV OLA(5) — Q1 IV OLA(5) — Q2 IV OLA(5) — Q3

−0.3

−0.2

−0.1

0.0

0.1

γ
τ

IV OLA(10) — Q1 IV OLA(10) — Q2 IV OLA(10) — Q3

0.0 0.2 0.4 0.6 0.8 1.0

Quantile τ

−0.3

−0.2

−0.1

0.0

0.1

γ
τ

IV OLA(20) — Q1

0.0 0.2 0.4 0.6 0.8 1.0

Quantile τ

IV OLA(20) — Q2

0.0 0.2 0.4 0.6 0.8 1.0

Quantile τ

IV OLA(20) — Q3

Figure 7: Robustness results of the quantile regression on intraday volatility. This figure presents the results from the quantile
regression on measures of intraday volatility computed over a time horizon of 1,5,10,20 minutes (defined in (8)). The regression
equation is defined in (12). Each panel represents an independent estimation of the regression equation. The horizontal axis
represents the quantile of the dependent variable, i.e. the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The

regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The vertical axis exhibits the coefficient of the independent variable of
interest. The dotted lines represent the confidence intervals at the level of 95% significance.
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Figure 8: Robustness results of the quantile regression on market depth. This figure presents the results from the quantile
regression on measures of market depth, i.e. the quoted depth over the top 1,4,8 levels of the order book. The regression
equation is defined in (12). Each panel represents an independent estimation of the regression equation. The horizontal axis
represents the quantile of the dependent variable, i.e. the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The

regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The vertical axis exhibits the coefficient of the independent variable of
interest. The dotted lines represent the confidence intervals at the level of 95% significance.
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Figure 9: Robustness results of the quantile regression on market resilience. This figure presents the results from the quantile
regression on measures of market resilience, i.e. the price impact over a time horizon of 1,5,10 minutes (defined in (8)). The
regression equation is defined in (12). Each panel represents an independent estimation of the regression equation. The horizontal
axis represents the quantile of the dependent variable, i.e. the de-meaned logarithm of the closing volume log2[Vclose]

∗
s,d. The

regression is estimated for τ ∈ {0.05, 0.1, . . . , 0.95}. The vertical axis exhibits the coefficient of the independent variable of
interest. The dotted lines represent the confidence intervals at the level of 95% significance.
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Panel A: log2[IV OLA(1)] — R2 = 0.4359

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0987*** -0.0640*** -0.0559*** -0.0446*** -0.0349*** -0.0638***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0006) (0.0000)

Q2 -0.0470*** -0.0311** -0.0164 -0.0238** -0.0071 -0.0399***
(0.0025) (0.0128) (0.1123) (0.0161) (0.3995) (0.0008)

Q3 0.0218 0.0258* 0.0215* 0.0278** 0.0324*** -0.0105
(0.2541) (0.0737) (0.0794) (0.0125) (0.0017) (0.4419)

Q1 −Q3 -0.1205*** -0.0897*** -0.0774*** -0.0724*** -0.0672*** -0.0533***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Panel B: log2[IV OLA(5)] — R2 = 0.4370

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.1089*** -0.0865*** -0.0827*** -0.0711*** -0.0549*** -0.0540***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Q2 -0.0661*** -0.0516*** -0.0386*** -0.0430*** -0.0280*** -0.0382***
(0.0003) (0.0006) (0.0028) (0.0002) (0.0083) (0.0012)

Q3 -0.0025 0.0009 0.0054 0.0089 0.0128 -0.0153
(0.9063) (0.9555) (0.7228) (0.5246) (0.3012) (0.2292)

Q1 −Q3 -0.1064*** -0.0874*** -0.0881*** -0.0800*** -0.0677*** -0.0387***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0008)

Panel C: log2[IV OLA(10)] — R2 = 0.4376

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.1288*** -0.1027*** -0.1035*** -0.0806*** -0.0763*** -0.0526***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Q2 -0.0733*** -0.0710*** -0.0664*** -0.0505*** -0.0452*** -0.0282**
(0.0010) (0.0001) (0.0001) (0.0006) (0.0005) (0.0210)

Q3 -0.0122 -0.0147 -0.0152 -0.0088 -0.0036 -0.0086
(0.6239) (0.4594) (0.4099) (0.6050) (0.8047) (0.5373)

Q1 −Q3 -0.1166*** -0.0881*** -0.0883*** -0.0718*** -0.0727*** -0.0440***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Panel D: log2[IV OLA(20)] — R2 = 0.4384

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.1607*** -0.1476*** -0.1255*** -0.1211*** -0.1028*** -0.0579***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Q2 -0.1171*** -0.1009*** -0.0903*** -0.0891*** -0.0732*** -0.0439***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002)

Q3 -0.0599** -0.0446** -0.0503** -0.0385** -0.0332** -0.0267*
(0.0287) (0.0448) (0.0164) (0.0460) (0.0498) (0.0624)

Q1 −Q3 -0.1007*** -0.1030*** -0.0752*** -0.0826*** -0.0696*** -0.0312***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0024)

Table 7: Robustness results of binning regressions for measures of execution risk. This table presents the binned γ coefficients
from (9). Both the dependent and independent variables are measured in logarithms with base 2 to assure comparability across
market quintiles. Each panel represents an independent estimation of coefficients. Panels A,B,C and D show the result when
including the logs of intraday volatility measured over a time horizon of 1,5,10,20 minutes respectively, as defined in (6). Each
panel was estimated using entity-fixed effects. Reported standard errors are derived using the Driscoll-Kraay covariance matrix.
*, ** and *** denote significance at the 1%, 5% and 10% confidence level respectively. Additionally, each panel tests for equality
of the largest and smallest quantile using Wald tests.
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Panel A: log2(QD
(1)) — R2 = 0.4384

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0065 0.0053 0.0057 0.0014 -0.0033 -0.0033

(0.5822) (0.6102) (0.5675) (0.8836) (0.6993) (0.6184)

Q2 0.0309*** 0.0361*** 0.0282*** 0.0202** 0.0122 0.0187***

(0.0051) (0.0009) (0.0040) (0.0320) (0.1754) (0.0001)

Q3 0.0664*** 0.0664*** 0.0623*** 0.0538*** 0.0481*** 0.0182***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0009)

Q1 −Q3 -0.0729*** -0.0611*** -0.0566*** -0.0524*** -0.0514*** -0.0215***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0058)

Panel B: log2(QD
(4)) — R2 = 0.4369

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0253 -0.0374 -0.0318 -0.0336* -0.0163 -0.0090

(0.3802) (0.1324) (0.1426) (0.0650) (0.3701) (0.6078)

Q2 0.0303 0.0295 0.0018 0.0067 0.0067 0.0236**

(0.2408) (0.2104) (0.9335) (0.7458) (0.7185) (0.0444)

Q3 0.1159*** 0.0880*** 0.0756*** 0.0682*** 0.0564*** 0.0595***

(0.0000) (0.0002) (0.0006) (0.0005) (0.0019) (0.0000)

Q1 −Q3 -0.1412*** -0.1254*** -0.1073*** -0.1018*** -0.0727*** -0.0685***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Panel C: log2(QD
(8)) — R2 = 0.4367

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0214 -0.0759** -0.0502* -0.0665*** -0.0347* 0.0133

(0.6307) (0.0146) (0.0698) (0.0013) (0.0778) (0.7145)

Q2 0.0322 0.0094 0.0005 -0.0139 -0.0060 0.0382**

(0.3329) (0.7339) (0.9862) (0.5489) (0.7696) (0.0421)

Q3 0.1592*** 0.1123*** 0.0912*** 0.0790*** 0.0663*** 0.0930***

(0.0000) (0.0002) (0.0008) (0.0010) (0.0016) (0.0000)

Q1 −Q3 -0.1807*** -0.1882*** -0.1414*** -0.1455*** -0.1010*** -0.0797**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0184)

Table 8: Robustness results of binning regressions for measures of depth. This table presents the binned γ coefficients from (9).
Both the dependent and independent variables are measured in logarithms with base 2 to assure comparability across market
quintiles. Each panel represents an independent estimation of coefficients. Panels A,B and C show the results when including the
logs of quoted depth in currency terms at the top 1,4,8 levels of the book respectively. Each panel was estimated using entity-fixed
effects. Reported standard errors are derived using the Driscoll-Kraay covariance matrix. *, ** and *** denote significance at
the 1%, 5% and 10% confidence level respectively. Additionally, each panel tests for equality of the largest and smallest quantile
using Wald tests.
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Panel A: log2(PI
(1)) — R2 = 0.4404

M1 M2 M3 M4 M5 M1 −M5

Q1 0.0149 0.0877*** 0.0824*** 0.1335*** 0.0828*** -0.0679**

(0.3888) (0.0022) (0.0025) (0.0005) (0.0090) (0.0182)

Q2 -0.0071 -0.0019 0.0138 0.0403 0.0641** -0.0711***

(0.5816) (0.9146) (0.4955) (0.1588) (0.0458) (0.0081)

Q3 -0.1255*** -0.1220*** -0.1392*** -0.1213*** -0.1421*** 0.0166

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.4891)

Q1 −Q3 0.1404*** 0.2096*** 0.2216*** 0.2548*** 0.2249*** -0.0845**

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0153)

Panel B: log2(PI
(5)) — R2 = 0.4364

M1 M2 M3 M4 M5 M1 −M5

Q1 -0.0009 0.0425 0.1209*** 0.1121** 0.0063 -0.0072

(0.9507) (0.1194) (0.0041) (0.0422) (0.6758) (0.7475)

Q2 -0.0009 0.0164 0.0073 0.0655*** 0.0684*** -0.0694***

(0.9287) (0.2415) (0.6963) (0.0079) (0.0005) (0.0016)

Q3 -0.1035*** -0.1087*** -0.0897*** -0.1277*** -0.1181*** 0.0145

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.5571)

Q1 −Q3 0.1026*** 0.1512*** 0.2106*** 0.2398*** 0.1244*** -0.0218

(0.0000) (0.0000) (0.0000) (0.0001) (0.0003) (0.5160)

Panel C: log2(PI
(10)) — R2 = 0.4341

M1 M2 M3 M4 M5 M1 −M5

Q1 0.0054 0.0522** 0.0838** 0.1807*** -0.0132 0.0186

(0.7259) (0.0416) (0.0328) (0.0092) (0.3232) (0.4271)

Q2 0.0075 0.0192 0.0572*** 0.0742*** 0.0281* -0.0206

(0.5257) (0.2271) (0.0036) (0.0030) (0.0568) (0.2744)

Q3 -0.0713*** -0.0757*** -0.0687*** -0.0824*** -0.0263 -0.0450*

(0.0000) (0.0000) (0.0000) (0.0000) (0.2422) (0.0504)

Q1 −Q3 0.0766*** 0.1279*** 0.1525*** 0.2631*** 0.0131 0.0635*

(0.0001) (0.0000) (0.0005) (0.0002) (0.6224) (0.0650)

Table 9: Results of binning regressions for measures of depth and resilience. This table presents the binned γ coefficients from (9).
Both the dependent and independent variables are measured in logarithms with base 2 to assure comparability across market
quintiles. Each panel represents an independent estimation of coefficients. Panels A,B and C show the results when including
the logs of the price impacts over time horizons of 1,5,10 minutes respectively as defined in (8). Each panel was estimated
using entity-fixed effects. Reported standard errors are derived using the Driscoll-Kraay covariance matrix. *, ** and *** denote
significance at the 1%, 5% and 10% confidence level respectively. Additionally, each panel tests for equality of the largest and
smallest quantile using Wald tests.
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At a time when financial markets rely increasingly on accurate closing prices it is paramount

to understand the discovery process that leads to these prices. This paper analyses order

flow patterns throughout the closing call auctions on the Swiss stock exchange. Price dislo-

cations in the first eight minutes of the auction are on average reverted by more than 90%.

Furthermore, the results indicate that aggressive limit orders are submitted in the opposite

direction with respect to the previous price dislocation and thus exerting a counteracting

force. In contrast, market orders are submitted independently regarding the price path.

Moreover, market order imbalances are found to contain some amount of information partic-

ularly in the beginning of the auction, which is ultimately reversed. Finally, closing returns

are less efficient following auctions with negative price dislocation and upward reversion, in-

dicating overcompensation of informative sell order flow. Overall, the findings suggest that

closing auctions are so effective at absorbing liquidity shocks that they may in fact conceal

informative order flow.
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1 Introduction

The rising importance of closing auctions as daily trading facility has been increasingly

scrutinized by academic literature as well as by practitioners. Among other trends, shifts

towards passive investment strategies and increasingly strict best-execution requirements

for brokers have lead to closing auctions capturing market share of around 40% on Eu-

ronext Paris, at the expense of the continuous trading phase (Raillon, 2020). The reason

for this lies in the importance of closing prices as a tool for benchmarking entire baskets

of stocks. This development is remarkable despite the relatively short duration of these

auctions versus the rest of the trading day. However, it can be explained by the favorable

properties of call auctions compared to quote driven continuous markets as soon as there is

large demand for liquidity. These advantages of closing auctions as a new trading facility

were first addressed in Madhavan (1992) and have been well documented ever since.

This increase in demand for execution at the close is what mainly motivates this

paper. With the increasing amount of capital that is transacted during this time of the

day, obtaining efficient prices becomes particularly crucial. It is therefore paramount to

better understand the process under which the price is formed incrementally over the

course of the auction. There are already numerous papers on the the process of price

discovery in the continuous trading phase, which was driven by the fact that most volume

throughout a trading day is (still) transacted during this time. However, the closing

auction has not been analyzed with the same rigour.

Among other parties, this research may be particularly interesting for financial regula-

tors as well as operators of exchanges and other trading platforms. Due to the increasing

volumes at close as opposed to the rest of the trading day, many alternative trading

platforms have made efforts to to capture some of this volume at the expense of tra-

ditional exchanges. In addition to this, trading venues tend to charge higher fees for

trades executed during the closing auction as opposed to the continuous trading phase.

This development threatens to disrupt traditionally highly centralized closing auctions

by fragmenting the order flow over multiple venues. In contrast to continuous trading,

closing auctions must result in one single price that is universally accepted (Kandel et al.,

2012), which is determined on the listing exchange. However, the fragmentation of the

order flow may have adverse effects on price discovery and ultimately leads to less efficient

closing prices.

For all these reasons, it is important to understand the process in more detail by

analyzing closing auctions on a granular level, with particular focus on timing and effect

of incoming order flow. Besson and Fernandez (2021) recently stated that closing auctions

on various Euronext exchanges in Europe usually show large inflows of orders both at the
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beginning and the end of the auction, whereas it is much more quiet in between. This

clustering of volume indicates that investors act strategic, particularly the ones submitting

their orders at the end of the auction. This pattern is reminding of observations made by

McInish and Wood (1992), whereas spreads are highest in the beginning and the end of

the trading day.

The order flow behind this pattern is the main focus of this paper. Particularly, this

paper distinguishes between market- and aggressive limit order flow. The academic litera-

ture has shown frequently, that these types of orders are used by different types of traders.

Some relevant examples for this are Foucault et al. (2005), Goettler et al. (2005), Kaniel

and Liu (2006), and Roşu (2009). The literature finds that during continuous trading,

market orders are predominantly used by impatient investors who value immediacy of

execution over the optimal execution price. However, in during call auctions, these order

types have fundamentally different implications since the execution of all orders falls on

the same timestamp. Therefore, investors do not have the opportunity to take advantage

of temporary mispricings before the auction clears. Contrary to the continuous trading

phase, market orders in call auctions can only only guarantee certain execution but not

immediate execution and thus, price uncertainty remains until final clearing.

There are multiple research questions that this paper addresses. First, the question

of whether investors adjust their order submission strategy based on the past price path

is addressed. The answer to this question allows an assessment of whether order flow is

occurring in reaction to the unrealized return into the auction or whether it is independent

thereof. Second, it looks into the question of how well the order flow predicts the future

return within the scope of the auction auction. The answer to this question allows for

the distinction between informed and uninformed order flow. While there is disagreement

in academic literature about whether informed investors use limit or market orders for

the continuous auction, this paper provides an answer to this question in the context of

closing auctions. The third question is about whether the price path has an impact on

the efficiency of the final closing price. This particularly concerns the occurrence of large

price dislocations and the subsequent correction before clearance. For instance, it may

be plausible that large initial spikes may go uncorrected until the end of the auction and

only revert overnight or that informative spikes are overlooked and reverted.

The methodology used to answer these questions differs in several aspects from pre-

vious analyzes have not been done before in academic literature of closing auctions. One

important point is that closing auctions are sliced into 61 intervals of 10 seconds duration

each in order to obtain a reasonably granular picture of order flow. In addition to this,
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there is a strict focus on aggressive orders, particularly in the context of limit order flow1.

More specifically, aggressive limit buy(sell) orders are strictly above(below) the current

clearing price and therefore affect that price going forward. This calculation is highly

dependent on the current state of the order book and therefore allows an accurate picture

of price discovery. To the best of my knowledge, there is no other study that isolates

aggressive order flow with comparable rigour. Finally, the analysis applies Multinomial

Logit models that focus on the sign of order imbalances. This paper concentrates on direc-

tional order imbalances due to elevated levels of noise in order flow data or the complete

absence thereof.

This analysis yields several main findings. To begin with, price dislocations in the

first 8 minutes of the auction are reversed by an extent of over 90%, indicating that

there is substantial amounts of noise during this period. Only in the last two minutes

of the auction the price starts to approach the ultimate closing price. Another finding

states that aggressive limit order imbalances are pointing against the return since the

beginning of the auction and therefore exert a counteracting force onto the price. In

contrast to this, market orders arrive independently without regards to the previous price

path. However, imbalances of market orders negatively predict the return until the end

of the auction when accounting for the past price path. The same phenomenon does

not apply to imbalances of aggressive limit orders, which don’t reveal any additional

information. Lastly, the analysis shows that closing returns are partly reverted to over

several time periods overnight. Closing prices are collectively rejected to be martingale

by means of statistical tests. The inefficiency is particularly pronounced after auctions

with the largest negative price dislocations that are reverted upwards before the auction

clearing.

The interpretation of these findings leads to the main contributions of this paper with

respect to the existing body of literature. First, the reversion of initial price shocks is

indicative of closing auctions being successful in what they were designed to achieve, that

is absorbing large and correlated shocks of liquidity. A liquidity shock in the paper refers

to a situation when a large amount of orders enters or leaves the order book within a

short period of time, which can significantly change the order book and ultimately change

the uncrossing price. However, this raises the question of whether this consistent price

reversion may also curtail new information which should be incorporated into prices for

the sake of price efficiency. Using this observation, informed investors who wish to keep

their advantage from the market until having fully entered their position may consider

1In call auctions, limit orders that are passive (i.e., non-aggressive) have no impact on the closing
price, because they would not be executed under the current order book. In contrast to this, aggressive
limit orders have an impact on the uncrossing price.
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to submit market orders in the beginning of the closing auction to reach their objective.

Second, market order and aggressive limit orders are submitted by two distinct types

of investors. On the one hand, market orders are used for what academic literature

calls liquidity traders2, who do not have a view on the price but require liquidity to

rebalance their portfolios. On the other hand, aggressive limit orders are submitted by

investors in reaction to the past price path. Examples for this type may be investors who

perform a market making function. Third, the fact that closing returns are not collectively

efficient implies that the dissemination of new information is limited, in particular due

to the partial reversion of such returns overnight. However, the observation that closing

returns are particularly inefficient following downward spikes that are reversed upward

may indicate that market makers may falsely compensate valid sell signals, which in fact

were informative.

This paper is structured as follows. Section 2 briefly surveys relevant literature to this

topic and how this paper complements the existing body. Section 3 elaborates the data

extraction process and introduces the call auction mechanics on the Swiss stock exchange.

Section 4 presents the first set of results relating to the interaction of price discovery and

order flow within the closing auction. Section 5 takes a step back and assesses the efficiency

of closing prices by means of unbiasedness regressions with respect to longer time horizons.

Finally, section 6 summarizes the findings and provides an outlook for potentially useful

follow-on research.

2 Related Literature

The focus of this paper lies on the interaction of price discovery and order flow during the

closing auction. There exists an extensive body of literature on price discovery during the

continuous trading phase. Particularly during the last two decades, researchers in mar-

ket microstructure were heavily scrutinizing the impacts of high-frequency onto market

conditions for all remaining investors (e.g. Chaboud et al. (2014) and Hendershott et al.

(2011)). In parallel to this, the focus has recently also shifted more to towards closing

auctions due to rising relative volumes, constituting an increasingly important liquidity

event. In this niche, most of the literature is concerned with the introduction of call auc-

tions at the end of the day, which happened around 20 years ago around the world. What

has not been properly addressed in the literature is order flow throughout the closing auc-

tion. The reason for this may be twofold. First, data for auctions are not easy to obtain

and a large amount of programming is required to reconstruct order books throughout the

2For further information refer to Anand et al. (2005), Bloomfield et al. (2005), Kalay and Wohl (2009),
and Rindi (2008) as examples.
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entirety of the auction. Second, due to the nature of call auctions no trades are occurring

until the uncrossing of the auction. This is in contrast to the continuous trading phase,

during which investors have the opportunity to exploit potential mispricings at any time.

Consequently, paper attempts to fill exactly this gap in the literature. This section will

provide a brief survey of the most relevant literature with respect to both price discovery

and closing auctions as well as their currently limited overlap.

To begin with, the literature on price discovery during the continuous phase is dis-

cussed in brief. For this paper, Foucault et al. (2005) and Roşu (2009) are among the most

relevant published works. Both constitute dynamic theoretical models for the explanation

of order flow types, with similar results. Foucault et al. (2005) finds that patient traders

tend to use limit orders for their trades, as they value price certainty over immediacy of

execution. Roşu (2009) shows that market orders lead to a temporary price overshoot but

are likely corrected over time and that higher trading activity causes lower price impact.

Similarly, Kaniel and Liu (2006) propose a model derived from the Glosten and Milgrom

(1985) equilibrium which indicates that informed traders prefer to use limit orders instead

of market orders, therefore indicating that limit order imbalances are more informative

about future price movements, whereas market orders are used more by investors with

requirements to rebalance their portfolio (so called liquidity traders). In contrast to this,

Anand et al. (2005) find that informed investors tend to prefer the usage of market orders

in order to take advantage of temporary mispricings in the market. Moreover, Griffiths

et al. (2000) also find that investors make a conscious decision about order choice, weigh-

ing opportunity cost versus price impact. Additionally, they find that market order flow

is often positively correlated and thus revealing new information to other market partici-

pants.

Moreover, there are also relevant works with respect to the endogeneity of limit order

books. One of the most important papers in this regard is Parlour (1998), who develops

a theoretical model in which all investors are exactly aware of the state of the order

book as well as of the effect of their own order placement strategies and thus act in a

highly strategic manner. Consequently, all investors optimize for their optimal outcome

considering the subsequent reactions of other market participants. As an extension to

this, Pascual and Veredas (2009) apply a sequential model empirically and show that

patient investors adjust their order submissions based on the state of the order book on

their side of the book, whereas impatient traders mostly care about the opposite side of

the book. Importantly, Pascual and Veredas (2009) look at continuous order books, where

best bid- and ask- orders cannot overlap unlike during call auctions.

Due to their design, call auctions have significantly different properties as opposed

to the continuous trading phase. The most important two of which are the inability
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to transact immediately before the final clearing and the overlap of bid and ask order

books. The early literature with respect to call auctions, which were first proposed in

the seminal paper by Madhavan (1992), were concerned with the introduction to such

markets as a complement to the existing continuous trading. Most papers concluded

that the introduction of call auctions for both opening and closing had positive effects

for investors due to these auctions being designed to absorb large simultaneous liquidity

shocks. The beneficial effects observed after the introduction of such auctions mainly

consist of a reduction in volatility and bid-ask spreads (Aitken et al., 2005; Hagströmer &

Nordén, 2014; Inci & Ozenbas, 2017; Kandel et al., 2012; Kuo & Li, 2011; Pagano et al.,

2013), improved price efficiency (Barclay et al., 2008; Bellia et al., 2017; Biais et al., 1999;

Comerton-Forde et al., 2007; Cordi et al., 2018; Pagano & Schwartz, 2003) and less price

manipulation (Comerton-Forde & Putniņš, 2011; Hillion & Suominen, 2004).

More recent contributions to the literature go beyond this event study approach and

analyze the market mechanism in more detail. For instance, Barclay and Hendershott

(2003) find that after-hours trading in the US is has an impact on price discovery, despite

the fact that the resulting prices are mostly inefficient. Moreover, they find that the

average trade after-hours contains more information as opposed to during normal trading

hours, however, overall most information is still revealed during normal trading hours. In

addition to this, Barclay et al. (2008) find that a centralized call auction outperforms a

decentralized mechanisms, where there are different order books existing simultaneously.

This is particularly true on days with high demand for liquidity such as triple witching

days3 without substantial new information in terms of pricing but solely for rebalancing

purposes. Therefore, consolidation of auctions (e.g. on the main exchange) is potentially

the most desirable outcome with respect to price discovery. Barclay and Hendershott

(2008) also find that since the introduction of pre-open trading some of the price discovery

has shifted out of the opening auction into the new facility.

Some more recent works on closing auctions include Bogousslavsky and Muravyev

(2020) who look at how closing prices can be dislocated due to liquidity shocks caused by

large institutional investors. They find that closing prices are quite inefficient and are often

reversed over night and sometimes even open short-lived arbitrage opportunities by means

of a violation of the put-call parity. The authors are cautious of potential over-reliance

on closing prices for benchmarking and rebalancing purposes due to such non-informative

distortions. In addition to this, Hu and Murphy (2020) show that the New York Stock

Exchange (NYSE) has bad price discovery properties, as physically present floor brokers

have near-exclusive access to the book in the last few minutes of the auction. This allows

3Triple witching days occur on a quarterly basis when future and options expire on the same days.
Many investors with open interest are required to equalize their positions to remain market neutral.
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for superior information versus the rest of the market. This effect has been shown to be

mitigated during the 2020 pandemic when the mechanism was halted due to stay-at-home

orders. Moreover, they also find that order-driven NASDAQ call auctions outperform in

terms of price efficiency.

Finally, the literature on detailed order flow during the auction is relatively slim. To

begin with, Smith et al. (2003) develop a model for call auctions and the subsequent

distribution of clearing prices given varying order flow during the continuous trading

phase. Importantly, they make the limiting assumption of independent and identically

distributed (IID) random order flow, which disregards any possibility for persistent order

flow patterns inside the closing auction. The same model is extended by Derksen et al.

(2020), who find that pricing preferences of actors during the trading day are realized

during the closing auction. However, they only consider trading days during which the

closing price lies within the intraday price range, which may constitute a sampling bias.

Theissen and Westheide (2020) analyze the activity of designated market makers during

the call auction on German equity markets and find that they are most active in stocks

with relatively low liquidity as well as during periods of elevated volatility. This indicates

that these agents are fulfilling their purpose of providing liquidity to the market when

needed most. The last work discussed here is Besson and Fernandez (2021) which is

a descriptive practitioner’s report and most similar to this paper in terms of content.

More specifically, they look at several closing auctions throughout Europe through a lens

of incremental intervals. However, their study is different from this paper in three key

points. First, the authors of the report do not single out aggressive limit order flow given

by the simultaneous state of the order book but rather the final clearing. Second, they

do not distinguish between inflows and outflows of orders, despite both being important

for the determination of the ultimate call auction order book. Third, they do not capture

the causal relationship of order flow depending on both the price path as well as previous

order flow. Their main findings conclude that price impacts of market orders are smaller

during call auctions as opposed to the continuous trading phase and that most activity as

measured by volume happens in the beginning and the end of the auction. Overall, this

paper does not find any conflicting evidence to their work.

3 Data

The data used in this paper was obtained directly from SIX, which is the national stock

exchange of Switzerland. The data on Swiss equities offers very high granularity and
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includes every order and trade submitted to the exchange including the hidden ones4.

The analyzed time period includes three calendar years from January 2018 until December

2020, comprising 743 unique trading days.

During this time period, stocks that are listed on SIX and therefore trade on their

primary exchange are analyzed exclusively. Several filters are applied to the stock universe

to narrow down the selection further. First, stocks with an average closing volume below

CHF 5 million per day are disregarded. This mitigates the risk of including stocks that

may not be liquid enough to result in a reliable auction crossing which may be an issue

for many investors, as shown in Ellul et al. (2005) and Ibikunle (2015). Second, only

stocks that have been in the sample for at least 250 trading days are considered. This

step accounts undesirable effects for natural listings and de-listings. After the application

of these filters, the stock-universe is ultimately reduced to 69 stocks. Taking into account

the number of trading days for each stock results in a sample of 40,011 stock-days.

The closing auction on SIX is designed like a normal call auction. It is initiated at

17:20 after the continuous trading phase is halted, such that both trading phases are

strictly non-overlapping. Investors are allowed to submit two types of orders. The first

type are market orders that are executed at the ultimate closing price. Limit orders on

the other hand are submitted with a limit price. Limit buy(sell) orders are only executed

if the ultimate closing price is equal or below(above) the limit price. The auction lasts

for at least 10 minutes. Thereafter, the closing occurs randomly within a two-minute

interval, in order to prevent manipulation of the closing price5. At the close, all market-

and limit orders are gathered into aggregated demand- and supply. The closing price is

determined where crossed volume is maximized.

The way the data was sampled allows us to go much more granular than this. For data

collection, a recursive algorithm was run for each stock-day in the sample to reconstruct

the limit order book (LOB) at every point in time throughout the trading day6, which

also applies to the closing auction. For the purpose of this study, instantaneous snapshots

of the LOB were sampled in 10-second intervals, starting at the beginning of the auction.

The intervals were sampled even without any update in the LOB. The first interval of

the auction at timestamp 0 includes two types of orders. First, orders that were in the

order book during the continuous trading phase and did not expire. Second, orders that

were placed before the beginning of the closing auction but have only been activated for

4For instance iceberg orders that are not visible to any other market participants apart from the
submitting party and the exchange.

5Some relevant studies with respect to random endings of auctions are Comerton-Forde and Putniņš
(2011), Cordi et al. (2018), and Hillion and Suominen (2004).

6This is done because all past orders within the same trading day may have an impact on the current
LOB.
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the auction7. In practice, the closing auction on SIX is lasting for at least 600 seconds,

with an unpredictable closing thereafter in order to prevent manipulation of the closing

price. In order to keep the panel of auctions well balanced, only the first 600 seconds of

the closing call auction are considered for the most part of this analysis. This results in a

total of 61 intervals per closing auction on each stock-day plus one observation of the last

prevailing order book before the auction starts. This process of data-gathering results in

around 2.7 million data points.

Each of these data points represents one full LOB at a given point in time, which is

subsequently uncrossed in order to receive an indication of the current uncrossing price

(ival price) as well as uncrossing volume, which is broadcasted to investors in real-time

and hence public information. Based on the current uncrossing prices, the return between

two intervals in percentage points is computed as

ival retss,t,l = ln

(
ival prices,t,l
ival prices,t,l−1

)
· 100 (1)

where s and t stand for stock and trading day respectively and l represents the closing

auction interval. This interval return measure will be calculated for each available interval

starting with ival retss,t,0. In this setting, ival prices,t,−1 represent the last observed

midquote before the beginning of the closing auction. In contrast to this, ival prices,t,0

represents observed uncrossing price at the very start of the auction, at which time the

order book only contains orders that have been submitted before the closing auction8.

Similarly, ival prices,t,60 represents the order book after the 600-second timestamp into

the auction, which is the last order book before the random closing window starts. Thus,

we receive a total of 61 interval returns. The next step consists of the calculation of

cumulative returns across intervals:

cumul retss,t,l =
l∑

m=0

ival retss,t,m (2)

This measure represents the return between the last continuous LOB midquote and a

given interval l during the closing auction. The reason for this additivity is the logarithmic

nature of interval returns.

7A good example for this type of orders are market on close (MOC) orders, that are submitted by
institutional investors such as ETFs who are benchmarked against closing prices.

8Despite these two timestamp occurring in the same seconds, the LOBs are fundamentally different.
This has two main reasons. First, some orders are only valid during the continuous trading phase and
expire automatically before the auction. Second, investors have the option to enter orders during the
trading day that remain dormant during the continuous phase and only enter the book at the start of
the auction. One example for this are market-on-close orders that allow investors to purchase a stock at
the prevailing closing price.

70



One important contribution of this paper lies in the fact, that it exclusively considers

aggressive order flow. An aggressive order thereby constitutes an order that would be

executed at the time of submission given the simultaneous state of the LOB9. Clearly,

market orders are always aggressive, as they induce execution at any price. For limit

orders, aggressiveness is more nuanced as it depends on the simultaneous hypothetical

uncrossing price. For instance, a limit buy(sell) order is only aggressive if its submission

price is above(below) the current uncrossing price. The granular data provided for this

study allows for the phasing out non-aggressive limit orders that do not have an immediate

impact on the uncrossing. This is an improvement on the approach taken in Besson and

Fernandez (2021), who classify aggressive limit orders with respect to the final closing

price instead of the current one. By ignoring limit orders that are beyond the current

closing price, the approach laid out in this paper more accurately depicts at what point

during the auction limit orders have an impact on the uncrossing price.

As this study is analyzing the interaction between price discovery and order flow, it is

crucial to define a measure of order imbalance. Empirically, there are several approaches to

capture this measure. By definition, an imbalance measure aims to express the interaction

between two flows (f1 and f2) which are both expressed in positive currency terms. This

study follows a new approach to define such imbalances, which has not been used in

academic literature so far to the best of my knowledge. More specifically, it uses natural

logarithms in order to capture the degree of the order imbalance in both directions. The

resulting metric is calculated as:

IMB(f1, f2) =

ln(f1 − f2 + 1), if f1 ≥ f2

− ln(f2 − f1 + 1), otherwise
∀ f1 ≥ 0, f2 ≥ 0. (3)

This definition comes with one particularly relevant property for the following statisti-

cal analysis. As opposed to the other approaches used in the literature, this measure has

no lower and upper bounds. This enables the metric to capture the extent of imbalances

more accurately and therefore allowing for more precise statements about counteracting-

or reinforcing imbalances during the closing auction. One disadvantage of this measure,

however, is the propensity to generate outliers, which may potentially affect consistency

of coefficients under quadratic loss functions, such as with OLS estimation. For robust-

ness purposes, all the results presented later have additionally been replicated using the

9An example for a paper looking into aggressiveness of order flow in the continuous trading phase is
Degryse et al. (2005), who assign different levels of aggressiveness to obtain a more detailed view.
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alternative order imbalance metric which is commonly used in academic literature10. The

results are evidently found to be robust with respect to the choice of order imbalance met-

ric. Nonetheless, there are some clear differences between the two measures, as depicted

in fig. 9. The logarithmic measure defined in eq. (3) results in a differentiable plane at

each combination of positive flows. The traditional academic measure shows a discreet

jump around the point where both points are zero. As order flow during closing auctions

can be rather sparse, due to its absence in many time intervals, the former option has

more desirable qualities.

Based on eq. (3), several measures of order imbalance are computed in order to cap-

ture order flow in elaborate detail. In order to achieve this, types of order flows are to

be defined. To begin with, mkt buys ins,t,l(mkt buys outs,t,l) represents the logarithmic

volume of inflowing(outflowing) market buy orders in stock s, on day t and during in-

terval l since the start of the auction. Similarly, mkt sells in(mkt sells out) represents

inflows(outflows) of market sell orders. For aggressive limit orders, the exact same logic

applies, but the prefix in each variable is replaced with lim . All of these variables are

used to define the first set of order flows:

mkt in imbs,t,l = IMB
(
mkt buys ins,t,l, mkt sells ins,t,l

)
mkt out imbs,t,l = IMB

(
mkt buys outs,t,l, mkt sells outs,t,l

)
lim in imbs,t,l = IMB

(
lim buys ins,t,l, lim sells ins,t,l

)
lim out imbs,t,l = IMB

(
lim buys outs,t,l, lim sells outs,t,l

)
These measures capture the imbalances of in- and outflows for both market and limit

orders. Call auction markets are quite unique in the sense that a one-sided outflow of

orders11 may have a significant impact on the uncrossing price. This is particularly true

for the removal of market order from the book, which is not possible during the continuous

10In contrast to the more common order imbalance measure in eq. (3), imbalances may also be defined
as a limited metric. In the academic literature, the metric most commonly used and defined in Chordia
et al. (2002, 2008), Chordia and Subrahmanyam (2004), and Holden and Jacobsen (2014) is the following:

ALTIMB(f1, f2) =

{
(f1 − f2)(f1 + f2)−1, if f1 + f2 > 0

0, otherwise
∀ f1 ≥ 0, f2 ≥ 0.

According to this definition, the imbalance value is bound by IMB ∈ [−1, 1]. The measure can take the
value 1(-1) under the condition that f1(f2) is positive while f2(f1) is zero. Therefore, the measure takes
into account the magnitude of order imbalance to a lesser extent, which mitigates the issue of outliers
frameworks based on OLS. The disadvantage of this measure, however, is the inability to capture the
extent of order imbalances when one side does not show any activity. This is crucial in this analysis as
most intervals are quiet from at least one side of the book most of the time.

11An outflow of orders means that existing orders are cancelled, which in turn affects the ultimate
order book
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µ σ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

mkt in imb0.04 7.21 -13.54 -12.69 -11.39 0.00 0.00 0.00 11.40 12.70 13.55

mkt out imb-0.03 3.82 -11.89 -8.43 0.00 0.00 0.00 0.00 0.00 7.79 11.75

lim in imb-0.18 7.92 -13.74 -12.94 -11.84 0.00 0.00 0.00 11.68 12.83 13.64

lim out imb-0.11 4.98 -12.53 -11.31 -7.02 0.00 0.00 0.00 0.00 11.02 12.37

mkt imb 0.01 7.85 -13.71 -12.93 -11.83 0.00 0.00 0.00 11.80 12.92 13.70

lim imb -0.22 8.04 -13.69 -12.90 -11.85 -7.52 0.00 0.00 11.67 12.78 13.60

ival rets 0.00 0.55 -0.80 -0.38 -0.13 0.00 0.00 0.00 0.13 0.38 0.82

cumul rets0.04 1.81 -4.08 -2.94 -1.58 -0.45 0.05 0.54 1.71 2.85 4.03

Table 1: Descriptive statistics of granular closing auction data. This table presents the descriptive statistics over all 10-
second intervals over the closing auctions, including distributional information. ival rets represents the return between two
interval prices as defined in eq. (1), mkt in imb(mkt out imb) represents the imbalance of market order inflows(outflows),
lim in imb(lim out imb) represents the imbalance of aggressive limit order inflows(outflows) and mkt imb(lim imb) represents
the imbalance of market(aggressive limit) orders. All imbalances are computed according to eq. (3). All variables comprise around
2.7 million observations across intervals l ∈ {0, 1, . . . , 60}. This number can roughly be derived as the product of 69 stocks, 750
trading days and 61 lags.

trading phase due to immediate execution. However, even the removal of limit orders may

have an effect on the price as long as it is an aggressive order, i.e. a buy(sell) limit order

above(below) the current uncrossing price ival price.

In the next step, imbalances are computed for both market and limit orders in aggre-

gation. For this purpose, the variable mkt buys nets,t,l is defined as the difference between

mkt buys ins,t,l and mkt buys outs,t,l, thus representing the net-inflow of market buy or-

ders. The variables mkt sells nets,t,l as well as lim buys nets,t,l and lim sells nets,t,l are

defined after the exact same logic. Using these net flows, the following aggregated imbal-

ances are computed:

mkt imbs,t,l = IMB
(
mkt buys nets,t,l, mkt sells nets,t,l

)
lim imbs,t,l = IMB

(
lim buys nets,t,l, lim sells nets,t,l

)
Following these definitions of imbalance metrics, the data extraction process ultimately

leads to the summary statistics on an interval level presented in table 1. One important

observation from these summary statistics is that the imbalance metrics frequently take

0 as outcome. According to the definition in eq. (3), this indicates that there are many

intervals without any order flow in either direction. The summary statistics specifically

indicate that this lack of order flow is the case in at least 50% of all observations, except for

lim imb. For the two measures of market- and limit outflow imbalances, this is even more

pronounced, e.g. with at least 80% of intervals without any flows relevant to mkt out imb

and at least 65% for lim out imb. This implies that investors do not frequently cancel
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Figure 1: Correlation and autocorrelation of order imbalances. This figure shows correlations and autocorrelations of the variables
mkt imb and lim imb. The solid line shows the correlation between both variables. The line with upward-(downward-)facing
triangles represents the autocorrelation of market(limit) order imbalances over one lag. All correlations are estimated for each
interval l individually. The dotted lines represent confidence intervals at 5% significance.

their orders but rather insert them into the book. Finally, looking at the return presented

measures in the last two rows of table 1, the distribution is evidently symmetric for both

measures. The statistics for ival rets show that for at least 50% of observed intervals the

prices do not change compared to the previous interval and in 95% of the cases the absolute

price change is below 82 basis points. Overall, the summary statistics show a rather

symmetric distribution without any apparent skew in any of the metrics shown in table 1.

All these summary statistics are also computed based on four size-quantiles separately and

are presented in table 7 in the appendix. The results are overall comparable, however there

are two differences across quantiles. First, large stocks have larger absolute imbalances in

both directions, which is driven by larger volumes. Second, there are much fewer intervals

without any activity for large stocks.

In order to shed more light onto the interaction between some of the imbalances intro-

duced, the correlations of and autocorrelations between market- and aggressive limit order

imbalances are estimated in the next step. All measures are calculated based the Pearson

correlation coefficient12. The correlations are calculated for each interval l individually

12The Pearson correlation between two variables x and y is defined as:

ρ(x, y) =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

where each sum iterates through all observations i and both variables have the same number of observa-
tions.
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in order to allow for varying estimates throughout the auction. The autocorrelations are

calculated over one lag. The results of these estimations are presented in fig. 1. To begin

with, the correlation between market- and aggressive limit order imbalances are heavily

negative at interval l = 0, which represents the time span between when the continuous

trading phase ends and when before the closing auction fully begins. Quickly afterwards,

the correlation approximates 0. Despite statistical significance at a 5% level, the cor-

relation coefficient does barely exceed a magnitude of 0.05 again after 90 seconds. In

contrast to this, autocorrelations over one lag are positive for both types of order imbal-

ances throughout the auction. Particularly lim imb reaches autocorrelation of at least 0.2

after the 540 second mark. In summary, market- and aggressive limit order imbalances

are significantly autocorrelated, whereas the correlation between both measures is much

less prevalent.

4 Price Discovery Results

4.1 Predictability of Returns

Before considering any measures of order flow in the analysis, it is important to under-

stand how prices evolve throughout the closing auction. In order to yield first insights

into the price discovery process, the concept of unbiasedness regressions are introduced.

This methodology has been first introduced by Biais et al. (1999), who analyzed the price

discovery during the opening auction on the Paris stocks exchange by disentangling learn-

ing and noise. In their statistical approach, the authors analyze the relationship of two

returns r1 and r2. The former measures the return between t1 and t2 and the latter from

t1 to t3, where t1 < t2 < t3. Importantly, the measurements of both returns start at the

same time t1. For the further stages of this analysis, let r1 be the inner return and r2 the

outer return.

While Biais et al. (1999) compare apply their framework onto returns starting at the

closing auction until various point into the opening auction, the approach taken here

differs considerably due to the focus on closing auction price discovery. More specifically,

the inner return is represented by the cumulative return as defined in eq. (2) until interval

l. In contrast to this, the outer return is the return between the last observed LOB

midquote and the closing price. This variable is determined for each day t, stock s and is

referred to as close returns,d. In addition to this, it is desirable to add another dimension

to the analysis by taking stock size into account, as variations in price discovery patterns

across stock sizes are plausible. For instance large stocks with more investor participation

may react to significant price jumps more rapidly as opposed to small stocks, due to higher
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interest of ETFs who rebalance their portfolios in a correlated manner. In order to account

for such effects, let Q = {Q1, Q2, . . . , Q5} be a set of dummy variables, where Q1(Q5)

represents the bucket containing stock-days with the lowest(highest) trading volumes

during the continuous trading phase on the same day prior to the closing auction. The

variables in Q are one if an observation falls into a given quantile and zero otherwise.

Importantly, the quantiles are assigned within each stock, such that biases caused by

unobserved heterogeneity within stocks are mitigated. These definitions result in the

unbiasedness regression equations:

close returns,t =
4∑
i=1

βi
(
Qi × cumul retss,t,l

)
+ εs,t,l ∀ l ∈ {0, 1, . . . , 72} (4)

Importantly, this equation is estimated for each interval l resulting in 73 independent

regressions. No intercept is included in the equation in order to effects price patterns that

occur persistently across auctions. One example of such a pattern could be index funds

introducing large amounts of market orders into the auction book as soon as the auction

starts. This behavior would result in a consistently positive return towards the start of

the auction, which would be captured by the intercept term. However, the main focus of

this analysis is the isolation of patterns that are only dependent on the inner return13.

The results from the unbiasedness regressions are presented in fig. 2. Panel A repre-

sents the estimates for all β coefficients throughout the auction. To begin with, there is

no statistically significant difference between the coefficients interacted with all size quan-

tiles. The confidence bands, which were derived from a covariance matrix double-clustered

by individual stocks and trading days14, are not shown due to reasons of clarity. For the

sake of completeness, the coefficient estimates with confidence intervals by quantile are

depicted, in fig. 10 in the appendix. Consequently, any hypothesis of equality between

coefficients cannot be rejected at any interval, indicating that there are no effects due to

stock size observed. Across all size quantiles, the coefficients are strictly below 0.1 for

the first 480 seconds of the closing auction, however still significantly positive. This find-

ing suggests that 90% of the price dislocation since the last midquote before the auction

(i.e. cumul rets) is reverted by the end of the auction. This indicates that closing auctions

are successful at absorbing large liquidity shock in the beginning of the auction without

allowing for large price dislocations. After the 480-second mark, the coefficients convert

to 1.0 quickly, indicating that cumul rets becomes an increasingly accurate predictor of

13The analysis has additionally been run with an intercept term for robustness purposes. The intercept
does not deviate from zero with any statistical significance across all size quantiles. It also has no effect
on either estimates of coefficients or R-Squared.

14The methodology is based on the presentation in Wooldridge (2012, p. 393).
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Panel A: Coefficient estimates from unbiasedness regressions
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Panel B: R-Squared estimates from unbiasedness regressions
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Figure 2: Results from unbiasedness regressions. This table presents the results from the unbiasedness regressions defined in
eq. (4), which regress the return between the last midquote before the closing auction (close return) onto the return between
the same starting point and the hypothetical uncrossing price at interval l within the auction (cumul rets). Panel A shows the
coefficients estimated across all four size quantiles in Q = {Q1, Q2, Q3, Q4}, where Q1(Q4) represents stocks with small(large)
traded volume during the continuous trading phase on the same day prior to the closing auction. Panel B shows the R-Squared
of all models throughout the closing auction. The horizontal axis in both charts represents the seconds since auction start. The
shaded area on the right side of each plot represents the period during which the auction is ended randomly.

the ultimate closing return. After the 600-second mark, all coefficients are virtually 1,

indicating that there is no price discovery happening during the period of random closing.

This finding is in line with Cordi et al. (2018) who find that randomized closing auctions

are able to prevent price manipulation. Comerton-Forde and Putniņš (2011) and Hillion

and Suominen (2004) have shown that some market participants engage in predatory

behavior to manipulate the closing price in the last seconds of the trading day.
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The R-Squared measures in Panel B indicate a similar pattern as the coefficient esti-

mates. The low scores before the 480-second mark indicate that there is significant noise

in prices during the first 8 minutes of the auction. The steeply rising R-Squared thereafter

indicates that the cumulative return converges quickly to the final closing price during the

last two minutes of the auction. Ultimately, these two plots lead to two main conclusions.

First, cumulative returns overshoot the final closing return significantly even at l = 0

which is before the auction technically starts. Second, these large price movements are

reverted almost fully until the point when the random closing window begins 600 seconds

after the start of the auction.

4.2 Drivers of Order Flow

So far, this analysis has discussed to what degree prices are driven over the course of

the auction. However, order flow has not been taken into consideration but only the

previous price path. This section explores the interaction between the development of the

hypothetical closing price as well as granular order flow. This enables statements about

whether order flow appears randomly or in reaction to the current state of the LOB.

For this purpose, the first step of this section comprises the estimation of a panel

model, estimating the effects of past returns on various order imbalances. The goal of

this approach is the prediction of order imbalances based on the realized price path in the

auction beforehand. This allows for statements about whether investors adjust their order

submission strategies based on this information and actively steer price discovery into a

certain direction. Therefore, certain variables defined previously such as ival rets and

cumul rets are extended in order to separate potentially asymmetric effects of positive

and negative realizations. Both of these variables are extended with the suffix pos(neg)

where the value is retained if positive(negative) and set to zero otherwise. In addition to

this, the variable initial rets,t is defined as the return between the last observed midquote

before the auction start and the hypothetical uncrossing price at the auction start (i.e. at

l = 0). This variable contains the information carried by imbalances of all MOC order

which are submitted during the continuous trading phase, but are only activated at the

beginning of the closing auction. Due to its nature, the variable is computed for each

stock s and day t. These newly derived variables lead to the following panel regression
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equation:

imbals,t,l = αl + γt + βᵀ



initial rets,t

ival rets lag poss,t,l

ival rets lag negs,t,l

cumul rets lag poss,t,l

cumul rets lag negs,t,l

imbals,t,l−1


+ εs,t,l (5)

where β ∈ R6 represents a vector containing all the estimated coefficients. Additionally,

αl(γt) represents fixed effects for each interval(trading day). This approach allows for the

distinction of potentially asymmetric effects of returns on order imbalances. Moreover,

imbal ∈ {mkt imb, lim imb} is a placeholder variable representing any type of imbalance

measure defined previously15. For inference purposes, the covariance matrix has been

clustered by stocks.

Table 2 presents the results of this panel regression for both market- and limit order

imbalances16. To begin with, the imbalance of market orders presented in the first three

models on the left is barely predictable. In all three models, the R-Squared is virtually

zero and none of the independent variables is significant at the 5% level. These results

suggest that market orders enter the order book randomly without dependence on the

price path throughout the auction. In contrast to this, the three models on aggressive

limit order imbalances on the right-hand side of the table show a very different picture. In

the first model, all parameter estimates are highly significant and negative. This indicates

a certain tendency to trade against realized returns, be it initial or lagged positive as well

as negative. However, with an R-Squared below 1% the predictive power of this model

remains low. In the second model only cumulative return metrics are considered, once

again with highly significantly negative coefficients. In contrast to the previous model, the

R-Squared is much higher with an explanatory power of more than 5%. This indicates

that aggressive limit order flow has a corrective effect for both positive and negative

cumulative returns. The final model containing all the variables results in a similar R-

Squared, indicating that the predictive power of the model mostly driven by cumulative

returns. This observation is also reinforced by the fact that both lagged interval returns

become insignificant in the full model. Finally, a series of Wald tests for the equality of

15See table 1 for detailed overview over imbalance metrics.
16Table 8 in the appendix shows the same results but with pooled order flow for robustness purposes.

More specifically, the order flows as part of the dependent imbalance variables has been calculated over
30 second time horizons forward for each interval l. This methodology mitigates the noise in the order
flow and increases the goodness of fit accordingly. All results are roughly the same.
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Dep. Variable mkt imb mkt imb mkt imb lim imb lim imb lim imb

initial ret -0.0665 -0.0733 -0.1502*** -0.5401*** -0.2191*** -0.1614***

(-0.8035) (-0.8446) (-7.4257) (-9.9872) (-4.7146) (-5.9339)

ival rets lag pos -0.0560 -0.0714 -0.2705*** -0.4576*** -0.0770 -0.2931***

(-0.9676) (-1.0860) (-4.2623) (-2.6559) (-0.6944) (-4.0867)

ival rets lag neg -0.0393 -0.0417 -0.2419*** -0.6081*** -0.1131 -0.3180***

(-0.7593) (-0.7066) (-3.9551) (-3.4805) (-0.9182) (-3.6677)

cumul rets lag pos 0.0312 0.0310 -0.8637*** -0.7790***

(0.9299) (1.0152) (-13.021) (-12.175)

cumul rets lag neg 0.0048 0.0084 -0.8847*** -0.7956***

(0.1641) (0.3284) (-13.552) (-12.624)

mkt imb lag 0.0657***

(9.6252)

lim imb lag 0.1120***

(7.4731)

N 2692536 2846378 2692536 2692536 2846378 2692536

R-Squared 0.0002 0.0002 0.0064 0.0067 0.0463 0.0591

Fixed Effects Interval Interval Interval Interval Interval Interval

Fixed Effects Day Day Day Day Day Day

Table 2: Results of panel regression of order imbalances. This table shows the results of the panel model where order imbalances
of market- as well as aggressive limit orders are regressed onto several independent variables. initial ret represents the return
between the last pre-close midquote and the first LOB of the auction, ival ret lag represents the lagged interval return and
cumul rets lag represents the lagged cumulative return from the last pre-close midquote until the current interval. The suffix
pos(neg) represents the original value if it is positive(negative) and zero otherwise. The suffix lag the lagged value by one interval.
Lagged variables are calculated such that there is no overlap with the order flow variables. The estimation is conducted with day-
and interval-fixed effects, whereas t-statistics are presented in parentheses. The covariance matrix is clustered by interval and
trading day to account for shocks within identical auctions across stocks. *, ** and *** denote significance at the 1%, 5% and
10% confidence level respectively.

coefficients17 for both cumul rets lag pos and cumul rets lag neg cannot reject the null-

hypotheses. Therefore, the effects can be understood as symmetric for both positive and

negative cumulative returns.

So far, it could be shown that aggressive limit order imbalances are reactive towards

the past price path within the auction as opposed to market order imbalances that appear

to be random. While this panel approach can give some reasonably rough implications

between the two variables of interest, there is one important assumption inherently em-

bedded in the model. The model treats all the intervals the same and estimates coefficients

the same coefficients for the whole course of the auction. In practice, it has been shown

that conditions may not be constant throughout the auction (Besson & Fernandez, 2021;

Raillon, 2020). In order to account for this, it becomes necessary to allow for coefficients

17Wald tests were following the methodology outlined in Baltagi (2011, Section 7.9) and testing for
the null-hypothesis H0 : β1 − β2 = 0.
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that are adjusting over time. In addition to this, it has been shown that order flow data

without aggregation contains a lot of noise and may seem highly unpredictable18. Partic-

ularly the variance of order imbalances may be driven significantly by traders who need

to get their orders filled due to idiosyncratic requirements such as mandatory portfolio

rebalancing. Therefore, the direction of order imbalances and returns is more important

than the extent thereof.

For these two reasons, the concept of multinomial Logit regressions is introduced into

the analysis. This methodology has been laid out in Greene (2012, Section 18.2.2) and

Baltagi (2011, Section 13.10.2). The essence of multinomial Logit regressions lies in the

distinction of multiple discrete outcomes. Therefore, a set of discrete possible outcomes

for the direction of imbals,t,l as J = {−1, 0, 1} is defined. These outcomes cover positive,

non-existent and negative imbalance respectively. Under these conditions, the probability

of each outcome is defined as

P (yi = j) =
exp(x′iθj)∑
k∈J exp(x′iθk)

∀ j ∈ J (6)

where θj represents a parameter vector for each possible outcome j. yi(xi) represents

endogenous(exogenous) variables of observation i. Moreover,
∑

j∈J P (yi = j) = 1 must

hold as a consequence of this definition.

Due to the non-linear nature of this regression problem, maximum likelihood estima-

tion (MLE) is applied to maximize for the optimal set of parameters θj ∀ j ∈ J . The

log-likelihood function is derived by means of a multinomial distribution as

L(θ | y, x) =
N∑
i=1

∑
j∈J

dij · lnP (yi = j) (7)

where dij is a dummy variable which is 1 if observation i takes outcome j and zero

otherwise. As a consequence of the multinomial distribution only one dij is one per

observation, as the outcomes are mutually exclusive.

In order to make the results more interpretable, the probabilities of two outcomes

as defined in eq. (6) can be combined into the following form, following Greene (2012,

Section 18.2.2) and Baltagi (2011, Section 13.10.2):

ln

(
P (yi = j)

P (yi = k)

)
= x′i(θj − θk) ∀ j, k ∈ J and j 6= k. (8)

This form is sometimes referred to as log-odds between two outcomes j and k. This

18Table 1 showed that even at a 10-second interval horizon many of the intervals are deprived of any
order flow.
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notation allows for one outcome, say k, to be specified as the base outcome by forcing

θk = 0, which leads the term exp(x′iθk) in eq. (6) to be 1. This leads to the application of

this methodology to the log-odd form in eq. (8) but expressed in matrix form

ln
(
P (imbals,t,l>0)

P (imbals,t,l=0)

)
ln
(
P (imbals,t,l<0)

P (imbals,t,l=0)

)
 =

θᵀ+
θᵀ−




initial ret

ival rets lags,t,l

cumul rets lag poss,t,l

cumul rets lag negs,t,l

 (9)

where θ+, θ− ∈ R4 represent vectors containing all the coefficients. As laid out in eq. (5),

imbal represents a placeholder variable that can be replaced with all types of imbalances

defined in table 1. Due to the information in that table, it became apparent that in more

than 50% of observations there is a lack of imbalance due to absence of order flow. This

outcome of imbal = 0 is taken to be the base outcome, which will be used to calculate

the log-odds as defined in eq. (8). The focus of this analysis will exclusively lie on the

effect of lagged cumulative returns whereas lagged interval returns and initial returns rep-

resent control variables. Moreover, in the interest of preventing issues of multicollinearity

among the three independent return variables the data had to be slightly adjusted at the

start of the auction. More specifically, for the intervals l ≤ 1, the variables initial ret

and ival rets lag are disregarded. With this adjustment, we can calculate the effect of

cumulative returns during all auction intervals.

The coefficient estimates for mkt imb as a dependent variable19 are presented in fig. 3.

In all four subplots, there is a spike right in the beginning of the auction that decays over

the first 60 seconds. In the top row which depicts cases when the cumulative return is

positive this spike is positive, indicating that when there is a large return the probability

of either a positive or negative order imbalance is more likely versus the base-case of no

imbalance. The same statement can also be made about the bottom row, where the same

spike is depicted downward, however, the the implication is identical. Between the 60-

and 480-second marks the estimates are rather stable. In this phase, positive(negative)

cumulative returns decrease(increase) the probability of negative(positive) market order

imbalances with statistical significance. This implies a tendency to trade into the direc-

tion of the cumulative return as a quasi-momentum strategy. In addition to this, all four

subplots depict a spike at the 490-second mark which increases the probability for mar-

ket order imbalance against the direction of the cumulative return. In other words this

represents order flow that consistently enters the auction at the same time to counteract

the cumulative return and therefore exerting a reverting force on the price dislocation.

19See fig. 11 for the same analysis with order flow pooled over 30 seconds to mitigate issues of noise.
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Figure 3: Prediction of market order imbalances by interval. This figure shows the predictive coefficients of the multinomial Logit
approach as stated in eq. (9). The dependent variable mkt imb represents the imbalance of market orders. The left(right) column
of subplots depicts marginal effects for the case when mkt imb is negative(positive). The solid lines represent the θ coefficients
of the independent variables cumul rets lag pos in the top row and cumul rets lag pos in the bottom row. One model is
estimated for every 10-second interval throughout the auction. The dotted lines around the coefficient estimates represent the
95% confidence interval for the parameter estimates. The horizontal axis represents the number of seconds since the start of the
auction. The vertical axis representing the marginal effect of the independent variable is shared across all subplots within each
column.

During the final minute of the auction before the random closing phase, positive(negative)

cumulative returns until this point decrease the relative probability of observing a posi-

tive(negative) market order imbalance. In other words, the probability of observing order

imbalances that amplify cumulative returns reduces in both cases.

Analogously to this, fig. 4 depicts the results with lim imb as the dependent variable

in eq. (9)20. In contrast to the previous results, aggressive limit order imbalances are much

more dependent on cumulative returns. The most striking patterns are observed in the top

right and bottom left subplots. More specifically, after large positive(negative) cumulative

returns aggressive limit order imbalances are much less(more) likely to be positive. In

other words, limit orders are highly unlikely to reinforce cumulative return which becomes

increasingly reinforced in the last minute before the random closing period. In contrast to

this, during the first 480 seconds of the auction, the probability of aggressive order flow is

close to zero. Only in the last two minutes of the auction, investors are actively submitting

aggressive limit orders to counteract the cumulative returns and therefore absorbing the

20See fig. 12 for the same analysis with order flow pooled over 30 seconds to mitigate issues of noise.
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Figure 4: Prediction of aggressive limit order imbalances by interval. This figure shows the predictive coefficients of the multinomial
Logit approach as stated in eq. (9). The dependent variable mkt imb represents the imbalance of market orders. The left(right)
column of subplots depicts marginal effects for the case when lim imb is negative(positive). The solid lines represent the θ
coefficients of the independent variables cumul rets lag pos in the top row and cumul rets lag pos in the bottom row. One
model is estimated for every 10-second interval throughout the auction. The dotted lines around the coefficient estimates represent
the 95% confidence interval for the parameter estimates. The horizontal axis represents the number of seconds since the start
of the auction. The vertical axis representing the marginal effect of the independent variable is shared across all subplots within
each column.

previous liquidity shock.

So far, the analysis has only considered the coefficients of cumulative returns, but

not their predictive power as part of the model. Due to Logit models being estimated

by maximizing the log-likelihood instead of minimizing squared errors, an alternative

measurement for goodness of fit is required. The pseudo R2 in question is derived from

McFadden (1973, p. 121) and is based on the comparison of log-likelihood outcomes of

two models estimated on the identical data:

McFadden-R2 = 1− LRLU
. (10)

Thereby, LU represents the log-likelihood of the unrestricted model estimated with all

the parameters and under the existing model specifications. In contrast to this, LR is

a restricted version of this model with only one intercept. Consequently, the larger the

log-likelihood improvement of the unrestricted model versus the restricted one entails a

reduction in the second term becomes therefore a higher the goodness of fit. Importantly,
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Figure 5: Comparison of McFadden R-Squared for imbalances. This figure shows the estimated McFadden R-Squared based on
the multinomial Logit regression presented in eq. (9). The line with the crosses(triangles) represents the results of the model with
the market (aggressive limit) order imbalances as dependent variable. The definition of the McFadden R-Squared is presented in
eq. (10). The horizontal axis represents the number of seconds since the start of the auction.

this goodness of fit measure cannot be interpreted the same way as a traditional R2. More

specifically, the values for the McFadden-R2 are generally lower to a considerable extent

in comparison to the traditional R2. According to McFadden (1979, p. 307), values of 0.2

to 0.4 for this measure already represent a very good fit.

Figure 5 presents the comparative results of the McFadden-R2 between the models re-

gressing market- and aggressive limit order imbalances. Similarly to the results in table 2,

market order imbalances are not predicted more accurately using cumulative returns as

opposed to the restricted intercept-only model. The only exception to this can be found

in the two small spikes at 490 and 510 seconds after auction start. The estimates from the

models of aggressive limit order imbalances are more dynamic throughout the auction.

The relative improvement of the unrestricted model is consistently higher, indicating that

cumulative returns in fact have predictive power over these imbalances. Particularly im-

portant is the observation that the McFadden-R2 increases steeply during the last two

minutes of the auction21.

Until this point, order imbalances of market- as well as aggressive limit order flows

have been addressed in detail. However, it is important to understand that both of these

measures are computed based on the net inflows of orders during a given interval. One

factor that is neglected in the academic literature is the distinction between inflows and

21This observation becomes even clearer in fig. 13 in the appendix, where the order flows as a basis
for the imbalance measure are pooled over 30 seconds in order to smoothen out the irregular nature of
order flow.
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Figure 6: Prediction of inflow- and outflow imbalances. This figure shows the results of the multinomial Logit regression approach
defined in eq. (9). The first row(second) row shows the results for the models with mkt in imb(mkt out imb) as dependent
variable representing imbalances of market order inflows(outflows). The first third(fourth) row shows the results for the models
with lim in imb(lim out imb) as dependent variable representing imbalances of aggressive limit order inflows(outflows). The
left(center) column shows coefficient estimates in cases where the imbalance is negative(positive). The third column depicts the
estimate for the McFadden R-Squared. The horizontal axis is shared among all subplots in this figure and represents the number
of seconds since auction start.
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outflows of orders. Particularly during the closing auction outflows of market orders are

as important as inflows for the determination of the optimal uncrossing.

Consequently, fig. 6 depicts a new set of multinomial Logit models where the dependent

variables are set to mkt in imb, mkt out imb, lim in imb and lim out imb respectively22.

The estimations were otherwise conducted as previously. In the top row of the figure, the

effect on market order inflows is presented. As in fig. 3, the predictive power of the model

is very low with the exception of a few spikes between 490–510 seconds after auction

start. These spikes represent an inflow of market orders to compensate for cumulative

returns up this point. These spikes are barely visible in the second row, which depicts

the imbalance of market order outflows. In these models one can observe that market

order outflows are on average reinforcing the previous cumulative returns. For instance,

a positive cumulative return entails an increasing probability that more buy orders are

withdrawn as opposed to sell orders in terms of market orders. The opposite statement

can be made when the outflow of market sells exceeds market buys. In both cases,

these observations have a counteracting effect towards cumulative returns. However, the

McFadden-R2 barely exceeds 0.1% throughout the auction indicating a severe lack of

predictive power.

In the lower half of fig. 6, the analogue set of results for aggressive limit flows are pre-

sented. The third row shows how inflows of aggressive limit orders counteract cumulative

returns throughout the auction. However, the coefficients drastically increase in magni-

tude towards the end of the auction, amplifying the effect. Similarly, the goodness of fit

increases in the last two minutes of the auction. This implies that investors submitting

aggressive limit orders tend to trade against cumulative returns but only get serious about

correcting mispricings towards the end. Outflows of aggressive limit orders represented

by lim out imb, on the other hand show a different picture. During the first 60 seconds

of the auction the withdrawals of aggressive limit orders have a momentum-reinforcing

effect with considerable goodness of fit. In other words, positive cumulative returns at

the beginning of the auction render negative lim out imb relatively more likely, which ex-

erts even more upward pressure on the uncrossing price. Nonetheless, this reinforcement

effect of limit order outflows is only prevalent during the first minute. Thereafter, the

McFadden-R2 consistently remains below 1%.

In summary, these findings show that the insertion and cancellation of market orders

is driven by different factors than for aggressive limit orders, which are relevant for price

discovery. Overall, the findings suggest that market orders arrive more randomly in the

order book. While there are some consistent patterns, the goodness of fit measures are

22See fig. 14 in the appendix for the same analysis based on order flow pooled forward by 30 seconds
in order to mitigate issues of noisy order flow data.
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so low that these effects are barely relevant. Overall, market imbalances are more likely

to occur after large price dislocations in the first 60 seconds of the auction. Afterwards,

there persistent inflow of market orders which has a reverting effect on cumulative returns.

In aggregation, imbalances of aggressive limit orders always have a reverting effect on

cumulative returns. This effect is only reinforced during the last 2 minutes of the auction

by incoming orders. Importantly, however, these results show that order flow is not

independent, particularly aggressive limit order flow. Therefore, the assumption of IID

distributed order flow in auction models such as Smith et al. (2003) and Derksen et al.

(2020) cannot be supported after acknowledgment of these results. Overall, however,

this result supports the notion in the model of Parlour (1998) that order flow is highly

endogenous and that investors pay close attention to market conditions.

4.3 Drivers of Price Discovery

The focus of this analysis has so far been exclusively on the predictability of order flow

imbalances based on the pre-existing price path. In this section, this logic is reversed.

More specifically, the focus is shifted towards providing answers on the effect of order flow

on price discovery.

For this purpose, a future returns variable is introduced which represents the logarith-

mic return from interval l until the end of the auction and is defined as

future rets,t,l = close returns,t − cumul rets,t,l (11)

where close returns,t is the logarithmic return between the last observed pre-close midquote

and closing price and cumul rets,t,l is the cumulative logarithmic return from the same

starting point until interval l as defined in eq. (2).

In order to quantify the lagwise effects of order flow onto the future return, the same

multinomial Logit approach reapplied with slight adjustments. In contrast to the previous

section, the dependent variable is now defined as the future return. The reason for this is

the motivation to assess the predictive power of order imbalances on the remaining price

path from each interval l until the end of the auction. It is important to keep previous

findings from this analysis in mind when specifying the model going forward. On the

one hand, section 4 showed that cumulative returns are almost reverted for all l < 48,

which coincides with the 8-minute mark in the auction. On the other hand, section 4.2

demonstrated that aggressive limit order imbalances are highly predictable based on cu-

mulative returns, which is not applicable for market order imbalances. Consequently,

controlling for cumulative returns in the regression alongside the order imbalance met-
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rics enables the isolation of true contributions by variable. Importantly, the regression

includes cumul rets lag as a control variable in order to avoid any timely overlap with

other independent variables. As in the previous estimation, the base outcome is defined

to be future ret = 0 such that the current interval price is already equal to the closing

price and there is no price discovery left. This is not true for the remaining two possible

outcomes. With this boundary condition, we arrive at the following two equations for

log-odds: ln
(
P (future rets,t,l>0)

P (future rets,t,l=0)

)
ln
(
P (future rets,t,l<0)

P (future rets,t,l=0)

)
 =

θᵀ+
θᵀ−




mkt imbs,t,l

lim imbs,t,l

cumul rets lags,t,l

 (12)

where θ+, θ− ∈ R3 both represent one vector each containing one unique set of coefficients

for each discrete case respectively. The model has been estimated for each interval l

individually, in order to avoid autocorrelation in observations. It is also important to

note, that there is no timely overlap between dependent and independent variables in

order to prevent issues of endogeneity, as returns and order flows are related closely. In

addition to this, the models have been estimated for all four variations of order flow

pooling in order to smoothen the results.

Figure 7 presents all estimates for all for θ coefficients from the model in eq. (12) graph-

ically23. The first row in the figure shows the coefficients for market order imbalances. In

the previous analysis, market order inflows as well as -outflows were shown to arise rather

randomly without significant dependence on cumulative returns. In this analysis, market

orders go against future returns consistently in the first half of the auction, despite con-

trolling for lagged cumulative returns. This shows that market order imbalances are not

predicted by lagged cumulative return and therefore contribute to the prediction of future

returns. The fact that these imbalances are in the opposite direction compared to future

returns indicates that the price dislocation caused by such market order imbalances are

subsequently corrected until the end of the auction. Therefore, informed investors could

use market orders in the beginning of the auction in order to hide their information since

any dislocation will ultimately be reverted until the end of the auction.

The second row of the figure presents the coefficient estimates of aggressive limit or-

der imbalances. In section 4.2 it has been demonstrated that these imbalances are highly

dependent on cumulative returns in a counteracting manner. Particularly during the last

two minutes of the auction, this effect becomes stronger. When cumulative returns are

included in the regression alongside aggressive limit order imbalances, however, the im-

23More precise results are presented in fig. 15 in the appendix. These results show the results based
on order imbalances calculated by pooling order flow over 30 seconds respectively in order to reduce noise
as a consequence of the choice of small interval size.
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Figure 7: Prediction of future return using order imbalances by interval. This figure shows the predictive coefficients of the
multinomial Logit approach as stated in eq. (12). The dependent variable future ret represents the return between interval
l and the end of the auction. The left(right) column of subplots depicts marginal effects for the case when future ret is
negative(positive). The independent variables shown are mkt imb in the top row, lim imb in the middle row and cumul rets lag
in the bottom row. One model is estimated for every 10-second interval throughout the auction. The dotted lines around the
coefficient estimates represent the 95% confidence interval for the parameter estimates. The horizontal axis represents the number
of seconds since the start of the auction. The vertical axis representing the marginal effect of the independent variable is shared
across all subplots within each row.

balance loses its predictive power. There is consistent and statistically significant pattern

visible. In addition to this, the coefficients are much lower compared to market order

imbalances in the same model, despite the comparable distribution of the two variables24.

This indicates that their contribution to the model has already been accounted for through

the cumulative returns variable. Consequently, these imbalances do not bring any new

information into the auction but are merely manifested in reaction to the previous price

path. Finally, the last row of fig. 7 presents the coefficient estimates with respect to lagged

cumulative returns. It is clearly visible that throughout the auction, future returns are

24See table 1 for more information.
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Figure 8: Comparison of McFadden R-Squared for future returns. This figure shows the estimated McFadden R-Squared based
on two multinomial Logit regression models, both based on eq. (12). First, the full model includes all the variables. Second,
the reduced variable does not include lagged cumulative returns and only relies on imbalance measures. The definition of the
McFadden R-Squared is presented in eq. (10). The horizontal axis represents the number of seconds since the start of the auction.

going into the opposite direction of cumulative returns with high significance. This find-

ing is in line with section 4.1, which showed that cumulative returns are mostly reverted

towards the end of the auction.

The results predicting future returns so far have only included estimates of coefficients

paired with their respective confidence bands. To complete the analysis, fig. 8 presents

the estimates for the McFadden-R2 throughout the auction for two types of models: Full

and reduced25. The former is the exact model as defined in eq. (12). The latter consists

of the same model but does not include cumul rets lag as an independent variable. The

results show that there is a significant difference in predictive power between the two

models, starting after 20 seconds into the auction. This finding implies that the lagged

cumulative returns are strong predictors for future returns, much more so than order

imbalances alone for the majority of intervals during the auction. However, right in the

beginning of the auction at l = 0, when market order imbalances can crucially predict

future returns through reversion.

25For robustness purposes, fig. 16 shows the same model with order imbalances pooled over 30 seconds
backwards in order to mitigate noise in order flow data.
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5 Overnight Price Efficiency

So far, this analysis was mostly focused on the order flow dynamics across multiple in-

tervals throughout the closing auction. It has been shown that price dislocations caused

by market order imbalances in the beginning of the auction are subsequently reversed

towards the end of the auction. In other words, the auction is successful at absorbing

large liquidity shocks in that investors are reverting these shocks using aggressive limit

orders. This correction occurs in the last two minutes of the auction. Overall, this pat-

tern of initial price dislocation and subsequent correction is very prevalent in all closing

auctions. Nonetheless, these initial liquidity shocks may be of varying extent and may or

may not include new information. If large cumulative returns caused substantial demand

and supply imbalances are always reverted towards the end of the auction, some informa-

tion may be lost in the process. Therefore, it is plausible that the overcompensation of

price dislocations during the closing auction may have an impact overnight price efficiency

subsequent to the auction.

Price efficiency is a broad term and can be used in various contexts. The most common

definition used in academic literature originated in Fama (1970, p. 391). According to

his definition, prices follow the weak version of market efficiency if they are martingale

(i.e., follow a random walk). This implies that the price of any given security is the best

prediction of every future price of the same security. For this purpose, the methodology

of unbiasedness regressions by Biais et al. (1999) which has been introduced in section 4.1

is re-applied in a different context here. Previously, inner(outer) returns were assigned

to cumulative(closing) returns. Given the definition of weak market efficiency provided

by Fama (1970), the inner return must be the best prediction of the outer return, given

both measurements start at the same point in time. Consequently, at the point in time

when the inner measurement period of the inner return is terminated, the current price

is the best prediction until the termination of the outer return as well. Is this condition

violated, are prices not martingale by not following a random walk, presenting a violation

of the weak efficient market hypothesis.

In the analysis presented in this section, the unbiasedness regressions are applied in

order to determine under which conditions closing returns offer a contribution to price

discovery. Therefore, the regressors are chosen to be inner returns, i.e. closing returns.

In order to facilitate robust results, a set of various outer is chosen with all starting from

the last pre-close midquote, representing the outer return. Those are the return from

pre-close midquote to the opening price (ret to open), the return from pre-close midquote

to pre-close midquote the next day (ret to preclose), the return from pre-close midquote

to the closing price the next day (ret to close) and the return from pre-close midquote to
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the opening price two days later (ret to open 2).

Besides the approach of unbiasedness regressions, there are also other approaches to

measure price efficiency. For instance, variance ratio tests introduced by Lo and MacKin-

lay (1988) compare stock variances over various time horizons. In case of efficient prices,

the variances must be additive due to serial independence of returns. Another measure

of price efficiency is cross-autocorrelation between asset returns and lagged market re-

turns, quantifying the time required to incorporate information into assets. This measure

is used by Saffi and Sigurdsson (2011) who show that constraints on short-selling harm

price efficiency and Bris et al. (2007) who find that negative information is incorporated

into prices more quickly in countries where short-selling is allowed.

In order to quantify potential liquidity shocks ind the auction adequately, a new vari-

able capturing the price reversion throughout an auction is defined. This variable is

extracted by analyzing the price path of a stock throughout the auction and seeking out

the peak or trough of the price curve and subsequently calculating the reversion to the fi-

nal price. In algorithmic terms, we first locate the farthest dislocation of any hypothetical

uncrossing price throughout the auction:

cumul maxs,t = cumul retss,t,l∗ where l∗ = arg max
l

(∣∣cumul retss,t,l∣∣) . (13)

In the next step, the absolute dislocation from the maximum cumulative return is defined

as the reversion variable:

reversions,t = close returns,t − cumul maxs,t (14)

due to the properties of logarithmic returns. Following this definition, a monotonously

increasing or decreasing price path results in a reversion parameter 0. In contrast, it

will yield highly positive results if there is an initial upward- or downward spike which

is subsequently compensated towards the end of the auction. Since this section operates

on aggregated data as opposed to before, table 3 represents updated summary statistics.

There are two important changes with respect to the new data. First, we are now pri-

marily looking at variables derived from the price path of assets. Second, the number of

observations has decreased by a factor of approximately 61 due to the aggregation process.

Keeping in mind that the aim of this section is the analysis of the interaction between

price discovery path and price efficiency, we need to define a framework allowing statistical

tests. One common way to achieve this is by grouping the data into discrete quantiles, that

are subsequently testable against one another. For this purpose, let K = {K1, K2, . . . , K5}
be a set of dummy variables, where K1(K5) represents the bucket containing stock-days
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N µ σ 5% 20% 40% 50% 60% 80% 95%

log close volume40109 10.47 2.27 6.66 8.64 10.09 10.51 10.94 12.46 14.19

initial ret 35740 0.09 0.64 -0.57 -0.16 0.04 0.09 0.14 0.30 0.84

close return 40056 0.05 0.26 -0.32 -0.11 0.00 0.05 0.09 0.20 0.41

ret to open 38285 0.07 1.68 -1.41 -0.44 -0.06 0.09 0.23 0.60 1.61

ret to preclose 39929 -0.02 2.90 -3.12 -1.07 -0.24 0.06 0.34 1.13 2.92

ret to close 39929 0.02 2.91 -3.12 -1.02 -0.19 0.11 0.40 1.19 2.97

cumul max 35442 0.29 2.46 -3.67 -2.08 -0.52 0.58 1.06 2.61 4.39

cumul max secs40111 93.37 117.66 0 10 40 40 60 150 360

reversion 40106 -0.24 2.35 -4.23 -2.41 -0.90 -0.44 0.44 1.98 3.59

Table 3: Descriptive statistics of aggregated closing auction data. This table presents the descriptive statistics over the data
aggregated for each stock-day, including distributional information. log close volume represents the logarithmic volume traded
at close, initial ret represents the return between the last midquote of the continuous phase and the first LOB of the closing
auction, close return represents the return from the last midquote of the continuous phase to the closing price. ret to open,
ret to preclose and ret to close represent the return between the last midquote of the continuous phase and the following day’s
open, preclose midquote and closing price respectively. The cumul max and reversion parameters are defined in eqs. (13)
and (14). max cumul secs represents the number of seconds after the beginning of the closing auction, at which cumul max
is reached.

with the lowest(highest) values. The variables in K are one if an observation falls into

a given quantile and zero otherwise. Importantly, the quantiles are assigned within each

stock, such that biases caused by unobserved heterogeneity within stocks are mitigated.

For this analysis, the variables reversion and cumul max are used as a basis for the

dissemination into quantiles. Consequently, stocks are distributed evenly across quantiles.

Upon interaction with the unbiasedness regressions by Biais et al. (1999) we get the

following regression equation:

outer returns,t =
5∑
j=1

βj(Kj × close returns,t) + εs,t. (15)

where outer return ∈ {ret to open, ret to preclose, ret to close, ret to open 2} is a place-

holder variable representing all previously introduced outer returns. In order to deter-

mine efficiency of prices, we can assess the individual coefficients. Prices are efficient if

close return is an unbiased predictor for outerreturn such that β equals one, constitut-

ing the null-hypothesis H0 : β = 1. Consequently, the rejection of the null implies price

inefficiency. In addition to this, two more Wald tests are conducted following Baltagi

(2011, Section 7.9) in order to to assess the overall efficiency closing prices across quan-

tiles. The first test is conducted to assess whether all the coefficients are jointly equal to

one, which is referred to as the test for joint efficiency. Thereby, the test statistic fol-

lows a χ2 distribution with five degrees of freedom. The second test assesses whether the

sum of all coefficients equals the number of quantiles, which implies efficiency on average
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Quantiles based on reversion variable

Dep. Variable ret to open ret to preclose ret to close ret to open 2

N 38285 39929 39929 38214

R-squared 0.0142 0.0043 0.0061 0.0061

Quantiles reversion reversion reversion reversion

K1 × close return 0.7767* 0.8441 1.0252 1.0059

(0.0573) (0.3433) (0.8793) (0.9771)

K2 × close return 0.9109 0.6594** 0.8154 0.9621

(0.2590) (0.0343) (0.2622) (0.8297)

K3 × close return 0.8876 0.8205 0.9668 1.2960**

(0.1209) (0.2198) (0.8305) (0.0329)

K4 × close return 0.5691*** 0.5824*** 0.6637** 0.6052*

(0.0000) (0.0062) (0.0308) (0.0679)

K5 × close return 0.7277* 0.5895** 0.6845* 0.5237**

(0.0561) (0.0255) (0.0889) (0.0223)

Joint Efficiency 34.9437*** 19.3526*** 8.8856 13.1533**

(0.0000) (0.0017) (0.1137) (0.0220)

Total Efficiency 124.8849*** 32.4652*** 63.4125*** 58.2112***

(0.0000) (0.0000) (0.0000) (0.0000)

Table 4: Results of unbiasedness regressions quantiled by reversions. This table shows the results of the unbiasedness regressions
defined in eq. (15). The dependent variables are represented by returns from preclose to open, preclose to preclose the next
day and preclose to close the next day. The independent variable is the 10-minute closing return. Quantile-dummy variables
{K1,K2, . . . ,K5} are assigned within each stock based on the reversion variable defined in eq. (14), where K1(K5) is one for
observations with low(high) reversions and 0 otherwise. The covariance matrix is adjusted to be robust to heteroskedasticity. In
contrast to other tables, the null-hypothesis for point estimates of each parameter is H0 : β = 1. The lower part of the table
contains two Wald tests. The first one test for joint efficiency, which tests for all coefficients being equal to one. The second
one tests for the sum of coefficients to be equal to five. The quoted values for these two tests represent the test statistic, which
follows a χ2 distribution under the null-hypothesis. All values in parentheses are p-values. *, ** and *** denote significance at
the 1%, 5% and 10% confidence level respectively for all tests.

across quantiles. This is referred to as test for total efficiency. Finally, the covariance

matrix for all regressions is corrected using the White (1980) procedure and thus robust

to heteroskedastic residuals.

The results of the unbiasedness regressions interacted with quantiles based on the

reversion variable are presented in table 4. The upper part of the table shows the point

estimates for coefficients of each quantiled parameter and tests them against the efficiency

hypothesis H0 : βj = 1. From the point estimates we can see that the predictive power is

very low with R-squared estimates of 1.4% at most26. All but one coefficient are estimated

to be below one. The most significant point estimates are consistently clustered around

the interactions with K4 and K5 across all four return horizons. In table 5, where the

26Hence, trading on any of the findings from these regressions would unlikely be a profitable strategy
owing to the large variance of errors.
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Quantiles based on maximum cumulative returns

Dep. Variable ret to open ret to preclose ret to close ret to open 2

N 38285 39929 39929 38214

R-squared 0.0114 0.0037 0.0053 0.0047

Quantiles cumul max cumul max cumul max cumul max

K1 × close return 0.7140** 0.4722*** 0.5386*** 0.4601***

(0.0159) (0.0020) (0.0078) (0.0037)

K2 × close return 0.4109*** 0.8159 0.9057 0.6936

(0.0000) (0.3753) (0.6508) (0.2535)

K3 × close return 0.7117*** 0.9694 1.1976 1.2584

(0.0002) (0.8648) (0.2759) (0.1874)

K4 × close return 0.8972 0.9250 1.1130 1.0282

(0.2139) (0.5925) (0.4283) (0.8652)

K5 × close return 0.8712 0.7028* 0.8592 1.0375

(0.2171) (0.0839) (0.4195) (0.8488)

Joint Efficiency 39.5913*** 13.5973** 9.7529* 11.5172**

(0.0000) (0.0184) (0.0825) (0.0420)

Total Efficiency 84.6176*** 43.8890*** 79.3454*** 53.4488***

(0.0000) (0.0000) (0.0000) (0.0000)

Table 5: Results of unbiasedness regressions quantiled by maximum cumulative returns. This table shows the results of the
unbiasedness regressions defined in eq. (15). The dependent variables are represented by returns from preclose to open, preclose
to preclose the next day and preclose to close the next day. The independent variable is the 10-minute closing return. Quantile-
dummy variables {K1,K2, . . . ,K5} are assigned within each stock based on the cumul max variable defined in eq. (13), where
K1(K5) is one for observations with low(high) maximum cumulative returns and 0 otherwise. The covariance matrix is adjusted
to be robust to heteroskedasticity. In contrast to other tables, the null-hypothesis for point estimates of each parameter is
H0 : β = 1. The lower part of the table contains two Wald tests. The first one test for joint efficiency, which tests for all
coefficients being equal to one. The second one tests for the sum of coefficients to be equal to five. The quoted values for these
two tests represent the test statistic, which follows a χ2 distribution under the null-hypothesis. All values in parentheses are
p-values. *, ** and *** denote significance at the 1%, 5% and 10% confidence level respectively for all tests.

quantiles are based on the variable cumul max, we can observe a different pattern. While

the overwhelming majority of coefficients are likewise below zero, the significant deviations

occur in K1 across all return horizons.

These observations imply that certain price paths result in more efficient closing prices

than others. More specifically, we see that reversions with highly positive values and

cumul max with low values individually underperform. This indicates that closing auc-

tions with an initial negative spike, followed by a positive correction result in inefficient

closing prices. More specifically, in both of both quantile dimensions the coefficients in

these cases are significantly lower than one, which implies a correction with respect to

each of the four analyzed return horizons.

In terms of price efficiency across coefficients, both tables 4 and 5 show similar results.

The joint tests for efficiency, which tests for all coefficients being jointly equal to one, is
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rejected for all models except for the ret to close horizon. The tests for total efficiency,

testing the sum of coefficients being equal to five, is highly rejected across all horizons.

These findings indicate that closing prices are rather inefficient and are followed by price

reversions over all horizons. One explanation as to why ret to close is not rejected in

the test for joint efficiency could be explained by a positive correlation of closing returns

caused by liquidity shocks by large financial institutions that are forced to rebalance their

portfolios in sync. As shown in Raillon (2020), the market design of closing auction is

very conducive for this type of order flow.

Importantly, this is not the first time in the literature that the inefficiency of clos-

ing prices has been pointed out. Bogousslavsky and Muravyev (2020) also point out that

closing returns on both NYSE and NASDAQ revert overnight and therefore are detrimen-

tal to price discovery. They also find that closing prices lead to violated put-call parity

due to liquidity-caused price dislocations. In addition to this, Hu and Murphy (2020)

are concerned about the efficiency of a dealer-based system and show that call auctions

comparatively perform better in terms of price efficiency.

6 Conclusion

The recent shift in trading volume to closing auctions has lead to an increasing reliance

on closing prices, for instance in terms of benchmarking fund performances. For this

reason, the closing price is the most important transaction price throughout the entire

day, as it matches the larges amount of trading volume. Nonetheless, academic literature

has not yet properly addressed the price discovery process of this price throughout the

auction. Particularly large passive investors who follow a mandate and rebalance their

portfolio raise questions about how much new information is actually revealed during

these auctions and how much is just uninformed demand for liquidity. Consequently, this

research is particularly relevant for regulators who have been looking into the introduction

of additional rules concerning the fragmentation of such auctions or for regulators who

are contemplating about their pricing strategies in order to incentivize certain types of

order flow.

This paper presents an analysis which is based on granular order-level data of 69

Swiss equities, directly obtained from SIX Securities & Exchanges (SIX) over the course

of three full calendar years 2018–2020. For this analysis, each closing auction is split into

10-second intervals in order to allow for time-varying effects throughout the auction. Over

such a comprehensive data sample various conclusions are drawn. First, most of the price

dislocations from the last observed price in the continuous auction are reversed until the
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end of the auction. This indicates that such auctions are working well in absorbing liquid-

ity shocks and counteracting potential price impacts. Only during the last two minutes

of the auction, the hypothetical uncrossing price approximates the ultimate clearing price

of the closing auction.

The second main finding is concerned with the behavior of order flow during the

auction and the distinction between imbalances of market- and aggressive limit orders.

Specifically, investors submitting market orders are found to be non-reactive to the past

price path, whereas aggressive limit orders are submitted aimed to reverse such price

dislocations. This propensity monotonously increases over the course of the auction.

Importantly, however, aggressive limit orders do not contribute new information to the

closing auction but are merely reactive in nature. This is not true for market order

imbalances which negatively predict the remaining return in the auction. This finding

suggests that overall, imbalances in market orders lead to dislocations in price that are

subsequently compensated by aggressive limit orders.

The third finding concerns overnight price efficiency as this pattern of price dislocation

and subsequent reversion may accidentally hide informative order flow. The analysis finds

that closing returns are on average inefficient in the context of overnight returns and tend

to revert to a certain extent. This effect is particularly pronounced following auctions

where prices spike downward and are subsequently reverting upward. This indicates that

auctions are absorbing informative sell order flow.

The results in this analysis clearly suggest that price discovery is an important aspect of

the closing auction. Particularly due of the importance of these auctions for the absorption

of large liquidity shocks. This function becomes clear when looking at the granular order

flow, when initial price shocks are compensated over the course of the auction potentially

at the expense of informative order flow. Based on these results, further research should

be conducted with respect to the design of incentives for both liquidity providers and -

takers in such auctions. This may be important research in order to optimize the balance

between the absorption of liquidity shocks and the incorporation of new information into

closing prices.
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Appendix

6.1 Figures
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Figure 9: Visualization of imbalance measures. These two plots visualize the two imbalance measures defined in section 3. The
top plot presents the imbalance measure used in this analysis, as defined in eq. (3). The bottom plot presents the traditional
imbalance measure frequently used in the academic literature, which is presented defined in footnote 10. For both plots, f1 and
f2 represent non-negative order flows. The vertical axis represents the resulting imbalance. For visualization purposes, the plane
is color-mapped to the vertical axis to underline the outcome.
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Figure 10: Results from unbiasedness regressions. This table presents the results from the unbiasedness regressions defined in
eq. (15), which regress the return between the last midquote before the closing auction (close return) onto the return between
the same starting point and the hypothetical uncrossing price at interval l within the auction (cumul rets). Each panel depicts the
coefficient estimates interacted with a dummy variable for each size quantile in Q = {Q1, Q2, Q3, Q4}, where Q1(Q4) represents
stocks with small(large) traded volume during the continuous trading phase on the same day prior to the closing auction. The
shaded area on the right side of each plot represents the period during which the auction is ended randomly.
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Figure 11: Prediction of pooled market order imbalances by interval. This figure shows the predictive coefficients of the
multinomial Logit approach as stated in eq. (12). The dependent variable mkt imb represents the imbalance of market orders
which has been pooled forward over 30 seconds. The left(right) column of subplots depicts marginal effects for the case when
mkt imb is negative(positive). The solid lines represent the θ coefficients of the independent variables cumul rets lag pos in
the top row and cumul rets lag pos in the bottom row. One model is estimated for every 10-second interval throughout the
auction. The dotted lines around the coefficient estimates represent the 95% confidence interval for the parameter estimates.
The horizontal axis represents the number of seconds since the start of the auction. The vertical axis representing the marginal
effect of the independent variable is shared across all subplots within each column.
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Figure 12: Prediction of pooled aggressive limit order imbalances by interval. This figure shows the predictive coefficients of the
multinomial Logit approach as stated in eq. (12). The dependent variable lim imb represents the imbalance of aggressive limit
orders which has been pooled forward over 30 seconds. The left(right) column of subplots depicts marginal effects for the case
when mkt imb is negative(positive). The solid lines represent the θ coefficients of the independent variables cumul rets lag pos
in the top row and cumul rets lag pos in the bottom row. One model is estimated for every 10-second interval throughout the
auction. The dotted lines around the coefficient estimates represent the 95% confidence interval for the parameter estimates.
The horizontal axis represents the number of seconds since the start of the auction. The vertical axis representing the marginal
effect of the independent variable is shared across all subplots within each column.
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Figure 13: Comparison of McFadden R-Squared for pooled imbalances. This figure shows the estimated McFadden R-Squared
based on the multinomial Logit regression presented in eq. (9). The line with the crosses(triangles) represents the results of the
model with the market (aggressive limit) order imbalances pooled over 30 seconds forward as dependent variable. The definition
of the McFadden R-Squared is presented in eq. (10). The horizontal axis represents the number of seconds since the start of the
auction.
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Figure 14: Prediction of pooled inflow- and outflow imbalances. This figure shows the results of the multinomial Logit regression
approach defined in eq. (9). The first row(second) row shows the results for the models with mkt in imb f30(mkt out imb f30)
as dependent variable representing imbalances of market order inflows(outflows) pooled over 30 seconds forward. The first
third(fourth) row shows the results for the models with lim in imb f30(lim out imb f30) as dependent variable representing
imbalances of aggressive limit order inflows(outflows) pooled over 30 seconds forward. The left(center) column shows coefficient
estimates in cases where the imbalance is negative(positive). The third column depicts the estimate for the McFadden R-Squared.
The horizontal axis is shared among all subplots in this figure and represents the number of seconds since auction start.
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Figure 15: Prediction of future return using pooled order imbalances by interval. This figure shows the predictive coefficients
of the multinomial Logit approach as stated in eq. (12). The dependent variable future ret represents the return between
interval l and the end of the auction. The left(right) column of subplots depicts marginal effects for the case when future ret is
negative(positive). The independent variables shown are mkt imb in the top row, lim imb in the middle row and cumul rets lag
in the bottom row. One model is estimated for every 10-second interval throughout the auction. All metrics of order imbalances
are pooled 30 seconds backwards. The dotted lines around the coefficient estimates represent the 95% confidence interval for
the parameter estimates. The horizontal axis represents the number of seconds since the start of the auction. The vertical axis
representing the marginal effect of the independent variable is shared across all subplots within each row.
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Figure 16: Comparison of McFadden R-Squared for future returns (pooled). This figure shows the estimated McFadden R-
Squared based on two multinomial Logit regression models, both based on eq. (12). First, the full model includes all the variables.
Second, the reduced variable does not include lagged cumulative returns and only relies on imbalance measures. The definition
of the McFadden R-Squared is presented in eq. (10). The horizontal axis represents the number of seconds since the start of the
auction.

110



6.2 Tables

Closing volume Continuous volume Closing return Size quantile

N µ σ µ σ µ σ Q1 Q2 Q3

ABBN 749 37.94 20.25 99.21 45.86 -0.00 0.22 0 0 749

ADEN 749 15.55 10.99 34.94 16.96 0.02 0.26 0 365 384

ALC 432 25.47 27.35 61.89 57.13 0.01 0.27 0 33 399

ALLN 749 1.39 1.07 2.65 1.83 0.04 0.21 742 7 0

AMS 749 7.98 5.52 43.37 30.08 0.01 0.44 0 289 460

ARYN 749 1.24 1.55 6.88 11.33 0.00 0.59 558 178 13

BAER 749 14.13 12.25 29.66 14.57 0.01 0.35 0 492 257

BALN 749 7.24 3.94 14.63 6.73 -0.03 0.39 30 705 14

BARN 749 6.71 6.35 12.20 10.41 0.01 0.24 163 576 10

BCVN 749 1.69 5.66 3.60 3.19 0.06 0.32 707 42 0

BEAN 749 1.18 3.38 2.81 2.13 0.02 0.39 733 16 0

BION 749 1.42 6.08 4.92 3.01 0.02 0.34 668 81 0

BUCN 749 1.91 1.75 5.85 3.44 0.02 0.25 591 158 0

CFR 749 37.49 17.69 91.60 48.09 0.01 0.30 0 0 749

CLN 749 7.80 4.75 23.79 18.95 0.01 0.31 11 621 117

CMBN 749 2.15 2.02 5.77 3.32 0.02 0.23 624 124 1

CSGN 749 32.65 18.96 102.26 45.09 0.01 0.25 0 0 749

DKSH 749 1.92 2.67 4.68 3.24 0.03 0.27 664 83 2

2DOKA 749 2.13 1.52 6.42 5.09 0.02 0.26 575 171 3

DUFN 749 7.15 5.55 23.26 15.99 0.02 0.37 5 618 126

EMSN 749 5.61 6.82 10.91 5.75 0.03 0.24 187 557 5

FHZN 749 3.81 2.11 9.79 6.07 0.01 0.24 282 462 5

FI-N 749 4.47 3.75 12.09 6.23 0.02 0.28 185 553 11

FORN 749 1.05 0.92 4.05 3.76 0.02 0.31 677 71 1

GALE 749 2.24 2.35 5.67 3.40 0.03 0.26 623 126 0

Continued on next page
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Closing volume Continuous volume Closing return Size quantile

N µ σ µ σ µ σ Q1 Q2 Q3

GAM 749 1.12 1.20 4.77 5.24 -0.03 0.40 630 114 5

GEBN 749 19.34 9.96 42.64 24.55 0.01 0.24 0 177 572

GIVN 749 22.50 12.28 53.24 28.44 0.03 0.23 0 29 720

HELN 749 3.05 1.56 8.11 4.76 0.01 0.24 423 323 3

IDIA 749 1.66 1.94 7.92 6.34 0.02 0.35 473 270 6

KNIN 749 11.11 7.15 24.30 13.63 0.03 0.29 0 629 120

LAND 749 1.63 1.14 6.00 4.46 0.03 0.35 593 153 3

LHN 749 31.70 15.66 75.65 37.74 0.02 0.26 0 3 746

LISN 749 4.43 3.01 7.48 5.26 0.09 0.36 500 249 0

LISP 749 5.74 3.81 12.06 7.00 0.03 0.36 139 603 7

LOGN 749 11.22 24.75 37.54 27.07 0.01 0.23 0 393 356

LONN 749 28.13 14.77 78.15 42.55 -0.00 0.26 0 1 748

NESN 749 142.97 112.34 313.69 155.28 -0.01 0.27 0 0 749

NOVN 749 116.13 74.01 268.10 124.89 -0.01 0.30 0 0 749

OERL 749 3.32 2.20 9.38 6.54 -0.01 0.31 316 426 7

PARG 723 2.30 4.42 3.84 3.58 -0.06 3.11 676 47 0

PGHN 749 15.41 22.38 38.51 21.69 0.00 0.37 0 281 468

PSPN 749 4.76 3.46 8.67 6.04 0.03 0.22 367 381 1

PWTN 513 1.28 1.54 6.39 12.88 0.06 1.26 384 117 12

ROG 749 125.49 78.18 286.97 172.26 0.00 0.26 0 0 749

ROSE 749 1.01 2.90 6.11 9.13 0.07 0.46 566 164 19

SCHN 749 2.05 4.41 5.68 3.49 -1.40 9.94 620 129 0

SCHP 749 9.38 4.80 25.95 13.66 0.03 0.23 0 614 135

SCMN 749 21.98 12.15 49.10 30.54 0.01 0.22 0 87 662

SGSN 749 16.10 11.21 35.49 28.81 0.01 0.27 0 392 357

SIGN 563 3.71 7.29 8.30 11.85 0.10 0.75 339 213 11

Continued on next page
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Closing volume Continuous volume Closing return Size quantile

N µ σ µ σ µ σ Q1 Q2 Q3

SIKA 639 21.03 14.53 58.47 31.77 0.02 0.27 0 36 603

SLHN 749 15.88 9.76 52.96 22.77 -0.00 0.24 0 24 725

SOON 749 13.75 7.98 35.44 20.18 -0.02 0.36 0 378 371

SPSN 749 7.14 5.11 10.93 7.71 0.02 0.27 219 526 4

SRAIL 429 2.80 4.80 9.44 19.64 0.05 0.42 256 164 9

SRCG 749 4.76 6.81 13.50 21.60 0.01 0.27 246 469 34

SREN 749 34.70 26.82 86.73 49.13 0.01 0.28 0 0 749

STMN 749 10.24 5.60 24.68 15.15 0.00 0.29 1 624 124

SUN 749 1.73 1.24 5.55 5.06 0.00 0.48 637 109 3

SWON 295 1.92 4.96 5.46 8.72 0.07 0.72 245 47 3

TECN 749 2.61 3.30 4.62 3.96 0.05 0.31 631 118 0

TEMN 749 11.38 22.47 30.85 23.63 0.01 0.38 0 525 224

UBSG 748 47.45 26.14 136.04 60.07 -0.00 0.26 0 0 748

UHR 749 20.22 9.05 51.01 28.38 0.01 0.29 0 142 607

UHRN 749 1.64 1.62 5.90 3.70 0.03 0.29 564 185 0

VACN 749 4.49 3.36 14.49 8.31 0.01 0.30 59 667 23

VIFN 749 7.26 4.70 24.09 14.74 0.05 0.29 0 634 115

ZURN 748 44.73 28.84 113.88 66.18 0.01 0.25 0 0 748

Table 6: List of all securities in the analysis. This table contains all the 69 equities analyzed. All of the securities were passed
through the filters introduced in section 3. The table contains aggregated statistics for each security on a daily basis, including
volumes and returns. The last three columns count the number of times a security falls into a size quantile across stocks within
days where Q1(Q3) represents stocks with the lowest(highest) continuous trading volume.
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Panel A: Size quantile 1

µ σ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

mkt in imb 0.05 4.96 -11.29 -10.29 -8.12 0.00 0.00 0.00 8.36 10.37 11.33

mkt out imb 0.00 2.12 -5.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.75

lim in imb -0.23 5.66 -11.73 -11.00 -9.75 0.00 0.00 0.00 9.25 10.72 11.50

lim out imb -0.15 3.34 -10.70 -8.36 0.00 0.00 0.00 0.00 0.00 0.00 9.87

mkt imb 0.06 5.32 -11.35 -10.48 -8.76 0.00 0.00 0.00 8.92 10.55 11.39

lim imb -0.31 5.85 -11.86 -11.14 -9.93 0.00 0.00 0.00 9.35 10.76 11.55

ival rets 0.00 0.50 -0.63 -0.26 -0.06 0.00 0.00 0.00 0.06 0.27 0.63

cumul rets 0.07 1.83 -4.07 -2.84 -1.34 -0.42 0.07 0.54 1.57 2.87 4.24

Panel B: Size quantile 2

µ σ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

mkt in imb 0.07 5.95 -12.26 -11.42 -9.87 0.00 0.00 0.0 10.00 11.48 12.29

mkt out imb 0.01 2.44 -7.64 0.00 0.00 0.00 0.00 0.0 0.00 0.00 7.83

lim in imb -0.23 6.81 -12.60 -11.96 -10.99 0.00 0.00 0.0 10.67 11.76 12.44

lim out imb -0.12 3.90 -11.56 -9.64 0.00 0.00 0.00 0.0 0.00 8.77 11.14

mkt imb 0.08 6.33 -12.32 -11.55 -10.23 0.00 0.00 0.0 10.33 11.60 12.35

lim imb -0.29 6.95 -12.62 -12.01 -11.06 0.00 0.00 0.0 10.69 11.77 12.44

ival rets 0.00 0.55 -0.80 -0.37 -0.10 0.00 0.00 0.0 0.10 0.37 0.81

cumul rets 0.06 1.93 -4.51 -3.03 -1.80 -0.47 0.07 0.6 1.91 2.98 4.39

Table 7: Descriptive statistics of granular closing auction data. This table presents the descriptive statistics over all 10-
second intervals over the closing auctions, including distributional information. ival rets represents the return between two
interval prices as defined in eq. (1), mkt in imb(mkt out imb) represents the imbalance of market order inflows(outflows),
lim in imb(lim out imb) represents the imbalance of aggressive limit order inflows(outflows) and mkt imb(lim imb) represents
the imbalance of market(aggressive limit) orders. All imbalances are computed according to eq. (3). All variables comprise around
3 million observations across intervals l ∈ {0, 1, . . . , 60}.
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Panel C: Size quantile 3

µ σ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

mkt in imb 0.05 7.54 -13.26 -12.61 -11.62 0.00 0.00 0.00 11.64 12.63 13.29

mkt out imb -0.03 3.76 -11.60 -9.05 0.00 0.00 0.00 0.00 0.00 8.35 11.49

lim in imb -0.18 8.26 -13.52 -12.92 -12.04 -8.52 0.00 6.83 11.89 12.79 13.39

lim out imb -0.10 4.97 -12.52 -11.34 -7.30 0.00 0.00 0.00 0.00 11.07 12.31

mkt imb 0.01 8.15 -13.31 -12.71 -11.87 -7.30 0.00 7.33 11.86 12.73 13.34

lim imb -0.21 8.36 -13.49 -12.88 -12.01 -8.93 0.00 7.92 11.85 12.74 13.35

ival rets 0.00 0.61 -0.95 -0.45 -0.16 0.00 0.00 0.00 0.16 0.46 0.97

cumul rets 0.02 1.96 -4.62 -3.04 -1.96 -0.49 0.05 0.59 1.96 2.93 4.26

Panel D: Size quantile 4

µ σ 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

mkt in imb -0.01 9.62 -14.69 -14.11 -13.24 -10.54 0.00 10.46 13.23 14.11 14.69

mkt out imb -0.09 5.88 -13.63 -12.75 -10.59 0.00 0.00 0.00 9.42 12.66 13.56

lim in imb -0.08 10.28 -14.85 -14.25 -13.42 -11.27 0.00 11.15 13.34 14.18 14.80

lim out imb -0.06 6.98 -13.67 -12.82 -11.49 0.00 0.00 0.00 11.36 12.74 13.63

mkt imb -0.11 10.66 -14.81 -14.28 -13.53 -11.81 0.00 11.69 13.50 14.27 14.80

lim imb -0.06 10.39 -14.80 -14.19 -13.35 -11.26 0.00 11.17 13.29 14.12 14.75

ival rets 0.00 0.54 -0.83 -0.42 -0.18 0.00 0.00 0.01 0.18 0.43 0.84

cumul rets -0.00 1.48 -3.06 -2.26 -1.37 -0.45 0.01 0.46 1.39 2.17 2.94

Table 7: (Continued)
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Dep. Variable mkt imb mkt imb mkt imb lim imb lim imb lim imb

initial ret -0.1422** -0.1293* -0.1826*** -0.8226*** -0.2394*** -0.1779***

(-2.1602) (-1.9336) (-7.0568) (-16.531) (-5.1996) (-5.7441)

ival rets lag pos -0.1224* -0.1118 -0.3216*** -0.2753 0.4177*** 0.1360

(-1.9389) (-1.5126) (-4.4161) (-1.1984) (3.0048) (1.4211)

ival rets lag neg -0.0360 -0.0109 -0.2230*** -0.4603** 0.4371*** 0.1714*

(-0.5898) (-0.1506) (-3.0426) (-2.0908) (3.1976) (1.8068)

cumul rets lag pos -0.0265 -0.0307 -1.5720*** -1.4609***

(-0.4418) (-0.5238) (-17.587) (-17.884)

cumul rets lag neg -0.0445 -0.0455 -1.6037*** -1.4846***

(-0.8440) (-0.8881) (-17.687) (-17.892)

mkt imb lag 0.0701***

(8.9412)

lim imb lag 0.1450***

(7.3243)

N 2692536 2846378 2692536 2692536 2846378 2692536

R-squared 0.0003 0.0004 0.0050 0.0079 0.0888 0.1038

Fixed Effects Day Day Day Day Day Day

Fixed Effects Interval Interval Interval Interval Interval Interval

Table 8: Results of panel regression of pooled order imbalances. This table shows the results of the panel model where order
imbalances of market- as well as aggressive limit orders (pooled over 30 seconds forward from interval l) are regressed onto
several independent variables. initial ret represents the return between the last pre-close midquote and the first LOB of the
auction, ival ret lag represents the lagged interval return and cumul rets lag represents the lagged cumulative return from the
last pre-close midquote until the current interval. The suffix pos(neg) represents the original value if it is positive(negative) and
zero otherwise. The suffix lag the lagged value by one interval. Lagged variables are calculated such that there is no overlap with
the order flow variables. The estimation is conducted with day- and interval-fixed effects, whereas t-statistics are presented in
parentheses. The covariance matrix is clustered by interval and trading day to account for shocks within identical auctions across
stocks. *, ** and *** denote significance at the 1%, 5% and 10% confidence level respectively.
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In current equity markets where closing auctions capture an increasing share of overall vol-

ume, price accuracy is paramount. Competition for order flow may be harmful for the price

discovery process throughout the auction. In this paper, we analyse the final order books

in closing auctions for a sample of Swiss equities and show that closing prices can be very

sensitive towards removals of small percentages of volume. This is true for both limit- and

market orders individually. In addition to this, we show that for large stocks consistently

around 50% of executed orders are market orders whereas the order book composition of

small stocks shows higher variance. With respect to overnight returns, we show that closing

order books have no predictive power over the direction of overnight returns, however, a

large share of market sell orders entails elevated volatility overnight. Finally, we look at

price discovery contributions auctions and find that closing auctions are much less beneficial

compared to overnight returns, indicating that only little new information is emerging during

closing auctions.
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1 Introduction

Throughout the European trading landscape, significant increases in market shares of

closing auction have been observed over the last decade. On Euronext Paris for instance,

CAC40 stocks have been trading more than 40% of their volume during closing auctions in

the year 2019 (Raillon, 2020). The reasons for this are multi-faceted. First, stricter regula-

tory requirements around best execution have put brokers under increasing scrutiny with

respect to the fulfillment of their client’s orders. In this context, relying on the universally

accepted closing prices mitigates the risk of misconduct. Second, investors increasingly

prefer to deploy capital through low-cost passive strategies, that have been shown to

perform on par with actively managed funds after fees (Easley et al., 2021; Sushko &

Turner, 2018). Third, the rise of high-frequency traders increased adverse selection dur-

ing the continuous trading phase, where sheer speed constitutes an advantage (Baldauf

& Mollner, 2020; Biais et al., 2015; Budish et al., 2015). Finally, execution algorithms

are learning that there are better execution opportunities during closing, since there is

less adverse-selection (according to (3)). This in turn emphasizes end-of-day trading even

stronger, eventually triggering a positive feedback-loop with volume clustering in those

auctions (Pagano, 1989).

Such increasing reliance on closing auctions in comparison to intraday trading also

raises certain questions. First and foremost, when more volume shifts into these auctions

price discovery becomes more important, particularly given that the closing price marks

the reference price to many market participants (Kandel et al., 2012). Simultaneously,

it becomes more attractive for other venues who seek to take market share from the

main exchange. Despite such behavior representing healthy competition between trading

venues, there may be adverse consequences associated with it. For instance, the universal

reference price for all other market closings is determined solely on the respective primary

exchange. However, accurate price discovery crucially depends on the accumulation of all

the participating volume, which in turn reveals the aggregation of all information to the

entire market (Madhavan, 1992).

The question of market fragmentation and price discovery has been a very important

one in academic literature in recent years. Despite several contradicting findings, the

overall consensus views market fragmentation as positive for market quality if investors

have simultaneous access to all venues and are interested in trading liquid large-cap stocks

that usually have high volumes. Some relevant papers on this topic include Aitken et al.

(2017), Degryse et al. (2015), Gomber et al. (2017), Haslag and Ringgenberg (2016),

O’Hara and Ye (2011), and Pagano et al. (2013). Despite the overall favorable view with

respect to fragmentation, all of these papers look at continuous trading in isolation, which
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is an order-driven market such that market participants can trade continuously. Closing

auctions on the other hand are designed as call auctions following Madhavan (1992).

During call auctions, orders are collected into one single order book for a predefined

period of time and subsequently crossed, in order to obtain one single consensus price1.

The fact that the universally accepted closing price is solely determined on one single

venue2 raises the question of whether fragmentation may have detrimental effects on the

process of price discovery.

In order to understand the robustness of closing prices it is necessary to conduct a

detailed investigation into the composition of relevant order books at the end of each auc-

tion. So far, the academic literature has not considered the order book of closing auctions

but instead focused primarily on the ultimate auction price. One of the measures that

cannot be captured when limiting the analysis solely onto prices are order imbalances. In

the academic literature, however, it has been shown that order books and by an extension

to this order imbalances during the continuous trading phase can contain information

about the future price movement (Chordia et al., 2002, 2008; Chordia & Subrahmanyam,

2004; Su et al., 2012). Even though this has not yet been investigated formally in the

context of closing auctions, it is conceivable that there are similar effects at play.

As a consequence of this, the first contribution of this paper lies in the granular analysis

of the final order books as a part of closing auctions. Those order books manifest the

basis for the determination of both closing price and volume traded. Of interest for this

analysis are first and foremost the orders that are in fact executed after the uncrossing of

the order book. Limit orders that have not been executed3 have no impact on the closing

price and are therefore irrelevant for the ultimate uncrossing. Nonetheless, there may be

opportunistic investors placing significantly higher(lower) limit sell(buy) order in order

to take advantage of sudden upward(downward) spikes in price. The second contribution

lies in the analysis of the linkage between closing order books and returns both within

the closing auction as well as overnight.

More specifically, this paper aims to address three main research questions. The first

question relates to how sensitive closing prices are with respect to the outflow or absence

of volume from the order book. For this purpose, multiple simulations are conducted

where a certain percentage of orders is removed from the top of the order book, both

symmetrically and asymmetrically. These outflows could represent an outflow of volume

from the main exchange due to increasing fragmentation. Large adjustments in price

1This process is nothing else than crossing aggregated demand and supply to reach the optimal price
and quantity.

2The decisive venue is usually the listing exchange of a given security.
3Limit buy(sell) orders with limit price below(above) the ultimate auction price expire without exe-

cution.
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caused by volume outflows would indicate elevated sensitivity of prices, consequently

implying that order flow should be concentrated on one venue. The results show that

particularly in smaller (i.e. lower volume) stocks there are large amounts of volume

beyond the closing price, indicating higher share of opportunistic investors relative to the

total order book. The larger the stocks, the closer the volume is clustered around the final

closing price. Another key result follows from the distribution of market orders at close.

Moreover, symmetrically removing all market orders in larger(smaller) stocks leaders to

smaller(larger) deviations in closing price, indicating that these orders to be more(less)

balanced. However, one-sided removal of market orders in large(small) stocks leads to

to larger(smaller) dislocations, indicating that the relative importance of market orders

versus limit orders is greater in large stocks, as investors tend to use limit orders more

frequently for small stocks.

The second research question under examination is about whether there is any predic-

tive power in closing order books with respect to overnight returns. It has already been

shown in the academic literature that closing auctions in isolation have a tendency to

mean revert overnight in price (Bogousslavsky & Muravyev, 2020). However, it has not

been examined whether these overnight reversions are significantly driven by the shape

of the order book in addition to the closing return itself. Such an effect has already

been documented empirically for market order imbalances during the continuous trading

phase (Chordia et al., 2008; Chordia & Subrahmanyam, 2004). Similarly, it is conceivable

that the same holds for the closing auction and the subsequent overnight return. How-

ever, the results of this study do not support such claims. More specifically, neither the

imbalance nor the share of buy or sell market orders can meaningfully contribute to the

prediction of overnight returns. A similar outcome is found when predicting overnight

volatility instead of overnight returns. However, it has been found that closing auctions

with a large share of market sell orders are followed by higher overnight volatility.

The third and final research question is about the quantification of price discovery

attributable to closing auctions as well as the subsequent overnight return. The pre-

viously mentioned overnight reversion of closing returns by overnight returns indicates

that both returns should have opposing effects on price discovery. For this reason, this

study quantifies the Weighted Price Discovery Contribution (WPDC) following Barclay

and Hendershott (2003), Barclay and Warner (1993), and Wang and Yang (2015) for both

of those trading phases. Surprisingly, the results show that there is no opposing nature

of the price discovery contribution of both measures. Instead, the results show that clos-

ing returns mainly consist of noise when put into context with the wider context of the

trading day. In contrast to this, overnight returns have a significantly positive impact on

price discovery. These results already account for the fact that overnight returns tend to
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be larger due to the longer time-span compared to the closing auction as well as the fact

that earnings are released outside regular trading hours.

The remainder of this paper is structured as follows. In section 2, more information

on the sample as well as institutional background is provided. Section 3 shows the first

sensitivity results with respect to the removal of top-of-book volume from closing order

books. Section 4 presents the results of the regression analysis aiming for the prediction

of overnight volatility and returns based on the closing book. Section 5 shows the com-

parative analysis of WPDCs for both closing- and subsequent overnight returns. Finally,

section 6 provides conclusive remarks and an outlook of potential further research in the

realm of closing auctions.

2 Data

The analysis in this study relies on order data provided by SIX Securities & Exchanges

(SIX) for their lit equity markets4. The data contains all orders that have been submitted

or withdrawn across 294 stocks on the lit exchange. The data provides full visibility

on normal as well as hidden orders5. Since the focus of this study is related to closing

auctions, it is first necessary to extract the relevant closing order books from the order

data. For this purpose, the design of an algorithm was required to interact with all orders

in chronological order to reconstruct the closing order books at the end of the trading

day, i.e. the closing auction. This approach is due to the fact that all incoming orders

are interacting with the current state of the order book, which in turn depends on all

previously submitted orders. This recursive procedure allows for the extraction of the full

closing order books which is subsequently used to derive the closing price and -volume

by crossing both sides of the book. This extensive data set allows for the deterministic

reconstruction of order books at each point during the trading day and for each stock.

The closing auction on SIX is designed like a normal call auction, following Madhavan

(1992). The auction starts at 17:20 following the continuous trading phase, such that

both trading phases are strictly non-overlapping. Investors are allowed to submit two

types of orders. The first type are market orders that are executed at the ultimate closing

price. Limit orders on the other hand are submitted together with a limit price. Limit

buy(sell) orders are only executed if the ultimate closing price is equal or below(above)

4Orders and trades that happen on the dark pool offering SwissAtMid that is also provided by SIX
are not included in the data. Such dark pools is mostly targeted at large institutional investors who
wish to execute their trades with minimal market impact. Therefore, this venue is usually chosen for the
execution of block trades (Bloomfield et al., 2015; Buti et al., 2017; Comerton-Forde & Putniņš, 2015;
Menkveld et al., 2017).

5One example of hidden orders are iceberg orders, where only a fraction of the full order is made
visible to other market participants.
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the limit price. The auction lasts for at least 10 minutes. Thereafter, the closing occurs

randomly within a two-minute interval, in order to prevent manipulation of the closing

price6. At the close, all market- and limit orders are gathered into aggregated demand-

and supply. The closing price is determined where (a) crossed volume is maximized and

(b) order imbalance is minimized.

The full sample period has been chosen to be between January 1, 2018 and June 30,

2021, consisting of 873 unique trading days. In addition to this, there were several filters

allowed to the data. First, only stocks were considered that had at least 250 successful

closing auctions, which represents one full year worth of trading. This filter has two main

objectives. On the one hand, it enables more balanced panels for the later analysis by

only taking into consideration stocks that have been public and on the exchange for a

minimum of one year during the sample. On the other hand, it ignores stocks that are

not frequently able to achieve a clearing and result in a closing price. Due to the nature

of how closing auctions are crossed, it happens frequently that the there exists no decisive

clearings as there are no crossing bid and ask orders. This is particularly prevalent in small

stocks and has already been discussed in Ellul et al. (2005) and Ibikunle (2015) among

others. Second, observations with absolute overnight returns of more than 10% were also

disregarded from the sample. It can be assumed that for those observations there were

some idiosyncratic events that led to such extreme price movements. Typical examples

for this are extremely positive or negative earnings releases outside trading hours. An

alternative explanation are stock splits, that are not explicitly marked in the data, but

can be inferred through price reduction of more than 50% overnight Overall, this filter

only disregards 15 observations over the entire sample and therefore has barely an impact

on sample size. The third and final filter only considers the 100 largest stocks in the data

that fulfill all of the above criteria. The size is determined by average closing volume per

stock throughout the entire sample period. In combination, these three filters result in a

cleaned dataset of around 84,400 valid observations. This indicates that it is only short

around 2,900 observations from being a perfectly balanced panel. All the selected stocks

as well as some stock-level descriptive statistics can be found in table 4 in the appendix.

In order to enhance the granularity of the analysis with consideration of stock size, a

set of size-related quantiles are introduced. More specifically, all stocks are assigned into

one of four size-quantiles in Q = {Q1, Q2, Q3, Q4} based on closing volume, i.e. traded

volume at close. In this context, Q1(Q4) represents the smallest(largest) stocks in the

samples and the quantiles are reassigned on a daily basis. Therefore, the same stock can

6Some relevant studies with respect to random endings of auctions are Comerton-Forde and Putniņš
(2011), Cordi et al. (2018), and Hillion and Suominen (2004).
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fall into multiple different size quantiles throughout the sample7. This methodology has

the advantage that within a trading day, all four quantiles are balanced. If size quantiles

were only assigned based on overall volume, Q4 would most likely be underrepresented

due to small stocks being less likely to achieve a valid clearing. Moreover, on trading days

where the panel is fully balanced, there will be exactly 25 stocks per quantile.

3 Order Book Sensitivities

In order to better understand the behavior of order books under the outflow of volume,

this section focuses on the simulation of outflows from the top of the order book. In

this context, a given percentage of volume is removed starting from the top of the order

book8. In any case, the percentage must be calculated with respect to a given base value,

which varies based on the removal algorithm applied. Consequently, all algorithms remove

volume in a deterministic manner from the order book, always starting from the top. For

the purpose of this work, there are three main algorithms applied in order to determine

this base. The first two of them focus on the full- and partial order books including both

limit- and market orders, whereas the third is only considering the latter.

There are two important points to be made before getting into the analysis. First,

the simulated outflow of volume does assume a static order book. In reality, this may

only be the case to a limited extent as other market participants have the ability to react

to price dislocations caused by such an outflow. As Parlour (1998) models order books,

there is a very high degree of endogeneity with respect to investors’ decisions. More

specifically, order submission strategies are dynamically adjusted in relation to the state

of the order book and expectations for other investors’ private information. Similarly,

Pascual and Veredas (2009) develop a model in which all investors are fully aware of all

the public information in relation to the state of the order book. Second, the outflows

do not occur randomly but from the top of the book. Therefore, this analysis presents

the worst-case scenario with respect to price dislocation for a given removal of volume.

In contrast, if volume would be removed further down in the order book, for instance

high(low) asks(bids), the price may not be affected at all since the concerned orders may

not be executed anyway. Focusing on top-of-book volume allows for a certain degree of

reproducibility as well as focus on orders that are most relevant to execution. Importantly,

however, the exact percentage price dislocations are highly sensitive with respect to the

7Details to the assignment of quantiles per stock can be found in table 4 in the appendix.
8The top of the order book translates into attractiveness from the viewpoint of the opposite side. For

instance, for buy orders the top of the book would be all market orders, followed by the limit orders with
the highest limit price and so on.
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chosen mode of removal.

The first algorithm presented here is called liquidity-based algorithm. Under this logic,

the amount of volume to be removed is based on the average of the full order book on

each side and thus including all market- and limit orders. The averaging of both sides

of the book allows for a common base for the removal of both sides of the book. That

means that an outflow of the same percentage from the same base always implies the same

amount of volume in currency-terms. This algorithm is relevant as it captures volume

beyond the clearing price on both sides. Particularly when there are large amounts of

orders in the book that are far away from the clearing price and therefore unlikely to be

executed. Such orders are not beneficial in terms of price discovery and consequently, a

removal thereof has no impact on closing prices. Under this algorithm, it is quite possible

that the resulting order book does not produce a viable clearing price anymore, as bid

and ask may not have any overlapping orders remaining. Indeed, this starts to become

an issue after removing around 40% of the volume for many of the stocks in the sample.

In this analysis, the observations are disregarded as soon as clearing is made impossible.

In practice, several studies have found issues of call auctions of smaller stocks with less

investor interest, since order books may frequently not clear due to the composition of

the order book. Examples of this include Ellul et al. (2005) and Ibikunle (2015) among

others.

The results of this first algorithm can be seen in fig. 1 for simulated percentage removals

of 5%–35%. The box-plots represent the distributions of price dislocations after removing

a given percentage of volume from the top of the book. The box-plots are designed in such

a way that the shaded area represents the inter-quartile range9 which is separated by the

median represented by a solid line. The whisks on each side cover all observations within

the 5% and 95% percentiles of the distribution. The analysis is further segmented into

the four size quantiles introduced in the previous section. The most obvious observation

in all these distributions is that the smallest quartile of stocks is much more sensitive

than all other quartiles. In fact, the plots manifest a pattern of decreasing sensitivity

with increasing size. For instance, the simulated bid(ask) removal of 35% of orders leads

to a dislocation of -636(+496) bps for small stocks versus only-123(+119) bps for high-

volume stocks. Additionally, this example also underlines that large stocks are much

more symmetric in terms of price dislocation, irrespective of whether bid or ask volume

is removed. In contrast to this, small stocks with little volume are significantly more

sensitive with respect to outflows bid volume throughout all simulated removals. This

observation indicates that the order book for these stocks is not symmetric as it is for

9The inter-quartile range refers to the 50% of the observations between the 25% and 75% percentile
of a given distribution.
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Figure 1: Distribution of price dislocations using the liquidity-based algorithm. The horizontal axis represents the percentage of
volume removed and the vertical axis represents the price deviation in basis points. The data is presented in the form of box-plots,
where the shaded area represents the inter-quartile range which is divided by a dark line representing the distribution median.
The whisks represent the 95% prediction interval of the distribution. Panel A(B) shows the impact of percentage volume removal
of bid(ask) limit orders. The results are presented for each of the size quartiles, which are computed based on continuous trading
volume and reassigned on a daily basis.

large stocks. More specifically, the increased sensitivity towards bid removals indicates

that there is generally an overhang of sell market orders beyond (i.e.ãbove) the clearing

price. Such orders may be used by investors with a long position which they may want

to close once the stock rallies sufficiently.

The liquidity-based algorithm takes into consideration outflows with respect to the full

order book. However, not all orders are in fact beneficial to the discovery of the ultimate

clearing price. More specifically, the removal of buy(sell) orders below(above) the clearing
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price has no impact on the price and is therefore less relevant. In particular, this algorithm

includes orders that try to take advantage of large but short price movements, for instance

to buy a stock during a downward spike. In order to account only for the orders that are

in fact relevant for the clearing, the execution-based algorithm is introduced. In contrast

to its previously introduced counterpart, this algorithm removes only volume that is in

fact executed at the end of the auction. Assuming that the closing price does not deviate

substantially from the pre-close midquote on most trading days, this algorithm mainly

captures orders submitted during the auction, consisting of both market- and limit orders.

Importantly, the execution volume is only a subset of all the market- and limit orders at

the closing and highly dependent on the structure of the order book. Moreover, the

executed volume must be equivalent on both sides of the book. Therefore, simultaneous

removal of the same percentage from both bid- and ask top-of-book would not have any

effect on the closing price. Moreover, there the auction will not lose its ability to clear

unless 100% of volume is removed from both sides using this algorithm.

The results from the removal using this algorithm are shown in fig. 2. In contrast to

the liquidity-based algorithms, the results here are much more comparable across all size

quartiles. Nonetheless, large stocks are most affected by removal of top-of-book volume.

One explanation for this may lie in a higher proportion of market orders as opposed to

limit orders. Market orders are used by investors who want to execute at any given price

and therefore rely on the auction’s efficient determination of a clearing price. With less

liquid stocks, investors may be more cautious and therefore prefer using limit orders due

to fear of extreme adverse price movements. In addition to this, the extent of the price

dislocation under the execution-based algorithm is significantly smaller given the same

percentage removal. This is due to executed orders being a subset of order in the book.

More specifically, removing 25% of execution volume entails a price dislocation of only

19.5(24.5)bps for small(large) stocks.

The discrepancy of outcomes between the liquidity-based and execution-based algo-

rithm shows that particularly for low-volume stocks, a comparatively large portion of

volume is located beyond the clearing price which is only captured by the liquidity-based

algorithm. However, neither of these two algorithms takes into consideration the compo-

sition of the order book in terms of different order types. This is particularly important

since academic research has shown that investors use different order types based on their

objectives and information. For instance, Brown and Zhang (1997) show in a theoret-

ical model that market orders can reveal significant information to the wider market.

In addition to this Foucault et al. (2005), Goettler et al. (2005), and Roşu (2009) find

that impatient investors use market orders since they value immediacy higher as opposed

to getting the optimal price. This argument should generally hold for price-inelastic in-
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Figure 2: Distribution of price dislocations using the execution-based algorithm. The horizontal axis represents the percentage of
volume removed and the vertical axis represents the price deviation in basis points. The data is presented in the form of boxplots,
where the shaded area represents the inter-quartile range which is divided by a dark line representing the distribution median.
The whisks represent the 95% prediction interval of the distribution. Panel A(B) shows the impact of percentage volume removal
of bid(ask) limit orders. The results are presented for each of the size quartiles, which are computed based on continuous trading
volume and reassigned on a daily basis.

vestors, such as index funds who are rebalancing based on a given benchmark or investors

who want to unload their inventory to avoid overnight price risk (Cartea & Jaimungal,

2015).

For this purpose, the final algorithm considered here focuses on the role of market

orders in the closing auction, given by the motivation of investors using them. The

market-based algorithm removes only market orders but leaves limit orders unaffected.

The market orders can be submitted both during the closing auction as well as during
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Figure 3: Distribution of absolute price dislocation using the market-based algorithm. The vertical axis represents the price
deviation in basis points. The data is presented in the form of boxplots, where the shaded area represents the inter-quartile range
which is divided by a dark line representing the distribution median. The whisks represent the 95% prediction interval of the
distribution. The results are presented for each of the size quartiles, which are computed based on continuous trading volume
and reassigned on a daily basis, where the fill-color of the boxes represents each quartile. The lightest(darkest) box represents
the least(most) liquid stocks.

the continuous trading phase10. In contrast to the other two algorithms, the market-based

algorithm is not necessarily remove the same number of shares on both sides, due to the

possibility of order imbalances. Such imbalances occur when there is an overhang of either

buy- or sell market orders. Consequently, the simultaneous removal of a given percentage

from both sides of the book is likely to lead to a dislocation of the closing price. This has

not been possible under the previous two algorithms.

The dislocations after the removal of all market orders from the book are depicted in

fig. 3. To begin with, the one-sided removal of all market orders has fairly symmetric effect.

In all cases, large stocks are affected the most with a median absolute deviation of around

45bps. The smallest stocks on the volume spectrum on other hand only deviate around

32bps when removing all bid or ask market orders. Moreover, for stocks in quartile 1(2),

such a removal does not cause any deviation from the original clearing price in 15%(10%)

of observations. This indicates that market orders tend to have a smaller influence than

in larger stocks. When looking at the right panel, the pattern is reversed such that large

stocks are affected the least when market orders are removed, with a median of around

11bps of absolute dislocation. The the 95% prediction intervals are also considerably

smaller as opposed to the other size quantiles. Meanwhile, the smallest size quartile in

10Such orders are submitted to be executed at-close. Until the beginning of the closing auction, these
orders remain invisible to other investors and are only activated once the auction begins. From this point
onward, they are treated equal to market orders submitted after the start of the auction.
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particular shows the largest variance.

In summary, these results lead to the following two observations. First, large stocks

react less to one-sided removal of market orders than small stocks. Second, small stocks

react more to a removal of two-sided removal of market orders than small large stocks.

These two observations indicate that the composition of order books at execution varies

across size quartiles. The following metric is defined as market ratio MR and computed

for each stock s trading day d in order to to capture the share of market orders executed

on any given side of the book:

MR
(side)
d,s =

MKTV OL
(side)
d,s

CLV OLd,s
∀ side ∈ {buy, sell} (1)

The variableMKTV OL(buy)(MKTV OL(sell)) represents the volume initiated using buy(sell)

market orders. CLV OL stands for the total volume traded in the closing auction. As clos-

ing auctions cross both market- and limit orders at the optimal uncrossing MKTV OL
(side)
d,s ≤

CLV OLd,s must hold. Consequently, the market ratio measure is bound by MR ∈ [ 0, 1 ].

Moreover, the measure is calculated for each side of the book individually due to their

independence.

In order to visualize the joint distribution of MR
(buy)
d,s and MR

(sell)
d,s , the concept of

bi-variate kernel density estimation (KDE) is introduced. KDE is a method which is used

to approximate non-parametric distributions from empirical data. As the name suggests,

the distributions are flexible and are not subject to a set of underlying parameters. The

methodology was first introduced by Rosenblatt (1956) and Parzen (1962). To explain

the concept of KDEs where m ∈ N is the number of dimensions, a kernel KH(x) is a

function that takes a vector x ∈ Rm as input. The kernel function returns the density of

a multinomial distribution with zero mean across all dimensions and covariance matrix

H ∈ Rm×m as parameters11, where H is a diagonal and positive-semidefinite matrix. The

covariance matrix is estimated using Scott’s rule
√

Hjj = n−1/(m+4)σj, where σj is the

standard deviation of the jth variable and all off-diagonal elements are zero (Scott, 1979).

In a next step, the average density can be calculated for any input value x based on the

proximity of all observations in the sample:

f̂H(x) =
1

n

n∑
i=1

KH(x− xi) (2)

11The formula of the multivariate kernel is given by:

KH(x) = (2π)−m/2 det (H)
−1/2

exp

(
−x

ᵀH−1x

2

)
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Figure 4: Non-parametric distributions of market order ratios. This figure shows the results of the multivariate KDEs with respect
to market buy- and market sell ratios. Each panel represents presents the estimation for one size quantile respectively, where size
quantile 1(4) represents the smallest(largest) stocks in the sample based on closing volume as defined in section 2. All estimations
is based on a Gaussian kernel with covariance matrix approximated using Scott’s rule. The grid has 200 steps in each dimension,
resulting in 40,000 estimations per panel and 160,000 across the four panels.

In this equation xi ∈ R2 is a two-dimensional vector containing MR(buy) and MR(sell) as

components, such that m = 2. The estimation in eq. (2) is repeated for each point of

the input space ranging from 0 to 1, given by the boundary condition of the market ratio

variables. Along each of the two dimensions, the input space is separated into 200 equally-

sized steps, resulting in a grid of 40,000 unique points. The resulting plot can essentially

be interpreted as a two-dimensional histogram visualizing the empirical distribution.

The results of the KDE estimation are presented in fig. 4, for each size quartile in-

dividually. The plot very quickly shows that there are significant differences in order

book composition between sizes. To begin with, small stocks in quantile 1 show the most

broad distribution. From both the bid- and ask- side of the book there are days auctions

when one side is almost entirely determined by market orders. However, this does not

occur simultaneously. This can be partly explained that an auction cannot clear with
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only market orders on both sides, as the price cannot be determined without presence of

at least one limit order. In contrast to this, it is also common that there are barely any

market orders and the clearing is purely driven by limit orders from both sides. Overall,

the mode of the distribution for the smallest stocks is at around 39% market order share

in both dimensions. Larger stocks in size quantile 4 show a much more balanced picture.

Specifically the distribution is much more contained in the center of the plot. The re-

sulting distribution flattens out quickly for market order ratios outside of the 20%–80%

range. This indicates that for these stocks, closing auctions are driven by both market

orders and limit orders on both sides of the book. Moreover, the mode of the distribution

is at around 47% in each dimension, indicating that investors are more comfortable using

market orders in large stocks.

This observation can be explained by the risk of smaller stocks not clearing properly

at the close due to lack of liquidity. Moreover, in these stocks a small amount of incoming

volume has much greater effect on the ultimate closing price. Similar observations have

also been made by Ellul et al. (2005) and Ibikunle (2015) who found that call auctions

of small stocks can be less reliable for those reasons. Ellul et al. (2005) also shows that

investors are less likely to participate in such small stock call auctions when they anticipate

volume to be low.

4 Effects on Overnight Returns

So far, the focus of the analysis has mostly been on the descriptive properties of closing

auction books. To contrast this, this section is going to shed light on the effects of order

book composition on overnight returns after the clearing. For this reason, a new set

of variables is being introduced. To begin with, let P
(OP )
d,s , P

(CL)
d,s and P

(PR)
d,s on day d

and for stock s be the stock prices after the opening auction, the closing auction and

the last price before the beginning of the closing auction respectively. Following this

understanding, overnight returns are defined as:

ONROP
(h)
d,s = ln

P (OP )
d+h,s

P
(CL)
d,s

 ONRCL
(h)
d,s = ln

P (CL)
d+h,s

P
(CL)
d,s

 (3)

which represents the logarithmic overnight return starting at the closing price. In both

equations, h ∈ N+ stands for how many days in the future the endpoint of the interval

lies. For instance, ONRCL
(1)
d,s represents the overnight return starting at the closing price

on day d and finishing on the closing price the next day.

In addition to this, returns that are preceding the closing are defined as well. More
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specifically, these are intraday returns (IRd,s) between the opening and the pre-close

midquote as well as closing returns (CRd,s) between the pre-close midquote and the closing

price. Both measures are expressed in the form of logarithmic returns are defined as

follows.

IRd,s = ln

P (PR)
d,s

P
(OP )
d,s

 CRd,s = ln

P
(CL)
d,s

P
(PR)
d,s


In addition to only considering returns, volumes are also an important driver of price

changes according to the literature (Campbell et al., 1993; Chen et al., 2001; Chordia &

Swaminathan, 2000; Frieder & Subrahmanyam, 2004; McMillan, 2007). For this reason,

the closing volume will also be considered in more detail during the further analysis.

However, in order to account for the heterogeneity between different stocks with respect

to volume, the observations are transformed accordingly by demeaning the data. More

specifically:

DEMVOLd,s = ln
(
CLV OLd,s

)
− ln (CLV OL)s

where CLV OLd,s represents tha closing volume of stock s on date d in currency terms and

the second term on the right-hand side represents the arithmetic mean of daily closing

volume of stock s. Moreover, the leftmost term of the equation stands for the expected

logarithmic volume for stock s. This measure is achieved by computing the arithmetic

average across all recorded trading days of a given stock. Consequently, this measure for

demeaned volume is centered around zero with respect to each individual stock. This

mitigates the requirement to account for heterogeneity in volumes across stocks in a later

stage of the analysis.

In addition to the metrics of market ratio defined in eq. (1), the imbalance of market

orders is another important factor when analyzing returns in conjunction with order

flow. Market ratios only consider the amount of market orders in comparison to the

full executed volume. However, it does not consider the relationship between market

orders on the opposite sides of the book. For this purpose, it is crucial to introduce an

additional metric measuring the imbalance of such orders. In academic literature there has

been evidence that order imbalance can lead price movements. Examples of this include

Chordia et al. (2005, 2008). What is not yet clear, however, is how order imbalances at

the closing auction influences the outcome of overnight return. For this purposes, order

imbalances at the end of the closing auction (IMBAL) are computed following Chordia

et al. (2002), Chordia and Subrahmanyam (2004), and Holden and Jacobsen (2014) for
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each stock s on day d, where:

IMBALd,s =
MKTV OL

(buy)
d,s −MKTV OL

(sell)
d,s

MKTV OL
(buy)
d,s +MKTV OL

(sell)
d,s

. (4)

The variable MKTV OL represents the volume available for sale or purchase without

limit price (i.e. the volume of all market orders entered into the closing auction). Based

on this definition, the result is bound by IMBAL ∈ [−1, 1]. One advantage of this mea-

sure comes from it following comparable distribution across stocks, regardless of market

capitalization. Moreover, there are only 120 observations in the data where IMBAL

takes either +1 or -1. This implies that for the remaining 99.86% of the data, there is no

situation where there are only market orders from one side of the book.

Out of all the metrics defined so far, table 1 shows the descriptive statistics as well as

distributional information12. The first observation with respect to the table comes from

looking at the return metrics. It becomes apparent that overnight returns from closing

to opening auction are on average +0.07%. By computing the standard error13 the t-

score amounts to be approximately 20, showing significant deviation of the mean from

zero. However, the overnight return until close (ONRCL) has an average of zero again,

indicating a reversal of sorts. Indeed, the intraday returns IR is at -0.07%, offsetting the

average overnight return ONROP (1). Closing returns are also show a slightly positive

average of 0.02% for each day and stock. The same observation can be made for market

order imbalances, indicating that both of these metrics are related, which has also been

documented by Besson and Fernandez (2021). Finally, the variable DEMVOL is centered

around zero, due to its definition. In terms of distributional shape, most variables are

rather symmetrical with the exception of intraday returns and overnight returns ending

on a closing price. All of these are skewed to the left-hand side, indicating that negative

shocks materialize more significantly than positive ones. On the other hand, closing

returns are more skewed to the positive side. Interestingly, all of these observations are

observed to varying extent across all size quantiles as shown in table 5 in the appendix.

However, smaller stocks have these tendencies more extreme. For instance, small(large)

stocks have an average overnight returns to open of +0.11%(+0.04%) and average intraday

returns of -0.13%(-0.01%).

12The same information for the individual size quantiles defined in section 2 is presented in table 5 in
the appendix.

13The standard error is calculated as
SE =

σ√
N

where σ is the standard deviation and N represents the number of observations.
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N µ σ 1% 5% 10% 25% 50% 75% 90% 95% 99%

ONROP (1) 78257 0.07 0.97 -1.87 -1.04 -0.70 -0.27 0.07 0.44 0.87 1.21 1.88

ONRCL(1) 84292 0.00 2.57 -5.88 -2.99 -1.99 -0.84 0.04 0.93 1.98 2.87 5.56

ONROP (2) 78157 0.10 2.30 -5.50 -2.96 -2.00 -0.82 0.13 1.08 2.20 3.09 5.70

ONRCL(2) 84292 0.00 2.57 -5.88 -2.99 -1.99 -0.84 0.04 0.93 1.98 2.87 5.56

IR 78346 -0.07 1.65 -4.78 -2.58 -1.80 -0.83 -0.03 0.74 1.63 2.34 4.26

CR 84392 0.02 0.38 -0.89 -0.45 -0.31 -0.14 0.01 0.17 0.34 0.49 0.96

DEMVOL 84391 -0.00 0.69 -1.81 -0.98 -0.71 -0.35 -0.01 0.35 0.75 1.07 1.86

MR(buy) 84392 0.44 0.17 0.07 0.16 0.22 0.32 0.44 0.56 0.67 0.74 0.86

MR(sell) 84392 0.43 0.17 0.06 0.15 0.20 0.31 0.43 0.55 0.66 0.73 0.85

IMBAL 84392 0.02 0.31 -0.74 -0.49 -0.37 -0.18 0.02 0.21 0.41 0.54 0.77

Table 1: Descriptive statistics of relevant metrics. This table presents the descriptive statistics over the metrics of interest.
ONROP (1)(ONROP (2)) represents overnight returns starting at the closing and ending at the open one(two) days later. The
same logic applies to ONRCL with the exception that the interval ends at the closing auction of the respective day. IR and
CR represent intraday- and closing returns respectively. DEMVOL represents the logarithmic volume, demeaned within stocks.
MR(buy)/MR(sell) and IMBAL represent market ratio and market order imbalances respectively.

After having defined the full set of variables of interest14, the analysis proceeds with

the relevant regression equation. Due to the two-dimensional nature of the data, a panel

regression is the appropriate means for further procedure. It has been shown repeatedly in

academic literature that simultaneous returns across stocks are correlated due to common

reactions to newly emerging macro news. For instance, Baker and Wurgler (2006) show

that market-wide investor sentiment affects stocks to different extent based on their fea-

tures, however, all the shocks are correlated. In other work, Fang and Peress (2009) show

that stocks with larger(smaller) media coverage perform worse(better) in the cross-section

of stocks.

In addition to fixed effects, the analysis does also contain lagged observations of both

overnight returns ending the next day at open and closing returns. For this purpose, the

notation of the lag operator15 is applied. More specifically, the overnight return ending

in next day’s opening as well as the closing return are lagged, resulting in the variables

LONROP
(1)
d,s and LCRd,s respectively. Following these restrictions, the following vector

14These variables of interest include ONROP (h), ONRCL(h), IR, CR, DEMVOL, IMBAL,
MR(buy) and MR(sell).

15The lag operator is used to lag a given variable by an arbitrary number of periods. The notation
of the capital L is taken from Baltagi (2011, p. 137) and Verbeek (2017, p. 262), which leads to the
expression:

Lxt = xt−1.

In the academic literature, this is often also referred to as the backshift operator and denoted with a B.
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of control variables is defined:

CTRLd,s =



LCRd,s

LONROP
(1)
d,s

IRd,s

CRd,s

DEMVOLd,s


(5)

For the further course for the analysis, the same set control variables are reused in order to

account for potential inefficiencies in market returns as well as for asymmetric influences

of market return. This leads to the following two regression equations that constitute the

basis for the following analysis:

ONRd,s = αd + β1MR
(buy)
d,s + β2MR

(sell)
d,s + γ′CTRLd,s + εd,s (6)

ONRd,s = αd + β3IMBALd,s + γ′CTRLd,s + εd,s (7)

where ONR ∈ {ONROP (1), ONRCL(1), ONROP (2), ONRCL(2)} is a placeholder vari-

able for illustrative purposes and γ ∈ R5 represents a vector containing all the coefficients

to the control variables. Moreover, day-fixed effects are denoted as αd. Under these

two equations, problems of endogeneity are mitigated by timely separation, such that

all dependent variables are determined strictly after all independent variables have been

measured. This setup thus represents a Granger (1969) type form of causality. For infer-

ence purposes, the covariance matrices of all panel regressions were computed following

the methodology laid out in Driscoll and Kraay (1998). This procedure is an exten-

sion to Newey and West (1987) and is based on the usage of a Bartlett kernel function

as recommended by Hoechle (2007). The resulting standard errors are robust to both

cross-sectional correlation as well as autocorrelation of residuals.

The results of the regression equations (6) and (7) are presented in table 2. The first

panel on top shows the results of constrained models which are limited to the inclusion of

the control variables defined in eq. (5). The results show that across the four time horizons

for overnight returns, there are certain consistencies. To begin with, the lagged overnight

returns are all statistically significant at the 5% or even 1% level with consistently positive

coefficients. This indicates positive autocorrelation between overnight returns. This ob-

servation is amplified when looking at the coefficient in the third model, which indicates

that positive one percent of additional overnight return coincides with +0.07% return for

ONROP (2). In contrast to this, intraday returns only affect the overnight return until

the next day’s opening with a significantly negative coefficient. This indicates that intra-
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Panel A: Control variables only

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880
R-squared 0.3325 0.2797 0.2624 0.2119
Effects Day Day Day Day

LCR -0.0324 0.0065 -0.0028 -0.0065
(-0.9398) (0.1749) (-0.0611) (-0.1243)

LONROP (1) 0.0404** 0.0455*** 0.0706*** 0.0508**
(2.4048) (3.0963) (4.9041) (2.0100)

IR -0.0133*** 0.0193* 0.0051 0.0251
(-3.0648) (1.6486) (0.4738) (1.6110)

CR -0.3281*** -0.2434*** -0.4228*** -0.2756***
(-6.8016) (-2.8644) (-8.5424) (-2.7208)

DEMVOL -0.0295* -0.0456** -0.0668*** -0.1070***
(-1.8723) (-2.1153) (-2.6936) (-3.0748)

Panel B: Market buy- and sell ratios

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880
R-squared 0.3327 0.2797 0.2625 0.2119
Effects Day Day Day Day
Controls Yes Yes Yes Yes

MR(buy) -0.0697*** -0.0120 -0.0790 -0.0595
(-2.9775) (-0.1965) (-1.3832) (-0.7320)

MR(sell) 0.0267 0.0399 0.0117 0.1496
(0.6681) (0.5588) (0.1580) (1.4338)

Panel C: Market order imbalance

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880
R-squared 0.3326 0.2797 0.2624 0.2119
Effects Day Day Day Day
Controls Yes Yes Yes Yes

IMBAL -0.0408 -0.0005 -0.0130 -0.0564
(-1.6065) (-0.0134) (-0.3061) (-1.0180)

Table 2: Results of panel regressions on overnight returns. This table shows the regressions of overnight returns over multiple
time horizons as defined in eq. (3) onto other variables that are listed as follows. LCR represents the previous’ day closing
return whereas LONROP (1) stands for the return between the previous day’s close and the same day opening price. IR and
CR represent intraday- and closing return on the same trading day respectively. DEMVOL represents the logarithmic volume,
demeaned within stocks. MR(buy)/MR(sell) and IMBAL represent the market buy/sell ratios and market order imbalances
respectively. All panel models were estimated using day-fixed effects. Reported standard errors are derived using Driscoll-Kraay
covariance matrices. *, ** and *** denote significance at the 1%, 5% and 10% level respectively.
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day returns are partly reverted overnight. Similarly, closing returns are also significantly

negatively correlated with overnight returns, albeit to much larger extent. The results

indicate that on average between 27% and 42% of closing returns are reverted over the

four overnight return horizons analyzed. In contrast to intraday returns, this negative ef-

fect persists over at least two full days. Consequently, closing returns must be considered

to be inefficient which is in line with the results in Bogousslavsky and Muravyev (2020).

Note that the mere inefficiency of prices does not necessarily lead to profitable trading

strategies, as these opportunities may not be systematically exploitable for profit due

large amounts of noise16. Finally, the demeaned volume also shows significantly negative

coefficients over all four models. This implies that abnormally large closing volume is

followed by negative returns. This can be explained by sell-offs in stocks, as during such

sell-offs many investors want to liquidate their positions simultaneously.

The same regressions in Panel A were re-estimated without inclusion of any fixed

effects and are presented in table 6 in the appendix. Even without the day-fixed effects, the

coefficients are directionally identical with one difference for the variable IR. Specifically,

when including day-fixed effects, intraday returns are insignificant over a time horizon

longer than ONROP (1). When pooling the regression as in table 6, intraday-returns are

reinforced instead of reverted over time-horizons of ONRCL(1) and longer. Another major

difference is the explanatory power of the models. Whereas the day-fixed effects models

yield R-Squared values between 21% and 33%, the pooled models only achieve 0.2% to

1.8%. Consequently, a large part of the variance in the dependent variable is explained

by market-wide movements in prices.

The lower two panels of table 2 include all the independent variables in addition to

the control variables in Panel A as discussed in the previous paragraph. In the first

panel, market order ratios show little significance in predicting overnight returns. The

only exception to this is a significantly negative effect of market buy ratio on overnight

returns ending at the next opening. Despite the lack of consistent significance across time-

horizons, all coefficients are are having the same direction. More specifically, all coefficient

estimates for market buy(sell) ratio negative(positive). This indicates that there tend to

be reverting forces overnight, but not sufficiently strong to grant statistical significance.

Similarly, the measure of market imbalance presents insignificantly negative coefficients.

Both of these results indicate that overnight returns go against large one-sided pres-

sures of market orders during the closing auctions but not enough to cause statistical

significance. One explanation lies in the inclusion of closing returns as a control variable.

16In a time when high-frequency traders are increasingly active, markets have also become more
efficient (Brogaard et al., 2014; Budish et al., 2015; Carrion, 2013; Manahov et al., 2014). For this reason
there may be less exploitation of such patterns.
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In fact, when removing CR from the regression, the outcomes for the other indepen-

dent variables change as presented in table 7. Specifically, MR(buy)(MR(buy)) becomes

significantly positive(negative) and IMBAL becomes significantly negative. This finding

suggests that market orders are an important driver of closing returns, but offer limited

explanatory power beyond in terms over overnight return predictability.

So far, it has been shown that the composition of closing order books does not have any

explanatory power on overnight returns when controlling for closing returns themselves.

However, the previous analysis was only considering directional predictions. Another

important aspect of overnight returns is their volatility, particularly after periods of sus-

tained buying- or selling pressures. For instance, Chan and Fong (2000) and Su et al.

(2012) have found a positive relationship between order imbalances and return volatility

during continuous trading hours. For closing auctions, this phenomenon has not been

discovered yet. This is also partly due to the fundamentally different characteristics of

closing auctions compared to the continuous phase.

In a next step, the previous analysis is extended in that it now focuses on absolute re-

turns as the dependent variable instead of directional ones in oder to measure volatility. In

the academic literature, it has been shown that volatility is highly autocorrelated (Adam

et al., 2016; Aggarwal et al., 1999; French et al., 1987; Schwert, 1989). This phenomenon

has multiple explanations, such as elevated volatility around earnings release dates or

general periods of heightened market uncertainty. For this purpose, one new variable is

introduced, the volatility of each securities during the previous ten trading days. More

specifically, it measures the volatility of returns from the closing on the previous day until

the closing of the day of the observation. Thus it is defined as:

V OLA
(m)
d,s =

√√√√∑m−1
j=0

(
LONROP

(1)
d−j,s + IRd−j,s + CLd−j,s

)2
m− 1

(8)

where m ∈ N+ represents the number of trading days considered prior to d in the calcu-

lation of the volatility. During the further course of the analysis, the parameter m will be

set to represent the previous ten trading days17. Due to the logarithmic nature of returns,

the sum of the three variables in the numerator represents the return from closing price

to closing price on each day. Before defining the regression equation, let ABSCTRL be

17The analysis has also been conducted with other choices of m. The results have shown to be robust
with respect to the choice of m∗ ∈ {5, 10, 20, 50} since the results do not deviate.
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a vector containing the absolute values of all control variables considered in this step:

ABSCTRLd,s =



|LONROP (1)|
|IRd,s|
|CRd,s|

DEMVOLd,s

V OLA
(10)
d,s


In a next step, fixed effects are added to the analysis. On the one hand, day-fixed effects

account for the fact that some trading days experience more volatility caused by external

factors. It has already been shown in table 2 that such effects are important to enhance

the predictive power of the model. On the other hand, this analysis introduces stock-fixed

effects that have not been considered before. The reason for this is that in this analysis

the dependent variable is represented by absolute returns, introducing a certain degree of

asymmetry. As seen in table 5 in the appendix, small stocks tend to experience higher

volatility than larger ones, while both have average returns close to zero. This unobserved

heterogeneity can be well accounted for by stock-fixed effects, denoted as µs. This logic

leads to the following regression equation:

|ONRd,s| = αd+µs+γ
′ABSCTRLd,s+β1MR

(buy)
d,s +β2MR

(sell)
d,s +β3|IMBALd,s|+εd,s (9)

As in the previous analysis, ONR is a placeholder variable representing overnight returns

over four different time horizons and γ ∈ R5 is a vector containing all the coefficients with

respect to absolute control variables. As previously, all covariance matrices have been

computed following Driscoll and Kraay (1998) in order to obtain HAC standard errors

for inference.

The results of the regression equation in (9) are laid out in table 3. Panel A presents

the results of all models with only stock-fixed effects µs but without day-fixed effects.

The results show that volatility is persistent through various time horizons, given by the

positive coefficients for volatility-based control variables. Also the coefficient for demeaned

volume is highly significant and positive with the exception of the models with overnight

returns until the next morning’s open. This indicates that over longer time-horizons

larger volumes during closing auctions is connected to higher volatility in the coming

days. The important part of this panel, however, lies in the three variables on the bottom

that are related to the closing order book. Most coefficients are insignificant with the

exception for MR(sell), which are significantly positive at the 1% level. Panel B shows

similar results, albeit to a lesser extent, due to the introduction of day-fixed effects αd.
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Panel A: One-way fixed effects

Dep. Variable |ONROP (1)| |ONRCL(1)| |ONROP (2)| |ONRCL(2)|
N 73115 73115 69763 73026
R-squared 0.5184 0.5450 0.5038 0.3861
Effects Stock Stock Stock Stock

|LONROP (1)| 0.1074*** 0.1980*** 0.2040*** 0.3175***
(5.8092) (5.1250) (4.1367) (4.1195)

|IR| 0.0468*** 0.1088*** 0.1044*** 0.1597***
(8.0869) (9.5110) (7.1433) (6.7907)

|CR| 0.3071*** 0.3888*** 0.4126*** 0.4339***
(9.3743) (6.3996) (7.2385) (4.5636)

DEMVOL -0.0006 0.0445*** 0.0342** 0.0473*
(-0.0873) (2.9716) (2.0766) (1.7386)

V OLA(10) 0.0174** 0.0571*** 0.0590*** 0.0824**
(2.4576) (2.8029) (2.5797) (2.4549)

|IMBAL| -0.0060 0.0003 0.0312 0.0458
(-0.4989) (0.0111) (0.7538) (0.8082)

MR(buy) 0.0032 0.0738** 0.0980* 0.1509**
(0.2120) (2.2594) (1.8358) (2.0011)

MR(sell) 0.0883*** 0.1409*** 0.1791*** 0.3200***
(4.6273) (3.5521) (3.8716) (4.0410)

Panel B: Two-way fixed effects

Dep. Variable |ONROP (1)| |ONRCL(1)| |ONROP (2)| |ONRCL(2)|
N 73115 73115 69763 73026
R-squared 0.5997 0.6143 0.5660 0.4491
Effects Stock/Day Stock/Day Stock/Day Stock/Day

|LONROP (1)| 0.0380*** 0.0453* 0.0576* 0.0809**
(3.7771) (1.8707) (1.9296) (2.0769)

|IR| 0.0317*** 0.0737*** 0.0677*** 0.0971***
(7.8303) (9.3399) (7.0463) (7.2672)

|CR| 0.2462*** 0.2640*** 0.2783*** 0.1977***
(7.6698) (6.3423) (5.5113) (3.1167)

DEMVOL -0.0197*** 0.0389*** 0.0317** 0.0468**
(-3.1266) (3.0836) (2.2647) (2.0080)

V OLA(10) 0.0073** 0.0318*** 0.0340** 0.0406*
(2.1295) (2.5822) (2.3000) (1.9160)

|IMBAL| 0.0010 0.0096 0.0305 0.0601
(0.0926) (0.3410) (0.7553) (1.0576)

MR(buy) -0.0043 0.0534** 0.0584 0.0826
(-0.3690) (2.0092) (1.1639) (1.3790)

MR(sell) 0.0639*** 0.0865*** 0.1198*** 0.1905***
(4.0539) (2.7560) (2.9451) (3.5097)

Table 3: Results of panel regressions on overnight volatility. This table shows the regressions of absolute overnight returns over
multiple time horizons as defined in eq. (3) onto other variables that are listed as follows. The regression equation is stated in
eq. (9), based on the following variables: |LONROP (1)| stands for the absolute return between the previous day’s close and
the same day opening price. |IR| and |CR| represent absolute intraday- and closing return on the same trading day respectively.
DEMVOL represents the logarithmic volume, demeaned within stocks. MR(buy)/MR(sell) and |IMBAL| represent the market
buy/sell ratios and absolute market order imbalances respectively. The top panel presents models estimate using only stock-fixed
effects, whereas the bottom panel shows the same model with both stock- and day-fixed effects. Reported standard errors are
derived using Driscoll-Kraay covariance matrices. *, ** and *** denote significance at the 1%, 5% and 10% level respectively
and t-scores are in parentheses.
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More specifically, |LONROP (1)| and V OLA(10) have reduced t-scores as opposed to Panel

A. This decrease in t-score implies that much of the variance could be accounted for by

simultaneous effects in the cross-section of stocks. Nonetheless, the positive coefficients

for the market sell ratios persist, particularly over time horizons between 24 and 48 hours.

What is striking about this finding is that market sell ratios have no predictive power

with respect to directional overnight returns as presented in table 2. However, these

ratios are a predecessor of increased overnight volatility. This indicates that a high share

of market sell orders entails the presence of uninformed investors, attempting to reduce

their positions in a correlated manner. This increase in volume could explain the elevated

volatility as also observed by Lee et al. (1994), Louhichi (2011), Odean (1998), and Xu

et al. (2006). Importantly, the order flow is uninformed since it does not contain actual

information about future outcomes of returns. Interestingly, this is not the same on the

buy-side of the order book. This could be explained by the fact that investors tend

to sell-off securities in a correlated manner, whereas buying is less correlated (Abreu &

Brunnermeier, 2003; Griffin et al., 2011; Huang & Wang, 2009). The same reasoning

explains why market corrections downwards happen more abrupt than upwards, implying

negative skewness of returns (Alles & Kling, 1994; Harris et al., 2004). What is important

to note is the lack of predictive power of market order imbalances with respect to overnight

returns, both in terms of direction as well as extent. While Besson and Fernandez (2021)

find that market order imbalances have positive correlation with and are thus drive closing

returns, the same is not true for overnight returns.

5 Contribution to Price Discovery

The main focus of the analysis has so far been on the interaction between closing order

books and overnight returns. In this final section of the paper, the analysis will examine

the importance of the closing auction to the price contribution of the closing auction with

respect to the remainder of the trading day. This is important since it is not yet clear

whether the closing auction does benefit to price discovery or whether it is solely a platform

for large orders to be traded. The previous results in table 2 suggest that closing returns

tend to be reverted overnight, which would make closing returns inefficient. However,

price discovery must always be put in perspective in that it is the comparison of two

different returns.

In order to quantify price discovery in the context of this paper, the WPDC measure

is applied. This metric has been frequently used in the academic literature to illustrate

the contribution of specific returns to more broad price developments. Examples of this
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can be found in Barclay and Hendershott (2003), Barclay and Warner (1993), and Wang

and Yang (2015). Generally speaking, this measure considers two trading periods, one

outer return and one inner return, where the latter a strict sub-period of the former.

Consequently, the WPDC measure aims to calculate contribution of the inner return to

the outer return, underlining the previously mentioned relative nature of price discovery.

For the purpose of this analysis, the outer return is defined as the logarithmic return from

opening to the opening price the next day. Due to the logarithmic nature of returns, the

outer return is the sum of intraday returns, closing returns and overnight returns until

the open:

OUTRd,s = IRd,s + CRd,s +ONROP
(1)
d,s

This outer return therefore covers price changes from opening price to opening price the

next day within a 24-hour time frame18. In a next step, a function calculating the WPDC

is defined. The function takes one input, which is representing the inner return INR:

WPDCd,s =
|OUTRd,s|∑
ŝ∈S |OUTRd,ŝ|︸ ︷︷ ︸
weighting

× INRd,s

OUTRd,s︸ ︷︷ ︸
contribution

(10)

This definition can be separated into two terms. First, the weighting term puts absolute

returns across stocks into relation to each other within the same day, where S represents

the set of all stocks in the sample. Consequently, stocks with large(small) absolute open-

to-open price changes are weighted more(less). By definition, all weights across stocks

must sum up to 1. Second, the contribution term captures the price discovery contribution

of the inner return r with respect to the outer return. In contrast to the weighting

term, the contribution term is directional and results in a positive(negative) number

if inner- and outer returns do(do not) align. For stability reasons, observations where

OUTRd,s ∈ (−ε, ε) are disregarded, where ε is a sufficiently small positive number. The

reason for this is to prevent the denominator in the second term from becoming to small

and distorting moments of the resulting distribution. For the purpose of this analysis a

value of ε = 0.01% is chosen, leading to the exclusion of 2.76% of all valid observations.

Other values for ε have been tested for robustness purposes and have been found to yield

similar results19.

18Based on the definition in eq. (3), this can also be defined based on P
(OP )
d,s representing the opening

price of stock s on day d:

OUTRd,s = ln

P (OP )
d+1,s

P
(OP )
d,s


19Specifically, ε has been set to 0.05%, 0.1%, 0.5% resulting in the exclusion of 3.73%, 6.92%, 31.08%

of valid observations.
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In order to make the price discovery measures statistically meaningful, the weighted

price discovery contributions are aggregated into t-scores for each stock s ∈ S. For this

purpose, the an aggregation function taking x as an input is defined, whereas x is indexed

in both the s and d dimensions:

Φs(x) =
xs

σs(x)/
√
D

(11)

where xs =
∑D

d̂=1 xd̂,s/D represents the average for stock s across all days d and D stands

for the number of trading days in the sample. Furthermore, σs(x) represents the standard

deviation of variable x for stock s ∈ S. The above equation effectively calculates the

t-statistic for testing the null-hypothesis of no price contribution on average H0 : xs = 0,

since the denominator of the fraction equates to the standard error through the division

by
√
D. Another advantage of this standardization lies in the ability to compare price

discovery contribution of both closing- and overnight returns on an even playing field,

despite the latter most likely being larger than the former.

This method of aggregation is subsequently applied to the weighted price discov-

ery contribution and the order imbalance as defined in eq. (4), resulting in Φs(WPDC)

and Φs(IMBAL) respectively. Figure 5 shows two scatter plots where the vertical axis

presents the former and the horizontal axis represents the latter. In the top panel, the

WPDC is based on closing returns (CR) as inner returns whereas the lower panel relies

on overnight returns (ONROP (1)) as inner returns. For illustrative purposes, the axes

are scaled identically for both plots. There are two main observations to be made. First,

market order imbalances tend to be rather positive than negative in the cross-section of

stocks. Exactly half of all stocks in the sample are significantly positive at the 5% level

with respect to market order imbalances, whereas only 5 are negative. Nonetheless, the

largest stocks as measured by closing return are more balanced in terms of market orders

and are not significantly deviating from zero in the horizontal dimension. One notable

exception to this is Roche with a t-score of 4.3.

Second and more importantly, there are substantial differences when comparing the

t-scores of weighted price discovery contributions based on closing- and overnight returns,

shown on the vertical axis of the plots. In the top panel, 49(5) of the 100 stocks have

significantly positive(negative) results for WPDC, with no stock reaching a t-score of

above 6. This indicates that for 49 of the stocks, the closing auction constitutes an

important contribution to the overall price discovery, whereas for 46 of the stocks the

closing return is pure noise with respect to the remainder of the trading day. For the

5 stocks with negative results, this means that the auction returns tend to go against

the wider price discovery, i.e. constituting negative contribution. In contrast to this,
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Figure 5: Contribution to price discovery aggregated by stock. This figure shows a bubble plot depicting the intersection between
order imbalances and weighted price discovery contribution. The horizontal axis represents the order imbalance at the closing
auction. The vertical axis represents the weighted price discovery contribution for the closing(overnight) return with respect to
the entire trading day, as defined in eq. (10). Both axes have been aggregated for each stock and normalized following the
definition in eq. (11). The gray shaded area mark results below the 5% confidence level of 1.96, rendering observations falling
into said interval as insignificantly different from zero. The color as well as the size of the bubbles is indicative of the logarithm
of the average closing turnover of each stock throughout the sample. Each of the 100 bubbles represents one of the stocks in the
sample.

in all stocks without exception the overnight return is a positive contribution to price

discovery. Particularly large stocks in terms of closing volume yield t-scores between 8 and

14, indicating extremely high statistical significance beyond the 0.1% level of significance.

These results clearly show that overnight returns are very important for price discovery,

much more so than closing returns, for all stocks in the sample.
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In order to test for robustness of the results, the same analysis was also conducted with

aggregation of the WPDC metric on a daily basis instead of on a stock level. Similarly

to the definition in eq. (11), this methodology standardizes the data for each day d.

Φd(x) =
xd

σd(x)/
√
n(S)

(12)

where n(S) represents the number of stocks in the data set with valid observations on

day d.

The results for this adjusted aggregation under Φd(x) are depicted in fig. 6. Each plot

shows 872 observations, i.e. one for each trading day in the 3.5 years of the sample. As with

the previous results, imbalances of market orders are rather well balanced across trading

days, which is expressed by the even distribution around zero on the horizontal axis.

The vertical axis, depicting aggregated WPDC on a daily basis is much less balanced,

however. For the WPDC of closing returns shown in the top panel there is no significant

difference from zero on 611 days, which amounts to approximately 70% of trading days. Of

the remaining trading days, 194(67) are significantly positive(negative). Only 13 trading

days result in a value larger than 6. In contrast to this, the bottom panel depicting

WPDC of overnight returns is more dispersed in the vertical dimension. In this panel,

only 218 of the trading days in the sample are insignificant. Out of the remaining trading

days 632(22) show a significantly positive(negative) contribution of overnight returns to

price discovery.

Ultimately, both figs. 5 and 6 show similar results. When aggregated on both stock-

and day-level, closing auctions contribute less to price discovery compared to overnight

returns, which is manifested through the larger number of positive standardized WPDC

measurements of the latter compared to the former. In addition to this, there are no visual

patterns indicating that either the direction or the extent of market order imbalances at

close have any impact on price discovery, both during the close and overnight. This is

particularly noteworthy with respect to closing returns. As Besson and Fernandez (2021)

pointed out, closing returns are mainly driven by market order imbalances. However,

the evidence presented here indicates that the generated returns are mainly constituting

noise when compared to the trading day as a whole. More specifically, the price discovery

happens only after hours, when closing returns are digested by the markets.

6 Conclusions

Regulatory changes, rising popularity of passive investment vehicles and the predatory

nature of some high-frequency trading strategies have all led to increasing relative impor-
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Figure 6: Contribution to price discovery aggregated by day. This figure shows a bubble plot depicting the intersection between
order imbalances and weighted price discovery contribution. The horizontal axis represents the order imbalance at the closing
auction. The vertical axis represents the weighted price discovery contribution for the closing(overnight) return with respect to
the entire trading day, as defined in eq. (10). Both axes have been aggregated for each trading day and normalized following the
definition in eq. (12). The gray shaded area mark results below the 5% confidence level of 1.96, rendering observations falling into
said interval as insignificantly different from zero. The color as well as the size of the bubbles is indicative of the total turnover
of a given day’s closing auction across all stocks. Each of the 872 bubbles represents one trading day in the sample.

tance of closing auctions versus the remainder of the trading day. This has reached a point

where the closing price is the single most important daily price as it matches the largest

volume. Where academic literature has unambiguously shown that the introduction of

closing auctions improves all metrics of market quality in the context of an event study,

it has not yet examined the composition of order books at close. To address this gap, this

paper analyses granular order-level data from SIX Securities & Exchanges (SIX) for 100
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of the most liquid equities over a period of 3.5 years. The added value of this analysis

lies in the recursive reconstruction of limit order books throughout the day, resulting in

full visibility over the final order book in the closing auction, being the main focus of this

study.

The first finding in this paper relates to the sensitivity of order books at close. More

specifically, closing order books for low-volume stocks are composed quite differently from

their high-volume counterparts. This observation is manifested through two main obser-

vations. On the one hand, small stocks have significant volume that is beyond the clearing

price, i.e. bid(ask) limit orders below(above) said price. In contrast to this, large stocks

have limit orders clustered much closer around the actual closing price, such that removal

thereof barely affects prices compared to less liquid stocks. On the other hand, the sta-

tistical distribution of the market ratio metric also differs materially between large and

small stocks. For the large stocks, the ratio of market order volume versus total closing

volume is very stable around 0.5 across all auctions whereas for small stocks, this ratio

varies anywhere from 0–1 and averages at around 0.39.

The second finding of this paper relates the effects of order book composition onto

overnight returns for the same stock over various horizons. The results show that the

composition closing order books has no predictive power with respect to the direction of

overnight returns. However, this is not true when attempting to predict overnight volatil-

ity, approximated by means of absolute returns. Even when controlling for past volatility,

trading days with high concentration of market sell orders entail elevated overnight volatil-

ity over various time horizons. The same observation cannot be made for the concentration

of market buy orders, which are found to have no effect.

The third and final finding in this paper relates to the contribution of closing returns to

price discovery with respect to a longer time horizon. The results suggest that the closing

auction offers less contribution to price discovery as opposed to overnight returns. This

can be explained by closing auctions being a very attractive trading facility to investors

who are looking to rebalance their portfolios for regulatory reasons or to track an index,

resulting in huge flows of volume that do not contain any information on the fair asset

value. Overnight returns on the other hand may serve as a correction for these deviations

from the efficient price caused by such shocks during the closing auction.

Overall, these findings further underline the importance of closing auctions with re-

spect to the remainder of the trading day. The finding that the composition of closing

order books does not contain any information with respect to the direction of overnight

returns as well as closing returns tend to be reverted overnight both indicate that no new

information is disseminated during closing auctions. Even if there are certain investors

who trade on private information during these auctions, they are sinking in comparison
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to other investors who trade based on non-informative constraints. Therefore, the clos-

ing auction fulfills its purpose to serve as a liquid trading facility for large investors who

trade for reasons other than private information. This was also the original intention of

Madhavan (1992) when he initially proposed this format almost three decades ago, a time

before any presence of high-frequency traders and before the boom in passive investing.
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Appendix

Close volume Continuous volume Size quantile

N µ σ µ σ Q1 Q2 Q3 Q4

1 NESN 873 142.38 107.30 303.80 149.42 0 0 0 873

2 ROG 873 126.77 76.88 278.94 163.37 0 0 0 873

3 NOVN 873 115.24 70.95 258.89 120.02 0 0 0 873

4 UBSG 872 46.39 25.86 131.77 58.34 0 0 0 872

5 ZURN 872 44.74 28.25 110.20 63.32 0 0 0 872

6 ABBN 873 38.80 24.10 98.76 44.29 0 0 0 873

7 CFR 873 37.82 19.37 88.19 46.42 0 0 0 873

8 SREN 873 33.59 25.98 83.35 47.43 0 0 1 872

9 CSGN 873 32.41 19.08 101.52 49.82 0 0 5 868

10 LHN 837 31.52 15.88 74.21 36.68 0 0 0 837

11 LONN 873 29.45 15.21 76.96 40.96 0 0 0 873

12 ALC 556 25.17 26.58 55.60 52.12 0 0 13 543

13 GIVN 873 23.40 12.63 52.00 27.02 0 0 3 870

14 SIKA 763 22.04 14.30 56.80 30.10 0 0 6 757

15 SCMN 873 21.83 11.93 47.80 29.40 0 0 5 868

16 GEBN 873 19.68 10.00 41.18 23.67 0 0 20 853

17 UHR 873 19.45 8.95 48.11 27.59 0 0 120 753

18 PGHN 873 16.69 25.70 38.08 20.71 0 0 127 746

19 SGSN 873 16.29 11.56 34.07 27.19 0 0 103 770

20 SLHN 873 15.96 10.99 51.59 21.90 0 0 109 764

21 ADEN 873 15.34 10.65 32.64 16.90 0 0 229 644

22 SOON 873 14.16 8.05 34.45 19.48 0 0 243 630

23 BAER 873 14.02 11.49 27.77 14.45 0 0 280 593

24 LOGN 873 12.95 25.24 40.69 29.02 0 0 482 391

25 KNIN 873 12.22 9.02 24.48 13.13 0 0 448 425

Continued on next page

154



Close volume Continuous volume Size quantile

N µ σ µ σ Q1 Q2 Q3 Q4

26 TEMN 873 11.35 20.88 29.76 22.66 0 0 561 312

27 STMN 873 10.80 5.91 23.94 14.60 0 0 550 323

28 SCHP 873 9.69 5.31 24.58 13.32 0 0 667 206

29 AMS 873 8.16 5.77 42.14 29.30 1 5 685 182

30 CLN 873 7.64 4.70 21.92 18.23 0 5 761 107

31 VIFN 873 7.27 5.08 22.87 14.34 0 0 821 52

32 BALN 873 7.26 4.70 13.79 6.71 0 2 819 52

33 DUFN 873 7.24 5.70 22.86 15.49 0 24 758 91

34 SPSN 873 7.11 5.13 10.18 7.43 0 2 829 42

35 BARN 873 7.09 7.34 11.87 11.02 0 4 814 55

36 EMSN 873 5.77 7.45 10.25 5.64 0 5 861 7

37 LISP 873 5.71 3.83 11.29 6.90 0 15 846 12

38 PSPN 873 4.79 3.41 8.15 5.82 0 48 823 2

39 VACN 873 4.74 3.29 14.00 7.99 0 38 824 11

40 FI-N 873 4.46 3.66 11.23 6.27 0 59 809 5

41 LISN 873 4.44 3.18 7.00 5.08 0 78 794 1

42 SRCG 813 4.40 6.65 12.46 21.03 94 44 647 28

43 SIGN 686 4.28 6.95 8.49 10.91 113 165 392 16

44 FHZN 873 3.84 2.13 9.21 5.87 0 131 739 3

45 OERL 873 3.18 2.10 8.57 6.41 5 290 574 4

46 TECN 873 3.11 4.28 4.88 3.99 9 496 360 8

47 HELN 873 3.09 1.64 8.04 4.56 1 250 622 0

48 SRAIL 553 2.80 4.28 8.62 17.51 16 324 209 4

49 GALE 873 2.36 2.25 5.67 3.33 3 560 310 0

50 PARG 720 2.31 4.43 3.83 3.57 94 318 305 3

51 CMBN 873 2.28 2.02 5.71 3.27 0 606 267 0

Continued on next page
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Close volume Continuous volume Size quantile

N µ σ µ σ Q1 Q2 Q3 Q4

52 RO 873 2.23 22.96 10.15 8.92 376 404 90 3

53 SWON 419 2.13 4.27 5.66 8.04 89 261 66 3

54 SCHN 854 2.09 4.29 5.39 3.40 8 705 139 2

55 DOKA 873 2.04 1.46 5.84 4.95 24 575 274 0

56 BUCN 873 1.98 1.74 5.55 3.33 7 671 195 0

57 DKSH 873 1.92 2.51 4.42 3.13 14 684 174 1

58 BCVN 873 1.86 5.33 3.50 2.99 90 635 147 1

59 SUN 873 1.78 1.23 5.42 4.84 20 700 153 0

60 IDIA 873 1.76 1.86 7.55 6.01 62 676 132 3

61 LAND 873 1.69 1.18 5.72 4.33 56 671 146 0

62 UHRN 873 1.65 1.86 5.47 3.66 68 687 118 0

63 ROSE 873 1.64 3.29 8.49 12.00 520 159 189 5

64 ALLN 873 1.54 1.31 2.69 1.80 33 786 54 0

65 BION 873 1.38 5.64 4.98 2.96 208 617 45 3

66 BEAN 873 1.31 3.17 2.78 2.07 314 512 46 1

67 PWTN 515 1.27 1.53 6.37 12.87 116 330 67 2

68 ARYN 873 1.16 1.47 6.57 10.64 397 349 125 2

69 SFZN 873 1.10 1.12 4.42 2.88 247 607 18 1

70 FORN 873 1.04 0.90 3.76 3.57 225 626 22 0

71 GAM 873 0.99 1.16 4.21 5.05 417 349 106 1

72 SFSN 873 0.94 0.58 2.82 1.65 214 649 10 0

73 VONN 873 0.91 0.55 3.06 1.94 233 631 9 0

74 EMMN 873 0.89 0.63 2.97 2.27 305 553 15 0

75 BKW 873 0.87 1.05 2.76 1.99 398 468 7 0

76 MOBN 873 0.79 0.96 1.70 1.22 382 488 3 0

77 DAE 873 0.64 0.47 2.22 1.36 554 315 4 0

Continued on next page
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Close volume Continuous volume Size quantile

N µ σ µ σ Q1 Q2 Q3 Q4

78 IFCN 873 0.64 0.77 2.37 1.40 556 314 3 0

79 KARN 873 0.63 1.19 1.73 1.12 630 238 5 0

80 UBXN 873 0.58 0.57 3.63 3.74 594 270 9 0

81 CEVA 335 0.56 1.95 3.55 11.23 259 65 10 2

82 INRN 873 0.54 0.85 2.31 1.77 687 183 3 0

83 ALSN 873 0.54 0.58 2.01 1.51 669 200 4 0

84 VATN 873 0.52 0.47 1.22 0.74 679 193 1 0

85 VALN 873 0.51 0.32 2.89 2.24 641 232 0 0

86 BSLN 873 0.51 0.37 2.94 2.48 642 226 5 0

87 KOMN 873 0.51 0.63 2.66 2.43 697 171 5 0

88 MBTN 873 0.50 1.35 5.10 6.27 717 146 9 1

89 BANB 873 0.46 0.76 2.11 2.23 694 177 2 0

90 HUBN 873 0.45 0.50 1.72 1.41 717 154 2 0

91 COTN 873 0.43 0.70 2.64 2.69 758 113 2 0

92 BOSN 873 0.42 0.29 2.29 1.81 765 108 0 0

93 SQN 873 0.37 0.39 3.02 2.51 774 99 0 0

94 CON 832 0.36 0.38 1.48 1.35 769 63 0 0

95 IMPN 873 0.34 0.28 2.31 2.24 769 103 1 0

96 LEON 873 0.34 0.34 2.14 2.93 756 110 7 0

97 AUTN 873 0.33 0.24 2.73 2.46 801 71 1 0

98 MOVE 559 0.33 0.99 1.16 6.26 521 30 7 1

99 SWTQ 873 0.32 0.25 1.49 0.90 837 36 0 0

100 BCHN 873 0.32 0.22 1.47 1.63 800 72 1 0

Table 4: List of all securities in the analysis. This table contains all the 69 equities analyzed. All of the securities were passed
through the filters introduced in section 2. The table contains aggregated statistics for each security on a daily basis, including
volumes and returns. The last three columns count the number of times a security falls into a size quantile across stocks within
days where Q1(Q4) represents stocks with the lowest(highest) continuous trading volume.

157



Panel A: Size quantile 1

N µ σ 1% 5% 10% 25% 50% 75% 90% 95% 99%

ONROP (1) 18630 0.11 0.85 -1.86 -1.14 -0.77 -0.30 0.07 0.52 1.02 1.40 2.11

ONRCL(1) 21416 0.01 2.42 -6.58 -3.38 -2.33 -1.02 0.00 1.09 2.36 3.44 6.62

ONROP (2) 18635 0.16 2.49 -6.18 -3.33 -2.33 -1.00 0.11 1.31 2.69 3.81 7.14

ONRCL(2) 21416 0.01 2.42 -6.58 -3.38 -2.33 -1.02 0.00 1.09 2.36 3.44 6.62

IR 18689 -0.13 1.94 -5.47 -3.07 -2.20 -1.09 -0.09 0.84 1.94 2.78 4.96

CR 21445 0.02 0.46 -1.02 -0.51 -0.35 -0.15 0.00 0.19 0.39 0.55 1.11

DEMVOL 21444 -0.37 0.83 -3.20 -1.66 -1.27 -0.76 -0.31 0.12 0.51 0.76 1.27

MR(buy) 21445 0.43 0.21 0.02 0.11 0.16 0.27 0.42 0.58 0.72 0.80 0.92

MR(sell) 21445 0.41 0.21 0.03 0.10 0.15 0.25 0.40 0.56 0.70 0.78 0.90

IMBAL 21445 0.02 0.39 -0.88 -0.64 -0.50 -0.25 0.02 0.30 0.54 0.67 0.89

Panel B: Size quantile 2

N µ σ 1% 5% 10% 25% 50% 75% 90% 95% 99%

ONROP (1) 19530 0.09 0.70 -1.74 -1.02 -0.69 -0.26 0.08 0.44 0.88 1.20 1.77

ONRCL(1) 20928 -0.01 3.29 -5.77 -2.97 -1.99 -0.84 0.00 0.93 1.97 2.82 5.47

ONROP (2) 19479 0.10 2.35 -5.47 -2.96 -2.01 -0.81 0.12 1.08 2.20 3.09 5.47

ONRCL(2) 20928 -0.01 3.29 -5.77 -2.97 -1.99 -0.84 0.00 0.93 1.97 2.82 5.47

IR 19574 -0.08 1.70 -4.96 -2.67 -1.87 -0.88 -0.05 0.75 1.68 2.41 4.52

CR 20951 0.03 0.38 -0.87 -0.45 -0.31 -0.13 0.03 0.18 0.35 0.50 0.96

DEMVOL 20951 0.16 0.63 -1.13 -0.77 -0.58 -0.26 0.11 0.53 0.97 1.27 1.95

MR(buy) 20951 0.43 0.18 0.07 0.14 0.20 0.29 0.42 0.56 0.68 0.75 0.87

MR(sell) 20951 0.41 0.19 0.05 0.12 0.17 0.27 0.40 0.54 0.67 0.74 0.86

IMBAL 20951 0.03 0.34 -0.74 -0.53 -0.41 -0.21 0.03 0.26 0.47 0.59 0.79

Table 5: Descriptive statistics of relevant metrics by size quantile. This table presents the descriptive statistics over the metrics of
interest. Each panel represents a distinct set of statistics based on size quantile, where size quantile 1(4) represents small(large)
stocks, as defined in section 2.ONROP (1)(ONROP (2)) represents overnight returns starting at the closing and ending at the
open one(two) days later. The same logic applies to ONRCL with the exception that the interval ends at the closing auction of
the respective day. IR and CR represent intraday- and closing returns respectively. DEMVOL represents the logarithmic volume,
demeaned within stocks. MR(buy)/MR(sell) and IMBAL represent market ratio and market order imbalances respectively.
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Panel C: Size quantile 3

N µ σ 1% 5% 10% 25% 50% 75% 90% 95% 99%

ONROP (1) 20226 0.06 1.37 -1.85 -0.99 -0.66 -0.26 0.07 0.41 0.81 1.13 1.80

ONRCL(1) 21248 -0.01 2.58 -5.91 -2.93 -1.88 -0.78 0.06 0.88 1.86 2.68 5.32

ONROP (2) 20190 0.07 2.55 -5.49 -2.87 -1.90 -0.77 0.12 1.00 2.06 2.90 5.42

ONRCL(2) 21248 -0.01 2.58 -5.91 -2.93 -1.88 -0.78 0.06 0.88 1.86 2.68 5.32

IR 20222 -0.05 1.55 -4.61 -2.39 -1.66 -0.76 0.00 0.71 1.54 2.17 3.98

CR 21272 0.02 0.37 -0.85 -0.44 -0.30 -0.13 0.02 0.17 0.34 0.48 0.90

DEMVOL 21272 0.14 0.61 -0.93 -0.65 -0.50 -0.26 0.04 0.41 0.89 1.27 2.27

MR(buy) 21272 0.45 0.15 0.12 0.21 0.25 0.34 0.44 0.55 0.64 0.71 0.81

MR(sell) 21272 0.43 0.15 0.11 0.19 0.24 0.32 0.43 0.53 0.63 0.70 0.80

IMBAL 21272 0.02 0.26 -0.59 -0.41 -0.31 -0.16 0.02 0.19 0.35 0.45 0.63

Panel D: Size quantile 4

N µ σ 1% 5% 10% 25% 50% 75% 90% 95% 99%

ONROP (1) 19871 0.04 0.80 -2.16 -1.03 -0.69 -0.28 0.07 0.41 0.80 1.11 1.89

ONRCL(1) 20700 0.02 1.75 -5.21 -2.63 -1.72 -0.72 0.08 0.84 1.73 2.41 4.51

ONROP (2) 19853 0.08 1.75 -4.88 -2.62 -1.79 -0.74 0.14 0.99 1.91 2.64 4.49

ONRCL(2) 20700 0.02 1.75 -5.21 -2.63 -1.72 -0.72 0.08 0.84 1.73 2.41 4.51

IR 19861 -0.00 1.37 -3.85 -2.10 -1.45 -0.67 0.03 0.70 1.43 2.01 3.47

CR 20724 0.01 0.31 -0.81 -0.41 -0.28 -0.13 0.01 0.14 0.29 0.40 0.83

DEMVOL 20724 0.08 0.48 -0.81 -0.55 -0.42 -0.21 0.03 0.30 0.60 0.83 1.68

MR(buy) 20724 0.47 0.13 0.19 0.27 0.31 0.39 0.47 0.56 0.64 0.69 0.77

MR(sell) 20724 0.47 0.13 0.18 0.26 0.30 0.38 0.46 0.55 0.63 0.68 0.77

IMBAL 20724 0.01 0.20 -0.47 -0.32 -0.25 -0.12 0.01 0.15 0.27 0.34 0.48

Table 5: (Continued)
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Control variables only without fixed effects

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880

R-squared 0.0183 0.0042 0.0042 0.0022

Effects None None None None

constant 0.0770*** 0.0263*** 0.1053*** 0.0188*

(27.802) (4.0303) (14.327) (1.6684)

LCR 0.0044 0.0922*** 0.0846*** 0.1597***

(0.3569) (3.1832) (2.6392) (3.7291)

LONROP (1) 0.0168** 0.0227 0.0505*** 0.0402

(2.1357) (1.3117) (3.6042) (1.6315)

IR -0.0066** 0.0279*** 0.0186** 0.0559***

(-2.0104) (3.9895) (2.2496) (4.8901)

CR -0.3008*** -0.2892*** -0.3455*** -0.2456***

(-15.927) (-8.1582) (-7.5294) (-4.5792)

DEMVOL -0.0044 -0.0364*** -0.0288** -0.0823***

(-0.8916) (-2.9841) (-2.0893) (-4.1248)

Table 6: Regression results of overnight returns without fixed effects. This table shows the regressions of overnight returns
over multiple time horizons as defined in eq. (3) (without the fixed effects) onto other variables that are listed as follows. LCR
represents the previous’ day closing return whereas LONROP (1) stands for the return between the previous day’s close and the
same day opening price. IR and CR represent intraday- and closing return on the same trading day respectively. DEMVOL
represents the logarithmic volume, demeaned within stocks. MR(buy)/MR(sell) and IMBAL represent the market buy/sell
ratios and market order imbalances respectively. Reported standard errors are derived using Driscoll-Kraay covariance matrices.
*, ** and *** denote significance at the 1%, 5% and 10% level respectively.
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Panel A: Control variables only

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880

R-squared 0.3140 0.2765 0.2589 0.2108

Effects Day Day Day Day

LCR -0.0702* -0.0207 -0.0535 -0.0373

(-1.8595) (-0.5129) (-1.0565) (-0.6620)

LONROP (1) 0.0429** 0.0477*** 0.0738*** 0.0533**

(2.4906) (3.2494) (5.0409) (2.1111)

IR -0.0072* 0.0240** 0.0126 0.0303**

(-1.6631) (2.2135) (1.1775) (2.0180)

IR -0.0072* 0.0240** 0.0126 0.0303**

(-1.6631) (2.2135) (1.1775) (2.0180)

DEMVOL -0.0328** -0.0484** -0.0709*** -0.1102***

(-2.1012) (-2.2700) (-2.8706) (-3.1699)

Panel B: Market buy- and sell ratios

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880

R-squared 0.3168 0.2768 0.2594 0.2110

Effects Day Day Day Day

Controls Yes Yes Yes Yes

MR(buy) -0.1959*** -0.1096* -0.2414*** -0.1632**

(-9.6340) (-1.7959) (-4.1735) (-2.1109)

MR(sell) 0.1614*** 0.1427** 0.1870** 0.2588**

(4.3857) (2.1360) (2.5416) (2.5615)

Panel C: Market order imbalance

Dep. Variable ONROP (1) ONRCL(1) ONROP (2) ONRCL(2)

N 73969 73969 70601 73880

R-squared 0.3163 0.2767 0.2591 0.2109

Effects Day Day Day Day

Controls Yes Yes Yes Yes

IMBAL -0.1406*** -0.0788** -0.1439*** -0.1406***

(-6.6586) (-2.1106) (-3.3820) (-2.7422)

Table 7: Reduced regression results of overnight returns. This table shows the regressions of overnight returns over multiple time
horizons as defined in eq. (3) onto other variables that are listed as follows. LCR represents the previous’ day closing return whereas
LONROP (1) stands for the return between the previous day’s close and the same day opening price. IR represents intraday
returns on the same trading day. DEMVOL represents the logarithmic volume, demeaned within stocks. MR(buy)/MR(sell)

and IMBAL represent the market buy/sell ratios and market order imbalances respectively. All panel models were estimated
using day-fixed effects. Reported standard errors are derived using Driscoll-Kraay covariance matrices. *, ** and *** denote
significance at the 1%, 5% and 10% level respectively.
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