
Special Properties of Private Equity in
the Context of Portfolio Optimization

DISSERTATION
of the University of St. Gallen,

School of Management,
Economics, Law, Social Sciences

and International Affairs
to obtain the title of

Doctor of Philosophy in Management

submitted by

Mattias Thomas Fürstenberger

from

Germany

Approved on the application of

Prof. Dr. Heinz Müller

and

Prof. Dr. Christian Keuschnigg

Dissertation no. 3891

Medium GmbH, Lahr, 2011



The University of St. Gallen, School of Management, Economics, Law,
Social Sciences and International Affairs hereby consents to the printing
of the present dissertation, without hereby expressing any opinion on the
views herein expressed.

St. Gallen, May 13, 2011

The President:

Prof. Dr. Thomas Bieger



Acknowledgments

Wege entstehen dadurch, dass man sie geht.
- Franz Kafka

Oder wie eine bekannte Volksweisheit sagt: Auf ausgetretenen Pfaden
kommt man nur dort an, wo andere schon gewesen sind. Das Verfassen
einer Dissertation erfordert das Beschreiten neuer Wege und die Überwin-
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Abstract

The following study develops a continuous time model evaluating the re-
turn loss from the delayed investment flow into Private Equity invest-
ments. Using several assumptions, an optimal rule to invest the com-
mitted but not invested capital can be derived analytically. The model
context is extended to diversified portfolios consisting of Private Equity,
stocks and risk-free bonds and an optimal investment rule is derived over
time.

The fund flow into a Private Equity investment over time depends on
the availability of investment opportunities. As a result, an investor can-
not invest the entire commitment initially. The delayed investment flow
results in a loss on the overall expected return of the Private Equity in-
vestment. If an investor cannot meet a capital call, he commits a default
on commitment which is associated to a high penalty. The model derived
throughout the analysis evaluates the opportunity cost from delayed in-
vestment and develops an optimal investment rule, taking the probability
of a default on commitment into account. Extending the model setting to
a diversified portfolio of Private Equity, public equity and risk-free bonds
shows that the shortfall probability is close to zero for weights of Private
Equity smaller than 50% for reasonable parameter values. As a result,
the analytically derived optimal weights hold for those portfolios and the
return loss can be reduced to a large extent.

In a second step, a continuous time model is derived and solved taking the
specific characteristics of Private Equity funds into account. This results
in optimization rules that are considerably different from standard cases.
Most important is the fact that risky assets are massively overweighted
especially concerning public equity if the investment delay is not taken
into account. Also Private Equity adds additional risk to the portfolio
consistent with the risk aversion of the investor. The results are very sen-
sitive to the correlation structure. For higher levels of correlation Private
Equity provides a good diversification instrument to public equity and in
case of no correlation it is a perfect substitute for risk-free bonds.
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Zusammenfassung

In der vorliegenden Studie wird ein Modell in kontinuierlicher Zeit ent-
wickelt, welches den sukzessiven Investitionsfluss in Private Equity Fonds
berücksichtigt und den daraus resultierenden Renditeverlust quantifiziert.
Eine optimale Investitionsentscheidung zur Minimierung dieses Rendite-
verlustes wird analytisch hergeleitet. Zusätzlich wird das Model erweitert
und eine optimale Allokationsregel für ein diversifiziertes Portfolio aus
Private Equity, Aktien und risikolosen Anlagen entwickelt.

Die Investitionen in Private Equity Fonds erfolgen anhand der verfügbaren
Investitionsmöglichkeiten des Fonds, d.h. das dem Fonds zugesprochene
Kapital wird sukzessive abgerufen. Dies hat einen Verlust bezüglich der
erwarteten Gesamtrendite des Private Equity Fonds zur Folge. Falls ein
Anleger einer anberaumten Zahlung nicht Folge leisten kann, führt dies
zu hohen Strafzahlungen. Das hier vorgestellte Model quantifiziert diesen
Renditeverlust und leitet eine optimale Investitionsentscheidung für das
noch nicht investierte Kapital her, welche diesen Verlust minimiert. Dabei
wird die Ausfallwahrscheinlichkeit berücksichtigt. Bei einer Erweiterung
des Modells auf Portfolios aus Private Equity, Aktien und risikolosen An-
lagen resultiert eine Ausfallwahrscheinlichkeit grösser als Null nur bei
Gewichten von Private Equity grösser als ca. 50% für realistische Pa-
rameterwerte. Daher ist die analytische Lösung auch für solche Portfolios
optimal.

In einem zweiten Schritt wird ein Modell in kontinuierlicher Zeit entwick-
elt. Dabei werden die Eigenheiten von Private Equity Fonds explizit
berücksichtigt. Die resultierenden optimalen Investitionsentscheidungen
unterscheiden sich markant von herkömmlichen Ansätzen. Grundsätzlich
werden riskante Anlagen übergewichtet, vor allem Aktien. Aber auch Pri-
vate Equity wird konsequent übergewichtet, unabhängig von der Risikoprä-
ferenz des Investors. Die Ergebnisse sind sehr sensitiv gegenüber Verände-
rungen in der Korrelationsstruktur. Für höhere Korrelationswerte stellt
Private Equity ein Diversifikationsinstrument für Aktien dar, im Falle
fehlender Korrelation ein Substitut für risikolose Anlagen.
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1 Introduction

Private Equity became one of the most interesting and most widely dis-
cussed asset classes in recent years. One mega deal follows the other and
deal volumes jumped from one peak to the next increasing up to 40-50
Billion USD before the financial crisis. History has seen Private Equity
investments since the 19th century when rich individuals invested their
wealth in different kinds of projects mainly in the capital intensive areas
of infrastructure and transportation. As the birth of the modern Private
Equity industry, the foundation of the two first venture capital firms in
1946 is considered, one of them still existing today. Since the late 80s, the
industry developed rapidly and large Private Equity funds emerged. This
made pooling of capital possible and gave rise to larger deal volumes. On
the other hand, modern Private Equity fund structures enabled investors
to distribute their direct investments over several vehicles improving di-
versification and the risk-return structure of the portfolio. Today, there
is an ongoing search for investments with low or even negative correlation
to standard asset classes. During the last years, especially large US en-
dowment funds were pacemaker of direct investment vehicles. With the
availability of Private Equity investments to a broader group of investors
it became also an issue in portfolio optimization.

Research in the area of Private Equity investments comes from many dif-
ferent disciplines and considers the field from as many viewpoints. In the
area of portfolio optimization, Private Equity did not receive as much
attention as could be expected taking into account the importance of Pri-
vate Equity investments for larger portfolios and its omnipresence in the
media. Especially in continuous time portfolio optimization there are so
far no models looking at the special features of Private Equity invest-
ments. The investment class is included into the broad field of alternative

1



2 Chapter 1. Introduction

investments together with hedge funds, quantitative funds, real estate etc.
This study embeds Private Equity in an investor’s continuous time port-
folio optimization problem explicitly taking its special characteristics into
account. There are recent studies that include alternative assets in the
theoretical portfolio optimization framework but they have one thing in
common: the amount of wealth invested in Private Equity is considered
to be known. But Private Equity fund managers only invest the com-
mitted capital as they find suitable projects. This can delay the point in
time when the full commitment is invested by a couple of years. The fact
that committed capital is not equal to invested capital from the begin-
ning is not included in the models, so far. Especially at the early stage
of a fund, this difference can be substantial. As Private Equity is still a
rather illiquid asset class and only open to a certain group of qualified
investors, it is of special interest for an investor to optimally invest his
capital, as committed capital cannot be split in parts and not be carried
forward easily. This study quantifies the special nature of Private Equity
investments and determines strategies on optimal investments applying a
theoretical optimization framework on Private Equity investments.

1.1 Discussion of the Topic

The problem analyzed in this study consists of two parts: one is to invest
the committed but not yet invested capital optimally and the other is to
allocate Private Equity in the overall portfolio optimally.

The first comes from the special feature of Private Equity investments:
the committed capital is not invested entirely upfront at the inception
date of the fund but called by the fund manager during the investment
phase which lasts normally up to 5-6 years and unknown ex ante. This
delay can reduce the overall return on committed capital of the Private
Equity investment to a large extent. As a result, the investor has to op-
timize the investment of that part of committed capital that cannot be
invested in Private Equity from the beginning. Otherwise he gives away
return opportunities. As he is forced to invest when a call on commit-
ment occurs, the investor faces a tradeoff between investing optimally and
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a default on commitment. If the investor holds all the capital in cash, he
gives away return opportunities. If he does not hold all the committed
money in cash, he runs the risk of default on commitment as he might not
have the required money for the next capital call. In this study, a model
is developed taking this tradeoff into account and deriving an optimal
investment path for the investment gap.

Another issue related to the successive investment flow into Private Eq-
uity investments is the optimal weight of Private Equity in the overall
portfolio. Due to the tradeoff described above, it is unrealistic to assume
that committed and invested capital are equal. As will be shown in this
study, this leads to suboptimal portfolio weights. We assume that the
Private Equity investment is split in two time periods. During the first,
the investor is not fully invested in Private Equity and pays in the re-
maining part of the commitment at the beginning of the second period.
The investor is then faced with the problem that he has to fix the portfo-
lio weight of Private Equity already at the inception of the fund without
knowing the exact investment weights ex ante. In the second period he
is forced to invest the remaining committed capital increasing the weight
of Private Equity in the portfolio massively without having the opportu-
nity to reoptimize. This forces the investor into a suboptimal portfolio.
In the following analysis a model in continuous time will be developed
and solved that accounts for this problem and derives optimal portfolio
weights analytically.

As a result, research on this topic is not only interesting from a theo-
retical point of view but also helps investors to get an overall and more
comprehensive view of the asset class Private Equity. It gives advice how
to allocate Private Equity within a diversified portfolio with the goal to
maximize the respective expected utility of the investment based on quan-
titative considerations.
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1.2 Structure

The structure of the study is as follows: After this short introduction, an
overview of Private Equity as an asset class follows in chapter 2. The rel-
evant features of the Private Equity industry will be discussed as well as
investment rules and terms and conditions influencing risk, return and the
optimization behavior of an investor. Furthermore, the investment flow
into Private Equity funds will be analyzed and an overview on risk and
return profiles of Private Equity funds will be given. A review on the spe-
cial challenges measuring the performance of Private Equity investments
before the exit concludes the chapter. In chapter 3, the relevant research
on portfolio optimization including alternative assets will be discussed. It
provides a short overview on the methods to derive the famous Merton
solution and gives insights to continuous time portfolio optimization mod-
els that include alternative assets explicitly in the analysis. The model
setting that will be used throughout the analysis will be introduced. We
will solve a model analytically, that includes alternative assets but does
not yet include the special features of Private Equity investments in order
to derive a benchmark for the analysis in later chapters. In chapter 4,
a model is developed that quantifies the opportunity cost of the delayed
investment path into Private Equity investments. Under some simplifying
assumptions an analytical solution to the optimal investment of commit-
ted but not yet invested capital is derived for an investor who invests his
entire wealth in Private Equity. The chapter includes a discussion of the
probability of a default on commitment and concludes with a simulation of
opportunity cost without the assumptions made before. In chapter 5, the
model is extended to cases where Private Equity is part of a broad portfo-
lio of Private Equity, stocks and risk-free bonds. The optimal investment
paths for several cases are simulated taking the delayed investment path
and the probability of a default on commitment explicitly into account.
Common liquidity constraints that institutional investors often face are
discussed within the context of the model. Furthermore, a continuous
time portfolio optimization model is derived and solved analytically con-
sidering the investment delay into Private Equity funds. The results are
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compared to the benchmark case derived in chapter 3. Chapter 6 con-
cludes the study and provides an outlook for further research. Information
on data, institutional issues and mathematical derivations is given in the
Appendix.



2 Review of Private Equity

2.1 Overview of the Private Equity Industry

The Private Equity industry has grown enormously over the past 20 years
and was one of the fastest growing asset classes comprising lots of different
types with venture capital, buyout capital and mezzanine capital among
the most important. The by far most important data source, which is
used in numerous studies mentioned later and also in this study, is the
Thomson Venture Economics (TVE) dataset. It includes data of over
15’000 funds and detailed information on the legal structure of each fund
and its several investments. The cash flow data is net of fees as it is
from the investor’s perspective. But the data has some shortcomings: it
is available only in aggregate form, it is self-reported and so prone to be
biased and it also includes unrealized investments what may give rise to
accounting biases. Comments on this issue will follow in later chapters.
The following two graphs (2.1 & 2.2) show the evolution of the number
of Private Equity funds and the investment volume since the beginning of
Private Equity in the late 60s to the end of 2008.

As we can see from both graphs, Private Equity as an asset class
started in the mid 80s to evolve and we observe the big growth rates only
from the early 90s onwards where we have a sudden and massive upsurge
in both the number of funds and the capital raised by those funds. The two
graphs show both the overall data and the distribution between venture
capital (VC) and buyout (BO) funds, the by far most important types of
funds (about 80 % of capital invested). If the breakdown of the figures
is compared, one will notice that the number of funds is mainly driven
by the upward rocketing number of VC funds. Nevertheless, BO funds

6
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Figure 2.1: Number of funds (Source: TVE)
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Figure 2.2: Investment volume (Source: TVE)

almost doubled within the last ten years. For the investment volume
the relation is vice versa. Buyout funds dominated the overall capital
in Private Equity funds to a large extend especially after 2003 absorbing
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more than 85% of total Private Equity capital up to 2008.

Figure 2.3 visualizes the spread between VC and BO funds by showing the
average fund size. The average fund size for VC funds was quite stable
across the last decades. BO funds started to grow bigger especially in
2005 when money inflow experienced large growth rates.
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Figure 2.3: Average capital per fund (Source: TVE)

The effects of the dotcom-bubble in 2000 can be seen clearly from both
figures 2.1 and 2.2 especially for VC funds as most of the dotcoms were
small start-ups funded with venture capital. The impacts of the financial
crisis are especially visible from the fundraising figures. According to
Prequin (2010a), capital raised in 2010 was 225 Billion USD compared
to 530 Billion in 2005. Especially in 2009 capital inflow was only half
the level of 2008. The difficulty to raise money in the aftermath of the
financial crisis can also be seen from the average time it takes for a fund
to have its final close, i.e. to raise the targeted amount of money1. The
funds having closed in 2010 needed on average 20.4 months to collect

1Final close means closed for further commitments prior to starting the investment
phase.
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the capital up from 14.9 months in 2008 and 10.6 months in 2005. The
problems to raise money during and after the financial crisis mainly come
from the illiquid nature of Private Equity funds. The outlook for 2011
is somewhat better. According to Prequin (2010a), 33% of the investors
want to increase their share of Private Equity in the portfolio and even
37% want to increase it over longer terms. But in 2010 the vast majority
of investors is at or above the target level of Private Equity. On the other
hand, since the financial crisis more than 60% of the investors expect
an outperformance of Private Equity ranging above 4% compared to the
public market.
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Figure 2.4: Venture capital fund size (in mio USD, Source: TVE)

There are also differences between VC and BO funds with respect to
fund size. While funds between 100 mio USD and 1 Billion USD make
up about 65% of the capitalization for VC funds with quite equal distri-
bution, BO funds are larger than 1 Billion USD for more than 63% of the
total capitalization. Figures 2.4 and 2.5 show the distribution of Private
Equity fund sizes by March 2009 as a percentage of total funds. The re-
sults differ compared to the capitalization-based figures mentioned above.
While BO funds are quite equally distributed over fund size, almost 50%
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of the VC funds are smaller than 25 mio USD. Funds larger than 250
mio USD make up less than 10% of total funds. As VC funds mainly
invest in smaller firms or even start-ups which have less need in absolute
amounts of capital per investment, fund sizes are as expected. It becomes
also clear from the TVE dataset that the fund size increases on average
with the development stage of a funds targeted investment objects. Other
fund types with disproportionately large fund sizes are secondary funds
and turnaround/distressed-debt funds.

The structure of investors is very similar for both fund types being mainly
institutionals and high net worth individuals. More than 70% of both
types of funds are organized as “Independent Private Partnerships”. The
only difference is that for BO funds there are 3% of funds doing sec-
ondary purchases. For VC funds corporates have also some importance
as investors. Figures 2.6 and 2.7 show the different types of investors in
the two respective fund classes.

The number of a fund’s transactions decreased massively after the finan-
cial crisis being only 16.5% in 2009 compared to the level in 2006.
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Figure 2.5: Buyout fund size (in mio USD, Source: TVE)
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In 2010, the level even fell to 5.71% indicating an extremely inactive
market. Average value per deal reduced by about one-half and the overall
value of all completed deals was in 2010 only 2.5% the level of 2006. But
as these reductions do not come from the attractiveness of Private Equity
as an asset class itself, but more from the overall need of liquidity in
the aftermath of the financial crisis a recovery of the investment flow into
Private Equity is likely to happen. The results from the surveys conducted
by Prequin also supports this conclusion2.

2.2 Private Equity as an Asset Class

2.2.1 Outline of Typical Private Equity Funds

This study does not consider a special sub-category of Private Equity
but focuses on the typical structure of a Private Equity fund. We con-
strain ourselves to venture capital and buyout funds as the most common
types. The tradeoff for all Private Equity investments is liquidity versus
taking advantage of imperfect information and niche investment oppor-
tunities. As Private Equity investors acquire specific and not easily ob-
servable knowledge, the investments are normally not traded frequently
due to pricing difficulties and their legal structure and are therefore very
illiquid.

Usually, a Private Equity fund consists of general and limited partners.
The general partner, normally a specialized Private Equity firm, is the
manager of the fund and the limited partners are the investors. When a
new fund is introduced, the investors commit a certain amount of money
up to the maximum amount the general partner wants to raise. After the
subscription period, the general partner draws the money he needs for
the first investments. Further capital can be drawn at any time during a
predefined investment phase up to the maximum commitment of each in-
vestor. The speed mainly depends on the ability of the general partner to
find appropriate investment opportunities but is also reduced by the exit

2For a comprehensive overview on the Private Equity industry in general the reader is
referred to Gilligan and Wright (2010).
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rates of existing investments. Sometimes the capital paid back during the
investment stage of the fund is used to fund new investments. Therefore,
there are a lot of random sources influencing future capital calls and, in
line with this, invested capital.

The lifetime of a fund is normally fixed to ten years with the option to
extend it up to four years. Fees mainly consist of a fixed management fee
and a fraction of profits, the carried interest. In order to maximize carried
interest, fund managers have an economic incentive to invest all commit-
ted capital but as they also participate in final exit revenues, they have an
incentive to screen carefully and invest only in profitable projects. Draw-
ing more than has been committed is often prohibited. Typically, the fund
can make new investments only during the first five years but follow-on
investments can be made for the whole period. The fee structure can be
very different across funds and is sometimes difficult to compute due to its
proportional character3. An interesting analysis on the fee structure of a
Private Equity fund is made in Connor (2005a) where the economic value
of several terms and conditions is evaluated by estimating final portfolio
values excluding several terms and holding all others constant4. He found
some terms to be of only minor importance for a fund’s return expecta-
tions like preferred return, clawbacks in case there is a return provision
on capital and fees, catch-up provisions or the calculation base of carried
interests. The level of carried interest itself has by far the most important
impact on returns. As a result, investors should try to avoid these cost
but insist more on terms reducing their opportunity cost of late invest-
ment which can decrease their return by considerable amounts as will be
shown in later chapters.

Normally, Private Equity investments require a large minimum payment
(commitment) and are open only to qualified investors. Together with the
facts that transferring shares of a Private Equity fund is always subject
to the approval of the general manager and the lack of market prices this
3For a detailed analysis of the fee structure and the cash flows to the general and
limited partners the reader is referred to Connor (2005a) and Metrick and Yasuda
(2008).

4For an overview on the standard terms and conditions the reader is referred to Ap-
pendix B.2.
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is the main reason why the illiquidity in the Private Equity market exists.
The difficulty to agree on fair values will be discussed later. The procedure
in case that a default on commitment occurs is typically outlined in the
fund’s organizational documents. There is typically a transition period
where capital commitments can still be installed after the payment was
due. During this period, the limited partner has to pay penalty interests
and an administration fee for late payment. A fixed period after the no-
tice of default the investor failing to pay will be considered a defaulting
investor. In case of a default, an investor will normally not be entitled to
make any further contributions to the fund. He will remain liable for the
full unpaid portion of the commitment unless he is able and allowed to
transfer either this liability or the whole stake in the fund. The defaulting
investor will not be entitled to receive any distributions associated with
investments made by the fund after the default date. In case of a default,
the general partner is allowed to solicit offers for the defaulting investor’s
stake in the fund. Often it is limited in a first round to the other limited
partners. In most cases, the price cannot be below a certain fixed discount
of the fair market value (often around 25%). As the market value is de-
termined by the general partner, this lower limit can be rather theoretical
and subjective. If no buyer can be found after a certain period, the stake
of the defaulting investor is reduced by the fixed discount and the rest
is allocated to the remaining limited partners. Distributions concerning
the investments made before the default date and still attributable to the
defaulting investor will be collected in a separate account and only paid
to the defaulting investor after interests and fees are subtracted at the
end of the fund’s lifetime5. Regarding the rather huge loss in the case
of a default and the illiquid character of Private Equity investments, the
necessity of pricing default risks when optimizing a portfolio including
Private Equity becomes evident. As there is still a lack of theoretical con-
siderations on this aspect of Private Equity investments, this study will

5These informations come from the terms and conditions of several Private Equity
managers that do not want to be named. An overview on general terms and conditions
is given in Appendix B.2. An overview on the characteristics of Private Equity funds
is also given in Gilligan and Wright (2010, p. 29ff).
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close the gap and help investors to value risk and return of their overall
portfolio correctly.

2.2.2 Description of Private Equity Returns

To get an understanding on the performance of Private Equity funds, the
aggregated data from TVE is analyzed first. Between the first measuring
in 1969 up to June 2010, VC funds returned on average 7.82% p.a. and BO
funds 9.42% (measured as IRR net of fees). With capital weighting these
numbers shrink to 5.37% and 3.68%. Of course, IRR figures between 2005
and 2010 are typically negative as those funds are still in the investment
phase. The numbers are nevertheless included here to incorporate the
typical J-curve character of Private Equity returns, which also influences
an investor’s annual portfolio return6. From these figures, we can infer
several findings. First, it looks somewhat curious that VC returns are
not much lower compared to BO returns and even larger capital weighted
despite of the positive leverage effect that drives BO funds’ returns. If we
look at the median returns, the picture turns to what could be expected.
VC median returns are 1.45% and BO median returns 6.74%. This is due
to the tremendous spread we observe especially for VC fund returns with
incredibly high gains and total losses which is not that distinct for BO
funds. The second implication is the spread between average returns and
capital weighted returns which shows that smaller funds performed better
on average. Ljungqvist and Richardson (2003) also found in their study
fund size to be a negative and statistically significant driver but on a very
low relevance level R2. The picture for US and European VC and BO
funds looks similar but with lower return figures and a very pronounced
return gap between small and large European BO funds. The return dif-
ferences across different types of VC funds is not very disperse, but funds
investing in early stage companies tend to perform best on average. For
BO funds there are practically no differences across different types besides
mega-buyout funds which performed extremely poor on average. Accord-

6J-curve effect means that returns over a fund’s lifetime follow the pattern of a J-curve:
going down in the first years when fees, especially management fees that are paid on
committed capital, dominate distributions. It might take several years for a fund to
show positive returns, normally when the majority of distributions are realized.
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ing to Prequin (2010b), more than 50% of the investors consider small
and medium buyout funds to offer the most promising opportunities in
2011.

Comparing the figures above to IRRs as of December 2008 gives some
insights on the effects of the financial crisis on Private Equity returns.
The data shows that large funds performed better during the crisis as av-
erage returns are lower in 2008 for both VC and BO funds. With capital
weighting this effect is much more pronounced especially for BO funds
indicating that large funds performed better than smaller funds. For BO
funds capital weighted average returns before the crisis were even negative
(-4.48%).

The second dataset that is analyzed is the alternative investments part of
the CalPERS portfolio7. The portfolio includes all kinds of Private Eq-
uity funds with buyout capital being the largest group (68%) followed by
venture capital (9%). We find an average IRR since the foundation of the
portfolio in 1990 to 2010 of 7.71%. If we consider only the performance
between 1990 and 2005 which excludes the funds still in investment phase,
we observe an average IRR of 14.15% and 15.24% capital weighted. These
figures show the tremendous impact of including funds in the early stage
into the return measures. For the CalPERS portfolio the fact that smaller
funds tend to have a higher return does not hold. But there is another
interesting finding that can be inferred from the CalPERS dataset. The
return figures reported above are as of June 30, 2010. Comparing these
figures to the returns retrieved as of September 30, 2008 gives some in-
sights on the performance of the portfolio in the financial crisis as the
figures reported have a two-quarter lag. Returns of mature funds then
were 18.05% and 17.01% capital weighted. These figures are in line with
the findings above about fund size. Overall, the portfolio lost some return
during the financial crisis and the fact that capital weighted returns did
change less gives rise to the conclusion that large funds tended to struggle

7The California Public Employees’ Retirement System (CalPERS) comprises 632 funds
with 52.98 Billion USD of committed capital. CalPERS is legally obliged to publish
all information of their Private Equity investment funds which is available on its
website at www.calpers.gov.ca. A detailed description of the portfolio is provided in
Appendix A.
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less during the financial crisis. An explanation might be that large funds
can invest in larger companies that were more stable during the crisis.
This is also supported by the fact that the CalPERS portfolio consists
mainly of BO funds investing in more mature projects being less prone to
struggle.

2.2.3 Describing and Modeling Private Equity Com-

mitments

The cash flows in and out of a Private Equity investment are very uncer-
tain. In this part, the focus will be on the rate at which the money is
invested. It is very important to get a grasp on the timing of commit-
ment calls because of the time value of money effect on the return of the
investment and second because of the effect on investment/default risk.

The following figure 2.8 shows the typical cumulative draw down pattern
of a Private Equity investment depending on its lifetime.
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Figure 2.8: Average investment path of Private Equity funds (Source:
CalPERS)
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It takes about six years that more than 90% of committed capital will
be drawn which is in line with the average investment period of normally
5-6 years. The majority of the funds does not invest anymore after year
6. 86% of the funds older then ten years were invested more than 90%
but only 45% were fully invested. On the other hand, 4.35% of the 2009
funds were already fully invested at the end of the vintage year. Variance
is only larger than 2% for still investing funds (vintage years: 2005-2010)
and falls below 1% afterwards. For funds in the investment phase the
variance can be substantial with a maximum of 7.14%. It is obvious that
the fund age is a key determinant of expected capital calls. In most of the
years, CalPERS was invested more than originally committed for several
mature funds up to an overcommitment of 2.83%. Total overcommit-
ment amounted to 85.31 mio USD being 0.19% of total assets in Private
Equity. Overall, the investment ratio (invested/committed capital) lies
around 95% for mature funds (older than 5 years). As a result, using a
rolling forward investment strategy CalPERS is able to reach a level of
commitment close to its target. But there is significant variance and there
is always overcommitment in several funds further enforcing uncertainty.
Therefore, despite using rolling investments CalPERS is left with a sum of
on average 2.25 Billion USD which is committed to Private Equity Funds
but never paid in. These funds have to be invested optimally which is the
goal of the model derived later.

In Figure 2.9, the average investment degree across all funds is displayed
over the last 25 years for US venture and buyout funds. Since the Private
Equity industry became more established in the beginning of the 90s, the
investment ratio was between 70-80% for VC and BO funds. The paths
for both types moved very close since then but only reached a degree of
81% for VC funds and 75% for BO funds until 2008. Of course, these
figures are downward biased, as recently founded funds are also included
to build the average. But as a Private Equity investor normally holds
funds across almost all vintage years, as we can see from CalPERS, the
investment ratios shown in figure 2.9 provide a good approximation for
the path of the investment degree over time. The studies cited below re-
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veal very similar results8.

As a result, these numbers show that the gap between committed and
invested capital is a big issue for portfolio optimization considerations. If
we consider the portfolio of CalPERS with the given weights of both fund
types and a total commitment of 52.98 Billion USD, the investment gap
in 2008 would amount to 12.95 Billion USD or 5.94% of totally managed
assets which is a sum definitely too large to be not invested optimally.

There are studies that analyze the investment path of Private Equity in-
vestments and the underlying drivers in order to derive investment strate-
gies that bring the invested capital closer to a predefined level and turn
it from a stochastic variable into a (more) deterministic one. Given the
highly uncertain nature of cash in- and outflows this is a very demand-
ing task and can surely not rely on simple rules of thumb. The common
view that an overcommitment strategy of 50% compared to the desired
level can be the solution does not take the complex behavior of cash flows
into account9. It is obvious that such a strategy can only be at the cost
of increased shortfall risk which can lead to severe disadvantages in case
of a default on commitment. If the rise in shortfall risk was priced in,
this strategy would become very costly. Nevertheless, it is a common
strategy that investors follow. There is a straightforward reason for this
approach. As many investors see Private Equity only as one (minor) asset
class within a large and well-diversified portfolio (CalPERS: 14%), there
is practically no shortfall (default on commitment) risk when the whole
portfolio is taken into account and therefore the costs almost equal zero.

This view might be correct from the perspective of the costs arising
from larger shortfall risks, but from another perspective it is rather ques-
tionable: optimal investment behavior or foregone return opportunities. If
a liquidity shortfall occurred, it might be suboptimal to withdraw money
from another investment as the optimal investment path has to be left.
As a result, if we take a comprehensive view on the overall portfolio, a
8For a more detailed analysis on the statistics of capital calls the reader is referred to
Zwart, Frieser and Dijk (2007), Connor (2005c) and Frei and Studer (2003).

9There are also rules of thumb in the academic literature. View i.e. Cardie, Cattanach
and Kelley (2000).
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Figure 2.9: Average degree of investment (Source: TVE)

rigid overcommitment strategy can never come at any cost. The following
chapters analyze these different effects, compare the arising costs and de-
velop an optimal investment strategy. The central problem will always be
the treatment of the investment gap, because it can never be possible to
close it completely as the stochastic nature of invested capital can never
be neutralized completely. So, minimizing the investment gap and higher
shortfall risk are the flip side of the coin and the resulting cost have to be
priced in and compared.

The most recent study on optimizing the investment path (minimizing
the investment gap) taking into account shortfall risks is from Zwart et
al. (2007). They develop a heuristic recommitment strategy taking into
account the illiquid nature of Private Equity investments. Their strategy
makes new commitments every quarter and is dynamic in the sense that it
takes the current portfolio into account: paid out capital is recommitted
immediately, capital not called after a certain period is also recommitted
but multiplied with the reciprocal of the current investment degree to re-
duce the risk of overinvestment and liquidity shortfall. Testing this strat-
egy for different fund types and across different regions, Zwart et al. (2007,
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p. 14) manage to keep the invested capital close to its target and holding
shortfall risks in reasonable bounds. The investment degree is 85% on
average with a low standard deviation of 9% compared to 75% and 9.2%
for the reference portfolio. This strategy also leads to overcommitments
at several times. But due to its dynamic nature, shortfall risks can be
kept at an average of 8.8% (median: 8.4%). The maximum overcommit-
ment was 19%. Adding a fixed ratio of overcommitment to this strategy
can push the investment degree up to 98% but only at the expense of
an average shortfall risk of 41%, which makes the described tradeoff very
clear. It can be concluded that the investment degree can be pushed fur-
ther using appropriate strategies but the investment gap amounts still to
15% of committed capital. Another problem of this strategy is the need
to find appropriate Private Equity investments at any time to make the
reinvestment.

Another commitment strategy is provided by Connor, Nevins and McIn-
tire (2004). They calculate a formula for a target commitment level based
on the desired investment level including the expected rate of return on
private and public investments and the commitment and exit rates. As
the commitment rate is measured relative to its market value, they try
to link it to past performance. As a result, an initial overcommitment
of 70% was found together with an ongoing annual commitment rate of
2.8% for the long-run (p. 36). The obvious shortcoming of this approach
is the assumption of fixed rates of return and capital flows into and out of
Private Equity funds which is completely apart from the characteristics
of Private Equity investments. The liquidity shortfall is ignored. For this
reason an overinvestment of about 0.5% is observed which lasts for about
5 years. This number might seem quite low but if we apply this result
to the CalPERS portfolio, the overinvestment amounts to 264.9 mio USD
which has to be financed somehow over several years.

A different approach to optimize the commitment level is the direct esti-
mation of cash flows and deriving an investment path from it. Frei and
Studer (2003) describe two possibilities: the first is the estimation of cash
flows for the underlying companies and aggregating them to the fund level



22 Chapter 2. Review of Private Equity

and the second is the cash flow estimation at the fund level directly. Inde-
pendent of the method used to conduct these estimations it is clear that
both approaches suffer from substantial modeling risk.

An interesting model was developed by Dean and Seth (2002) with a
different objective compared to the models described above. They use
assumptions of several Private Equity fund characteristics and estimate
capital calls, distributions and net asset values to calculate an IRR. They
continuously update these estimates by including most recent data. Their
goal is to optimally allocate commitments to the funds in their portfolio.
So, the focus here does not lie directly on the optimal overall commitment
level but on the allocation of the commitments across funds given a cer-
tain commitment level. Of course, it is clear that the random character
of cash flows can also not be changed by this approach.

Figure 2.10 shows the actual and targeted weights of Private Equity in the
portfolio of the Yale University Endowment Fund10. The Yale University
Endowment Fund, among some other large US endowment funds, was
one of the earliest investors in Private Equity and real assets. The graph
shows clearly that despite professional commitment strategies and rolling
investments targeted and invested capital differ on average by 2.34% and
the overall investment ratio is 88.3%. If this amount is weighted by total
assets under management, the right hand side of figure 2.10 shows the
absolute amount that is committed but not invested averaging 300 mio
USD per year with a maximum value of 728 mio USD. This amount is not
invested optimally when the delayed investment flow into Private Equity
is ignored. The graph also shows that when demand for Private Equity
investments is rather high, as for example during the dotcom-bubble or
during the sudden economic upswing after the financial crisis in 2009, it
is more difficult for funds to invest and therefore actual versus targeted
investment in the Yale portfolio differs more. During the financial crisis,
investing was more easy but on the other hand market activity tended to
be zero which explains the increase in 2008. These findings support the

10All data on the investment strategy of the Yale University Endow-
ment Fund is available in the ”Yale Endowment Updates” available from
http://www.yale.edu/investments/.
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data analyzed earlier and fit the explanations found in several empirical
studies cited below.
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Figure 2.10: Private Equity weights in Yale portfolio (Source: Yale (2009)
& (2005))

Ljungqvist and Richardson (2003) identify some factors influencing the
speed of capital calls in their study. Venture funds take longer to invest
than buyout funds but with only marginal significance. Funds raised be-
tween 1981 and 1993 invest much more rapidly. A reason might be the
fact that Private Equity was a rather young asset class at that time and
competition for “good” deals much lower. Also the actual fee structure
and the resulting incentives was not developed yet. The availability of
investment opportunities is also strongly significant. This view is also
supported by the positive influence of the control variable for competition
and the behavior of the investment degree displayed in figure 2.9 also af-
firms the argument. During the dotcom-bubble in 1999 to 2001, especially
the number of VC funds and their capitalization increased tremendously.
Therefore, competition was extremely high and the availability of good in-
vestment opportunities relative to the amount of inflowing capital rather
low. Public market developments do not appear to influence the speed of
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capital calls which goes in line with the common understanding of Pri-
vate Equity as being only moderately correlated with public markets. This
finding is also supported by Connor (2005c, p. 4). Interesting is the fact
that funds invest more slowly as debt becomes more expensive. But this
finding might be spurred by the fact that the dataset is strongly biased
towards buyout funds and therefore the generality of this point is rather
questionable.

2.2.4 Return Structure of Private Equity Investments

Since the fundamental work of Jensen (1968) in estimating absolute re-
turns of risky assets, a lot of effort has been made to improve the pre-
dictability of risks and returns of risky assets within different frameworks.
But there is still a big ongoing debate on the performance of Private Eq-
uity funds. The comparability of the results is somewhat complicated
because of the different data sources and return measures used. This is
also widely considered as the main reason why results of different perfor-
mance analyses are very inconsistent.

The first ones studying the returns of public and Private Equity invest-
ments were Moskowitz and Vissing-Jørgensen (2002). They used a large
sample of individual Private Equity investments from several sources.
They found Private Equity returns to be not higher than public equity
returns. The main problem from their analysis results from the inclusion
of self-employment and entrepreneurial investments to the dataset. The
difference to Private Equity as a pure financial investment is the fact that
entrepreneurial investments and self-employment decisions are not based
completely on financial reasoning but also depend on social factors and
intrinsic motivation. Therefore, the results cannot be compared to Private
Equity funds as financial investments are normally part of a diversified
portfolio. The fundamental study on Private Equity as a financial in-
vestment was conducted by Kaplan and Schoar (2005). They screened a
portfolio of 746 Private Equity funds and found out that their portfolio
on average yielded comparable returns net of fees to the S&P 500 In-
dex with large variation in time. They also found large funds to perform
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somewhat better and beating the index on average (p. 33). They used the
TVE dataset but used single fund data from different public sources11 as
well. Having in mind the common picture of the Private Equity industry
yielding spectacular returns, which is often drawn by the world press, this
seems to be surprisingly low12. On the other hand, Kaplan and Schoar
(2005) also report a large heterogeneity of performance across funds which
fits to the high-risk high-return characteristics of Private Equity invest-
ments. Gottschalg and Phalippou (2006, p. 17ff) even regard this perfor-
mance as too high, arguing that the selection of funds in the TVE dataset
is upward-biased. The main problem in measuring performance might lie
in the nature of a fund’s accounting standards. The value of existing
investments is still in a fund’s books although there is no more sign of ac-
tivity and the regular lifetime of ten years is also exceeded (p. 12). They
also criticize the weighting scheme which is oriented on committed and
not on invested capital biasing towards funds having been successful in
raising money but not in investing it. Their solution consists of including
funds’ numbers of successful exits as a proxy of performance and there-
fore only use funds older than ten years. Correcting for the shortcomings
mentioned above, they indicate an underperformance of 12% relative to
the performance of the S&P 500 which holds for both venture capital and
buyout funds.

For gross performance (before subtracting fees) the picture is mixed.
While Cochrane (2005) gets an average return of 59% gross of fees for
VC, Hwang, Quigley and Woodward (2005) only find moderate outper-
formance compared to the S&P 500 and the NASDAQ gross of fees. The
underlying datasets end in 2000 when we observed an extreme peak of
the Private Equity industry in every respect. But in spite of the almost
same datasets, the results are not even similar. Hwang et al. (2005) also
conduct the same analysis for the dataset ending in 2003 and then did
not even find outperformance gross of fees anymore. These results are
somewhat difficult to interpret as funding data from individual deals are

11One of them was also the CalPERS dataset which was analyzed above.
12For a selection of related press articles the reader is referred to Appendix A in

Gottschalg and Phalippou (2006).
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used which are very difficult to handle because of their extremely ran-
dom nature13 and returns are not estimated from a sample of liquidated
funds directly. One of the very few studies on buyout funds’ performance
was conducted by Swensen (2000, p. 230ff). He focused on risk-adjusted
returns and found out that BO funds did massively underperform the
S&P 500 if the same Debt/Equity ratio is applied to the index. All of
the other studies mentioned above found returns gross of fees to be sub-
stantially higher than for standard market indices. Metrick and Yasuda
(2008) support this as they found out that the fixed part of the fees makes
up a considerable share in a general partner’s revenue. 64% for both ven-
ture capital and buyout funds. The overall fees are generally about 30%
higher for venture capital funds. But buyout fund managers can profit
more from their prior experience and increase the size of the funds more
quickly. This is possible because buyout funds focus more on big and
rather mature companies and so their business is more scalable.

Ljungqvist and Richardson (2003) also discovered some interesting fea-
tures about Private Equity performance. They used cash flow data from
a limited partner and had access to all single fund data. All investments
made by the limited partner are included and so the survivorship bias can
be overcome. This bias arises because publicly available return data only
exist for finally closed funds which in general are the more successful ones
as others are closed with a loss or written off. On the other hand, the
dataset is affected by the investor’s investment policy which in this case is
highly focused on buyout funds. The main source of performance data on
buyout funds is their track record which is mainly reported in fundraising
brochures of the general manager (Phalippou, 2007, p. 4). Another ad-
vantage of the Ljungqvist-Richardson dataset is the fact that they have
access to the cash flow data of all investments and also their respective
valuation which improves the reliability of the IRR-figures used compared
to the aggregate IRR reported in TVE. The average IRR for the mature
funds in the dataset including fees was found to be 20.46% on average and
17.67% capital weighted with a standard deviation of 22.42%. So, larger

13The goal of the paper by Hwang et al. (2005) is different from the development of a
simple return estimation. They construct a benchmarking index for VC returns.
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funds performed somewhat worse. The large difference on performance
can be mainly credited to the characteristics of the dataset which relies
completely on historical cash flow data. Using the S&P 500 Index as a
benchmark, Ljungqvist and Richardson (2003, p. 18) also found signifi-
cant excess performance ranging from 5.93% to 8.06% depending on the
assumptions on investment and de-investment speed. Compared to the
NASDAQ Composite Index, the range reduces to 2.62-6.28%. Again, a
substantial divergence of returns is observed. An interesting fact is that
average IRRs only turn positive in the eighth year of investment and ex-
cess returns even later taking into account capital cost.

The survivorship problem is also actively controlled for in a study by
Cochrane (2005) where he established a maximum likelihood estimation
for gross returns. He identifies and measures the underlying return distri-
bution, exit dates and increasing probabilities of getting a return as the
asset value increases. Very interesting is the finding that the returns of
venture capital investments are approximately log-normally distributed
with a small mean and a high standard deviation. Mean-log-returns
are found to be only slightly above the respective S&P 500 mean-log-
returns with a substantially higher standard deviation especially for early
stage deals. But the standard deviation is comparable to small NASDAQ
stocks. These findings show clearly that high average returns of ven-
ture capital investments mainly come from a high standard deviation not
from high mean returns. As Cochrane examines individual venture capital
projects, he estimates gross returns. He used financing data from TVE
amended by public offering or M&A data from different sources. The
correction results in a massive downsizing of average returns and their
standard deviations. A major shortcoming of this analysis is of course
the dataset which ends in 2000, the absolute peak in Private Equity in
every respect which might cause some upward bias for the estimations.

If we summarize these findings we do not really see Private Equity funds
outperforming public equity on average to a large extent. Phalippou
(2007, p. 4) puts it very clear: “Even on a sample that is clearly bi-
ased towards winners, if the average performance is properly aggregated
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and the sample sufficiently large, then average performance is low!” The
conclusion is obvious: We do find outperformance but only for several
funds and experienced fund managers but not on average. Therefore only
skilled investors able to detect the “good” funds are able to yield above
average returns. This problem is also closely related to the famous agency
theory as investors are unsure on the quality and the behavior of the fund
manager.

If we think of possible performance drivers for Private Equity investments
we end up with similar influencing factors as for public investments:
overall economic development, microeconomic factors of the underlying
companies and a fund’s internal factors like size, organizational struc-
ture or managers’ ability. But testing possible explanatory variables on
performance, all studies end up with only very low explanatory power.
Ljungqvist and Richardson (2003) conducted a very comprehensive anal-
ysis on a number of factors from the three categories mentioned above.
The adjusted R2 of their regression was only between 3.7%-5.7% and they
only found fund size (negative) and money inflow (negative) to be statisti-
cally significant. Kaplan and Schoar (2005, p. 13) conducted a somewhat
different analysis and discovered size as a positive driver but again with
a low R2. A negative impact was also attributed to the number of new
market entrants. On the other hand, Kaplan and Schoar (2005, p. 21ff)
found past performance to be a major driver for future money inflow and
the number of new funds which are additionally able to raise more money.

In order to get an idea on the return characteristics of Private Equity in-
vestments, it is also interesting to look at the alpha measure which shows
the abnormal performance of an investment. For funds, the alpha is often
considered as a measure to assess fund managers’ abilities. Driessen, Lin
and Phalippou (2008) explore risk and return of Private Equity funds in
a GMM-framework and also overcome the survivorship bias using aggre-
gated fund data for finished funds that also include unsuccessful invest-
ments. They find a large negative alpha of -15% for venture capital and a
positive but statistically insignificant alpha for buyout funds independent
on fund size. On the one hand, these findings are surprising as Private
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Equity is generally seen as a high alpha investment. But it shows again
that investors need the ability to find successful fund managers in order
to benefit from abnormal performance. Kaplan and Schoar (2005, p. 12)
found an average annual alpha of 5% net of fees in their dataset but only
on a capital weighted basis. Separating the results for the two main fund
types, the alpha for BO funds was -7% and 21% for VC. Cochrane (2005,
p. 19) found a median annual alpha of 32% but gross of fees. Gottschalg
and Phalippou (2006, p. 18ff) also found gross alpha to be 3% while the
alpha net of fees was -3%. Again, this shows the major impact of fees
on fund performance and a careful evaluation which general manager is
worth its fees. Cvitanic, Lazrak, Martellini and Zapatero (2003a, p. 31)
mention three types of risk when estimating the alpha of Private Equity
funds: model risk from the underlying model used for the estimation,
sample risk from the data analyzed and selection risk from the funds se-
lected.

An interesting study on returns was conducted by Bilo (2002) using data
on publicly traded Private Equity investments to estimate returns. The
return structure is similar to that reported in chapter 2.2.2. This study is
very interesting as the results can be compared to the return character-
istics of standard asset classes directly due to the similarities of the data
structure and the absence of intermediate valuations by the fund manager
influencing the reported NAV. Furthermore, a multi-factor model to ex-
plain (publicly traded) Private Equity returns was found to be significant
(R2 = 63%). Influencing factors were stock market volatility, NASDAQ
returns, GDP growth, IPO volumes and credit spreads (Bilo, 2002, p.
121ff).

The large differences we see in the literature are somewhat difficult to
explain. The main issue is the fact that the different datasets cannot be
compared. The differences range from gross- versus net-of-fee data, self-
reported versus actual cash flow data or aggregated versus single fund
data. However, the probably most important fact is the time period con-
sidered. Cochrane for example uses a dataset ending just before the burst
of the dotcom-bubble leading to a potential upward bias. This shows
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the effect of data selection. Hwang et al. (2005) account for the effect
of data selection dividing their dataset in two parts, one ending before
the dotcom-bubble and the other ending afterwards. The differences are
substantial. The investment focus of the several datasets is also often dif-
ferent. While Cochrane uses venture capital data gross of fees, Driessen
et al. use net of fee data which also include buyout funds. But Driessen
et al. state that fees alone cannot explain those considerable differences.
Another major difficulty for comparing the data is the different beta mea-
sures used. Measuring betas for Private Equity funds is very difficult as
interim fund values have to be included which are prone to some biases
as will be shown later. Nevertheless, beta measures avoiding self-reported
data will be presented in chapter 2.2.5 to get an understanding of the
general risk profile of Private Equity funds.

After this analysis, the return structure of Private Equity investments is
still far from being clear and the findings are very sensitive to the dataset,
the analyzed time period and the in- or exclusion of fees so that gener-
ally holding rules cannot really be inferred. As a result, an investment in
Private Equity vehicles can yield extraordinary performance. But as fees
are very high and the range of returns extremely large, it is inevitable for
an investor to conduct a careful due diligence in order to maximize the
probability of picking one of the more successful funds.

2.2.5 Risk Structure of Private Equity Investments

Driessen et al. (2008) calculate the risk profiles for Private Equity funds
using a CAPM framework. The findings are very different comparing VC
and BO funds. While VC funds have a beta of 3.21, it is only 0.33 for
BO funds. Possible reasons for this finding are, that BO funds invest in
rather mature (large) and therefore often less risky companies and the
more active participation of BO fund managers in the boards helps them
to reduce the risks of their investments. The values are significantly pos-
itive related to fund size. As a result, the higher returns of larger funds
are rather due to higher risk exposure than to abnormal performance as
the alpha measure does not depend on size.
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On the other hand, Ljungqvist and Richardson (2003) find betas of 1.12
and 1.08 for VC and BO funds respectively. Both studies use the CAPM
framework but different datasets. Driessen et al. (2008) use the cash flow
data from the TVE dataset while Ljungqvist and Richardson use single
fund data of a Private Equity investment firm. Driessen et al. estimate
alpha and beta from a cross-section of cash flow data at the end of a fund’s
lifetime using a GMM-framework. As the expected value of discounted
investments and payouts must be equal at the end of an investment when
all payments are done, the parameters are chosen in a way that matches
the observed data. As Ljungqvist and Richardson have access to all in-
termediate cash flows of a large number of funds, they can estimate the
parameters for the CAPM using the valuation and return estimates in-
ferred from those cash flows.

The different datasets might be an explanation of the resulting differences.
Another explanation is the fact that Driessen et al. only use mature funds
and Ljungqvist and Richardson also include funds in early stages. An im-
plication is to assume that younger funds have lower risk. As these funds
are still in the investment phase where basically no cash inflows arise,
it is reasonable to assume that the risks only emerge in the later stage
where the investments are exited. But trying to explain the differences
still leaves the problem of very heterogeneous findings. The BO beta in
the first dataset of 0.33 seems extremely low especially when we take the
considerable leverage that BO funds typically have into account. As the
first dataset includes only a small sample of BO funds and therefore the
estimate has a quite large standard deviation, the value of 1.08 from the
second dataset can be considered as more realistic but maybe downward
biased through the inclusion of early stage funds. As the second dataset
is strongly biased towards BO funds, the first estimation of 3.21 for VC
fund betas might be more reliable. This is also in line with the findings
of Korteweg and Sorensen (2007) who use a Bayesian model to estimate
the risks of venture capital. They use investment data from VC funds
and include a selection model to the analysis specifying the probability
of observing a company’s valuation as a function of several variables to
account for the endogeneity of valuation events. They find beta values
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for VC investments ranging from 2.6 to 3.0. What we can infer from the
findings is that VC funds are normally riskier than BO funds, in some
cases to a very large extent. This result can be found in a vast number of
studies on the statistical properties of Private Equity funds. But overall
measures of beta for Private Equity funds remain very difficult to com-
pute and therefore have to be interpreted with caution.

Bilo (2002, p. 97ff) finds beta values for publicly traded Private Equity
of 0.3 to 1.8. She finds that low beta values are due to low correlation es-
timates and vice versa. The correlation estimates for publicly traded Pri-
vate Equity reveal some interesting insights. First, they are only weakly
correlated among themselves and with bonds. With different kinds of pub-
lic equity correlation estimates are between 0.18 and 0.55 being lowest for
small-cap shares and the NASDAQ Composite Index. The estimated val-
ues are especially high for buyout funds investing in large-caps and are
completely in line with the correlation estimates Hwang et al. (2005) car-
ried out for their venture capital return index. These findings show that
publicly traded Private Equity can serve as a proxy for the statistical
properties of Private Equity investments in general.

Phalippou (2007) proposes four explanations for the fact that a growing
number of investors put more and more money in Private Equity funds
despite the, compared to the risks, low average performance. The first
explanation is learning. As general managers of Private Equity funds
take part in the operational processes of invested enterprises, the positive
effects of their experience on following investment companies are quite ob-
vious. This suggestion is supported by the findings of Connor (2005b, p.
66) and Kaplan and Schoar (2005, p. 15) which show that follow-on funds
offer higher returns. Additionally, Cochrane (2005, p. 2) finds follow-on
investments to become less risky. But at the same time, Connor (2005b)
also discovered that funds from managers which raised only one fund are
outperforming funds being established by managers having raised multiple
funds. Having in mind the (statistically not significant) outperformance
of first-time funds measured by Ljungqvist and Richardson (2003, p. 26),
the picture on the persistence of returns becomes even more mixed and
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considering managers’ experience as a good reason to invest in their funds
seems rather questionable. As mentioned above, skills to detect funds,
which perform better than average, can and should therefore be acquired
by investors. The second reason is mispricing. Phallipou mentions that
mispricing could arise from different sources; the view on past performance
might be biased because of high gross returns, different performance mea-
sures across investors, a few successful lighthouse projects, biased data on
performance of closed funds and so on. As a third explanation, Phallipou
suggests the existence of side benefits which means that investors are not
only interested in the performance of the fund but also follow other goals,
e.g. the contact to a certain fund manager or personal interest in a target
company. The last explanation Phallipou gives is illegal conspiracy.

2.3 Review on Return Measurement

2.3.1 Issues on Return Measurement and Relevant

Methods

Some issues about the ways to measure performance have to be considered.
There are numerous possibilities to measure the returns of Private Equity
investments. When a fund is closed and all investments exited, it is very
easy to measure the average annual rate of return. Problems arise mainly
from the uncertainty of cash flows when the IRR of a Private Equity fund
is computed before its ending date. The IRR is affected by the investment
and exit rates of a fund’s assets and also by dividends paid which are
random ex ante. Private Equity funds are often restricted by covenants
to reinvest capital gains (Gompers & Lerner, 1996, p. 481)14. As this
study examines the optimal use of not invested capital, it will therefore
not focus on returned capital further. As it is very difficult to time the
cash flows of a Private Equity investment ex ante, comparing IRRs of
not yet finished funds is not very meaningful because of the underlying
estimations and the influence a fund manager has on the timing of the cash

14For a comprehensive study on the use of covenants in Private Equity contracts the
reader is referred to Gompers and Lerner (1996).
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flows. The IRR is especially sensitive to the terminal value calculation
at the exit date. Hwang et al. (2005, p. 26) show that the cash flows
from the exit of an investment have a major impact on performance.
Furthermore, measurement and reporting of cash flows used to calculate
IRRs lie in the fund manager’s discretion. Since fund managers have
sometimes very different views on the reporting standards of cash flows,
reported IRRs are not an ideal measure of a fund’s actual return and
can therefore vary substantially across funds. Driessen et al. (2008, p.
36) prove this view and show that especially for the group of mature
and inactive funds reported NAVs significantly overstate market values.
If we try to capture the returns of not yet liquidated funds, the IRR
faces obvious shortcomings: the remaining cash flows and the terminal
value have to be estimated which stresses the reliability of the resulting
IRR. Another point to mention is the fact that Private Equity investors
themselves tend to keep funds in the portfolio and report values which
are inactive since several years15. In the CalPERS portfolio about 5% of
the total number of funds are older than twelve years. To address this
problem, CalPERS shifted old and inactive funds to an external portfolio
manager with the order to liquidate them. As the analysis will not focus
on the returns of funds, these problems will not be addressed further.
Nevertheless, if the cash flows are modeled carefully, the IRRs from the
analysis can be compared and interpreted. The crucial point is to use
standardized calculation methods for all cases.

Bader (1996, p. 310ff) shows some different methods to calculate IRRs
accounting for the timing of cash flows. A method proposed to address
the timing of investments which lies in the fund manager’s discretion is
the theoretical IRR based on the simultaneous investment of all deals.
But as some deals are financed using distributions from other investments
this method seems easy but does not capture the deal flow.

As the IRR is not a sufficient measure to judge the return on a Private
Equity investment due to the time effect of the capital calls, A. Long
and Nickels (1996) developed the so-called Index Comparison Method
15Frei and Studer (2004) argue that the payback period is a useful performance indi-

cator in those cases.
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(ICM) in order to create a benchmark for Private Equity investments.
The main idea behind this method is to track the performance of a Private
Equity investment along the performance of a public investment and to
compare the results. The procedure is straightforward: each time a private
investment experiences a cash in- or outflow, the same cash flow is put
in or taken out of an appropriate public market investment, usually an
index. It is important to match the timing of the cash flows in and
out of the two investments exactly and at the respective prices of the
public market investment. At the end of a Private Equity investment the
IRRs for both the private and public investments are calculated and can
then be compared directly. The crucial idea behind this method is the
exact paralleling of the two cash flow streams. If for example two Private
Equity investments with the same IRR but different cash flow streams
are compared to the same index at the same time, the IRR of the index
is expected to be different because of the timing16. As a result of this
finding, it can be seen that IRR calculation is not sufficient in order to
measure performance. The major shortcoming of the Index Comparison
Method is the fact that it is only valid over longer time periods in order
to incorporate the market cycles. As a typical Private Equity investment
has a term of ten years and sometimes longer, the ICM can be considered
as fairly reliable. Furthermore, different investments are only compared
within the same time periods so that market cycle effects do not influence
the performance data. Kaplan and Schoar (2005) use a different measure
to evaluate Private Equity performance, the Public Market Equivalent
(PME). It calculates the ratio of the present value of future cash flows
and the present value of the investment itself compounded at the rates
determined by the benchmark index. As A. Long (2008) showed that ICM
and PME are equivalent measures and can be translated into each other,
this study does not focus further on the PME.

Hwang et al. (2005) developed a Private Equity benchmark index directly.
They used single firm funding data and constructed a standardized index

16For sample calculations the reader is referred to the appendix in A. Long and Nickels
(1996). The effects of different timing are also analyzed in A. Long (2006).
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using a hybrid version of the repeated sales technique17. This index is a
very interesting and helpful tool to benchmark Private Equity investments
directly to others and also to compare the overall performance of private
investments to indices of public investments. As the focus of this study is
not directly related to the comparison of returns of different Private Equity
investments, it does not include the index into the following analysis. The
index is only calculated for venture capital and gross of fees which have a
major impact on performance as was shown in section 2.2.4.

As we have already seen above, IRRs are often a problematic measure
of a (Private Equity) fund’s performance. This comes from the fact that
reported IRRs differ because of simplifying assumptions funds make about
cash flows and the special way TVE aggregates them, mixing NAV-growth
with cash IRRs. As many studies use the TVE dataset, both shortcomings
arise at the same time but the problem does not lie in the general method
of the IRR calculation.

2.3.2 Performance Ratios

As IRR measures are biased for several reasons mentioned before, Private
Equity Funds often report further performance measures and ratios which
are also reported to the TVE database. The goal is to show the charac-
teristics of a fund from different perspectives providing a comprehensive
picture. In order to get a common understanding on the quality and the
performance of a fund, these measures have to be considered in parallel.
The most important are:

Distributed-to-paid-in-capital (DPI) =
Distributed Capital

Paid-in Capital

Residual-Value-to-paid-in-capital (RVPI) =
NAV

Paid-in Capital

17This method was first introduced by Bailey, Muth and Nourse (1963) who used sales
prices of the same property at different times to overcome quality differences among
these properties. A similar version of the model using a different dataset is developed
in Hall and Woodward (2003). Using a similar dataset, Peng (2001) also developed
a venture capital index combining two sub-indices.
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Total-Value-to-paid-in-capital (TVPI) =
Distributed Capital + NAV

Paid-in Capital

Distributed-to-committed-capital (DCC) =
Distributed Capital
Committed Capital

Paid-in-to-committed-capital (PICC) =
Called Capital

Committed Capital

Each of the ratios measures a specific characteristic of a Private Equity
investment and can complete the picture when evaluating a fund. There
is no discounting considered when calculating the required data. DPI
measures paid-out capital to invested capital. Depending on the age of
a fund, the DPI indicates the ability of a fund (manager) to generate
a cash back from the investments and will obviously increase over time.
Benchmark values for different fund ages can help to compare different
funds in the same age class. A common rule-of-thumb is a DPI=1 between
year 5 to 7 (Bader, 1996). The DPI at the end of a fund’s lifetime
is equal to the investment multiple which is also a frequently reported
return measure. The complementary ratio to DPI is the RVPI which
measures the value of unrealized investments still in portfolio (the net
asset value, NAV) to invested capital. It is one at the inception of a fund
and zero at the ending date. RVPI>1 can occur if a revaluation of a fund
and a positive expectation on future payoffs increase the NAV. The TVPI
gives a more general view on total return as it sums up distributions and
the value of still active investments. The last two ratios comment on
the capital flow into Private Equity investments. These were discussed in
detail in chapter 2.2.3. Of course, the major shortcoming of these ratios is
the fact that they ignore the time-value of cash flows. Figure 2.11 shows
DPI, RVPI and TVPI for VC and BO funds as of June 2010.

Although returns differ between VC and BO funds, the above ratios
are very similar on average and only differ somewhat capital weighted
showing the time-effect on returns. The finding that larger funds tend to
perform worse on average can also be seen from these statistics. As funds
with all maturities are included in the data, the average fund age is around
6 years indicating that both types of funds distributed slightly more than
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Figure 2.11: Private Equity return ratios (Source: TVE)

the invested capital. The similar figures for VC and BO also show that
the major return realization comes at the later stages of a fund. This is
supported by the fact that returns are mainly driven by exit returns.

Other return measures commonly reported are pooled returns and size-
weighted returns. Pooled returns sum all cash flows over several funds and
treat them as if they came from a single fund. This procedure therefore
accounts for the timing effect of cash contributions and distributions when
calculating average returns over several funds. This is a more accurate way
to assess performance than simple averages over fund returns but it does
not work for the return calculation of a single fund. Time-weighted returns
are calculated using the geometric mean over fixed periods. Cash inflows
are assumed to be reinvested. As a result, timing effects are neutralized.
But as Bader (1996, p. 314) argues, it is not a meaningful measure to
assess Private Equity returns mainly due to the distorting effects of the
way the returns are weighted over several periods. As a result, static
performance measures can give useful insights on the performance of a
fund but can never replace the dynamic procedures mentioned in chapter
2.3.1.



3 Optimal Portfolios

3.1 Introduction to Portfolio Optimization

Portfolio optimization models and the optimal allocation of wealth in
order to maximize individual welfare have been an issue in finance since
Harry Markowitz published his famous theories on mean-variance-analysis
in the Journal of Finance in 1952 (Markowitz, 1952). Since then, port-
folio optimization was an active research field in finance focusing on the
optimal behavior of individual agents in financial markets. Markowitz’
basic idea was to find an optimal balance between risk and return of a
portfolio optimizing one factor and holding the other constant. However,
at that time, computational requirements were very high especially for
computing covariance matrices.

The single index model by Sharpe (1963), modeling absolute returns of
risky assets, was a first step to reduce complexity and lead to the fa-
mous Capital Asset Pricing Model (CAPM; Sharpe (1964), Lintner (1965),
Mossin (1966)) where asset returns are assumed to consist of the risk-free
rate plus a market related risk premium which is also very intuitive. As
the computational possibilities improved, it appeared that the CAPM had
only minor power in predicting asset returns and explaining variability in
stock returns. The main problem are correlated residuals. As a result,
a lot of effort was undertaken to improve the single-factor model lead-
ing to the Arbitrage-Pricing-Theory (APT) developed by Ross (1976).
This model further developed the CAPM and allowed expected returns of
risky assets to depend linearly on several macroeconomic factors leading
to uncorrelated error terms. In the absence of arbitrage, asset prices are
assumed to reflect the modeled returns. The main advantage is that the
APT-model allows different portfolios with specific factor loadings. Fol-

39
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lowing the work of Ross, research was done to identify the explanatory
variables describing asset returns leading to the Fama-French-three-factor-
model (Fama & French, 1993). This model states that asset returns not
only depend on a market specific risk premium but also on capitalization
and book-to-market-ratios. Although it is still a static model with severe
shortcomings, it continues to be important in portfolio management till
now due to its easiness to use18.

Tobin (1965a) also introduced real factors influencing the economy to
the discussion and extended it to a multi-period problem (Tobin, 1965b).
Samuelson (1969) extended the one-period models to multi-period gen-
eralizations. Further, he started to think of the optimization problem
as a lifetime planning of consumption and investment decisions introduc-
ing the utility of consumption. He stuck to a discrete-time version of
the model using the dynamic programming method to solve it. This ap-
proach was developed by the mathematician Richard Bellman (Bellman,
1957). This method is also mainly used in continuous time solving the
Hamilton-Jacobi-Bellman partial differential equation resulting from the
formulation of the optimality condition. The solution is the resulting
value-function. Solving the HJB-equation is subject to the famous Curse-
of-Dimensionality stating that the computing power increases exponen-
tially with the state variables included. For a comprehensive overview on
dynamic optimization and its application on finance the reader is referred
to Kamien and Schwartz (1992).

The basic idea of the Markowitz-model is still the same but the assumption
of a constant investment opportunity set became a major issue. The fun-
damental work has been done by Merton (1971) who developed optimiza-
tion models in continuous time with time-dependent and also stochastic
opportunity sets. The continuous time approach has the main advan-
tage of allowing the investor to act immediately to changes in the state
of nature19. Like Samuelson, Merton also incorporated consumption into
18For a comprehensive overview on mathematical theories of risk and return and their

application to portfolio optimization strategies the reader is referred to Deng, Wang
and Xia (2000).

19As this study does not focus on the basic mathematical derivation of optimal invest-
ment strategies but only on the enhancements including Private Equity, the reader
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the model but found only explicit solutions to very simple cases. Merton
(1973) created the consumption CAPM (CCAPM) relating asset returns
to the covariance of return and consumption and stating that risky assets
can act as a hedge for future consumption uncertainty. Lucas (1978) de-
veloped an exchange economy with only one good to study the stochastic
behavior of equilibrium asset prices and found a functional equation of
asset prices resulting from the optimal utility of consumption over time.
These models are the building block for several later studies on asset pric-
ing. The integration of real and financial markets to this problem was
done in Cox, Ingersoll and Ross (1985) who developed a continuous time
general equilibrium model to examine asset prices which depend on the
underlying real variables of the economy. The most famous application is
the equity premium puzzle discovered in Mehra and Prescott (1985): the
empirical evidence showed that the equity premium requires a coefficient
of relative risk aversion of 26.3 (or 17.5 correcting for the bias resulting
from return aggregation over time) which was found to be highly unre-
alistic (Mankiw & Zeldes, 1991, p. 103ff). The puzzle is still not solved
completely.

Closed-form solutions to the Merton problem including a stochastic risk-
premium can be found e.g. in Kim and Omberg (1996). Evidence on fac-
tors influencing asset returns is given in Brennan (1998) and Xia (2001).
They also introduced uncertainty on the variables driving these factor
dynamics. They conclude that uncertainty about and future learning on
mean returns influence portfolio decisions to a large extent. Sørensen
(1999) analyzes changes in the opportunity set (stochastic interest rates)
and derives strategies to hedge those changes. More complicated versions
of the optimization problem with more than one stochastic discount factor
influencing the underlying variables of the model are solved in Brennan
and Xia (2001) among others. Dondi, Geering, Herzog and Schumann
(2004) solve a multifactor-case of the problem using two types of utility
functions: constant relative risk aversion (CRRA) and constant absolute

is referred to Korn (1997) for a more elementary and comprehensive overview on
portfolio optimization techniques under various circumstances. The Merton problem
is discussed in detail in many textbooks on continuous-time finance like Bjørk (1998)
or Shreve (2004).
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risk aversion (CARA). In case of a CARA-function, the optimal weights
are a function of current wealth and there exists a finite probability that
the investor can go bankrupt. This is not possible with a CRRA-function
as the investor rebalances his portfolio over short time periods and can
therefore react on losses immediately. Furthermore, Dondi et al. (2004)
allow portfolio weights to be restricted. Keel (2006) extents the model for
the partial information case where only some of the underlying processes
for the factor dynamics are known and others include unknown parame-
ters.

Discrete time versions of the Merton problem are accounted for in detail
in Campbell and Viceira (2002). They approximate portfolio returns com-
bining asset log-returns using a Taylor expansion. The approximation is
the better the shorter are the time intervals considered. In the limit, this
leads of course to Itô’s Lemma. Another interesting insight comes from the
fact that Campbell and Viceira work with the Epstein-Zin-utility which
is a more flexible version of the basic power utility function and allows
to separate the relative risk aversion from the intertemporal elasticity of
substitution. This provides interesting results for intertemporal long-term
portfolio choices. Campbell, Chan and Viceira (2003) solve a discrete ver-
sion considering multiple factors.

A different method to solve continuous time portfolio optimization prob-
lems was developed by Harrison and Pliska (1981), Cox and Huang (1989)
and Karatzas (1989), the so-called Martingale Method using general Itô
processes as underlyings. The basic idea is the separation of the opti-
mization problem in a Static Optimization Problem yielding the optimal
consumption process and the terminal wealth of an investor and a Rep-
resentation Problem to find a trading strategy leading to those optima.
The Martingale Measure itself serves as a stochastic discount factor and
is unique if markets are complete. The major advantage is the fact that
the two problems can be solved separately. Today’s research is especially
focussed on relaxing the model assumptions. Korn (1997) for example al-
lows for transaction cost, Munk and Sørensen (2004) allow for stochastic
interest rates.
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3.2 The Merton Portfolio

3.2.1 Derivation of the Merton Portfolio

The importance of the Merton portfolio in finance is extremely far-reaching
as it can be seen not only as a benchmark portfolio in financial modeling
and portfolio optimization but the Growth Optimal Portfolio (GOP) as a
special case can also be used as a numéraire in contingent claims pricing
and risk management20.

The Growth Optimal Portfolio can be defined as the portfolio that maxi-
mizes the expected logarithmic utility from consumption and final wealth
by optimizing the consumption path and the share of wealth invested in
the risky asset, i.e. it is the portfolio that outperforms the median growth
rate of any other portfolio in the long-run. The market portfolio can al-
ways be described as a combination of the GOP and the risk-free bond.
Originally, the idea was developed in the context of winning strategies
in lotteries. The first who applied the theory explicitly to “financial in-
vestments” was Breiman (1961) showing that there is an asymptotically
optimal strategy maximizing the initial bet. Since then, financial theory
has gone a long way.

In this section a solution to the Merton portfolio is derived using the Mar-
tingale Method. First, we have to formulate some assumptions in order
to apply the method. The most important assumption is the one of com-
plete markets which means that all contingent claims are marketed, i.e.
all assets are traded and the number of stochastic variables equals the
number of risky assets. Further assumptions are the self-financing con-
dition, allowance for short-selling, exclusion of transaction costs, freely
divisible assets and an infinite number of investors21. As the goal is to
maximize expected utility, we have to define a utility function which has
to fulfill several conditions: twice differentiable over the relevant range,

20For detailed derivations of the numéraire portfolio the reader is referred to J. Long
(1990).

21For a more detailed discussion on the assumptions the reader is referred to any
standard textbook on continuous time portfolio optimization, e.g. Korn (1997).
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strictly monotonic and concave and the INADA-conditions. A specific
utility function is not formulated, yet.

The formulation of the problem is

max
π,c

E

∫ T

0

u1(t, c(t))dt + u2(B) (3.1)

with π being the share invested in the risky asset and c(t) being the
consumption path. B is final wealth and u1(.) and u2(.) the utility func-
tions. This problem can be split in a Static Optimization Problem (SOP)
and a Representation Problem (RP).

Assuming u = u1 = u2 we have

max
B,c

E

∫ T

0

u(c(s))ds + u(B) (SOP )

s.t.E

∫ T

0

(H(s)c(s)ds + H(T )B) ≤ X0

(3.2)

XX0,π∗,c∗(T ) = B∗ (RP ) (3.3)

X0 is initial wealth by which expected consumption and terminal
wealth have to be bounded as we assume self-financing. π∗ and c∗ are
the optimal investment and consumption path and B∗ is the respective
final wealth solving the SOP. H(t) is the State-Price-Deflator or Pricing
Kernel which is a universal measure to discount future payoffs into today’s
prices. It is developed throughout the following lines. Asset prices follow

dSt

St
= μSdt + σSdZS,t (3.4)

dBt

Bt
= rdt (3.5)

with μS and σS being expected return and standard deviaton of a stan-
dard Brownian motion and r being the risk-free rate. ZS,t is a standard-
normally distributed random variable. Because of the Girsanov Theorem,
we can change the drift term of a given Itô process without changing the
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diffusion term. As a result, we can formulate a new (risk-neutral) proba-
bility measure for the risky asset S resulting in a drift term equal to the
risk-free rate. The solution to equation 3.4 therefore is:

f(St) =
1

S0σ
√

t
e−

1
2σ2t

(ln(
St
S0

)−rt)2 (3.6)

The advantage of this risk-neutral probability measure compared to
the statistical measure is captured by the famous Fundamental Asset Pric-
ing Theorem of Harrison & Pliska:

A financial market that has a risk-neutral probability mea-
sure admits no arbitrage. If every contingent claim is priced
the risk-neutral measure is unique.

After the transformation, we are able to calculate the Radon-Nikodym-
Derivative h(t) dividing the statistical and the risk-neutral probability
measure. Using the fact that risky returns are lognormally distributed we
have

h(t) = e−
(μS−r)2

2σ2 t−μS−r

σ Bt (3.7)

Using integration rules and replacing the expression for the Sharpe
ratio by θ leads to

h(t) = e−
R t
0 θ(s)dBs− 1

2

R t
0 ‖θ(s)‖2ds (3.8)

Assuming that the Novikov Condition holds is sufficient for h(t) to be
a Martingale22. This condition states that the expectation of the second
integral of the optimization problem is finite. Multiplying the Radon-
Nikodym-Derivative with a discounting process, we get the pricing kernel
H(t)

H(t) = e−
R t
0 (r+ 1

2‖θ(s)‖2)ds−R t
0 θ(s)dBs (3.9)

The SOP is solved using a regular Lagrangian and the RP by compar-
ing coefficients of the underlying Brownian motion and the general wealth

22For a proof the reader is referred to Karatzas and Shreve (1991, 198-201).
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process.

If we assume the utility function to be of power utility type with γ > 1, a
subclass of the HARA-type functions, we get a closed form solution which
is also related to the coefficient of risk aversion having a constant relative
risk aversion of γ > 1 called the Merton portfolio. For γ → 1 the utility
function is of log-type which leads to the Growth Optimum Portfolio. The
following derivations are therefore based on that specific type of utility
function.

For the optimal process X∗(t) we get

X∗(t) =
1

H(t)
E(H(T )B∗|Ft) (3.10)

Assuming constant market coefficients, H(t) can be simplified to

H(t) = e−rt−θBt− 1
2 θ2t (3.11)

Solving this problem using the methodology described above, we end
up with an optimum inversely related to the coefficient of risk aversion,
the famous Merton portfolio23:

π∗
M =

μS − r

γσ2
(3.12)

For γ = 1, 3.12 can be shown to be the GOP and the utility function
converges to a log-function. This is optimal to any other trading strategy
in the long-run which is shown in the following section.

3.2.2 Optimality of the Growth Optimal Portfolio

It can be shown that no portfolio can generate wealth over an increas-
ing time horizon that is strictly larger than that from the GOP with
some strictly positive probability24. Samuelson (1969) already showed
that maximizing expected utility for isoelastic functions (i.e. the log-

23For a detailed derivation of the solution and further problems of the same type see
Munk (2008).

24See i.e. Platen (2005) or Korn and Schäl (1999) for detailed derivations.
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function) results in constant investment weights over time maximizing
wealth and consumption compared to any other trading strategy. Platen
(2005, p. 384ff) shows that the growth rate of the GOP is at no point
in time smaller than the growth rate of any other portfolio and that the
trajectory of the GOP is always path-wise equal or larger than of any
other portfolio after a sufficiently long time. When the GOP is used as a
benchmark portfolio, its conditional expected return is zero and there is
no other benchmarked portfolio generating expected returns larger than
zero (J. Long, 1990).

Systematically outperforming the GOP is not possible with some strictly
positive probability. Baumann and Müller (2006) show that beating the
GOP is even for very low rates of outperformance connected to an ex-
tremely high shortfall probability compared to a targeted rate of out-
performance. They calculate the shortfall probability for different time
horizons and define the shortfall for different degrees of success, saying
that a shortfall only occurs if the degree of outperformance of a targeted
wealth level is lower than a fraction “a” of the GOP-level of wealth with
a ∈ (0, 1]. Two types of shortfall are defined to get an understanding of
the risk. Type I defines the shortfall in case the investment is lower than
a fraction “a” of the GOP wealth at any point of time in the considered
interval [0,T] and Type II defines the shortfall if the investment is lower
than than a fraction “a” of the GOP wealth at time T, the investment
horizon. It is obvious that a shortfall of Type II is much less probable
and leads to a more risky investment path. The following graphs show the
minimal shortfall probabilities for both types with various target rates of
outperformance c. The GOP-rate of return is assumed to be 9.25% with
a risk premium of 6.25% and a standard deviation of 25%. The wealth
processes follow a geometric Brownian motion.

Type I is independent of T . The shortfall probability is extremely high
being above 50% for a = 0.9 and a = 0.8 at rates of outperformance as low
as 0.7%. In case of a = 0.6, the shortfall probability only increases very
slowly being at 6.89% for c = 0.5%. Of course, the buffer is extremely high
in this case. From figure 3.2 it can be shown that the shortfall probability
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Figure 3.1: Shortfall probability of type I (Source: Adapted from
Baumann and Müller (2006))
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Figure 3.2: Shortfall probability of type II (a = 1) (Source: Adapted from
Baumann and Müller (2006))
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of Type II is always below 50% and strongly depends on the time horizon
T considered for the outperformance. But even for a rather long time
horizon (T = 20) and a moderate outperformance of 0.25% the shortfall
probability is above 20%.

3.3 Portfolio Optimization including Private

Equity

3.3.1 Static Optimization Methods

One of the earliest studies on the allocation of funds to different asset
classes based on the return premium of a single asset was conducted by
Treynor and Black (1973) stating that the optimal weights only depend
on the specific structure of the asset and not on the risk-return profile of
the market resulting in the appraisal ratio which is the risk adjusted out-
performance of an investment measured by the CAPM α. The underlying
model was based on the covariances of the assets and was build on the
foundation of Markowitz (1952) and Sharpe (1966). Black and Litterman
(1992) refined the setup allowing for independent and unknown shocks
modeling the excess returns of the assets. One of the earliest studies to
calculate minimum-variance portfolios including alternative investments
(hedge funds) is Amenc and Martellini (2002). Optimal portfolio weights
are calculated from covariance estimates of hedge fund indices. An exten-
sion to the standard mean-variance optimization framework is provided in
King (2007) who accounts for the fact of over-concentrated optimal port-
folios that are not feasible for institutional investors due to investment
guidelines.

In order to determine the periodic risk of Private Equity funds, A. Long
(1999) uses the spread of portfolio terminal values and calculates the risk
required to generate them backward. This procedure ensures that risk
is calculated without having to rely on biased intermediate valuations.
Returns are also estimated from a cross-section of final fund values. As
a result, A. Long (1999) derives optimal portfolio weights using a mean-
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variance analysis for different correlation assumptions. The most interest-
ing finding is the fact that the weight of Private Equity is only marginally
sensitive to a change in the correlation structure and lies around 30% for
the maximum Sharpe ratio portfolio. Baierl, Chen and Kaplan (2002) use
the assumption of lognormally distributed returns to build a model for the
return and volatility estimation for venture capital funds in a maximum
likelihood framework. Corrected for standard deviation they do not find
outperformance of VC investments compared to neither small nor large
stocks but in a mean-variance framework Private Equity was always in-
cluded in the range between 2% - 9% due to its low correlation. Although
these results are very different mainly due to the model specifications,
they show that the inclusion of Private Equity optimizes the risk-return
structure of a portfolio significantly.

Kerins, Smith and Smith (2004) estimate returns using the CAPM frame-
work and derive the related opportunity cost of capital for different Private
Equity investors. They consider two types of investors: entrepreneurs
(Private Equity as a single investment) and financial investors (Private
Equity as part of a well-diversified portfolio). They found out that the
opportunity costs of the investment are two to four times higher for an
underdiversified entrepreneur. These costs increase with the illiquidity of
the asset and the degree of underdiversification. They also tested various
levels of underdiversification and found the results to be very robust.

3.3.2 Stochastic Optimization Methods

The obvious problem is the static nature of the optimization frameworks
described in the previous section. As a result, starting with the work of
Merton, stochastic optimization methods were developed with some recent
versions also including alternative investments to the investment oppor-
tunity set. An interesting comparison of static and stochastic portfolio
optimization methods is done in Lenoir and Tuchschmid (2001). They
compare the results from a standard mean-variance approach to the Mer-
ton model in a practical application and mainly focus on the effect of the
investment time horizon but do not include alternative assets. Longstaff
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(2001) proposed a continuous time portfolio optimization model account-
ing for the illiquid nature of securities. He assumed that an investor faces
trading constraints and as a result is forced to invest in a suboptimal
portfolio loosing welfare gains compared to the case when assets are com-
pletely liquid. Døskeland (2007) developed an asset allocation framework
similar to Campbell and Viceira (2002) taking into account an investor’s
balance sheet to evaluate the long-term relationship between non-tradable
assets, stocks and bonds. Considering the long-term and illiquid nature of
those assets he found the optimal asset allocation to change over time and
to depend strongly on the long-term relationship of the assets. One of the
earliest studies incorporating alternative assets directly into a continuous
time framework is the one of Cvitanic et al. (2003a; 2003b) which derives
closed form solutions for the optimal investment path. The idea of the
CAPM-framework applied is similar to Baks, Metrick and Wachter (2001)
who introduce prior beliefs about the CAPM α which is consistent with
the fund manager’s abilities. The investment opportunities in Cvitanic
et al. (2003a) consist of a risk free bond, a public market index and an
alternative asset. The dynamics of the public market index follow the
common stochastic differential equation with lognormal processes and for
the alternative asset the stochastic differential equation is embedded in
a CAPM like framework25 which defines the expected return as the risk
adjusted return with respect to the market premium. The diffusion terms
are assumed to be independent but the alternative asset also depends on
the diffusion of the public market index. The goal of the analysis is to
maximize the expected utility from final wealth using a constant relative
risk aversion (CRRA) utility function. For the processes of alternative,
public and risk-free assets we have

dAt

At
= μAdt + σAdZA,t + ρσSdZS,t

dSt

St
= μSdt + σSdZS,t (3.13)

25It does not require the CAPM to hold because only its terminology is used. This
has the advantage that the results can be related to α and β measures which are
commonly used to describe Private Equity funds. The generality of this approach is
shown in Cvitanic et al. (2003b), chapter 5.
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dBt

Bt
= rdt

with μ and σ being expected return and standard deviation of the
alternative (A) and public (S) assets and r being the risk-less return.
Zt is the respective standard-normally distributed random variable. As
the expected return of the alternative asset is expressed in a CAPM-
framework we have μA = r + β(μS − r) + α with β = ρσA

σS
. The utility

function used is of CRRA-type with

u(W ) =
1

1 − γ
W 1−γ (3.14)

and γ being the individual coefficient of relative risk aversion. Cvitanic
et al. (2003a) assume that neither expected returns nor stochastic parts
are observable. The investor only observes the price processes (At, St) and
therefore the information only consists in the P-augmentation of the filtra-
tion Ft := σ(A(s), S(s); 0 � s � t) generated by the two price processes.
Risk premia are defined by

θS =
μS − r

σS
= SRS

θA =
μA − r

σA
− ρ

(μS − r)
σS

= SRA − ρSRS

(3.15)

with SR being the respective Sharpe ratios. It is assumed that the
vector θ = (θS , θA) has a normal prior distribution:

θ ∼ N(φ =

(
φS

φA

)
, Δ =

(
δS 0
0 δA

)
) (3.16)

Priors are uncorrelated in this case26. The resulting optimal invest-
ment paths for the alternative asset (x∗) and the public market investment
(s∗) yield very interesting implications27:

x∗ =
α

σ2
A(γ − (1 − γ)δAT )

(3.17)

26For correlated priors the reader is referred to Cvitanic et al. (2003b, p. 14ff).
27For a proof the reader is referred to Cvitanic et al. (2003b).
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s∗ =
μS − r

σ2
S(γ − (1 − γ)δST )

− βx∗ (3.18)

α and β are the respective parameters from the CAPM specification
and δ refers to the variance of the priors on risk-premia. For a solution
to exist, γ > 1 has to hold.

The optimal amount of money invested in alternative assets directly de-
pends on the abnormal performance α. As a result, investments in Pri-
vate Equity do only make sense if abnormal performance is expected to be
greater than zero. The greater the uncertainty around α the smaller the
optimal amount of alternative investments, which can be inferred from
the negative impact of δA, the variance of the prior on the risk-premium.
Only in cases when the variance of the prior on the risk-premium is not
zero, the optimal investment path is time-dependent and negatively im-
pacted by longer time-horizons as the adverse effect of the uncertainty
about expected returns is the larger the longer the investment horizon.
If δ = 0, the investor has perfect information on the underlying process
determining μS and we end up with the famous Merton solution.

For the public share the findings are more interesting. In addition to
the factors also driving the investment path of the alternative asset, the
optimal amount invested in the public market negatively depends on the
investment in the alternative asset weighted by β, the investment-specific
risk. Cvitanic et al. (2003b, p. 11) show that the sum of risky investments
for β < 1 is larger than in cases without alternative investments showing
the diversification effect of alternative investments. As the investment
opportunity set is constant, we do not have the intertemporal hedging
component in either of the two cases. Using the definition of β, we can
modify the results somewhat:

β = ρ
σAσS

σ2
S

= ρ
σA

σS
(3.19)

s∗ =
μS − r

σ2
S(γ − (1 − γ)δST )

− ρ
σA

σS
x∗ (3.20)
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For large absolute values of correlation, the asset allocation becomes
the most extreme. In case of no correlation and no uncertainty (δS = 0),
s is the same as in the standard Merton case and money invested in
the alternative asset is the least and comes at the expense of the risk-
free investment. The modified solution for s derived above is exactly
the same found by Keel (2006, p. 89) who conducts a similar analysis
comparing cases with full and partial information on the priors. For x,
he discovers some further interesting findings. The higher the absolute
value of the correlation between public and private asset the higher is the
optimal weight of the private asset. In case of negative correlation, the
optimal public market weight is larger than in the positively correlated
case and comes at the expense of the risk-free investment as x depends
quadratically on ρ. This comes from the fact that for lower correlation
downswings in the private asset are better diversified by the public market
investment.

A very interesting finding of Cvitanic et al. (2003a, p. 31) is the fact that
for β < 0.5 the alternative asset serves as a substitute of the risk-free
investment as in the optimum more money is withdrawn from the risk-
free investment than from the public market investment when alternative
assets are taken into account. In their base case28 about 28.64% is invested
in the alternative asset on average of which 27.64% was redirected from
the risk-free account and only 1% from the public market account. This
shows the extremely low β-estimate in their dataset. The absolute values
have to be interpreted with great caution as they are extremely sensitive
to the underlying assumptions, the time period considered and the dataset
used.

3.3.3 Modeling Portfolio Optimization including Pri-

vate Equity

In this section, a portfolio optimization problem will be solved using the
underlying model characteristics that will also be used for later analysis.
The major shortcoming of the model shown in section 3.3.2 is the CAPM-

28View Cvitanic et al. (2003a, p. 35) for exact parameter values.
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like structure. Due to the challenges when estimating α it is difficult to
evaluate portfolio weights. As was shown above, return estimates from
publicly traded Private Equity are much more suitable also for illiquid
Private Equity (see Bilo (2002)). The model is similar to the continu-
ous time approach derived in Denzler, Müller and Scherer (2001). The
asset classes comprise a Private Equity fund, a risky asset (i.e. a stock
index) and a risk-free bond as an equivalent to liquidity. Private Equity
investments are assumed to follow a standard stochastic process, as well
as the risky (public) asset. The corresponding differential equations for
the underlying price processes are

dCt

Ct
= μP dt + σP dZP,t (3.21)

dSt

St
= μSdt + σSdZS,t (3.22)

dBt

Bt
= rdt (3.23)

with μP , μS and r being the corresponding returns, σP and σS the
standard deviation of the Private Equity fund and the risky asset and
Zt being the respective standard Brownian motions with a correlation
of ρ between private and public equity. The general assumption found
in the literature is used here setting invested capital equal to committed
capital in order to define the benchmark case to which the results derived
in later chapters can be compared. This allows to see the effects of the
investment delay which is the focus of this analysis. Furthermore, the
standard assumptions of similar frameworks are made: the markets are
complete and trading is continuous, no transaction costs, the investor is
a price taker and has no market power to influence asset prices. The
portfolio weights of the respective asset classes are defined as:

x =
Ct

Wt
=

Ct

Ct + St + Bt
(3.24)

s =
St

Wt
(3.25)



56 Chapter 3. Optimal Portfolios

b =
Bt

Wt
= 1 − x − s (3.26)

summing up to one. Furthermore, the optimal portfolio weights can
be shown to be constant under the given conditions (geometric brownian
motion and constant relative risk aversion). A detailed proof is given in
Cvitanic and Karatzas (1992, p. 767-780) which not only includes uncon-
strained problems but also introduces some types of constraints (incom-
plete markets, short-selling constraints and different rates for borrowing
and lending). As a result, the problem of maximizing the expected utility
of final wealth can be reduced to a static optimization problem. Denzler
et al. (2001) also show that optimal weights are constant introducing
an asset liability framework to overcome the shortcomings of the basic
(constrained and unconstrained) model with very short investment hori-
zon and make it applicable for investors with longer investment horizons
(especially pension funds). The problems mainly arise from estimating
the covariance structure of the risky assets which can only be done in a
straightforward way when there are less than 20 asset classes. To over-
come these problems, the following analysis only assumes 3 asset classes.
The expected return of Private Equity, μP , can for example be estimated
from historical returns of listed (and therefore liquid) Private Equity ve-
hicles or from the aggregated TVE return index. The difficulties with the
TVE dataset are described in section 2.2.2.

As the investment period is assumed to be T − t0 (with t0 = 0), final log-
wealth can be defined as lnWT = ln(CT +ST +BT ). Using the dynamics
from equations 3.21 - 3.23 and Itô’s Lemma the dynamics of dln(Wt) can
be derived:

dln(Wt) =
1

CT + ST + BT
dCt +

1
CT + ST + BT

dSt +
1

CT + ST + BT
dBt

− 1
2

1
(CT + ST + BT )2

(dCt)2 − 1
2

1
(CT + ST + BT )2

(dSt)2

− 1
2

1
(CT + ST + BT )2

(dBt)2 − 1
2

2
(CT + ST + BT )2

dCtdSt

(3.27)
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Due to Itô calculus, terms of higher order in dt are set equal to 0. As
dBt does not depend on a stochastic part, (dBt)2 can also be set to 0.
After canceling out and introducing the corresponding portfolio weights
we get29

dln(Wt) = x
dCt

Ct
+ s

dSt

St
+ b

dBt

Bt
− 1

2
x2(

dCt

Ct
)2 − 1

2
s2(

dSt

St
)2 − xs

dCt

Ct

dSt

St
(3.28)

Replacing the dynamics with the respective differential equations gives
the stochastic differential equation for log-wealth:

dln(Wt) = [xμP + sμS + (1 − x − s)r − 1
2
x2σ2

P − 1
2
s2σ2

S − xsσP σSρ]dt

+ xσP dZP,t + sσSdZS,t

(3.29)

From equation 3.29 the expression for final log-wealth is straightfor-
ward (for W0 = 1):

ln(WT ) = [xμP + sμS + (1 − x − s)r − 1
2
x2σ2

P − 1
2
s2σ2

S − xsσP σSρ]T

+ xσP ZP,T + sσSZS,T

(3.30)

Maximizing the expected utility of final wealth yields the optimal port-
folio weights across the three defined asset classes. The utility function
u(.) used is of CRRA-type (see equation 3.14). This leads to

E[u(WT )] =
1

1 − γ
e(1−γ)(xμP +sμS+(1−x−s)r− 1

2 x2σ2
P − 1

2 s2σ2
S−xsσP σSρ)T

E[e(1−γ)(xσP ZP,T +sσSZS,T )]

(3.31)

29For detailed derivations the reader is referred to Appendix C.1.
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Calculating the expectation30 of the stochastic part results in

E[u(WT )] =
1

1 − γ
exp[(1 − γ)(xμP + sμS + (1 − x − s)r − 1

2
x2σ2

P

− 1
2
s2σ2

S − xsσP σSρ)T +
1
2
(1 − γ)2(x2σ2

P T + s2σ2
ST + 2xsσP σSρT )]

(3.32)

Maximizing the expected utility of final wealth can be reduced to
maximizing the exponent of equation 3.32 divided by (1 − γ)T . If we
introduce F (x, s) as the respective function to be optimized, the problem
is:

max
x,s

E[u(WT )]=̂ max
x,s

F (x, s) (3.33)

with

F (x, s) = xμP + sμS + (1 − x − s)r − 1
2
γx2σ2

P − 1
2
γs2σ2

S − γxsσP σSρ

The first order conditions (FOC) are then straightforward to derive:

δF

δx
= μP − r − γxσ2

P − γsσP σSρ = 0 (3.34)

δF

δs
= μS − r − γsσ2

S − γxσP σSρ = 0 (3.35)

Using matrix notation the system can be simplified to

γV w = μ (3.36)

with V being the covariance matrix, w being the vector of optimal
portfolio weights and μ being the vector of the respective risk premia:

V =

(
σ2

P σP σSρ

σP σSρ σ2
S

)
; w =

(
x

s

)
; μ =

(
μP − r

μS − r

)
(3.37)

30For detailed derivations the reader is referred to Appendix C.2.
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The optimal weights therefore are

w∗ =
1
γ

V −1μ (3.38)

which corresponds to the famous Merton solution. It is obvious that
the optimization problem has only a unique solution if the determinant
of the covariance matrix V is not equal to zero otherwise the inverse of
V does not exist. Therefore we need the condition −1 < ρ < 1 to hold.
Since the covariance matrix is positive definite, the solution is a global
maximum. Using Cramer’s rule results in

w∗ =
1

γdet(V )

(
σ2

S −σP σSρ

−σP σSρ σ2
P

)
μ (3.39)

and expressing the respective weights separately and rearranging yields
the optimal portfolio weights that maximize an investor’s utility of final
wealth. From x∗

NG and s∗NG one can directly derive b∗NG:

x∗
NG =

μP − r − σP

σS
ρ(μS − r)

γσ2
P (1 − ρ2)

=
SRP − SRSρ

γσP (1 − ρ2)
(3.40)

s∗NG =
μS − r

γσ2
S

− σP

σS
ρx∗

NG = πM − σP

σS
ρx∗

NG (3.41)

b∗NG = 1 − x∗ − s∗ = 1 − πM − (1 − σP

σS
ρ)x∗

NG (3.42)

with SR being the respective Sharpe Ratios of private and public eq-
uity. The index NG indicates that the time-lag of investments into the
Private Equity fund is not considered. The Private Equity investment
depends on the Sharpe Ratio of private and public equity, the correla-
tion between private and public assets and an investor’s risk aversion.
The Private Equity investment reduces public equity and risk-free bonds.
The correlation structure of private and public equity reflected by ρ has
interesting implications on the optimal portfolio weights. For negative
correlation (ρ < 0), the optimal share of public equity is larger than in
the standard Merton case. If there is no correlation (ρ = 0), private and
public equity are invested along the Merton portfolio rule and Private
Equity investments come fully at the expense of risk-free bonds. In this
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context, Private Equity investments can be seen as a perfect substitute
for liquidity which is a very interesting finding. A reasonable explication
might be the fact that downturns in the private asset are compensated
by public equity in case of no (or very low) correlation and no hedge is
needed. This is equivalent to the results of Cvitanic et al. (2003a, p. 31)
and can be seen from the optimal weights directly. A formal proof is given
in Cvitanic et al. (2003b, p. 11ff). If the correlation is equal to the ratio
of risk (ρ = σS

σP
), Private Equity comes at the expense of the risky public

asset. An explanation are again hedging considerations. For larger levels
of correlation public equity is reduced at an even larger proportion than
the investment in private equity.

Constraints to the investment weights can easily be implemented in this
model (i.e. no short-selling, currency hedging, β-neutral strategies etc.)
as is shown in Denzler et al. (2001, p. 23) or Cvitanic et al. (2003b, p.
23).

The dynamics of the optimal weight of Private Equity is obvious for the
Sharpe ratios and the risk aversion. As equation 3.40 depends quadrat-
ically on ρ, the sensitivity of the optimal share of Private Equity in the
portfolio on correlation is not straightforward. It depends on the respec-
tive Sharpe ratios of private and public equity. For very low levels of
negative and very high levels of positive correlation, it might be beneficial
for an investor to reduce Private Equity as the correlation falls/increases
further as diversification benefits tend to decrease.



4 Modeling Optimal Private

Equity Investments

As we have seen in the discussion of the previous chapter, studies on the
portfolio optimization including Private Equity do not take the delayed
investment path into account. As Private Equity is very often only a
small proportion in a large investor’s portfolio31, many investors assume
to be able to pay called commitments out of the available liquid funds.
Obviously, such a behavior is ex ante not optimal from the perspective of
a comprehensive portfolio optimization approach. The following chapter
establishes a model to optimally allocate the not (yet) invested capital on
public equity and bonds. This will be done in two main parts. We consider
a pure Private Equity investor. First, a model is developed capturing
the opportunity cost from delayed investment. In a second step, a rule
to optimally allocate the capital between stocks and bonds is derived
analytically. In chapter 5, we consider Private Equity as a part of a larger
portfolio consisting of Private Equity, stocks and bonds.

4.1 Model Setting

Assume that we have a Private Equity fund, a risky asset (i.e. a stock
index) and a risk-free bond. The corresponding differential equations for
the price processes are again

dCt

Ct
= μP dt + σP dZP,t (4.1)

31Baierl, Chen & Kaplan (2002) estimate a number of 5% over total invested assets,
which are invested in Private Equity.

61
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dSt

St
= μSdt + σSdZS,t (4.2)

dBt

Bt
= rdt (4.3)

with μP , μS and r being the corresponding returns, σP and σS the
standard deviation of the Private Equity fund and the risky asset and Zt

being the respective standard Brownian motions with a correlation of ρ.
The solution to the first two differential equations is well known with

St = S0e
(μ− 1

2 σ2)t+σZt (4.4)

The risky returns are therefore distributed lognormally following

ln(
St

S0
) ∼ N((μ − 1

2
σ2)t, σ

√
t) (4.5)

The investor wants to invest his entire initial wealth in the Private
Equity investment. In order to simplify the analysis, it is assumed that
an investor can pay in an amount δ of his initial commitment C0 to the
fund at time t0 = 0 and the remainder at time t1. C0 is set to one without
loss of generality. Therefore, we can split the analysis in two time periods
τ1 = [0, t1] and τ2 = [t1, T ]. The interesting question is how to optimally
allocate (1−δ) of the committed capital in period τ1 to stocks and bonds32.
The wealth processes in the two periods follow

t ∈ τ1 :
dWt

Wt
= (δμP + (1 − δ)μS)dt + δσP dZP,t + (1 − δ)σSdZS,t (4.6)

t ∈ τ2 :
dWt

Wt
= μP dt + σP dZP,t (4.7)

At first, we assume that not paid in capital in t0 = 0 is invested
fully in the risky asset and we further assume continuous rebalancing of
the portfolio weights. This assumption is necessary in order to solve the
problem analytically in closed form. If the whole commitment is paid in
at the beginning, wealth follows the second process over the entire time
32In order to keep notations simple, the risky asset is assumed to be diluted or lever-

aged.
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period. These processes allow implicitly continuous rebalancing as the
fraction of private equity is constant over T. In this model context, this
is only a weak assumption as will be shown later.

If an investor cannot meet the second capital call, he commits a default
which is normally punished as described in section 2.2.3.

4.2 Modeling Opportunity Cost of Delayed

Investment

In order to measure the loss of return due to the delayed investment flow,
we calculate the certainty equivalent of expected final wealth denoted by p

which equalizes expected wealth at the end of a Private Equity investment
with and without delay. The effective final wealth from the Private Equity
investment is denoted by WT and the theoretical final wealth without
delayed investment by W̄T . u(.) represents a CRRA-utility function (see
equation 3.14):

E[u(WT )] = E[u(e−pT W̄T )] (4.8)

4.2.1 Opportunity Cost without Shortfall

To calculate p, we first need to solve for final wealth WT using the dif-
ferential equation of the log-wealth and Itô’s Lemma. Without loss of
generality we set W0 = 1 and we assume that no shortfall occurs (or if so
without consequences):

t ∈ τ1 : d(lnWt) =
dWt

Wt
− 1

2
(
dWt

Wt
)2

= (δμP − 1
2
δ2σ2

P + (1 − δ)μS − 1
2
(1 − δ)2σ2

S − δ(1 − δ)σP σSρ)dt

+ δσP dZP,t + (1 − δ)σSdZS,t
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=⇒ lnWt1 =

(δμP − 1
2
δ2σ2

P + (1 − δ)μS − 1
2
(1 − δ)2σ2

S − δ(1 − δ)σP σSρ)t1

+ δσP ZP,t1 + (1 − δ)σSZS,t1

(4.9)

Again, the simplifying assumption is made that in t1 the rest of the
amount committed to the Private Equity fund can be invested. This leads
to the dynamics in τ2 with

t ∈ τ2 : d(lnWt) = (μP − 1
2
σ2

P )dt + σP dZP,t

=⇒ lnWT − lnWt1 = (μP − 1
2
σ2

P )(T − t1) + σP (ZP,T − ZP,t1)

(4.10)

Inserting Wt1 yields

lnWT = (μP − 1
2
σ2

P )(T − t1) + (δμP − 1
2
δ2σ2

P + (1 − δ)μS − 1
2
(1 − δ)2σ2

S

− δ(1 − δ)σP σSρ)t1 + δσP ZP,t1 + (1 − δ)σSZS,t1 + σP (ZP,T − ZP,t1)

(4.11)

For W̄T results analogously to the dynamics in t ∈ τ2

lnW̄T = (μP − 1
2
σ2

P )T + σP ZP,T (4.12)

In order to ensure that an investor is willing to invest his entire en-
dowments into the Private Equity fund, we have to calibrate γ assuming
that the fraction x of total wealth invested in the private equity fund is
equal to one. The Sharpe Ratio is denoted by SR. The importance of
this calibration will be shown later:

x =
μP − r

γσ2
P

= 1 =⇒ γ =
μP − r

σ2
P

=
SRP

σP
(4.13)
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In order to quantify the results throughout the following analysis, the
necessary parameter values have to be specified. The parameters used are
given in table 4.133. These are valid throughout the whole analysis if not
indicated else.

Parameter Value

μP 0.20=20%
σ2

P 0.12
μS 0.0925=9.25%
σ2

S 0.0625
r 0.03=3%
γ 1.42
δ 0.30
ρ 0.5
α 0.75
T 10

Table 4.1: Model parameters

The Sharpe Ratios (SR) are SRP = 0.49 for the Private Equity invest-
ment and SRS = 0.25 for the public equity. We need the risk aversion to
be γ = SRP

σP
as defined in 4.13. Otherwise it is not rational for an investor

to invest in the Private Equity investment according to his risk profile.

First, we calculate the expected utility of final wealth when the entire
commitment is paid at the beginning of the investment horizon:

E[u(e−pT W̄T )] = E[
1

1 − γ
(e(μP −p− 1

2 σ2
P )T+σP ZP,T )1−γ ]

=
1

1 − γ
e(1−γ)(μP −p− 1

2 σ2
P )T E[e(1−γ)σP ZP,T ]

=
1

1 − γ
e(1−γ)(μP −p− 1

2 σ2
P )T+ 1

2 (1−γ)2σ2
P T

=
1

1 − γ
e(1−γ)(μP −p− 1

2 γσ2
P )T

(4.14)

33The parameter α is introduced in later sections and refers to the penalty an investor
has to pay in case of a default on commitment.
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Formulating final wealth when the investment is split in two parts, we
end up with34

E[u(WT )] =
1

1 − γ
exp[(1 − γ)(μP − 1

2
σ2

P )T + (1 − γ)(δμP − μP − 1
2
δ2σ2

P

+
1
2
σ2

P + (1 − δ)μS − 1
2
(1 − δ)2σ2

S − δ(1 − δ)σP σSρ)tt]

E[exp[(1 − γ)(δσP ZP,t1 + (1 − δ)σSZS,t1 + σP (ZP,T − ZP,t1))]]

(4.15)

As Zt has independent increments, only the correlation between ZP,t1

and ZS,t1 is different from zero and we have

E[u(WT )] =

1
1 − γ

exp[(1 − γ)(μP − 1
2
σ2

P )T − (1 − γ)(1 − δ)(μP − μS − 1
2
(1 + δ)σ2

P

+
1
2
(1 − δ)σ2

S − δσP σSρ)t1 +
1
2
(1 − γ)2(σ2

P (T − t1) + δ2σ2
P t1

+ (1 − δ)2σ2
St1 + 2δ(1 − δ)σP σSρt1)]

(4.16)

Equating the two expressions for final wealth in equations 4.14 and
4.16 and solving for p we get the following expression for the opportunity
cost of delayed investment:

p =
(1 − δ)t1

T
[μP − μS − 1

2
γ(1 + δ)σ2

P +
1
2
γ(1− δ)σ2

S + γδσP σSρ] (4.17)

The opportunity cost can be interpreted as the return loss p.a. which
the investor incurs over the whole lifetime of the Private Equity invest-
ment. First, the condition on relative risk aversion from equation 4.13 is
not yet taken into account. Some properties are easy to see: the earlier the
second payment the lower the opportunity cost. The smaller the return

34For detailed derivations the reader is referred to Appendix C.3.



4.2. Modeling Opportunity Cost of Delayed Investment 67

premium of the Private Equity investment and the higher its volatility the
lower is the return loss. A higher correlation leads to higher opportunity
cost as the diversification benefits are lower. For δ, the dynamics are not
so obvious:

dp

dδ
= − t1

T
(μP − μS − γδσ2

P + γ(1 − δ)σ2
S − γ(1 − 2δ)σP σSρ) (4.18)

The opportunity cost are decreasing in δ when the following expression
holds:

dp

dδ
< 0 =⇒ δ <

μP − μS + γσ2
S − γσP σSρ

γσ2
P + γσ2

S − 2γσP σSρ
(4.19)

As a result, for rather low levels of correlation there is a (rather high)
level of δ for which opportunity cost are increasing for a larger share of
investment in t0. This is shown in table 4.2. For the correlation given
in table 4.1, the critical value for δ is already extremely high. But the
results show that in case of almost no correlation it can be beneficial for
the investor if only around three quarter of the commitment is drawn at
t0.

ρ Critical δ according to 4.19

0.5095 1.0000
0.50 0.9915
0.10 0.7853
0.00 0.7583

Table 4.2: Influence of δ on opportunity cost

The reason is that diversification benefits outweigh the larger expected
returns from the Private Equity investment. In those cases opportunity
cost can even be negative and the investment delay beneficial to overall
return.

If we consider the several expressions for the opportunity cost p above,
it is easy to see that p < 0 is also possible under certain conditions. To
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show this, we define the opportunity cost in case the whole gap is invested
in the risk-less bond. The condition on γ from equation 4.13 is not used,
yet:

p =
(1 − δ)t1

T
[μP − r − 1

2
γ(1 + δ)σ2

P ] (4.20)

If the risk premium of the private equity investment does not reward
for the associated risk weighted with the risk aversion coefficient γ and the
magnitude of the second investment δ, then p can fall below 0. This can be
the case if an investor is not willing to bear the risks of the private equity
investment. As a result, a delayed investment path would be beneficial to
him. This is shown in the following expressions:

μP − r <
1
2
γ(1 + δ)σ2

P

γ >
2(μP − r)
(1 + δ)σ2

P

(4.21)

Therefore, if an investor’s risk aversion γ does not satisfy 4.21, he is not
willing to bear the risks of a Private Equity investment and the delayed
investment path increases his utility which does not make sense in our
optimization problem35. For the parameter values given in table 4.1, the
relative risk aversion of an investor has to be smaller than γ = 2.18 in
order to ensure that he has the risk profile and the ability to invest in
a Private Equity fund. As this number is rather low, this study mainly
focuses on institutional and large individual investors. As a result, we
have to calibrate γ according to equation 4.13 in order to ensure that
the investor is willing to invest his entire wealth in the Private Equity
investment.

In the following step, we explicitly take the condition on γ from equation
4.13 into account. The expression for the opportunity cost from equation
4.17, in case the condition in 4.13 holds, changes to

35Under 4.13, the condition is never satisfied and the investor can always bear the risks
of a Private Equity investment.
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p =
(1 − δ)t1

T
[μP − μS − 1

2
(μP − r)(1 + δ) +

1
2
(μP − r)(1 − δ)

σ2
S

σ2
P

+ (μP − r)δ
σS

σP
ρ]

(4.22)

and analogously for equation 4.20 to

p =
(μP − r)(1 − δ)2t1

2T
(4.23)

As the goal is to optimally allocate the investment gap in τ1 between
stocks and bonds, we introduce π as the fraction of capital invested in
stocks. This changes the dynamics in τ1 to

dWt

Wt
= (δμP + (1 − δ)((1 − π)r + πμS))dt + δσP dZP,t + (1 − δ)πσSdZS,t

(4.24)
Opportunity cost then are36

p =
(1 − δ)t1

T
[μP−(1−π)r−πμS−1

2
γ(1+δ)σ2

P +
1
2
γ(1−δ)π2σ2

S+γδσP πσSρ]
(4.25)

and analogously when condition 4.13 holds

p =
(1 − δ)t1

T
[(r−μS)π+(μP −r)(1− 1

2
(1+δ)+

1
2
(1−δ)π2 σ2

S

σ2
P

+δπ
σS

σP
ρ)]

(4.26)
Minimizing opportunity cost (without shortfall, NSF ) with respect to

π leads to

π∗
NSF =

μS − r − γδσSσP ρ

γ(1 − δ)σ2
S

=
μS − r

γ(1 − δ)σ2
S

− δσP ρ

(1 − δ)σS
(4.27)

36The result can be seen easily if we make the following changes in equation 4.17:
μS → (1− π)r + πμS and σS → πσS .



70 Chapter 4. Modeling Optimal Private Equity Investments

Under condition 4.13 on γ one obtains

π∗
NSF =

(μS − r)σ2
P

(μP − r)(1 − δ)σ2
S

− δσP ρ

(1 − δ)σS
(4.28)

The first term in equation 4.27 is similar to the fraction of risky assets
in the Merton portfolio enlarged by (1−δ) in the nominator. The fraction
of the risky investment is reduced by the correlation of public and private
equity returns. It is an interesting question to examine when the fraction
of risky investments in this setting is larger than in the Merton portfolio
(γ > 1). We end up with the following condition:

π∗
NSF > πM =⇒ ρ <

μS − r

γσP σS

Using (4.13)
=⇒ ρ <

μS − r

σS

σP

μP − r
=

SRS

SRP

(4.29)

It is interesting to see that ρ has to be smaller than the SR-ratio
for π∗

NSF > πM to hold. For the parameter values given the result is
ρ < 0.5095. Only for higher levels of correlation the fraction in public
equity is smaller in this model setting than for the Merton portfolio. As
a result, we can conclude that investing in the Merton portfolio bears too
many risks in case of rather high correlation and for lower correlation a
more risky strategy is strictly better. We will show that this result remains
robust when including a positive probability of a default on commitment.
Also interesting is the fact that π∗ is constant over time and independent
of the timing of the second payment.

Figure 4.1 shows the level of opportunity cost for π = 0, 1 and π∗.

For the parameter values given, π∗
NSF is equal to 71.15%. This is only

slightly above the Merton portfolio weight with πM = 70.59%. Table 4.3
shows several values of π∗

NSF depending on the coefficient of correlation
ρ. For the parameter values given, 4.29 holds for ρ < 50.94%.
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Figure 4.1: Opportunity cost

ρ Optimal weight of risky assets

1.0 0.4146
0.9 0.4739
0.7 0.5927
0.5 0.7115
0.1 0.9490
0.0 1.0084

Table 4.3: Optimal weights of risky assets without shortfall

4.2.2 Shortfall Probability of a Default on Commit-

ment

A default on commitment occurs if an investor has not enough funds
to cover the second capital call. This can occur if the investment gap
from late investment is (partially) invested in risky assets. If we define an
investment of the gap entirely in the risk-less asset as the benchmark case,
a default occurs if the return of the gap is smaller than the risk-free rate.
As the goal is to optimize the overall investment, the risk-less return
opportunity has to be taken into consideration and therefore the time-
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value of the second call of commitment. It is obvious that this condition
increases the shortfall probability anything else being equal. This leads
to the expression

(1 − δ)C0e
((1−π)r+πμS− 1

2 π2σ2
S)t1+πσSZS,t1 < (1 − δ)C0e

rt1 (4.30)

Solving equation 4.30 for ZS,t1 leads to a standard formulation of the
shortfall probability. As this transformation includes the division by π,
we need π > 0 to hold for the inequality to remain valid. As a result,
shorting the risky asset (when investing the gap) is not allowed in this
model. Therefore, the shortfall probability PSF can be described as

PSF,BM [ZS,t1 <
(πr − πμS + 1

2π2σ2
S)t1

πσS
]

= Φ[
(πr − πμS + 1

2π2σ2
S)t1

πσS

√
t1

] = Φ[
r − μS

σS

√
t1 +

1
2
πσS

√
t1︸ ︷︷ ︸

z

]

(4.31)

where the index BM indicates the consideration of the risk-free rate
when defining the shortfall. Without taking the time-value of the second
commitment call into account and therefore not considering the risk-less
return as a benchmark, a shortfall only occurs if the gap in t1 is smaller
than (1− δ)C0 and the definition of the shortfall probability in 4.31 obvi-
ously changes to

PSF,NBM = Φ[
r − μS

σS

√
t1 − r

πσS

√
t1 +

1
2
πσS

√
t1] (4.32)

This distinction in defining a shortfall has very interesting implications
for the analysis. From 4.32 it can be seen easily that z is always smaller
when considering the time-value which can also be seen from figure 4.3.
It will be shown later that the opportunity cost depend directly on PSF .
The expression for the shortfall probability in 4.32 is continuous in π (for
π ≥ 0) and therefore reducing the risky asset can reduce the shortfall
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probability continuously and minimizing the opportunity cost guarantees
a single optimal point.

Furthermore, it can be shown easily that for realistic parameter values
4.31 and 4.32 are always below 50%. We assume here that an investor
does not invest in a risky asset if its expected log-return is less than the
risk-free rate.

Proof:

PSF < 0.5 holds if z < 0. This leads to the following condition for PSF,BM

r − μS

σS

√
t1 +

1
2
πσS

√
t1 < 0

μS − 1
2
πσ2

S > r

(4.33)

The expected (log-)return of the risky asset (with the variance weighted
by π) has to be larger than the risk-free rate. For realistic parameter val-
ues this is always true. Using the parameter values of table 4.1, the
condition is π < 2. The result is that PSF,BM is not only continuous in
π but due to the above proof it is shown to be continuously increasing
in π if π < 2 holds. This has interesting implications for the analysis of
the opportunity cost in later sections. It is straightforward to show that
PSF,NBM < 0.5 holds analogously, reducing the right hand side of 4.33
by (1 − 1

π ).

In order to get an understanding on the magnitude of the shortfall risk, it
is displayed graphically. Figure 4.2 shows the shortfall probability depend-
ing on t1 with and without considering the risk-less investment as a bench-
mark case for the optimal investment path π∗ derived above. In Figure
4.3 time t1 equals 5 and the shortfall probability depends on 0 ≤ π ≤ 1. It
is intuitive that both expressions of PSF increase with a more risky invest-
ment strategy. The consideration of the risk-less benchmark is substantial
when evaluating the shortfall probability as can be seen from both graphs.
The benchmark also causes PSF,BM to be larger than zero for t1 = 0.
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Figure 4.2: Shortfall probability with fixed π = π∗

The overall probability of default seems to be quite high especially
including the risk-less return into the definition of a default. But we have
to keep in mind that risk aversion is rather low using the parameters of
this model (γ = 1.42) and we have an investor willing to invest all his
wealth into Private Equity accepting the corresponding risks. At first,
it might be surprising that the curves are decreasing in t1. But when
the second payment into the Private Equity fund comes very soon, early
drawbacks on the risky investment are weighted extremely high as they are
followed by only a very short recovery period. Therefore, we have to weigh
α and the dynamics in the time interval τ2 with the unknown shortfall
probability PSF in order to get an understanding of its implications on
optimal investments which will be done in section 5.4.

4.2.3 Opportunity Cost with Certain Default

The consequences of a default on commitment are outlined in a fund’s or-
ganizational documents. Typical effects are that an investor is excluded
from the fund and the funds already invested are refunded applying a
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Figure 4.3: Shortfall probability for t1 = 5, 0 ≤ π ≤ 1

discount α37. In this model setting a shortfall has therefore two conse-
quences. First, in t1 the investor is only left with a fraction α of the
money invested in the Private Equity fund. The rest is taken away as
an administration and penalty fee. Second, in t ∈ τ2 the investor can no
more profit from the returns of the Private Equity fund. As a result, he
can only invest in public equity and bonds. Therefore, it is assumed that
the optimal strategy in t ∈ τ2 is to invest in the Merton portfolio. If we
assume that a default on commitment occurs for sure, it is equivalent to
a reduction of initial wealth as the investor has to pay the penalty with
certainty. As a result, initial wealth (W0 = C0) now changes to

W̃0 = C0 − (1 − α)δC0 = αδC0 + (1 − δ)C0 = (1 − (1 − α)δ)C0 (4.34)

as the investor has to pay a penalty and can only recover the fraction
α from the funds invested in Private Equity and the rest, (1 − α)δC0, is
lost. The weight of assets that are invested in Private Equity at t0 = 0
therefore also changes to
37See section 2.2.3.
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αδC0

W̃0

=
αδ

1 − (1 − α)δ
= δ̄ (4.35)

with the remainder, (1−δ̄), being invested in stocks and bonds. Similar
to the derivations above, we assume at first that the remainder is invested
entirely in stocks. This leads to the following wealth processes for the two
time periods:

t ∈ τ1 :
dWt

Wt
= (δ̄μP + (1 − δ̄)μS)dt + δ̄σP dZP,t + (1 − δ̄)σSdZS,t (4.36)

t ∈ τ2 :
dWt

Wt
= ((1 − πM )r + πMμS)dt + πMσSdZS,t (4.37)

As W0 = C0 is again set to one, we have in reduced form lnW̃0 =
ln(1 − (1 − α)δ). The calculations leading to final log-wealth are exactly
the same than in section 4.2.1 and yield:

lnWT = ((1 − πM )r + πMμS − 1
2
π2

Mσ2
S)(T − t1) + (δ̄μP − 1

2
δ̄2σ2

P

+ (1 − δ̄)μS − 1
2
(1 − δ̄)2σ2

S − δ̄(1 − δ̄)σP σSρ)t1 + ln(1 − (1 − α)δ)

+ δ̄σP ZP,t1 + (1 − δ̄)σSZS,t1 + πMσS(ZS,T − ZS,t1)

(4.38)

This leads to the following expression for the opportunity cost in case
a default occurs with PSF = 138:

p = μP − πMμS − (1 − πM )r − 1
2
γ(σ2

P − π2
Mσ2

S) +
ln(1 − (1 − α)δ)

T

+ (πMμS + (1 − πM )r − 1
2
γπ2

Mσ2
S − δ̄μP +

1
2
δ̄2γσ2

P − (1 − δ̄)μS

+
1
2
(1 − δ̄)2γσ2

S + δ̄(1 − δ̄)γσP σSρ)
t1
T

(4.39)

38For detailed derivations the reader is referred to Appendix C.4.
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Minimizing the resulting opportunity cost in case of a shortfall with
respect to π yields

π∗
SF =

μS − r − γδ̄σSσP ρ

γ(1 − δ̄)σ2
S

Using (4.35)
=

(μS − r)(1 − (1 − α)δ) − γαδσSσP ρ

γ(1 − δ)σ2
S

(4.40)

The optimal result is similar to the case without shortfall but, as ex-
pected, does now depend on the penalty in case of a default, α. It does
not depend on the changing dynamics in τ2. This finding might be quite
surprising at first sight. But if we look at the expression for the oppor-
tunity cost, it becomes clear that the inferior investment opportunities
after a shortfall (resulting in the changing dynamics in τ2) shift the level
of opportunity cost but cannot be influenced by the investor’s decision
of π∗. The only thing an investor can control is the event risk. But if
an investor changes π∗, he changes the expected shortfall probability and
also (in the opposite direction) the return expectation. The simulations
in chapter 5.4 will show the influence of the shortfall probability on the
optimal investment path.

If the optimal solution is compared to the solution without shortfall (see
4.27), the following condition holds:

π∗
SF > π∗

NSF =⇒ ρ >
μS − r

γσSσP

Using (4.13)
=

SRS

SRP
(4.41)

As a result, for rather high levels of correlation, the optimal investment
path is more risky in case a shortfall occurs with certainty. The reason
is that the higher the correlation, the lower are diversification benefits
and the lower is the effect of the changing dynamics in τ2, where the
investor has no more Private Equity exposure in case of a default. The
same condition on ρ holds for π∗

SF < πM . If the correlation is higher than
the SR-ratio, investing in the Merton portfolio bears more risk than the
optimal solution. This condition is equivalent to the case without shortfall
(see 4.29).
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Figure 4.4 shows the sensitivity of π∗
SF to changes in α, the cost of a

default on commitment, for different levels of correlation. As ρ = 0.5 is
close to the critical value from condition 4.41, the optimal investment path
does practically not react to changes in α. For low levels of correlation,
the optimal solution becomes riskier if the cost of a default decrease and
vice versa (the lower α, the higher the cost of a default).
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Figure 4.4: Optimal investment path, PSF = 1

We have seen above that the opportunity cost of late investment evolve
according to equations 4.25 for PSF = 0 and 4.39 for PSF = 1. The crucial
assumption to solve the problem analytically was continuous rebalancing.
As the three described asset classes have much different expected returns
and risks, it can be supposed that the calculated costs will differ more
from the true value the later the second investment in the Private Equity
fund will take place. As Private Equity has the highest expected return,
its impact on final wealth will be understated assuming continuous rebal-
ancing and the analytical solution is supposed to overstate opportunity
cost. This overstatement will be the lower the smaller the difference of
the relative risk premia of the three investments is. On the other hand,
continuous rebalancing is not an unrealistic assumption. Most Private
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Equity investors are large institutional investors or high net-worth indi-
viduals. Both have strict investment guidelines either as legal obligations
or as internally developed optimal investment strategies also fixing asset
weights. As a result, the investor is always trying to meet his require-
ments keeping weights constant. Due to the illiquidity of Private Equity
investments and the property of late investment this can never be reached
exactly but evidence shows that professional asset managers come very
close to it, e.g. using rolling investment strategies and publicly traded
Private Equity investment funds. Having this in mind, continuous rebal-
ancing is, at least for large investors, a quite realistic assumption39.

4.3 Multiple Investment Rounds

During the analysis above, the assumption was made that the commit-
ment is invested in two separate investment rounds. The first part at the
beginning (δ) and the remainder at time t1. As a result, the analysis was
split in two time periods. Relaxing this assumption and assuming that the
commitment is paid in within three investment rounds (at t0, t1 and t2),
leads to three time periods with three different wealth processes. Then,
in t2 all capital is paid in. In the following lines, the model is extended to
three time periods with three separate investment rounds into the Private
Equity fund. The solution is again derived analytically. The extension to
n investment rounds is then straightforward. Analogously to equations
4.6 and 4.7 the three wealth processes are

t ∈ τ1 = [0, t1] :
dWt

Wt
= (δ1μP +(1−δ1)μS)dt+δ1σP dZP,t+(1−δ1)σSdZS,t

(4.42)

t ∈ τ2 = [t1, t2] :
dWt

Wt
= ((δ1 + δ2)μP + (1 − δ1 − δ2)μS)dt

+ (δ1 + δ2)σP dZP,t + (1 − δ1 − δ2)σSdZS,t

(4.43)

39See section 2.2.3.
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t ∈ τ3 = [t2, T ] :
dWt

Wt
= μP dt+σP dZP,t

(4.44)

Committed but not yet invested funds are again assumed to be invested
completely in the risky asset. From the wealth processes the dynamics
can be derived and we have

lnWT−lnWt2 = (μP−1
2
σ2

P )(T−t2)+σP (ZP,T−ZP,t2)
(4.45)

lnWt2−lnWt1 = ((δ1 + δ2)μP − 1
2
(δ1 + δ2)2σ2

P + (1 − δ1 − δ2)μS

− 1
2
(1 − δ1 − δ2)2σ2

S − (δ1 + δ2)(1 − δ1 − δ2)σP σSρ)(t2 − t1)

+ (δ1 + δ2)σP (ZP,t2 − ZP,t1) + (1 − δ1 − δ2)σS(ZS,t2 − ZS,t1)

(4.46)

lnWt1 =

(δ1μP − 1
2
δ2
1σ2

P + (1 − δ1)μS − 1
2
(1 − δ1)2σ2

S − δ1(1 − δ1)σP σSρ)t1

+ δ1σP ZP,t1 + (1 − δ1)σSZS,t1

(4.47)

again setting W0 = 1. The fractions of committed capital invested
during the three rounds are δ1, δ2 and (1− δ1 − δ2). The total amount of
committed capital, C0, is again set equal to one. Summing up equations
4.45 to 4.47, lnWT can be calculated. The shortfall probability is again
assumed to be zero. This leads to the expected utility of final wealth40

40The calculations are very similar to the ones in section 4.2.1 and Appendix C.3.
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E[u(WT )] =
1

1 − γ
exp[(1 − γ)((μP − 1

2
γσ2

P )(T − t2) + ((δ1 + δ2)μP

− 1
2
γ(δ1 + δ2)2σ2

P + (1 − δ1 − δ2)μS − 1
2
γ(1 − δ1 − δ2)2σ2

S

− γ(δ1 + δ2)(1 − δ1 − δ2)σP σSρ)(t2 − t1) + (δ1μP − 1
2
γδ2

1σ2
P

+ (1 − δ1)μS − 1
2
γ(1 − δ1)2σ2

S − γδ1(1 − δ1)σP σSρ)t1)]

(4.48)

The expected utility of final wealth, assuming the entire commitment
is paid in at t0 = 0, is equal to equation 4.14:

E[u(e−pT W̄T )] =
1

1 − γ
e(1−γ)(μP −p− 1

2 γσ2
P )T

Equating the expressions for the utility of final wealth (4.14 and 4.48)
and assuming that not yet paid in commitments are invested in stocks
and bonds (by changing μS to πμS + (1 − π)r and σS to πσS in order to
introduce π), leads to an expression for the opportunity cost p in case the
commitment is paid in to the Private Equity fund within three investment
rounds41:

p = (μP − 1
2
γσ2

P )
t2
T

− ((δ1 + δ2)μP − 1
2
γ(δ1 + δ2)2σ2

P

+ (1 − δ1 − δ2)(πμS + (1 − π)r) − 1
2
γ(1 − δ1 − δ2)2π2σ2

S

− γ(δ1 + δ2)(1 − δ1 − δ2)σP πσSρ)
(t2 − t1)

T
− (δ1μP − 1

2
γδ2

1σ2
P

+ (1 − δ1)(πμS + (1 − π)r) − 1
2
γ(1 − δ1)2π2σ2

S − γδ1(1 − δ1)σP πσSρ)
t1
T

(4.49)

Minimizing the opportunity cost with respect to π leads to

41The reader is referred to Appendix C.3 for similar calculations.
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π∗ =
((1 − δ1 − δ2)(μS − r) − γ(δ1 + δ2)(1 − δ1 − δ2)σP σSρ)(t2 − t1)

γσ2
S((1 − δ1 − δ2)2(t2 − t1) + (1 − δ1)2t1)

+
((1 − δ1)(μS − r) − γδ1(1 − δ1)σP σSρ)t1
γσ2

S((1 − δ1 − δ2)2(t2 − t1) + (1 − δ1)2t1)
(4.50)

The expression is similar to the case with two investments into the
fund and the sensitivities of γ, σS , σP , μS , r and ρ have the same sign as
above. It is obvious from equation 4.49 that opportunity cost, and there-
fore the resulting optimal investment path, depend on the time schedule
of the three payments and also on the amount that is paid in each time.
Therefore, the optimal investment path π∗ depends on the time periods
between the payments and the corresponding investment amounts. The
second part of the fraction in equation 4.50 is similar to the solution de-
rived above only adding the term for the additional investment round in
the nominator. As a result, an investor needs to know not only the timing
of the several investments but also their amount in order to optimize his
investment behavior. As was shown in several studies, it is possible to es-
timate the potential investment path of a fund from single fund data with
adequate precision42. The results are similar to the pattern in figure 2.8.
If we assume that the time intervals are of equal length, it is obvious that
the respective expressions cancel out and the optimal investment path
only depends on the size of the singular investments but not on the tim-
ing. The assumption only needs the time interval between the payments
to be equal, the length of the interval does not matter. Furthermore, the
above formula can also be derived for n investment rounds into the fund
in a straightforward way. As a result, if an investor can consistently esti-
mate the capital calls of a Private Equity investment, the above formula
gives a closed-form solution for the optimal investment of the committed
but not yet invested funds. This result also holds if Private Equity is only

42See section 2.2.3 and especially Frei & Studer (2003).
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a smaller part in an overall portfolio and the shortfall probability tends
towards zero as will be shown in later sections.



5 Private Equity in a

Diversified Portfolio

It is a logical consequence of the inclusion of Private Equity investments
in a mixed portfolio consisting of Private Equity, public equity and bonds
that the effect of a shortfall plays only a minor role depending on the
weight of Private Equity. The question is in which cases and under what
conditions the shortfall probability will decrease to zero. Even if the short-
fall probability is zero, it is nevertheless important to optimally allocate
the investment gap from the Private Equity investment on stocks and
bonds and optimize the positions of the conventional investments. In this
section, we will extent the model, evaluate the influence of a shortfall and
simulate the optimal weights for stocks and bonds when investing the gap
within a mixed portfolio context.

5.1 Model Extensions

Let the initial portfolio investments at time t0 = 0 in Private Equity,
public equity and bonds be C0, S0 and B0 respectively summing up to
initial wealth W0. Of course, C0 is the whole initial commitment and not
the actual investment. The corresponding portfolio weights are straight-
forward

x =
C0

C0 + S0 + B0
(5.1)

s =
S0

C0 + S0 + B0
(5.2)

b =
B0

C0 + S0 + B0
(5.3)

84
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summing up to one. In a first approach, we assume that the equity
and bond parts of the portfolio (s+ b) are invested according to Merton’s
optimization rule (see equation 3.12). Therefore s and b are also equal to

s = (1 − x)πM

b = (1 − x)(1 − πM )

As for shortfall considerations only the liquid parts of the overall port-
folio matter, we have to exclude the investment in the Private Equity fund
at time t0 = 0, δC0. Therefore, liquid wealth W̄0 is (1 − δ)C0 + S0 + B0

and the above weights change to

x̄ =
(1 − δ)C0

(1 − δ)C0 + S0 + B0
(5.4)

s̄ =
S0

(1 − δ)C0 + S0 + B0
(5.5)

b̄ =
B0

(1 − δ)C0 + S0 + B0
(5.6)

again summing up to one. We can relate the two respective expressions
dividing by W0:

x̄ =
(1 − δ)x

(1 − δ)x + s + b
=

(1 − δ)x
1 − δx

(5.7)

s̄ =
s

(1 − δ)x + s + b
=

(1 − x)πM

1 − δx
(5.8)

b̄ =
b

(1 − δ)x + s + b
=

(1 − x)(1 − πM )
1 − δx

(5.9)

Setting (1 − δ)C0 = C̄0 and defining its dynamics we get

dC̄t

C̄t
= (πμS + (1 − π)r)dt + πσSdZS,t (5.10)

with π being the amount of the investment gap invested in the risky
asset. The dynamics for S and B remain the same as in section 4.1.

Again, we simplify the analysis in the same way than above assuming
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constant rebalancing resulting in constant portfolio weights over time. If
we consider the portfolio of a large institutional investor which is normally
bounded by certain investment guidelines defining the target weights of
the different asset classes, this assumption is not far from reality at least
in the long-run.

5.2 Shortfall Probability in a Mixed Portfo-

lio Context

If an investor is not only invested in Private Equity but also in public
equity and risk-free bonds, a default on commitment only occurs if liquid
wealth at time t1 is less than the second part of the private equity in-
vestment (1 − δ)C0 = C̄0. We assume that there are no liquidation costs
of public equity and risk-free bonds. As we still consider the risk-free in-
vested gap as the benchmark case, a shortfall occurs if liquid wealth Wt1

at time t1 (when the second part of the commitment is called) is lower
than the required amount of the second commitment invested at the risk-
free rate r. The risk-free return is again considered as the benchmark
case:

C̄t1 + St1 + Bt1 < C̄0e
rt1 (5.11)

Dividing by W̄0 and taking logs leads to

C̄t1 + St1 + Bt1

W̄0
< x̄ert1

ln(
C̄t1 + St1 + Bt1

W̄0
) = ln(Wt1) < lnx̄ + rt1

(5.12)

Using the dynamics of C̄t, St and Bt we can calculate the dynamics
of dln(Wt) using Itô’s Lemma:
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dln(Wt) =

W̄0

C̄t + St + Bt

1
W̄0

dC̄t +
W̄0

C̄t + St + Bt

1
W̄0

dBt +
W̄0

C̄t + St + Bt

1
W̄0

dSt

− 1
2

1
(C̄t + St + Bt)2

(dC̄t)2 − 1
2

1
(C̄t + St + Bt)2

(dBt)2

− 1
2

1
(C̄t + St + Bt)2

(dSt)2 − 1
2

1
(C̄t + St + Bt)2

2dC̄tdSt

(5.13)

Terms of higher order in dt are set equal to 0. As dBt does not depend
on a stochastic part, (dBt)2 can also be set to 0. After canceling out
and replacing the fractions with the corresponding portfolio weights of
the liquid portfolio, which are assumed to be constant, we get43

dln(Wt) = x̄
dC̄t

C̄t
+ s̄

dSt

St
+ b̄

dBt

Bt
− 1

2
x̄2(

dC̄t

C̄t
)2 − 1

2
s̄2(

dSt

St
)2 − 1

2
b̄2(

dBt

Bt
)2

− x̄s̄
dC̄t

C̄t

dSt

St

(5.14)

Replacing the dynamics with the corresponding differential equations
leads to

dln(Wt) = [(1 − π)x̄r + πx̄μS − 1
2
x̄2π2σ2

S + s̄μS − 1
2
s̄2σ2

S + b̄r − x̄s̄πσ2
S ]dt

+ (πx̄ + s̄)σSdZS,t

(5.15)

Using these dynamics, the condition for a shortfall becomes

ln(Wt1) − rt1 < lnx̄

43For detailed derivations the reader is referred to Appendix C.5.
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[(1 − π)x̄r + πx̄μS − 1
2
x̄2π2σ2

S − r + s̄μS − 1
2
s̄2σ2

S + b̄r − x̄s̄πσ2
S ]t1

+ (πx̄ + s̄)σSZS,t1 < lnx̄

(5.16)

Rearranging and simplifying leads to

[(μS − r)(πx̄ + s̄) − 1
2
σ2

S(πx̄ + s̄)2]t1 + (πx̄ + s̄)σSZS,t1 < lnx̄ (5.17)

Solving for the stochastic component ZS,t ∼ N(0,
√

t) leads to the
input argument z for the standardnormal-cdf Φ on the right hand side:

ZS,t1√
t1

<
lnx̄

(πx̄ + s̄)σS

√
t1

− [μS − r − 1
2σ2

S(πx̄ + s̄)]t1
σS

√
t1

= z (5.18)

The shortfall probability equals

PSF,BM (C̄t1 + St1 + Bt1 < C̄0e
rt1) = Φ(z) (5.19)

Without taking the benchmark r into account, z changes only slightly,
removing the term −r from the numerator in 5.18.

5.3 Evaluation of the Shortfall Probability

If we calculate the shortfall probability in a mixed portfolio context us-
ing the common parameter values, we come to the not very surprising
conclusion that a default on commitment becomes extremely rare for the
usual portfolio weights of Private Equity of around 10%-20%. The follow-
ing graphs show the shortfall probability with and without the risk-free
benchmark dependent on the time lag of the second payment for five
different Private Equity weights in the overall portfolio. The remaining
funds are assumed to be invested in public equity and risk-free bonds. An
optimization model for the overall portfolio will be derived in section 5.6.
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The investment gap is assumed to be invested according to π∗ derived
above (equation 4.40).
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Figure 5.1: Shortfall probability in mixed portfolio (BM)

As expected, the behavior is similar for both definitions of PSF ex-
cluding the Private Equity only portfolio and of course again PSF,NBM <

PSF,BM holds. It becomes clear from the graphs that the shortfall prob-
ability is still very low even for portfolios with a Private Equity share
of more than 50% especially when the benchmark is not included. An
interesting property is the fact that the shortfall probability is not over
the whole interval t1 ∈ [0, T ] (T = 10) increasing in time (figure 5.1).
The explication is similar to the one in section 4.2.2. For portfolios con-
sisting almost completely of Private Equity investments, the benefit from
covering the second Private Equity payment C̄0 with the liquid part of
the portfolio diminishes and for low values of t1 (early second payment)
drawbacks on the public equity investments have a large weight due to
the short recovery period.

Table 5.1 returns the maximal value of the shortfall probability for several
levels of Private Equity in the overall portfolio in the border case t1 = 10
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Figure 5.2: Shortfall probability in mixed portfolio (NBM)

and t1 = 5. As the investment phase of a Private Equity fund normally
ends after 5-6 years, the probability is very low that after this time a
capital call occurs.

Portfolio Weight (x)

Shortfall Probability (BM) t1 = 5 t1 = 10

1% 54% 45%
5% 68% 62%
10% 76% 72%

Table 5.1: Portfolio weight vs. shortfall probability

Table 5.1 shows that a default on commitment becomes only an issue
if an investor has the majority of his funds in Private Equity investments.
As Private Equity is very illiquid, institutional investors only rarely risk
weights larger than 15%-20%. As a result, it can be stated that for most
large institutional investors with a weight of Private Equity in the overall
portfolio of lower than around 50% the optimal investment of the gap
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is equal to the analytically derived solution as the shortfall probability
approaches zero:

π∗ =
μS − r

γ(1 − δ)σ2
S

− δσP ρ

(1 − δ)σS
(5.20)

This finding is shown in chapter 5.4 when the optimal portfolio paths
are simulated for different portfolio weights of Private Equity. The re-
duced shortfall probabilities of a default on commitment when Private
Equity is included in a broadly diversified portfolio are a strong rational
not to overweight Private Equity. In fact, the vast majority of investors
in the TVE dataset sticks to weights of Private Equity around 15%-20%.
As the opportunity cost depend directly on PSF , opportunity cost are the
lower the smaller the weight of Private Equity. For a diversified investor,
the analytically derived solution is therefore a general rule to invest the
gap. If the risk-free benchmark is not considered, PSF is very low over the
whole range during the investment phase and the optimal investment rule
is approximately valid even for portfolios consisting entirely of Private
Equity.

5.4 Simulation of the Optimal Investment

Path

For the derivations in chapter 4 and 5, the crucial assumption was con-
tinuous rebalancing meaning that relative portfolio weights do not change
over time. Although it was argued before that for large institutional in-
vestors it is a realistic assumption, it is often not possible to keep weights
exactly constant due to the illiquid nature of Private Equity investments.
In order to get an understanding on the goodness of fit of the model de-
rived, the optimal investment path for the gap will be simulated in this
section comparing the results to the analytical solutions. Of course, it
is clear ex ante that the analytical solutions of the model can only serve
as a good proxy for the optimal investment weights when the shortfall
probability tends towards zero. In order to execute the simulation, we
need to specify the wealth process WT without the assumption of contin-
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uous rebalancing. We assume the bond and equity parts of the overall
portfolio to be invested according to the Merton solution. This leads to
the following definition of final wealth WT depending on the time lag of
investment t1

WT = (1 − PSF )[berT + se(μS− 1
2 σ2

S)T+σSZS,T

+ x(1 − δ)e(μP − 1
2 σ2

P )(T−t1)+σP (ZP,T −ZP,t1 ) + xδe(μP − 1
2 σ2

P )T+σP ZP,T

+ x(1 − δ)(e((1−π)r+πμS− 1
2 π2σ2

S)t1+πσSZS,t1 − 1)

e((1−πM )r+πM μS− 1
2 π2

M σ2
S)(T−t1)+πM σS(ZS,T −ZS,t1 )]

+ PSF [bert1 + se(μS− 1
2 σ2

S)t1+σSZS,t1 + αxδe(μP − 1
2 σ2

P )t1+σP ZP,t1

+ (1 − δ)xe((1−π)r+πμS− 1
2 π2σ2

S)t1+πσSZS,t1 ]

e((1−πM )r+πM μS− 1
2 π2

M σ2
S)(T−t1)+πM σS(ZS,T −ZS,t1 )

(5.21)

The corresponding final wealth without time lag of investment and
excluding continuous rebalancing is

W̄T = berT + se(μS− 1
2 σ2

S)T+σSZS,T + xe(μP −p− 1
2 σ2

P )T+σP ZP,T (5.22)

where the return of Private Equity is corrected by opportunity cost p.
We can estimate the opportunity cost p using the following expression for
the expected utility of final wealth with u(.) being of the type in 3.14 and
estimated values marked by a hat :

E[u( ˆ̄WT )] = E[u(ŴT )] (5.23)

The optimal investment path π∗ is the corresponding value that min-
imizes p. The following graphs show the simulated values for the optimal
investment path depending on the time lag of the second investment for
different weights of Private Equity in the portfolio. The values are com-
pared with the Merton solution and the analytical solution derived above.
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The parameter values are from table 4.1 besides the correlation ρ between
public and private equity which is assumed to be 0.
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Figure 5.3: Simulation of optimal investment path for x = 20%

Figures 5.3 to 5.6 show the simulated optimal investment path for dif-
ferent weights of Private Equity in a portfolio. The shortfall probability
is defined considering the risk-free benchmark. The corresponding simu-
lated opportunity cost are displayed as well, compared to the case where
the gap is invested according to the optimal Merton solution from equa-
tion 3.12. The graphs show that the model is much closer to the optimal
investment weights than the Merton solution and strictly outperforms the
opportunity cost for all t1 ∈ [0, T ]. As the model generally overstates op-
portunity cost, coming from an overstatement of the shortfall probability,
it can be expected that the model slightly underweights stocks as PSF is
increasing in π. As the overstatement depends on the respective Sharpe
ratios of public and private equity, we expect the modeled values to get
closer to the simulated ones for less differences in the Sharpe ratio. This
flexibility on the characteristics of the Private Equity investment can be
seen from figure 5.4. The main advantage of the model compared to the
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Merton solution is therefore its sensitivity on SRP which can be inferred
from the graph, as well.
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Figure 5.4: Simulation of optimal investment path for x = 20% and μP =
16%

As figures 5.5 and 5.6 show, the fit of the model to the simulated
values is quite good for portfolio weights lower than 50%. The case of a
Private Equity-only portfolio is very interesting to look at. The simulated
investment path is strictly increasing in t1 as the return loss is weighted
more than the shortfall probability. During the investment phase, the
opportunity cost are much less compared to the Merton case. Of course,
as the shortfall probability is substantially above zero, the analytically
derived values can no more seen as a proxy for optimal portfolio weights
in this case.

As a result, it can be concluded that the optimal investment path
calculated from the model introduced in the last two chapters strictly
outperforms the Merton solution delivering strictly smaller opportunity
cost of late investment. Furthermore, it is interesting to see that depend-
ing on the parameter values it can be better to invest in a riskier portfolio
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Figure 5.5: Simulation of optimal investment path for x = 50%
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Figure 5.6: Simulation of optimal investment path for x = 60%

than the Merton portfolio. This sensitivity of the model to parameter
changes is a major advantage compared to the Merton solution. As the
optimal investment path does basically not depend on t1 for x < 50%,
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the model even delivers an analytical solution as the shortfall probability
can be neglected. Therefore, the model provides the optimal strategy to
invest the committed but not yet invested part of the Private Equity port-
folio up to portfolio weights of around 50% even for taking the risk-free
benchmark into account when PSF is evaluated. As optimal weights of
Private Equity are normally less under reasonable parameter assumptions
(what will be shown in section 5.6), the model can serve as a good rule to
invest.
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Figure 5.7: Simulation of optimal investment path for x = 100%

5.5 Liquidity Constraints

5.5.1 Funds with Fixed Payout Rates

It is obvious that constraints on the liquid part of a portfolio have an
influence on the funds available to prevent a potential shortfall in t1 and
therefore on PSF itself. The first liquidity constraint of an investor’s
portfolio we want to look at are fixed payout rates. An institutional
asset manager with a large number of individual investors, like pension or
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endowment funds etc., is normally faced with certain annual payouts. In
this section it is assumed that a fixed fraction c of initial wealth W0 has
to be paid out annually. In order to calculate the shortfall probability, we
assume a virtual account in which the time value of all payouts over the
investment horizon [0, T ] is collected. This account cannot be considered
to prevent a default on commitment. As the investor has to pay out a
fix fraction each period, he risks bankruptcy if he does not keep those
payouts in a separate account. As a result, the investor is faced with a
virtual reduction of initial wealth. Considering the payout rates over the
whole investment horizon t ∈ [0, T ], we get a total amount of

∫ T

0

cW0e
−rtdt = W0

c

r
(1 − e−rT ) (5.24)

by which initial wealth is reduced. Again, the Private Equity invest-
ment is split in two parts and δC0 is invested at t0 = 0. But as the annual
payout has to be financed from the liquid part of the portfolio, remaining
liquid wealth now reduces to

W̃0 = W̄0 − W0
c

r
(1 − e−rT )︸ ︷︷ ︸

k

= (1 − δ)C0 + S0 + B0 − (C0 + S0 + B0)k

= (1 − δ − k)C0 + (1 − k)S0 + (1 − k)B0

(5.25)

This changes the respective portfolio weights for the liquid portfolio
part to

x̃ =
(1 − δ − k)C0

(1 − δ − k)C0 + (1 − k)S0 + (1 − k)B0
=

C̃0

C̃0 + S̃0 + B̃0

(5.26)

s̃ =
(1 − k)S0

(1 − δ − k)C0 + (1 − k)S0 + (1 − k)B0
=

S̃0

C̃0 + S̃0 + B̃0

(5.27)

b̃ =
(1 − k)B0

(1 − δ − k)C0 + (1 − k)S0 + (1 − k)B0
=

B̃0

C̃0 + S̃0 + B̃0

(5.28)
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summing up to one. The respective wealth processes for the three
asset classes remain the same as before. The derivation of the shortfall
probability is now completely analogous to section 5.2. Again, a shortfall
occurs if liquid assets do not cover the second investment into the Private
Equity fund, C̄0 = (1 − δ)C0:

C̃t1 + S̃t1 + B̃t1 < C̄0e
rt1 (5.29)

The left hand side corresponds to the reduced liquid wealth given by
the weights above. Dividing again by liquid wealth, W̃0, and taking logs
leads to

C̃t1 + S̃t1 + B̃t1

W̃0

<
C̄0

W̃0

ert1 = yert1

ln(
C̃t1 + S̃t1 + B̃t1

W̃0

) = ln(W̃t1) < lny + rt1

(5.30)

The dynamics are calculated in the same way than in section 5.2 using
Itô’s Lemma leading to the same wealth process dln(Wt) but with the
weights from equations 5.26 to 5.28.

Recall from equation 5.18

ZS,t1√
t1

<
lnx̄

(πx̄ + s̄)σS

√
t1

− [μS − r − 1
2σ2

S(πx̄ + s̄)]t1
σS

√
t1

= z (5.31)

Changing the portfolio weights and the expression on the right hand
side of 5.30 leads to

ZS,t1√
t1

<
lny

(πx̃ + s̃)σS

√
t1

− [μS − r − 1
2σ2

S(πx̃ + s̃)]t1
σS

√
t1

= z (5.32)

and

PSF,BM (C̄t1 + St1 + Bt1 < C̄0e
rt1) = Φ(z) (5.33)
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The following figures show the shortfall probability for c = 1%, 3%,
5% and 10%.
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Figure 5.8: Shortfall probability with fixed annual payment (1)
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Figure 5.9: Shortfall probability with fixed annual payment (2)

The picture is quite different from what we had in section 5.2. For c =
1%− 5% the shortfall probability is still negligible for a weight of Private
Equity around 10%. But for larger values, the shortfall probability starts
to increase substantially. The shortfall probability is already very large
for c = 5% and x = 50%. The illiquidity of Private Equity investments
can be seen clearly from the graphs, as the shortfall probabilities rise
sharply with growing portfolio weights of Private Equity. For x = 75%,
it can be seen that the shortfall probability is not always increasing in
t1. This makes intuitively sense, as for large weights of Private Equity
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the shortfall probability decreases if the second investment into the fund
comes later and more liquid funds are available to cover a potential default
on commitment. This evaluation shows clearly that for investors facing
fixed annual payout rates, the share of Private Equity should not exceed
x = 10%− 15% for payout rates as large as 5% if the shortfall probability
wants to be kept below 1%. The vast majority of the diversified portfolios
in the TVE database sticks to these bounds.

5.5.2 Funds with Illiquid Portfolio Parts

For several reasons, it might be possible that an investor is restricted
by some liquidity requirement. Let us assume that an investor needs a
fraction a of total wealth to be held in liquid assets (cash equivalents or
very liquid shares). If we express this need as a fraction h of shares, the
available funds to cover a second call on commitment are reduced by this
part. Using W̃0 = C̄0 +(1−h)S0 +B0, obviously the shortfall probability
in 5.19 changes to44

PSF (C̄t1 + (1 − h)St1 + Bt1 < C̄0e
rt1)

= PSF (
C̄t1 + (1 − h)St1 + Bt1

W̃0

< x̃ert1)

= PSF (ln(
C̄t1 + (1 − h)St1 + Bt1

W̃0

) < lnx̃ + rt1)

= PSF (
ZS,t1√

t1
<

lnx̃

(πx̃ + s̃)σS

√
t1

− [μS − r − 1
2σ2

S(πx̃ + s̃)]t1
σS

√
t1

)

(5.34)

with

h =
a

St1

(Ct1 + St1 + Bt1) =
a

s
(5.35)

and

x̃ =
C̄t

C̄t + (1 − h)St + Bt1

=
x̄

x̄ + (1 − h)s̄ + b̄

44The calculations are similar to the ones in section 5.2 and Appendix C.5.
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s̃ =
(1 − h)St

C̄t + (1 − h)St + Bt1

=
(1 − h)s̄

x̄ + (1 − h)s̄ + b̄
(5.36)

b̃ =
Bt

C̄t + (1 − h)St + Bt1

=
b̄

x̄ + (1 − h)s̄ + b̄
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Figure 5.10: Shortfall probability with constant liquidity need

Figure 5.10 shows the shortfall probability for constant levels of liquid-
ity. As one would expect, PSF is increasing in t1 and is larger for higher
levels of Private Equity x when a smaller liquid portfolio part must finance
a constant level of liquidity. On the other hand, it is very surprising that
the magnitude of the effect which has a constant liquidity requirement
on the shortfall probability is only minor. On the left hand side of figure
5.10 the required level of liquidity is a = 10% of overall wealth and on the
right hand side a = 20%. The effects on the shortfall probability are mod-
est. In the base case without liquidity need (see chapter 5.2) the shortfall
probability for t1 = 5 and x = 75% is 9.19%, only about 1.5% lower than
with a 10% liquidity requirement. For small weights of Private Equity
in the portfolio (i.e. x = 10% − 20%) the relative increases in PSF are
substantial when the liquidity need is increased but the absolute influence
is still negligible and PSF close to zero. As a result, the optimal solution
derived in section 5.3 remains valid. The higher the level of Private Eq-
uity the lower is the sensitivity of PSF towards changes in the liquidity
need. For π the optimal amount derived earlier is chosen. It is easy to see
from equation 5.34 that PSF is very sensitive to changes in π. Obviously,
if PSF is larger than zero, the optimal level of π has to be evaluated using
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simulation techniques analogously to chapter 5.4 in order to evaluate the
optimal value for π. If π is chosen close to zero, the shortfall probability
tends towards zero even for a level of liquidity of a = 20% and x = 75%.
As a result, the opportunity cost strongly depend on the level of required
liquidity and are very sensitive to changes of it.

5.6 Portfolio Optimization Adapted to Com-

mitment Calls

5.6.1 Derivation and Interpretation of the Optimal

Portfolio Weights

In this section a portfolio optimization model is derived taking the timing
of the investment flow into a Private Equity investment (and therefore the
related opportunity cost) into account. As was shown in chapter 3.3.3,
the optimal portfolio weights are constant in time. As the goal is now to
optimize the portfolio consisting of Private Equity, risky assets and bonds
taking the delayed investment path into the Private Equity fund into
consideration, the portfolio has to be optimized over both time periods
τ1 = [0, t1] and τ2 = [t1, T ]. We fix the investor’s investment horizon
to T , the lifetime of the Private Equity fund. It is obvious that the
portfolio weights will change over the two time periods. Within the two
time periods the portfolio weights are again constant following the same
rationale as in chapter 3.3.3. As Private Equity investments are (almost)
illiquid, their weights have to be fixed over both periods. Therefore, we
have to optimize the weight of the Private Equity investment (x), the
weights of the risky asset in τ1 (s1) and τ2 (s2) and the weights of the risk-
free investments in both periods (b1, b2) in order to maximize an investor’s
expected utility of final wealth. It is still assumed that the investment into
the Private Equity fund is split in two parts: an initial payment δC0 at
time t0 = 0 and the remainder at t1. The respective weights of Private
Equity are therefore δx and x. The commitment C0 is again normalized
to 1 and the portfolio is rebalanced continuously. The assets’ dynamics
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are equivalent to the expressions in 3.21 to 3.23. The respective weights
are given by

t ∈ τ1 : δx =
Ct

Wt
=

Ct

Ct + St + Bt

s1 =
St

Wt

b1 =
Bt

Wt
= 1 − δx − s1

(5.37)

t ∈ τ2 : x =
Ct

Wt
=

Ct

Ct + St + Bt

s2 =
St

Wt

b2 =
Bt

Wt
= 1 − x − s2

(5.38)

The log-wealth at the end of both time periods therefore is

t1 : ln(Wt1) = ln(Ct1 + St1 + Bt1) (5.39)

T : ln(WT ) = ln(CT + ST + BT ) (5.40)

As a result, the dynamics of dln(Wt1) and dln(WT ) can again be
derived using Itô’s Lemma analogously to equations 3.27 and 5.13 and
the resulting process is

t ∈ τ1 : dln(Wt) = δx
dCt

Ct
+ s1

dSt

St
+ (1 − s1 − δx)

dBt

Bt
− 1

2
δ2x2(

dCt

Ct
)2

− 1
2
s2
1(

dSt

St
)2 − δxs1

dCt

Ct

dSt

St

(5.41)

Using Itô calculus and substituting the respective differential equations
yields the wealth process in t ∈ τ1
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t ∈ τ1 : dln(Wt) = (δxμP + s1μS + (1 − s1 − δx)r − 1
2
δ2x2σ2

P − 1
2
s2
1σ

2
S

− δxs1σP σSρ)dt + δxσP dZP,t + s1σSdZS,t

(5.42)

and analogously in t ∈ τ2 for dln(Wt) only replacing the respective
portfolio weights (δx → x, s1 → s2 and (1 − δx − s1) → (1 − x − s2)).
From ln(Wt1) − ln(W0) and ln(WT ) − ln(Wt1) final log-wealth ln(WT )
can be calculated in a straightforward way assuming again that W0 = 1:

lnWT =

(xμP + s2μS + (1 − s2 − x)r − 1
2
x2σ2

P − 1
2
s2
2σ

2
S − xs2σP σSρ)(T − t1)

+ xσP (ZP,T − ZP,t1) + s2σS(ZS,T − ZS,t1)

+ (δxμP + s1μS + (1 − s1 − δx)r − 1
2
δ2x2σ2

P − 1
2
s2
1σ

2
S − δxs1σP σSρ)t1

+ δxσP ZP,t1 + s1σSZS,t1

(5.43)

Rearranging and exponentiating leads to final wealth:

WT =

exp[(xμP + s2μS + (1 − s2 − x)r − 1
2
x2σ2

P − 1
2
s2
2σ

2
S − xs2σP σSρ)T

− ((1 − δ)xμP + (s2 − s1)μS + (s1 − s2 − (1 − δ)x)r − 1
2
(1 − δ2)x2σ2

P

− 1
2
(s2

2 − s2
1)σ

2
S − (s2 − δs1)xσP σSρ)t1 + xσP (ZP,T − ZP,t1)

+ s2σS(ZS,T − ZS,t1) + δxσP ZP,t1 + s1σSZS,t1 ]

(5.44)

Taking expectations of the utility45 of final wealth leads to46

45The utility function is again of CRRA-type as in equation 3.14.
46For detailed derivations the reader is referred to Appendix C.6.
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E[u(WT )] =
1

1 − γ
exp[(1 − γ)(xμP + s2μS + (1 − s2 − x)r − 1

2
x2σ2

P

− 1
2
s2
2σ

2
S − xs2σP σSρ)T − (1 − γ)((1 − δ)xμP + (s2 − s1)μS

+ (s1 − s2 − (1 − δ)x)r − 1
2
(1 − δ2)x2σ2

P − 1
2
(s2

2 − s2
1)σ

2
S

− (s2 − δs1)xσP σSρ)t1 +
1
2
(1 − γ)2((x2σ2

P + s2
2σ

2
S + 2xs2σP σSρ)T

− (1 − δ2)x2σ2
P t1 − (s2

2 − s2
1)σ

2
St1 − 2x(s2 − δs1)σP σSρt1)]

(5.45)

In order to derive the optimal portfolio weights over the two time
periods, the expression in 5.45 has to be maximized. Again, the problem
can be reduced to maximizing the exponent divided by 1 − γ. If we
introduce F (x, s1, s2) as the function to be optimized the problem reads

max
x,s1,s2

E[u(WT )]=̂ max
x,s1,s2

F (x, s1, s2) (5.46)

with

F (x, s1, s2) =

[(xμP + s2μS + (1 − s2 − x)r − 1
2
γx2σ2

P − 1
2
γs2

2σ
2
S − γxs2σP σSρ)T

− ((1 − δ)xμP + (s2 − s1)μS + (s1 − s2 − (1 − δ)x)r − 1
2
γ(1 − δ2)x2σ2

P

− 1
2
γ(s2

2 − s2
1)σ

2
S − γ(s2 − δs1)xσP σSρ)t1]

Using matrix notation, the problem can be simplified to

max
w

E[u(WT )]=̂ max
w

F (w) (5.47)

with
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F (w) = wμ − 1
2
γwT V w

and w being the optimal optimal portfolio weights, μ the respective
time-weighted risk premia and V the covariance matrix:

V =

⎛
⎜⎝ σ2

P (T − (1 − δ2)t1) σP σSρ(T − t1) δσP σSρt1

σP σSρ(T − t1) σ2
S(T − t1) 0

δσP σSρt1 0 σ2
St1

⎞
⎟⎠ ;

w =

⎛
⎜⎝ x

s2

s1

⎞
⎟⎠ ; μ =

⎛
⎜⎝ (μP − r)(T − (1 − δ)t1)

(μS − r)(T − t1)
(μS − r)t1

⎞
⎟⎠

(5.48)

Deriving the first order conditions (FOC) from 5.47 is straightforward

γV w = μ (5.49)

and the optimal weights therefore are

w∗ =
1
γ

V −1μ (5.50)

Again, a solution only exists if the determinant of the covariance ma-
trix is not equal to zero. This leads to the condition |ρ| 	= 1. Since V is a
regular covariance matrix, it is positive definite. As a result, the optimal
solutions derived above always lead to a maximum. Using Cramer’s rule
leads to the optimal weights47

x∗ =
(μP − r − μS−r

σS
σP ρ)(T − (1 − δ)t1)

γσ2
P (1 − ρ2)(T − (1 − δ2)t1)

(5.51)

47For detailed derivations the reader is referred to Appendix C.7.
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s∗1 =
(μS − r)σ2

P

σ2
S
(T − (1 − δ2)t1 − ρ2(1 − δ)(T − t1))

γσ2
P (1 − ρ2)(T − (1 − δ2)t1)

− (μP − r)σP

σS
δρ(T − (1 − δ)t1)

γσ2
P (1 − ρ2)(T − (1 − δ2)t1)

(5.52)

s∗2 =

(μS − r)σ2
P

σ2
S
(T − (1 − δ2)t1 + δ(1 − δ)ρ2t1) − (μP − r)σP

σS
ρ(T − (1 − δ)t1)

γσ2
P (1 − ρ2)(T − (1 − δ2)t1)

(5.53)

Expressing s∗1 and s∗2 in terms of the optimal weight of Private Equity,
x∗, and deriving the optimal weights of the risk-free asset leads to

x∗ =
(SRP − SRSρ)(T − (1 − δ)t1)
γσP (1 − ρ2)(T − (1 − δ2)t1)

(5.54)

s∗1 =
μS − r

γσ2
S

− σP

σS
δρx∗ = πM − σP

σS
δρx∗ (5.55)

s∗2 =
μS − r

γσ2
S

− σP

σS
ρx∗ = πM − σP

σS
ρx∗ (5.56)

b∗1 = 1 − s∗1 − δx∗ = 1 − πM − (1 − σP

σS
ρ)δx∗ (5.57)

b∗2 = 1 − s∗2 − x∗ = 1 − πM − (1 − σP

σS
ρ)x∗ (5.58)

The optimal weight of the Private Equity investment depends on the
risk adjusted premia (Sharpe ratio) of private and public equity, their
correlation and the investor’s coefficient of risk aversion. Additionally, in
contrast to the results in chapter 3.3.3 where the delayed investment flow
is not taken into account, it also depends on the investor’s investment
horizon T , the timing of the second investment round of the Private Eq-
uity fund (t1) and the respective amount of funds invested (δ). This has
interesting implications for the selection of Private Equity funds: as the
optimal investment weights have to be rebalanced over the two time peri-
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ods and depend on the investment path, it is important to invest in funds
with a reliable general management that can stick to a predefined invest-
ment path. Therefore, following the optimal investment path cannot be
controlled completely by the investor but depends also on the fund man-
agement. The condition which must hold in order to provide an incentive
for an investor to invest in Private Equity at all is

x∗ ≥ 0 =⇒ SRP ≥ SRSρ (5.59)

stating that the Sharpe ratio of Private Equity has to be larger than
the correlation weighted one of public equity.

It can be seen easily from equations 5.55 and 5.56 that s1 > s2 holds if
ρ > 0 (and x∗ > 0) and is never equal over both time periods if there is an
investment gap for ρ 	= 0. This is somewhat surprising as intuitively one
could expect that for low levels of positive or negative correlation parts
of the gap are invested in the risky asset in τ1 and redirected into the
Private Equity fund in τ2 in order to offset parts of the foregone profit
due to the delayed investment. The explanation are again diversification
considerations. When the correlation is negative, the public asset provides
a good hedge against downturns in the Private Equity investment and the
share of Private Equity of the overall portfolio becomes quite large (as will
be shown later) increasing the risks considerably especially in τ2 when the
investor’s commitment is fully invested which can be diversified by the
risky asset. If the total investment in both risky asset classes is compared
over the two time periods, the result depends again on the correlation
structure and the following condition can be derived from equations 5.55
to 5.58 if the risky assets are assumed to be larger in τ1 than in τ2:

s1 + δx∗ > s2 + x∗ =⇒ ρ >
σS

σP
(5.60)

Therefore, only for rather high levels of correlation total risky assets
are larger in τ1 than in τ2. For ρ ≤ 0 total risky assets are always larger in
the second time period. For ρ = σS

σP
Private Equity is a perfect substitute

for public equity and in case of ρ = 0 for the risk-free investment (liquid-
ity). This finding is equivalent to the findings in chapter 3.3.3 without
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taking the delayed investment path into consideration.

The investment weights of the public equity over the two time periods
differ only in the weights of Private Equity that are deducted. It can be
seen directly that the weights in both cases are only larger than the Mer-
ton solution in case of negative correlation which is equal to the results
without investment gap. For ρ = 0 it further holds that the weight of
public equity is equal in both time periods and furthermore equal to the
weight of the risky asset in case of no investment gap (s∗1 = s∗2 = s∗NG).
Therefore, in case of negative correlation the relation is s∗1 < s∗NG < s∗2
and for ρ > 0 we have s∗1 > s∗NG > s∗2.

Comparing the optimal weights of Private Equity for the two models with
and without investment gap, the following relation is observed:

x∗ =
T − (1 − δ)t1
T − (1 − δ2)t1

x∗
NG (5.61)

The fraction on the right-hand side is always larger than one if δ > 0
holds. As there would be no investment delay for δ = 0, x∗ > x∗

NG always
holds and the optimal weight of Private Equity in the portfolio is always
strictly larger when taking the delayed investment path into account. The
goal is to offset parts of the forgone returns due to the time-lag of invest-
ment into Private Equity funds.

The dynamics of the optimal weight of Private Equity depending on the
correlation structure (dx∗

dρ ) remain the same as in the case without in-
vestment delay and depends on the respective Sharpe ratios of private
and public equity. Overall, the optimal weights are very sensitive on the
correlation ρ. As a result, it is very important to estimate the correlation
structure carefully in order to derive the optimal investment path. The
dynamics depending on the fraction of commitment invested at the incep-
tion of the fund, δ, depend on the relative timing of the second payment
t1 compared to the overall investment horizon T .

The relation of the optimal investment weights and the optimal solution
derived in chapter 4, equation 4.40, can also be shown. The weight of
public equity in the first time period, τ1 must be equal to the optimal
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weight of public shares on the portfolio part excluding Private Equity
plus the amount of shares from committed but not yet invested capital.
As the weighting between stocks and bonds follows the Merton portfolio
rule, πM , and the optimal investment of the gap follows the optimal rule
derived in chapter 4, the following condition must hold:

s1
!= (1 − x∗)πM + (1 − δ)x∗π∗ (5.62)

Proof:

Recall that, according to equation 4.40, π∗ follows

π∗
SF =

μS − r − γδσSσP ρ

γ(1 − δ)σ2
S

=
1

1 − δ
(πM − σP

σS
ρδ) = π∗

NSF

This leads to

(1 − x∗)πM + (1 − δ)x∗π∗ = (1 − x∗)πM + (1 − δ)x∗ 1
1 − δ

(πM − σP

σS
ρδ)

= πM − σP

σS
ρδx∗ = s1

which is equal to condition 5.62 and concludes the proof and shows
that in case the investor does not include Private Equity to the portfolio
the Merton optimization rule optimizes his expected utility of wealth.

5.6.2 Illustration and Sensitivity of the Optimal Port-

folio Weights

This section shows the dynamics of the optimal portfolio weights. All
figures assume the common parameter values if not stated else and a
coefficient of risk aversion of γ = 5.0. Most studies find a coefficient of
risk aversion between 5 and 10 reasonable for institutional investors48.
Figure 5.11 shows the optimal weights of all asset classes for both time

48The absolute value of risk aversion for different types of investors is very contro-
versially discussed in the literature. A good overview on the literature is given in
Janecek (2004).
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periods and ρ = 0.5. As the correlation is close to σS

σP
= 0.61, Private

Equity is almost a perfect substitute for public equity. This can be seen
graphically as the risk-free weight does basically not change over both time
periods. If the correlation is changed to ρ = 0 (Figure 5.12), the optimal
amount of Private Equity does basically not change for different t1. But
now, Private Equity is a perfect substitute for liquidity and the weight of
public assets is constant over time. For negative correlation (Figure 5.13)
the total of risky asset in τ2 is considerably larger than in τ1. The risk-
free asset is even shorted in the second time period and not only Private
Equity but also public equity is almost a perfect substitute for liquidity
as the increase in both risky assets in τ2 comes almost completely at the
expense of the risk-free asset.
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Figure 5.11: Optimal portfolio weights in τ1 and τ2, ρ = 0.5
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Figure 5.12: Optimal portfolio weights in τ1 and τ2, ρ = 0
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Figure 5.13: Optimal portfolio weights in τ1 and τ2, ρ = −0.5

Figure 5.14 shows the sensitivity of the optimal weights on changes
in the correlation structure. The u-shaped form of x∗ found in chapter
5.6.1 can be seen clearly. The sensitivity around 0 is very low. Intuitively
it is somewhat puzzling that for low correlation the optimal weights of
Private Equity are lower than for higher positive or negative correlation
attaining its minimum for ρ = 0.27 in both time periods. The explanation
is that the diversification potential of public equity with respect to Private
Equity outweighs diversification benefits from lower correlation which is
an interesting finding.

-2.50 

-2.00 

-1.50 

-1.00 

-0.50 

0.00 

0.50 

1.00 

1.50 

2.00 

-0.8 -0.5 -0.2 0.2 0.5 0.8 

O
pt

im
al

 P
or

tf
ol

io
 W

ei
gh

ts
 i
n 
τ 1

 

ρ�

x1* s1* b1* x1
* s1

* b1
* 

-2.50 

-2.00 

-1.50 

-1.00 

-0.50 

0.00 

0.50 

1.00 

1.50 

2.00 

-0.8 -0.5 -0.2 0.2 0.5 0.8 

O
pt

im
al

 P
or

tf
ol

io
 W

ei
gh

ts
 i
n 
τ 2

 

ρ�

x2* s2* b2* x2
* s2

* b2
* 

Figure 5.14: Optimal portfolio weights in τ1 and τ2, t1 = 5

When the proportion of commitment paid in at the beginning of the
fund increases, the weight of Private Equity increases as well in τ1 (Figure
5.15). This is intuitively clear as the desired fraction of Private Equity
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in the overall portfolio can be attained earlier. In τ2, the fraction of
Private Equity reflects the weights an investor has initially dedicated to
Private Equity as this weight cannot be changed over time and is only
different from the one in τ1 due to the delayed investment path. The
sensitivities in the second time period when the investor is fully invested
in Private Equity towards δ are rather low showing an inversely u-shaped
pattern. Intuitively, one would expect a decreasing pattern as the more
can be invested earlier in the Private Equity fund the lower has the amount
of ”overcommitment” to be compared to the weights without a delayed
investment path. The reason are diversification benefits especially in the
first period.
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Figure 5.15: Optimal portfolio weights in τ1 and τ2, t1 = 5, ρ = 0.5

Table 5.2 shows the optimal portfolio weights for Private Equity, stocks
and bonds according to the two models with and without considering late
investment for different levels of risk aversion and two different points in
time when the second investment into Private Equity occurs. The differ-
ences between the two models are substantial and especially during the
first time period, τ1, the assumption that committed capital is equal to
invested capital leads to an investment path that is far from being opti-
mal. If the second call comes later, the differences become even larger for
lower levels of γ. In general, the higher the level of risk aversion the lower
the differences between the models. An interesting finding is the fact that
the share of Private Equity in total risky assets remains constant for both
models and over both time periods for different levels of risk aversion al-
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though the risk profiles differ substantially. In τ2, when the investor is
fully invested, xNG is generally too low with a constant proportion over
different γ.

It is also interesting to look at the intertemporal hedging demand which
is now possible as there is a level of final wealth at the end of each time
period. As the CRRA-utility function is concave, the investor prefers a
smooth income stream. The intertemporal elasticity of substitution (IES)
is directly related to the coefficient of risk aversion in those models and
is equal to ψ = 1

γ . As a result, the more risk averse an investor is the
less willing he is to accept swings in the level of final wealth over time.
The concept of intertemporal hedging is deeply discussed and applied in
Campbell & Viceira (2002)49. This effect can also be observed in table
5.2. As the level of correlation is lower than the bounds derived above
(ρ = 0.5 < σS

σP
), the total weight of risky assets is (slightly) larger in

τ2. But as risk aversion (γ) grows and the intertemporal hedging demand
falls, the ratio of risky assets over both time periods becomes more equal.
But the size of this effect is very small. This finding is similar to Camp-
bell & Viceira (p.43) who discovered that the intertemporal elasticity of
substitution has only minor influences on portfolio choice and is more
important when it comes to determine consumption paths over time.

49The intertemporal hedging is also especially important in macroeconomic models
determining the optimal level of consumption and savings over time, e.g. in the
Ramsey-Growth-Model or the Diamond-Overlapping-Generations-Model.
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t1 = 3 t2 = 5

Risk Aversion Time Period Delay No Delay Delay No Delay

γ = 2

22.95% 70.39% 25.18% 70.39%
τ1 45.23% 35.37% 44.77% 35.37%

31.82% -5.76% 30.05% -5.76%

76.49% 70.39% 83.95% 70.39%
τ2 -2.99% 35.37% -8.16% 35.37%

26.50% -5.76% 24.21% -5.76%

γ = 6

7.65% 23.46% 8.39% 23.46%
τ1 15.08% 11.79% 14.92% 11.79%

77.27% 64.75% 76.68% 64.75%

25.50% 23.46% 27.98% 23.46%
τ2 -1.00% 11.79% -2.72% 11.79%

75.50% 64.75% 74.74% 64.75%

γ = 10

4.59% 14.08% 5.04% 14.08%
τ1 9.05% 7.07% 8.95% 7.07%

86.36% 78.85% 86.01% 78.85%

15.30% 14.08% 16.79% 14.08%
τ2 -0.60% 7.07% -1.63% 7.07%

85.30% 78.85% 84.84% 78.85%

Sum 100% 100% 100% 100%

Table 5.2: Comparison of optimal portfolio weights



6 Conclusion

It becomes very clear that the consideration of Private Equity specific
investment characteristics changes the optimal behavior of an investor to
a large extent and leads to a suboptimal portfolio as the Private Equity
part cannot be reoptimized over time due to its illiquid nature. As the in-
vestment flow into Private Equity investments takes place within several
investment rounds, the simplifying assumption that committed capital
equals invested capital leads to a massive overinvestment in risky assets
and can therefore not be neglected. The models derived in this study
not only optimize the investment of committed but not yet invested capi-
tal; they also determine the optimal weights of assets in a well diversified
portfolio. As a result, the models lead to investment rules that improve
standard models to a large extent in terms of the expected utility of
wealth. It became obvious in this study that the lack of Private Equity
specific investment characteristics in portfolio optimization models leads
to investment rules that reduce an investor’s overall expected utility sub-
stantially. The associated opportunity cost from delayed investment into
Private Equity funds can reduce the overall annual expected return of
Private Equity by several percentage points up to 4% p.a. for realistic
parameter choices. Optimal treatment of the committed but not yet in-
vested capital can reduce those cost to a large extent as was shown using
the model derived in this study. As Private Equity is mostly part of a well
diversified portfolio, we were able to analytically derive an optimization
rule for the investment of the gap. An estimation of the expected com-
mitment path into a Private Equity fund can be used to transform the
two-period model derived above into a multi-period model. The model
can also be extended by incorporating the individual characteristics of an
investor’s portfolio as the two extensions mentioned within the discussion
of the model show. A further step will be the inclusion of state variables
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driving the economy into the model setting, either fully or partially ob-
servable. Very interesting from a practitioner’s point of view would be the
introduction of various asset sub-classes to the model, like domestic and
international shares, small-cap and mid-cap shares, corporate and govern-
ment bonds, long-term bonds etc. to evaluate their weights within this
model context. In case an investor invests only in Private Equity, we have
shown that the shortfall probability may be substantial. For that case the
model can no more be solved analytically. Using Monte Carlo simulation
we have estimated the optimal investment path for those cases. Sensitivi-
ties to the model parameters can also be estimated using this framework.
An interesting point would be to evaluate trading strategies reducing the
shortfall probability like options, futures or other hedging strategies.

Furthermore, the analysis has shown the impact of several terms and
conditions of a Private Equity fund on an investor’s optimization behav-
ior. Uncertainty around the investment path will drive the portfolio away
from the optimal solution derived in this model. As a result, an investor
should try to make sure that the fund manager has an incentive to invest
according to predefined rules, i.e. stick to a predefined investment period.
Implications of the analysis in this study on the optimal structure of terms
and conditions would be an interesting question for further research and
the evaluation of optimal negotiation strategies.
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A Description of Data

As the California Public Employees’ Retirement System (CalPERS) is
legally obliged to report on each single Private Equity investment, it is
possible to infer various results from the data available. The data analyzed
here is available from:

http://www.calpers.ca.gov/index.jsp?bc=/investments/assets/equities/
aim/private-equity-review/aim-perform-review/home.xml

as of June 30, 2010. CalPERS started its AIM (Alternative Investment
Management) Program in June 1990 with an asset allocation target of
14%. Total assets comprise 220 Billion USD. The actual weight of Private
Equity commitments is 23.34%. The weighted average age of funds is 4.6
years and more than 50% of the funds was invested in during the last 5
years. The whole investment comprises 632 funds with total commitments
of 52.98 Billion USD. CalPERS manages 265 funds with 45.1 Billion USD
of committed capital itself. The rest is invested in fund-of-funds with a
total number of funds ranging between 9 to 188. The data on these fund-
of-funds is available in detail on the website, as well. The majority of
funds is invested in buyout funds consistent with the average investment
weights in the overall market. A detailed overview is given in figure A.1.
The following tables A.1 and A.2 provides an overview on the data. The
term Average IRR in table A.2 refers to the arithmetic mean of the IRRs of
all funds in the respective vintage year. As was explained in section 2.2.2,
the IRRs during the investment phase (2006-2010) are not meaningful due
to the J-curve effect.
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Figure A.1: CalPERS portfolio
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Vintage No. of Commitment Avg. Ratio of S.D. of
Year Funds (in mio USD) Investment Inv. Ratio

1990 1 100 100.00% n.a.
1991 2 113 89.26% n.a.
1992 1 35 100.00% n.a.
1993 2 125 100.06% n.a.
1994 7 313 101.91% n.a.
1995 6 805 91.89% n.a.
1996 8 388 98.74% n.a.
1997 4 401 98.80% n.a.
1998 11 1’091 100.67% 6.91%
1999 29 788 95.43% 4.52%
2000 61 2’542 93.17% 8.07%
2001 55 3’527 96.91% 5.65%
2002 25 1’052 97.58% 3.41%
2003 22 1’422 89.07% 9.83%
2004 28 1’595 88.73% 8.98%
2005 49 3’632 89.92% 13.40%
2006 59 8’560 77.08% 12.75%
2007 118 13’798 58.66% 21.81%
2008 107 11’559 41.11% 21.94%
2009 23 651 25.52% 26.71%
2010 14 479 15.42% 12.05%

SUM/AVG. 632 52’977 72.97% 1.93%

Table A.1: CalPERS dataset (1)
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Vintage Overcommit- Funds with Funds with
Year ment Ratio Inv.Ratio >90% Inv.Ratio >100%

1990 0.00% 100.00% 100.00%
1991 0.50% 50.00% 50.00%
1992 0.00% 100.00% 100.00%
1993 0.06% 100.00% 100.00%
1994 1.98% 100.00% 85.71%
1995 0.00% 66.67% 33.33%
1996 0.37% 100.00% 50.00%
1997 0.48% 100.00% 50.00%
1998 2.83% 90.91% 54.55%
1999 0.14% 89.66% 51.72%
2000 0.26% 81.97% 32.79%
2001 0.59% 83.64% 49.09%
2002 0.40% 96.00% 40.00%
2003 0.11% 50.00% 13.64%
2004 0.12% 60.71% 14.29%
2005 0.22% 42.86% 8.16%
2006 0.00% 11.86% 1.69%
2007 0.00% 14.41% 10.17%
2008 0.00% 4.67% 1.87%
2009 0.00% 8.70% 4.35%
2010 0.00% 0.00% 0.00%

SUM/AVG. 0.36% 41.77% 19.62%

Table A.2: CalPERS dataset (2)
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Vintage Average Avg. IRR
Year IRR Capital Weighted

1990 14.90% 14.90%
1991 26.80% 23.63%
1992 25.50% 25.50%
1993 12.20% 12.04%
1994 15.03% 17.13%
1995 15.70% 11.59%
1996 9.49% 10.21%
1997 36.20% 30.20%
1998 -0.74% 3.46%
1999 5.92% 10.40%
2000 4.34% 11.73%
2001 8.80% 14.63%
2002 9.02% 13.85%
2003 27.10% 22.17%
2004 9.32% 15.29%
2005 6.82% 7.06%
2006 -3.81% -3.14%
2007 0.86% 0.67%
2008 -6.40% 2.03%
2009 -11.76% 4.36%
2010 -43.27% 5.18%

AVERAGE 7.71% 12.05%

Table A.3: CalPERS dataset (3)



B Institutional Issues

B.1 CalPERS: Alternative Investment Pol-

icy

The following statements are an excerpt from the CalPERS’ Statement
of Investment Policy for Alternative Investment Management. The full
publication is available from
http://www.calpers.ca.gov/index.jsp?bc=/investments/policies/inv-asset-
classes/aim/ home.xml.
. . .
Strategic Objective

To maximize risk-adjusted rates of return while enhancing the CalPERS
position as a premier alternative investment manager is the strategic ob-
jective of the Program.
The Program shall be managed to accomplish the following:

1. Enhance CalPERS long-term total risk-adjusted return;

2. Enhance CalPERS reputation as a premier alternative investment
manager and “investor of choice” within the private equity commu-
nity;

3. Hedge against long-term liabilities; and

4. Provide diversification to the CalPERS overall investment program.

. . .
Investment Approach

“Top down” strategic assessments shall identify portfolio weightings and
identify the most attractive segments of the market for investing. Based on
these assessments, the staff shall proactively seek out the most attractive
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investment opportunities, while maintaining appropriate diversification.
. . .
Specific Risk Parameters

Valuation: Partnerships and co-investments shall be evaluated to deter-
mine if the general partner employs an appropriate valuation discipline.
For direct investments, the staff shall review valuations to determine if
they are reasonable.
. . .

B.2 Term Sheet Example

The following terms and conditions are adapted from Connor (2005a, p.
65) and reflect industry standards for funds with a capitalization around
100 mio USD:

• Term: 10 years with up to additional two-year extension

• Investment Period: Five years

• Management Fee: 2% of committed capital paid in advance during
the investment period, rate decreases by 0.20% per year until the
tenth year, and then ceases

• Preferred Return: 8% based on invested capital net of management
fees

• Clawback: Upon termination of the fund, the General Partners will
be required to restore funds to the Limited Partners if the Limited
Partners have failed to receive the greater of (a) their total invested
capital plus management fees paid and (b) 80% of all profits dis-
tributed. Under no circumstances will the clawback amount exceed
the amount of total distributions received by the General Partners.
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• Distributions: Distributions will be made in the following order of
priority and amount:

1. First 100% to the Limited Partners until they have received an
amount equal to their invested capital plus management fees
paid (return of capital and fees)

2. Then 100% to the Limited Partners until their net internal
rate of return, including management fees paid and the fund’s
current valuation, has reached the Preferred Return

3. Then 80% to the General Partners and 20% to the Limited
Partners until the General Partners have received 20% of all
profits distributed in excess of (1) (catch-up)

4. Then 80% to the Limited Partners and 20% to the General
Partners (carried interest)

Table B.1: Terms and Conditions



C Mathematical Derivations

C.1 Wealth Dynamics

In this Appendix the transformation from 3.27 to 3.29 will be derived.

Expanding each fraction with the corresponding funds in each asset
class at T leads to

dln(Wt) =

CT

CT + ST + BT

dCt

Ct
+

ST

CT + ST + BT

dSt

St
+

BT

CT + ST + BT

dBt

Bt

− 1
2
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(CT + ST + BT )2
(
dCt
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2
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T
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dSt
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− 1
2

B2
T
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(
dBt
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)2 − CtSt

(CT + ST + BT )2
dCt
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dSt
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(C.1)

As the square/product of the stochastic differential equations equals
the square of the respective stochastic components with (dZ)2 = dt, we
get from 3.21 to 3.23

(
dCt

Ct
)2 = σ2

P dt

(
dSt

St
)2 = σ2

Sdt

(
dBt

Bt
)2 = 0

dCt

Ct

dSt

St
= σP σSρdt

(C.2)
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It is obvious that the fractions of the investment amounts in equation
C.1 equal the corresponding portfolio weights. Replacing these with the
expressions in 3.24 to 3.26 and plugging in the corresponding stochastic
differential equations gives the dynamics of log-wealth in equation 3.29:

dln(Wt) = [xμP + sμS + (1 − x − s)r − 1
2
x2σ2

P − 1
2
s2σ2

S − xsσP σSρ]dt

+ xσP dZP,t + sσSdZS,t

(C.3)

C.2 Expected Utility of Optimal Portfolio

In this Appendix the transformation from 3.31 to 3.33 will be derived.
The expectation of utility of final wealth is given by

E[u(Wt)] =
1

1 − γ
e(1−γ)(xμP +sμS+(1−x−s)r− 1

2 x2σ2
P − 1

2 s2σ2
S−xsσP σSρ)T

E[e(1−γ)(xσP ZP,T +sσSZS,T )]︸ ︷︷ ︸
Stochastic Components

(C.4)

Calculating the stochastic part yields

E[e(1−γ)(xσP ZP,T +sσSZS,T )] = e
1
2 V ar((1−γ)(xσP ZP,T +sσSZS,T ))

= e
1
2 (1−γ)2(x2σ2

P V ar(ZP,T )+s2σ2
SV ar(ZS,T )+2xsσP σSCov(ZP,T ,ZS,T ))

(C.5)

As Z follows ZT ∼ N(0,
√

T ) and private and public equity have a
correlation of ρ, the expected value equals
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E[u(Wt)] =
1

1 − γ
exp[(1 − γ)(xμP + sμS + (1 − x − s)r − 1

2
x2σ2

P − 1
2
s2σ2

S

− xsσP σSρ)T +
1
2
(1 − γ)2(x2σ2

P T + s2σ2
ST + 2xsσP σSρT )]

(C.6)

As the maximization of expected final wealth is equivalent to maxi-
mizing the exponent dividing by the constant term (1 − γ), we end up
with

max
x,s

E[u(WT )]

=⇒ max
x,s

[(xμP + sμS + (1 − x − s)r − 1
2
x2σ2

P − 1
2
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+
1
2
(1 − γ)(x2σ2

P T + s2σ2
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= (xμP + sμS + (1 − x − s)r − 1
2
γx2σ2

P − 1
2
γs2σ2

S − γxsσP σSρ)T

(C.7)

C.3 Opportunity Cost without Shortfall

In the following Appendix, the expression for the expected utility of final
wealth is solved. Expected utility from final wealth (equation 4.15) for
the effective investment path is

E[u(WT )] =
1

1 − γ
exp[(1 − γ)(μP − 1

2
σ2

P )T + (1 − γ)(δμP − μP − 1
2
δ2σ2

P

+
1
2
σ2

P + (1 − δ)μS − (1 − δ)2σ2
S − δ(1 − δ)σP σSρ)t1]

E[e(1−γ)(δσP ZP,t1+(1−δ)σSZS,t1+σP (ZP,T −ZP,t1 ))]︸ ︷︷ ︸
Stochastic Components

(C.8)
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As all deterministic components can be taken out of the expecta-
tion, we are left with calculating the expectation of the stochastic part.
The Brownian motion has independent increments and Z follows Z ∼
N(0,

√
t). This leads to

e
1
2Var((1−γ)(σP (ZP,T −ZP,t1 )+δσP ZP,t1+(1−δ)σSZS,t1 )) =

e
1
2 (1−γ)2[σ2

P (T−t1)+δ2σ2
P t1+(1−δ)2σ2

St1+2δ(1−δ)σP σSρt1]
(C.9)

The resulting expression of expected utility of effective final wealth
equal to equation 4.16 therefore is

E[u(WT )] =
1

1 − γ
exp[(1 − γ)(μP − 1

2
σ2

P )T − (1 − γ)(1 − δ)(μP − μS − 1
2
(1 + δ)σ2

P

+
1
2
(1 − δ)σ2

S − δσP σSρ)t1 +
1
2
(1 − γ)2(σ2

P (T − t1) + δ2σ2
P t1

+ (1 − δ)2σ2
St1 + 2δ(1 − δ)σP σSρt1)]

(C.10)

In order to solve for the opportunity cost p, we have to solve equation
4.8

E[u(WT )] = E[u(e−pT W̄T )] (C.11)

Equating equations C.10 and 4.14, multiplying by (1− γ), taking logs
and then dividing by (1 − γ) leads to
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2
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P )T +
1
2
(1 − γ)σ2

P T =

(μP − 1
2
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2
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2
(1 − δ)σ2

S − δσP σSρ)t1
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2
(1 − γ)(σ2
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P t1 + (1 − δ)2σ2
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(C.12)
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Now solving for p is straightforward and gives us the result in equation
4.17:

p =
(1 − δ)t1

T
[μP −μS − 1

2
γ(1 + δ)σ2

P +
1
2
γ(1− δ)σ2

S + γδσP σSρ] (C.13)

C.4 Opportunity Cost with Certain Default

In this Appendix, opportunity cost in case of a certain default are derived.
From equation 4.38, with the changing dynamics in τ2 and including the
cost of a default on commitment, α, E[u(WT )] becomes:

E[u(WT )] =
1

1 − γ
exp[(1 − γ)((1 − πM )r + πMμS − 1

2
π2

Mσ2
S)(T − t1)

+ (1 − γ)(δ̄μP − 1
2
δ̄2σ2
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2
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S − δ̄(1 − δ̄)σP σSρ)t1

+ (1 − γ)ln(1 − (1 − α)δ)]

E[e(1−γ)(πM σS(ZS,T −ZS,t1 )+δ̄σP ZP,t1+(1−δ̄)σSZS,t1 )]︸ ︷︷ ︸
Stochastic Components

(C.14)

Calculating the expectation of the stochastic part is similar to the
derivation in Appendix C.3 and leads to

e
1
2 (1−γ)2(π2

M σ2
S(T−t1)+δ̄2σ2

P t1+(1−δ̄)2σ2
St1+2δ̄(1−δ̄)σP σSρt1) (C.15)

The resulting expected utility of final wealth in case of a default on
commitment therefore is
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Equating equations C.16 and 4.14 and multiplying by (1 − γ), taking
logs and then dividing by (1 − γ) leads to
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Solving for p gives the opportunity cost when a default on commitment
occurs

p = μP − πMμS − (1 − πM )r − 1
2
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(C.18)

To introduce π, the following changes have to be made in the above
equation: μS → (1 − π)r + πμS and σS → πσS . Minimizing with respect
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to π leads to the optimal investment weights of the investment gap when
a default on commitment occurs.

C.5 Wealth Dynamics in Mixed Portfolio

In this Appendix the transformation from equations 5.13 to 5.15 will be
derived.

At first, we cancel out W̄0 and expand each fraction with the corre-
sponding funds in each asset class at t, C̄t

C̄t
, St

St
and Bt

Bt
, respectively. This

leads to
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(C.19)

As the square/product of the stochastic differential equations equals
the square of the respective stochastic components with (dZ)2 = dt, we
get from equations 5.10, 4.2 and 4.3

(
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Sdt

(
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(
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= πσ2
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(C.20)

It is obvious that the fractions of the investment amounts in equation
C.19 equal the corresponding portfolio weights. Replacing those with
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the expressions in 5.7 to 5.9 and plugging in the stochastic differential
equations gives 5.15

dln(Wt) = [(1 − π)x̄r + πx̄μS − 1
2
x̄2π2σ2

S + s̄μS − 1
2
s̄2σ2

S + b̄r − x̄s̄πσ2
S ]dt

+ (πx̄ + s̄)σSdZS,t

(C.21)

C.6 Expected Utility in Mixed Portfolio

To calculate E[u(WT )] from equation 5.44 we have to plug in final wealth
into the utility function (CRRA) from equation 3.14 and calculate the ex-
pectation. The expectation of the deterministic parts is constant, there-
fore only the expectation of the stochastic parts is calculated in detail
here:

E[e(1−γ)(xσP (ZP,T −ZP,t1 )+s2σS(ZS,T −ZS,t1 )+δxσP ZP,t1+s1σSZS,t1 )] =
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2
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2
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(C.22)

Rearranging leads to
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− (s2
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1)σ
2
St1 − 2(s2 − δs1)xσP σSρt1)]

(C.23)

C.7 Solving FOCs for Mixed Portfolio

The optimal weights can be calculated explicitly from the first order con-
ditions (FOC) in equation 5.49 using Cramer’s rule. Following this rule,
the optimal weights are
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x∗ =
1
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detV1

detV

s∗2 =
1
γ
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detV

s∗1 =
1
γ

detV3

detV

(C.24)

where the index in the denominator indicates the column in the co-
variance matrix that has to be replaced by the vector on the right hand
side of equation 5.49. This leads to
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detV3 =
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(C.28)

Plugging in these expressions into Cramer’s rule, dividing each fraction
by σ2

P σ2
S(T − t1)t1 and rearranging leads to the results in equations 5.51

to 5.53:
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