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Summary

Expectations about the future evolution of the economy are of immense im-

portance for taking the right decisions in a stochastic environment. Econo-

metricians have long been studying forecasting techniques to this end. Most

of this work is based on regression techniques such as OLS or GMM.

I propose a different approach: state-space models and their estimation

by means of maximum likelihood using the Kalman filter. While the two

techniques are often identical in an environment with clean data; state-space

models are clearly superior if the observed data is affected by measurement

error or displays a seasonal pattern. In this case, state-space models allow

the separation of the true underlying signal from the measurement noise. As

only the signal is relevant for prediction, this can considerably improve the

quality of the forecast.

In particular, I use the state space framework to estimate affine yield

curve models and find that the implied return forecasts for long bonds is

much more reliable than that implied by a linear regression, although the

implied insample R2 is lower. Moreover, I detect substantial predictability of

long/short portfolios not properly revealed by a linear regression.

I then generalize the affine yield curve models such that they can include

persistent shocks or state variables not spanned by yields. Firstly, these un-

spanned factor models are used to further improve the yield-curve forecast

by including expected inflation as an additional state variable. In this model,

the R2 of the annual term premium forecast is above 30 percent. Secondly, I

build a joint stock-bond model that merges the yield curve model with a stock

market model using the price-dividend ratio as an additional variable. This is

achieved by linearization using the Campbell-Shiller approximation. Thirdly,

the cross-section of assets is enlarged by including size and book-to-market

iii



iv

sorted portfolios. This model provides evidence for substantial variation in

the dividend growth rate. Once the model captures this feature, it is able to

explain a large fraction of the value premium by a higher exposure of value

stocks to the single persistent shock of the system.

Finally, this thesis uses rank-reduction techniques to explore the return

predictability pattern. This analysis provides strong evidence for at least

two independent predictability factors: the term premium and the equity

premium.



Contents

1 Introduction 1

2 State Space Models and Kalman Filter 7

2.1 State Space Models . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Regression Forecasts of Bond Returns 15

3.1 Data and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Measurement Error . . . . . . . . . . . . . . . . . . . . . 18

3.2 Bond Risk Premia . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Forecasting Long-Only Bond Returns . . . . . . . . . . 19

3.2.2 Graphical Analysis of the Regression Coefficients . . . . 23

3.2.3 Is the Factor Spanned by Level, Slope and Curvature? . 25

3.3 A Second Risk Premium for Slope Risk . . . . . . . . . . . . . 27

3.3.1 Duration-Neutral Portfolios . . . . . . . . . . . . . . . . 27

3.3.2 Forecasting Slope Returns . . . . . . . . . . . . . . . . . 31

3.4 Curvature and other Risk Premia . . . . . . . . . . . . . . . . . 32

3.5 Summary of the Empirical Findings . . . . . . . . . . . . . . . 33

3.A Appendix: Robustness of Slope Return Forecasts . . . . . . . . 34

3.A.1 Measurement Error and Lagged Instruments . . . . . . 34

3.A.2 Different Data . . . . . . . . . . . . . . . . . . . . . . . 34

3.A.3 Data Range . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

4 Predictability in an Affine Model 37

4.1 Constructing Affine Yield Curve Models . . . . . . . . . . . . . 38

4.1.1 Prices and Yields . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Forward Rates . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.4 Restricting the Number of Forecastable Factors . . . . 42

4.2 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Rotating the Factors . . . . . . . . . . . . . . . . . . . . 43

4.2.2 An Almost General Parametrization . . . . . . . . . . . 44

4.3 Kalman Filter Estimation . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Is Kalman Filter Estimation more Efficient? . . . . . . 48

4.3.2 Model Selection: Testing for the Rank of λ1 . . . . . . . 49

4.3.3 Predicting the Excess Returns on Long Bonds . . . . . . 53

4.3.4 Predicting Slope Portfolios . . . . . . . . . . . . . . . . 57

4.3.5 Analysis of the Measurement Error . . . . . . . . . . . 59

4.4 Infinite Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Summary of the Empirical Findings . . . . . . . . . . . . . . . 64

4.A Appendix: Derivatives . . . . . . . . . . . . . . . . . . . . . . . 65

4.A.1 Derivatives of B . . . . . . . . . . . . . . . . . . . . . . 65

4.A.2 Derivatives of A . . . . . . . . . . . . . . . . . . . . . . 66

5 More about Affine Models 69

5.1 Expected Returns . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Unspanned Macro Factors . . . . . . . . . . . . . . . . . . . . 72

5.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Integrating Inflation Forecasts into an Affine Model . . 74

5.3 Shocks to Persistent Variables . . . . . . . . . . . . . . . . . . . 80

5.3.1 Incorporating Persistent Shocks . . . . . . . . . . . . . . 81

5.3.2 Example: A Simple Stock Bond Model . . . . . . . . . 82

5.4 Summary of the Empirical Findings . . . . . . . . . . . . . . . 85

6 Dividends and Returns 87

6.1 Campbell-Shiller Approximation . . . . . . . . . . . . . . . . . 88

6.2 State Space Framework with Noisy Dividends . . . . . . . . . . 90

6.2.1 Observable Variables . . . . . . . . . . . . . . . . . . . . 92

6.2.2 Specification of the Measurement Error . . . . . . . . . 93

6.2.3 Augmented State Equation . . . . . . . . . . . . . . . . 93



CONTENTS vii

6.2.4 Measurement Equation . . . . . . . . . . . . . . . . . . 94

6.3 The Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Judging the Growth Rate Forecast . . . . . . . . . . . . 96

6.3.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . 97

7 Joint Stock-Bond Market Models 99

7.1 Unspanned Factors Again . . . . . . . . . . . . . . . . . . . . . 99

7.2 Campbell-Shiller Approximation and Affine Pricing Kernel . . 100

7.3 The Stock-Bond Framework . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . 102

7.3.2 Definition of the State Space Model . . . . . . . . . . . 102

7.3.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . 103

7.3.4 Enlarging the Cross-Section of Returns . . . . . . . . . 103

7.3.5 Overidentifying Macro Variables . . . . . . . . . . . . . 105

7.4 Increasing the Cross-Section of Prices . . . . . . . . . . . . . . 105

7.4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.2 The Predictability Pattern . . . . . . . . . . . . . . . . 106

7.5 Cross-Section of Returns . . . . . . . . . . . . . . . . . . . . . . 107

7.5.1 Hypothesis Tests . . . . . . . . . . . . . . . . . . . . . . 107

7.5.2 Loadings to the Priced Shocks . . . . . . . . . . . . . . 109

7.6 Statistical and other Problems . . . . . . . . . . . . . . . . . . 110

7.6.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6.3 Analysis of the Measurement Error . . . . . . . . . . . . 112

7.7 Summary of the Empirical Findings . . . . . . . . . . . . . . . 113

8 Conclusion 115

A Description of the Data Sets 119

B Optimization 123

2.1 An Alternative Optimization Procedure . . . . . . . . . . . . . 123

2.2 Numerical Stability and Convergence . . . . . . . . . . . . . . . 124

C Dividends in Continuous Time 125

3.1 Definition of the Model . . . . . . . . . . . . . . . . . . . . . . 126



viii CONTENTS



List of Tables

3.1 Regression of Bond Returns on Forward Rates, 1970-2006 . . . 21

3.2 Regression of Bond Returns on Forward Rates, 1947-2006 . . . 22

3.3 Forecasting Level Returns using Level, Slope and Curvature . . 26

3.4 Expected Returns on Slope Portfolios . . . . . . . . . . . . . . 29

3.5 Forecasting Curvature Returns . . . . . . . . . . . . . . . . . . 33

4.1 Kalman Filter Estimates of Four Factor Models . . . . . . . . . 50

4.2 Kalman Filter Estimates of Three Factor Models . . . . . . . . 51

4.3 Kalman Filter Estimates with Restrictions on Af
∞ . . . . . . . 63

5.1 Inflation Forecasting Regression . . . . . . . . . . . . . . . . . . 76

5.2 Affine Models Including Expected Survey Inflation . . . . . . . 79

5.3 Forecasts in the Simple Stock Bond Model . . . . . . . . . . . . 84

7.1 Estimates for Four-Factor Stock-Bond Models . . . . . . . . . . 104

7.2 Estimates for Five Factor Stock-Bond Models . . . . . . . . . . 108

7.3 Five Factor Stock-Bond Model with Rank λ1 = 2 . . . . . . . . 114

ix



x LIST OF TABLES



List of Figures

3.1 Loadings of the Bond Forecasting Regression: 1970-2006 . . . . 24

3.2 Loadings of the Bond Forecasting Regression: 1947-2006 . . . . 25

4.1 Principal Component Analysis of AP (4, 3) implied Yields . . . 52

4.2 Expected 1-year Excess Return on a 10-year Bond: 1970-2006 . 54

4.3 Smoothed and Raw Forward Curve: June 1983 . . . . . . . . . 55

4.4 Regression Parameters Implied by the Kalman Filter . . . . . . 57

4.5 Expected 1-year Excess Return on a Slope Portfolio: 1970-2006 58

4.6 Standard Deviation of Measurement Error in the Cross-Section 60

4.7 Standard Deviation of Measurement Error in the Time-Series . 61

xi



xii LIST OF FIGURES



Chapter 1

Introduction

The price of an asset reflects the discounted value of the asset’s expected

cash-flow. Prices are high when the expected cash-flow is high or when the

discount rate - and hence expected returns - are low. Conversely, low prices

imply either high return or low cash-flow.

Empirically, prices vary greatly. Stock prices, expressed as the aggregate

dividend-price ratio, vary from more than 7 percent in 1949 to less than 2

percent in 2001. Consequently, returns, dividend growth or both must be

predictable. A first indication of the source of the price variations can be

derived from a regression of the dividend yield onto returns and dividend

growth. It provides statistical evidence against the null of absence of return

predictability, but there is no evidence for predictability of dividend growth

(e.g. Fama and French (1988) or Cochrane (2008a)).

However, the inability of the dividend yield to forecast dividend growth

does not necessarily imply that dividends are not predictable. When expected

returns and expected dividend growth are positively correlated, the dividend

yield can completely loose its ability to forecast dividends (see Menzly, Santos,

and Veronesi (2004) for a model with this feature). In this situation, which is

consistent with the data, there are at least two state variables. Both above-

mentioned univariate forecasting regressions thus suffer from an omitted vari-

able bias. More precisely, we observe that the R2 of the return regressions is

reduced and the ability of the price-dividend ratio to forecast dividend growth

is eliminated.

1



2 CHAPTER 1. INTRODUCTION

Bond markets are remarkably similar. We observe a very rich yield curve

structure with three or four factors. These factors do not simply reflect a

complex pattern of expected inflation; rather we observe a time-varying real

rate, predictable bond returns (Fama and Bliss (1987)), and that the yield

curve contains information about economic growth. Moreover, yields do not

contain all information about expected inflation. As (expected) inflation is a

variable that interacts with yields, this observation says that there is a hidden

or unspanned variable in the dynamics of yields. As a consequence, there is an

omitted-variable bias in the forecasting regressions as in the case of equities.

By definition, omitted variables justify the inclusion of other variables into

the forecasting regression. Unfortunately, there is no consensus as to how

this omitted variable should be selected. This lack of theory-based variable

selection has - driven by the immense importance of return predictability in

the financial industry - produced a huge body of academic papers and practical

articles on the subject. They include an almost endless list of instruments that

forecast returns for a specific sample or even out-of-sample.

In practice the question arises, which of these models should be chosen.

Should that with the highest R2 be selected? This seemingly plausible answer

turns out to be misleading. The paradox occurs because in order to get a

high R2, a forecasting procedure needs to adequately fit returns. But fitting

returns is not the same thing as filtering out expected returns! When we

search a data set - as the single historic data set we have - extensively for a

predictability pattern, the estimator with the best fit found up to that point

is necessarily one that fits a lot of noise and does not simply filter the ’true’

expected return. Selecting the highest R2 thus means choosing the model that

overestimates predictability the most. This selection bias is not restricted to

in-sample analysis. It is also at work out-of-sample and even for funds with a

live track record. It is simply slightly more difficult to find high out-of-sample

R2 or to even produce real outperformance.

How can we get out of this dilemma? My solution starts with the above-

mentioned condition that prices must be low when expected returns are high

or when the cash-flow growth rate is low. Mathematically, we can regard

prices as a function of expected returns and expected cash-flows. These two

expectations may themselves be a function of some other variables. For in-

stance, the expected market return is the sum of the equity premium and

the short interest rate. We can describe this observation more abstractly by
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assuming that asset prices are functions of a set of macro or state variables.

These functions can, of course, also depend on asset-specific cash-flow expec-

tations. However, for very large asset classes, such as government bonds, the

aggregate stock market or aggregate small caps, this idiosyncratic influence

will be small.

If we have at least as many assets as state variables, we can invert these

price functions and solve for the state variables. Because some prices have an

idiosyncratic part, this is rather a statistical inversion than an exact algebraic.

Typically, it is a regression across prices. This is a straightforward technique

to reveal the state variables, most importantly, expectations, as a function of

prices. Since the choice of assets is far less subjective than taking a subset of

economic indicators, this process is clearly less affected by selection bias.

Once the state variables are filtered, we can also explore the cross-section

of returns. Motivated by Merton’s (1973) ICAPM and its extension to state

dependent utility in Merton (1995), shocks to state variables are natural candi-

dates for explaining the cross-section of returns, such as value and size anoma-

lies (Fama and French (1992)). For example, Campbell and Vuolteenaho

(2004) use a version of the ICAPM to break the CAPM beta of a stock with

the market portfolio into two components: one reflecting news about the

market’s cash-flows and one reflecting news about the market’s discount rate.

These two components are not, strictly speaking, innovations to state variables

but they are closely related to innovations to the expected dividend growth

rate and the expected discount rate. Empirically, the paper finds that value

and small stocks have considerably higher cash-flow betas than growth and

large stocks, and this can explain their higher average return. Unfortunately,

the model starts with a VAR that embeds a return-forecasting equation. The

authors of the paper are quite open about the fact that their results depend

crucially on the variables contained in the VAR. The empirical content of this

model thus suffers from a similar selection bias as the forecasting regression.

Another paper that deals with state variables in the equity market is

Bansal and Yaron (2004). It models the consumption and dividend growth

rate with a small long-run predictable component. Building on this theoret-

ical groundwork, Bernhard (2008) estimates an international model that as-

sociates the international value premium with shocks to the predictable com-

ponent. The calibration of the model starts with a consumption-forecasting

regression that determines expected consumption growth. Stock returns can
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now be decomposed in a way that is similar to the decomposition in Campbell

and Vuolteenaho (2004). The difference is that Bernard starts with forecasting

growth rates instead of forecasting returns. The composition of the variables

in this regression, however, also suffers from a selection bias.

The empirical implementation of these two models is thus not much dif-

ferent from the very simple and far less theory-based approach of Petkova

(2006). By fitting a simple VAR, she finds that unexpected innovations to

the credit-spread explain the size effect and shocks to the slope of the yield

curve which, to a great extent, explains the value effect. Hahn and Lee (2006)

comes to the same conclusion by taking unconditional innovations of the same

variables.

Brennan, Wang, and Xia (2004) and Brennan and Xia (2006) are two

papers that are also very similar to the present thesis. More precisely, they

estimate a yield curve model with the Kalman filter and then use the filtered

variables to explain the cross-section of equity returns. The main difference

is that they do not use the cross-section of size and book-to-market sorted

portfolios to estimate their model.

Many forecasting instruments used in these papers are really prices or price

differences and changes to these variables are thus closely related to returns.

For instance, if the term spread is used as an indicator for return forecasting,

a shock to the expected return is closely related to movements in the yield

curve and thus to the return of a specific portfolio. As a consequence, if the

model explains the cross-section of returns by different loadings to changes in

expected returns, there is a connection between yield curve movements and

the rest of the model which must not be ignored. If this link is not included in

the model and the term spread is treated simply as an unrelated instrument -

more precisely if bond returns are not included in the cross-sectional regression

- cross-sectional expectation of the assets explored can be inconsistent with

those of bond returns. Therefore, if prices are used as predictive instruments,

they should be modeled jointly with other parts of the economy.

Another problem with some of these models is that they explain only a

very small fraction of size and value returns. Movements of the state variables,

however, are large movements of the economic conditions and should therefore

have a large impact on prices. I circumvent these problems by restricting the

observables to asset returns and prices. Shocks to the state variables are then

necessarily price movements and thus closely related to returns. This forces
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the model to explain a large fraction of cross-sectional returns by movements

of the state variables.

This defines the approach of this thesis. Firstly, choose a set of assets

that should be explored. Secondly, define the basic characteristics of the

models, such as the number of yield curve factors and the total number of state

variables, and define their dynamics. Thirdly, estimate the model using prices

and returns of these assets as the observable quantities. Fourthly, impose

sensible and testable restrictions to the model. Fifthly, rotate the model

to meaningful state variables, such as expected growth rates and expected

returns. Finally, find meaningful economic interpretations of the model. One

specific goal is to find an explanation of the variation of risk-compensation

across assets.

This procedure will lead us to joint stock-bond models. There are a few

other papers that have built such models: Beckaert and Grenadier (2001),

Mamaysky (2002), D’Addona and Kind (2006) and Lemke and Werner (2009).

The last of these papers also provides estimates based on the Kalman filter.
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Chapter 2

State Space Models and

the Kalman Filter

This chapter introduces the theory and definitions of linear state space models

and their estimation using the Kalman filter. The first two sections focus on

what is needed to follow the estimation methods used in this thesis. Specifi-

cally, a basic description of the Kalman filter and smoother and their specific

applications in this thesis. Finally, the third section introduces the theory

required to derive the gradient of the likelihood function and some examples

of derivatives. For further reading I refer to Durbin and Koopman (2001) and

Harvey (1989), which are both comprehensive treatments of the subject.

2.1 State Space Models

A multivariate linear state space model is defined by two equations. Firstly,

a state or transition equation defines the dynamics of the underlying state of

the economy. It is, in general, not, or only partially, observable and follows

xt+1 = c+ Txt +Rεt+1 (2.1)

where xt (t = 1 . . . τ) is a k × 1 vector that summarizes the state of the

economy at time t. T is a k × k matrix, c is a k × 1 vector, and R is a k × l

matrix (l ≤ k). These three parameters are constant in all models applied

7
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in this thesis, although the model can also be formulated using time-varying

parameters. εt is a mean zero l× 1 vector of Gaussian shocks with covariance

matrix Q. It is assumed to be uncorrelated over time. In summary, the state

of the economy is assumed to follow a K-dimensional VAR with a potentially

degenerate covariance matrix.

Secondly, the measurement equation constitutes the observable part of the

economy. It links the state vector xt to the observable variables yt by

yt = d+ Zxt + ηt. (2.2)

The vector of observable variables yt has dimension n× 1. Accordingly, Z is

n×k and d is n×1. The n-dimensional noise term ηt is assumed to be normally

distributed with zero mean and covariance matrix H . It is uncorrelated over

time and uncorrelated with ε (for any lag). ηt can often be interpreted as a

vector of measurement errors. In some models, however, it contains econom-

ically meaningful quantities and important aspects of the model are specified

in the measurement equation. This is not a problem for the Kalman filter as

long as ηt and εt remain independent.

The specification of the state space system is completed by assuming that

the initial state vector x1 has mean x1|0 and covariance matrix P1.

I refer to the set of parameters as ψ = {T, c,Q,R, Z, d,H}. Finally, let

Yt = [y1 . . . yt] be the data vector up to time t.

2.2 The Kalman Filter

The Kalman filter is a recursive procedure for computing the conditional mean

(xt|t−1) and covariance matrix (Pt) of the state vector xt given Yt−1. It is

used to estimate the likelihood function of a state space system or, once the

parameters are known, to make inference about the unobservable state of the

economy xt.

After selecting the initial state x1|0 and P1, the Kalman filter is often

considered to iterate between two steps: time update or prediction and mea-

surement update. The prediction step uses the current state estimate at time

t, i.e xt|t, to produce an estimate of the state at t+1 using the state equation:

xt+1|t = c+ Txt|t.
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Once the new observation yt+1 is available, the measurement update step

refines this estimate by the actual measurement equation at time t+ 1

νt+1 = yt+1 − d− Zxt+1|t

xt+1|t+1 = xt+1|t +Kg
t+1νt+1

to arrive at a new, more accurate state estimate. The update step is essentially

a cross-sectional regression in all applications provided in this thesis. The so-

called Kalman gain Kg
t+1 is defined in step 4 below. Similar equations hold

for the covariance matrix Pt.

Algebraically, the two steps of the recursion can be written in one single

step going directly from xt|t−1 to xt+1|t. Throughout the thesis, I run the

filter in the following way:

1. The mean of the initial state x1|0 is estimated by

x1|0 = x = (1− T )−1c (2.3)

and P1 by solving

P1 = TP1T
′ +RQR′.

These are the mean and the covariance of the unconditional distribution

of the state vector given the parameters. The equation for the covariance

is solved by vectorization:

vec(P ) = [1− T ⊗ T ]−1vec(RQRT ). (2.4)

2. The algorithm then runs the Kalman filter with varying F,K and L

going directly from xt|t−1 to xt+1|t:

νt = yt − d− Zxt|t−1

Ft = ZPtZ
T +H

Kt = TPtZ
TF−1

t

Lt = T −KtZ

xt+1|t = c+ Txt|t−1 +Ktνt

Pt = TPt−1Lt +RQRT

until F, K and L have converged. Numerically, this is the fastest way

to run the Kalman filter (see Durbin and Koopman (2001)).
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3. If the eigenvalues of T lie within the unit circle, the filter switches to the

steady state model as soon as the matrices F,K and L have converged

and thus no longer need to be updated (see Harvey (1989) chapter 3.3.4).

4. For forecasting, we use all information available at time t. We take the

measurement update step to generate expectation at time t given xt|t−1

which has already been estimated in the previous step:

xt|t = xt|t−1 +Kg
t νt (2.5)

where, as already mentioned, Kg
t+1 = PtZ

TF−1
t is the Kalman gain. I

denote this series as the filtered series. If we intend to compare forecast-

ing results generated by the Kalman filter with some alternative model,

we should take the filtered series as the basis as it uses information up

to time t.

5. Finally, we can also estimate the states using information up to time τ .

I denote these smoothed values with a hat, thus, xt|τ = x̂t and so on.

They are given by the following backward recursion:

η̂t = H(F−1
t νt −KT

t rt)

ε̂t+1 = QRT rt

x̂t+1 = c+ T x̂t +Rε̂t+1

rt−1 = ZTF−1
t νt + LT

t rt

var(ηt|y) = H −H(F−1
t +KT

t NtKt)H

var(εt+1|y) = Q−QRTNtRQ

Nt−1 = ZTF−1
t Z + LTNtL

for t = τ . . . 1 where rτ = 0 and Nτ = 0. This algorithm is known as the

Kalman smoother. Smoothed values can be used to better understand

the dynamics of a model. They should not, however, be used when

dealing with forecasting because of their forward-looking bias.

Given the values calculated in steps 1 to 3, the log likelihood function L can
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be written as

L = −nτ

2
log 2π − 1

2

τ∑
t=1

log |Ft| − 1

2

τ∑
t=1

νTt F
−1
t νt

= constant + L0(x1|0, P1)− τ

2
log |H | − τ − 1

2
log |Q|

− 1

2

τ∑
t=1

ηTt H
−1ηt − 1

2

τ∑
t=2

εTt Q
−1εt (2.6)

where L0 captures the influence of the initial distribution on the likelihood. L
as defined in the first line is maximized when we estimate parameters. Note

that steps 4 and 5 should be avoided during the likelihood maximization in

order to save computer time.

The representation of the log likelihood function in the second and third

lines of (2.6) is known as the innovation error form. In the next section, it is

used to derive the score vector.

2.3 The Gradient

The likelihood function of large models has many parameters and the quality

of the gradient is often poor when estimated numerically. In order to achieve

precision, the step size of the finite differencing algorithm must be allowed to

vary across variables: a feature that is not common in numerical minimization

routines (see appendix B for an example). Moreover, its optimal value can

also change when running the optimization algorithm. At some starting point

away from the optimum, the gradient is typically not particularly sensitive to

the step size. Near the optimum, however, numerical gradients can be very

poor if the step size is not controlled for. This problem is most serious when

the likelihood function is flat around its maximum, as is the case for some

models in this thesis.

To circumvent these convergence problems, it is essential to use analytical

rather than numerical gradients or score vectors. This makes optimization

faster and more reliable. Empirically, this study has found higher, some-

times, substantially higher, likelihood values when using analytical gradients.

This also saves computation time. Furthermore, the results of the numerical

optimization become independent of the starting point.
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To derive the gradient of the Kalman filter, I follow Durbin and Koopman

(2001), section 7.3.3 and Koopman and Shepard (1992). The derivation starts

with the observation that the distribution of the initial vector x1 ∼ N(x1|0, P1)

is assumed to be known (see the first step in the previous section). Let

p(x, y|Ψ) be the joint density of x and y, let p(x|y,Ψ) be the conditional

density of x given y and let p(y|Ψ) be the marginal density of y given the

parameter vector Ψ. We now evaluate the score vector

∂L
∂Ψ

=
∂L(y|Ψ)

∂Ψ
=

∂ log p(y|Ψ)

∂Ψ

at the value Ψ̃. We then have

log p(y|Ψ) = log p(x, y|Ψ)− log p(x|y,Ψ).

Let Ẽ denote expectation with respect to the density p(x|y,Ψ). Since p(y|Ψ)

does not depend on x, taking Ẽ of both sides gives:

log p(y|Ψ) = Ẽ[log p(x, y|Ψ)]− Ẽ[log p(x|y,Ψ)].

In order to obtain the gradient at Ψ̃, we differentiate both sides with respect

to Ψ and put Ψ = Ψ̃. Assuming that differentiating under the integral is

legitimate:

Ẽ

[
∂ log p(x|y,Ψ)

∂Ψ

∣∣∣∣
Ψ=Ψ̃

]
= Ẽ

[
1

p(x|y,Ψ)

∂p(x|y,Ψ)

∂Ψ

∣∣∣∣
Ψ=Ψ̃

]
=

∫
1

p(x|y,Ψ)

∂p(x|y,Ψ)

∂Ψ

∣∣∣∣
Ψ=Ψ̃

p(x|y,Ψ)dx

=
∂

∂Ψ

∫
p(x|y,Ψ)dx

∣∣∣∣
Ψ=Ψ̃

= 0

since the last integral is equal to 1. Thus,

∂ log p(y|Ψ)

∂Ψ

∣∣∣∣
Ψ=Ψ̃

= Ẽ

[
∂ log p(x, y|Ψ)

∂Ψ

] ∣∣∣∣
Ψ=Ψ̃

.

As in equation (2.6) the log likelihood function is written in the innovation

error form

log p(x, y|Ψ) = constant + L0(x1|0, P1) +
τ

2
log |H |+ τ − 1

2
log |Q|

− 1

2

τ∑
t=1

ηTt H
−1ηt − 1

2

τ∑
t=2

εTt Q
−1εt.
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On taking the expectation Ẽ and differentiating with respect to Ψ, this gives

the score vector at Ψ = Ψ̃:

∂L(y|Ψ)

∂Ψ

∣∣∣∣
Ψ=Ψ̃

= −1

2

∂

∂Ψ
[

τ∑
t=1

(log |H |+Tr[H−1{η̂tη̂Tt + var(ηt|y)}])

+

τ∑
t=2

(log |Q|+Tr[Q−1{ε̂tε̂Tt + var(εt|y)}])

+ L0(y)
∣∣Ψ]

∣∣∣∣
Ψ=Ψ̃

(2.7)

where η̂t, ε̂t, var(ηt|y) and var(εt|y) are obtained by the Kalman smoother

(step 5 of the previous section).

Derivatives with respect to the covariance matrices H and Q are now

particularly easy:

∂L(y|Ψ)

∂H
= −τ

2

log |H |
∂H

− 1

2

Tr[H−1z1]

∂H

= −τ

2
H−1 +

1

2
H−1z1H

−1

where z1 is the expression in the curly brackets in the first line of (2.7). The

derivation for Q is obviously identical and z2 used below can be defined in

the same way as z1 using the second line of the same equation.

The distribution of the measurement error is often defined (by the re-

searcher) as a simple function of the parameter space Ψ. This means that

the derivative of L is often easy to calculate. A particularly easy structure

is when H is defined as a scalar multiple h2 of the identity matrix. We then

have

Ẽ[log p(x, y | ΨT )] = constant− τn log(h)− Tr[z1]

2h2

where the constant summarizes terms not depending on H. The derivative is

thus
∂L

∂h
=

Tr[z1]

h3
− τn

h
.

Unrestricted covariance matrices are usually parameterized using the Cholesky

decomposition to ensure positive definiteness Q = CCT . Then, using the ana-

log definition for the constant,

Ẽ[log p(x, y | ΨT )] = constant− (τ − 1) log(
∏

cii)− 1

2
Tr[(CCT )−1z2]
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and the derivative is

∂L

∂C
= Q−1z2(C

T )−1 − (τ − 1)

⎡⎢⎢⎣
1
c11

0 . . .

0
. . . 0

... 0 1
cll

⎤⎥⎥⎦ . (2.8)

The proof for the derivatives with respect to the other parameters is more

involved but the resulting expressions have all a very simple form1:

∂L
dZ

= H−1(z3 − Zz4)

∂L
dT

= (RQRT )−1(z6 − Tz5)

∂L
dd

= H−1(τd− z8)

∂L
dc

= (RQRT )−1((τ − 1)c− z7). (2.9)

z3 . . . z8 are matrices that can be calculated during the run of the Kalman

smoother. R is a predefined matrix in all the models applied in this thesis

so its derivative is not of interest here. Rosenbaum and Zetlin-Jones (2006)

derive a vectorized version of these equations.

If one of the covariance matrices RQRT or H is degenerate, the inverse

is replaced by the generalized inverse. In this case, the procedure does not

deliver all derivatives and I either reparameterize the model or estimate certain

elements of the gradient numerically (see appendix B).

Finally, the filter is initialized with the unconditional mean and covariance

matrix defined in (2.3) and (2.4). The likelihood function thus also depends

on the parameters through L0(x1|0, P1) = L0(c, T,Q). This adds several extra

terms to the derivatives defined in (2.8) and (2.9).

1Proof and details regarding the parameters are available from the author upon request.



Chapter 3

Regression Forecasts of

Bond Returns

Cochrane and Piazzesi (2005a) find that a single tent-shaped linear combi-

nation of forward rates predicts excess returns on one- to five-year maturity

bonds with R2 up to 0.44. I take up this analysis and extend it to longer ma-

turity bonds. I also compare it with other data sets, using yields that go back

to 1946. The broader cross-section offers further insights into predictability.

Most importantly, the analysis reveals that the single factor representation

proposed by Cochrane and Piazzesi does not fully describe the expected re-

turn pattern. It is shown that a second return factor, associated with the slope

of the yield curve, is needed to explain the entire cross-section of expected

U.S. government bond returns. This contrasts with the findings of Cochrane

and Piazzesi (2005a, 2008) who claim that there is only one predictability

factor and that this factor predicts compensation for level shocks.

The second factor is lost in Cochrane and Piazzesi’s analysis since they

only explore single bonds and not portfolios that are long in some maturities

and short in others. Over 90 percent of yield curve movement is associated

with level shifts, so forecasting single bond returns predominantly means fit-

ting these level shifts. All other movement is so unimportant relative to level

shifts that it is completely overlaid in the forecasting analysis. Consequently,

Cochrane and Piazzesi (2005a) find that one single factor predicts excess re-

turns for all maturities. Finally, in their second paper, Cochrane and Piazzesi

15
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(2008) find that this factor catches risk compensation for level shifts and that

there is no compensation for slope and curvature risk.

In contrast to the analysis of Cochrane and Piazzesi, I also include anal-

ysis of duration neutral portfolios. These portfolios are long in some U.S.

government bond with shorter maturity and short another bond with longer

maturity. Portfolios constructed this way, have an unconditional Sharpe ratio

which has been 0.16 over the last 60 years. Although this is at best marginally

significant, the Sharpe ratio is higher than that of a simple long only port-

folio. In a next step, I also provide strong evidence that these portfolios

are predictable. This result is in conflict with the findings of Cochrane and

Piazzesi.

3.1 Data and Notation

3.1.1 Notation

I use the same notation as Cochrane and Piazzesi (2005a). The notation for

log bond prices is

p
(n)
t = log price of an n-year discount bond at time t.

Parentheses are used to distinguish maturity from exponential in the super-

script. The log yield is

y
(n)
t = − 1

n
p
(n)
t .

The log forward rate at time t for loans between time t+ n− 1 and t+ n is

denoted by

f
(n)
t = p

(n−1)
t − p

(n)
t .

The holding period log return from buying an n-year bond at time t and

selling it as an n− 1 year bond at time t+ 1 is then

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t

and the corresponding excess log return is

rx
(n)
t+1 = r

(n)
t+1 − y

(1)
t .
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3.1.2 Data

The choice of data is mainly a compromise between a long data set and clean

data. There are four sources that provide zero yields at fixed maturities. The

most current data set is Gürkaynak, Sack, and Wright (2006) which will be

denoted as the GSW data set. This data set has been made available by the

Federal Reserve1 and is constantly updated. Unfortunately, this data set only

includes data back to 1961 and does not include maturities below one year.

Ten year yields are available only since August 1971. However, for the purpose

of this paper, this is not the biggest shortcoming of this data set. The data set

is constructed using the Svensson (1994) method and this method smoothes

away important information necessary for return forecasting. Most impor-

tantly, the information contained in the five-year forward rate is smoothed

away, as highlighted by Cochrane and Piazzesi (2005a).

The second source is the data set of McCulloch and Kwon (1993), pub-

lished by J. Huston McCulloch on his web site2 and denoted as the McK

data set. The main advantage of this data set is that it goes back to 1946

and contains more maturities than the GSW data set. It ends in 1993 and is

constructed using cubic splines. Although the cubic spline method diverges

for longer maturities and hence provides a poor fit for curves that are flat or

have a flat long end (Diebold and Li (2006)), the influence of this smoothing

technique on the forecasting regression is less severe than that of the Svensson

method. In particular, Cochrane and Piazzesi (2005b) show that the same

tent-shaped factor that is present in their original data set also occurs with

the McK data, but not in the GSW data.

The cleanest data set available is that provided by Diebold and Li (2006),

available at Francis X. Diebold’s web page3 and denoted as DL. It contains

the fixed-maturity yields from 1970:1 to 2000:12 deduced from unsmoothed

Fama and Bliss (1987) forward rates. This data set is the cleanest one, and

therefore it serves as a reference point. Cochrane and Piazzesi also use yield

curve data constructed by the unsmoothed Fama-Bliss method. This data

set is extended until the end of 2006 by a data set contributed by Wäger

(2009). The extension uses yields from Datastream and it is also based on the

unsmoothed Fama-Bliss method. In order to rule out concerns about quality

1available at www.federalreserve.gov/pubs/feds/2006/200628/feds200628.xls
2 www.econ.ohio-state.edu/jhm/ts/mcckwon/mccull.htm
3www.ssc.upenn.edu/∼fdiebold/papers/paper49/



18 CHAPTER 3. REGRESSION FORECASTS OF BOND RETURNS

of Datastream bond data, the yields provided by Wäger are compared with

DL yields4. This is possible as they start before 2000:12 and we can compare

the two data sets in the overlapping period. In this overlapping period, the

two data sets are nearly identical.

Long data sets are crucial in forecasting; I therefore compose a synthetic

one as follows. For yield data, I use the cleanest data available. This implies

that I use the McW data from 1946:12 until 1969:12. I then use the DL data

until 2000:12 and finally its extension until the end of the sample 2006:12.

Return data is constructed using smoothed data. I therefore use the McW

data until 1972:7 and GSW afterwards. Using yields and returns from different

sources also has the advantage that estimation becomes slightly more robust

against measurement error. See also the next section regarding this point.

3.1.3 Measurement Error

Interest rates are usually expressed in terms of discount rates or equivalently

as zero bond prices. Observation of yields are, however, not perfect, rather

they are affected by measurement error for at least three reasons. Firstly, if

we want to estimate the discount rate for a given maturity, nothing guarantees

that we find a zero bond with exactly this maturity. The price of the zero

bond must therefore be approximated by other bonds with similar maturities.

Secondly, most bonds pay coupon and the value of their coupons must be

deduced from other bonds, which themselves are only measured with error.

Thirdly, most bonds are not traded very frequently, so we see measurement

error due to nonsynchronous trading.

Cochrane and Piazzesi (2005a) show that measurement error leads to spu-

rious predictability with a very specific pattern. A spuriously high price of

the n-year bond at time t implies a lower n-year forward rate as well as a

lower return r
(n)
t+1. Thus, measurement error implies spuriously high loadings

for the n-year forward rate when n-year bond returns are predicted. Simi-

larly, the coefficient of the (n+1)-year forward would be spuriously low when

measurement error were present.

This effect is reduced when we analyze longer forecasting horizons as the

4Clean data is not crucial for the application of the Fama-Bliss method. Indeed, the

difficulty of the Fama-Bliss method is to remove illiquid or mispriced bonds and this step

also removes data errors. Once clean bond prices are available, the application of the

Fama-Bliss bootstrapping algorithm is straightforward.
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relative importance of the measurement error gets smaller because its volatil-

ity is independent of the horizon, whereas that of the return increases with

the horizon. Therefore, Cochrane and Piazzesi (2005a) suggest forecasting

one-year excess returns to diminish the influence of measurement. When re-

turns are forecasted over shorter time horizons, measurement error becomes

more important relative to ’true returns’. For very short horizons, the signal-

to-noise ratio is so low that it completely overlays the predictability pattern.

A second way to reduce the disturbance caused by measurement error is

to use yield data and return data based on different smoothing techniques.

Measurement error is not the same when the yield curve is fitted in a different

way which diminishes the connection between the measurement error in the

yields and those in the returns. Of course, yield estimates are always based

on the same observation of bond prices, so the measurement error is still

correlated from one data set to another.

In this chapter, I adopt the approach of Cochrane and Piazzesi (2005a)

and forecast one-year returns. In the next chapter, however, I also identify an

alternative way to tackle the problem by explicitly modeling the measurement

error. In this framework, the previously observable state variables become

unobservable. I therefore apply the Kalman filter for parameter estimation

and for filtering the latent yields. The state space approach confirms many

findings of the simpler regression approach. In particular, both estimation

methods find highly significant predictability of duration-neutral as well as

long-only portfolios.

3.2 Bond Risk Premia

3.2.1 Forecasting Long-Only Bond Returns

Following Cochrane and Piazzesi (2005a), I run regressions of bond excess

returns at time t + 1 on forward rates at time t using bonds with annual

maturities up to ten years:

rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
2 f

(2)
t + ...+ β

(n)
10 f

(10)
t + ε

(n)
t+1. (3.1)

I use two data sets to estimate this regression. Firstly, the unsmoothed DL

data set and then the composed data set. In both cases I use monthly overlap-

ping data because intra-year data still contains valuable information. This in-
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creases the sample size and estimation results become more stable. Of course,

return data is no longer independent, so we have to adjust test statistics.

Table 3.1 shows t-statistics for the forecasting regression using the ex-

tended DL data set. It shows that over all return maturities, the one-, three-,

five-, and eight-year forward rates are strongly significant. The four-year rate

is also significant but with somewhat lower t-statistics for longer maturities.

It is striking how clear the pattern is. The one, three and eight-year rate are

extremely significant while the other variables, with the exception of the four-

and five-year rate, are not.

The clear pattern is also evidence that the result is not due to measure-

ment error, as it does not resemble spurious predictability pattern implied

by measurement error described in the previous section. This is likely to oc-

cur. When we have a limited number of factors that describes the yield curve

but use more forward rates than the number of factors, we necessarily have

variables on the right hand side of the regression that should not be there.

Remember that we have ten variables on the right hand side and only 30

independent return observations on the left hand side; so the danger is huge.

We do not see this pattern at all and we can conclude that the high R2 is

not due to measurement error. Cochrane and Piazzesi (2005a) give further

evidence for this claim. Most importantly, they show that one-month-lagged

instruments have similar (often even better) forecasting power for bond re-

turns. Using lagged returns, however, completely rules out spuriously high

R2 due to measurement error.

The results are very similar for the composed data sets. They are given in

table 3.2. The main difference is that the four-year rate is now more significant

than the five-year rate.

The DL data is cleaner and I use this data to decide which forward rates

to use for prediction. I do not want to take the entire forward curve to avoid

the danger of overfitting. As outlined in paragraph 3.2.3 below, three factors

are not sufficient to explain the entire predictability pattern, so I use four

forecasting instruments. By restricting the set of independent variables to

the four most significant ones (y(1), f (3), f (5) and f (8)) we see only a small

reduction of R2 (see the last two rows of table 3.1 and table 3.2). For the DL

data, R2 lies between 0.29 − 0.38 instead of 0.34 − 0.41 for the unrestricted

model. In the composed data sets, R2 lowers to 0.26− 0.30 from 0.29− 0.35.

The reduction is rather small and I will therefore use the restricted set of
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independent variables from now on.

We see a somewhat lower R2 for the longer sample. Cochrane and Piazzesi

(2005a) highlight that using unsmoothed data is important for the success of

the forecasting regression. If smoothed data are used, R2 is substantially

lower due to the fact that the important information contained in f (5) is

smoothed away (this is more severe for the Svensson method than for cubic

spline methods). The lower significance of f (5) in the composed data set is

further evidence for this claim. Secondly, the two data sets do not cover the

same time period. When the fifties and the early sixties are included in the

Cochrane Piazzesi regression (not reported) its R2 is also lower than in the

original data used by the authors, which starts in 1964 and ends 20035. It

seems that forecasting power is somewhat lower during this period. According

to Fama and Bliss (1987), data quality is doubtful in the pre-1964 period.

Consequently, the lower R2 can also be a result of low-quality data.

It is time for a word of caution. We have selected the four most significant

instruments out of ten candidates: a dangerous procedure which makes a

severe selection bias very likely. I have simply produced a good example which

shows how easy it is to construct a parsimonious and plausible forecasting

regression with a high R2. Once we know how the example is constructed, we

can expect an upward biased R2. I return to this point in the next chapter,

where the regression results of this chapter are compared with Kalman filter

estimates, which do not suffer from this selection bias.

3.2.2 Graphical Analysis of the Regression Coefficients

Figure 3.1 plots the coefficient (without the intercept) of the restricted regres-

sions

rx
(n)
t+1 = β

(n)
0 + β

(n)
1 y

(1)
t + β

(n)
3 f

(3)
t + β

(n)
5 f

(5)
t + β

(n)
8 f

(8)
t + ε

(n)
t+1, (3.2)

as a function of maturity. It uses the DL data. Figure 3.2 does the same

for the composed data set. There is no legend but the plots are easy to

understand. The coefficients for the ten-year bond are those that have the

highest absolute values, followed by the nine-year bond and so on until the

two-year bond is reached. This has the smallest loadings in absolute terms.

5The longer version of the unsmoothed data is available on John Cochranes web page:

faculty.chicagogsb.edu/john.cochrane/research/Data and Programs/Bond Risk Premia/
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Figure 3.1: Loadings of the Bond Forecasting Regression: 1970-2006
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Note: Coefficients of the restricted forecasting regression (3.2) using extended DL data.

Maturity for the forward rates is indicated on the x-axis. Monthly observation of annual

returns.

These plots look very similar to figure 1 of Cochrane and Piazzesi (2005a).

For the one-, three-, and the five-year rates, Cochrane-Piazzesi’s tent-shaped

forecasting factor is clearly visible. It is slightly more asymmetric than the

original picture, which is due to the presence of the eight-year forward rate.

Moreover, we see that the coefficients are nearly proportional in both cases

(this is because the intersection of the lines is nearly one single point on

the graph, and because this point is very close to the abscissa). Following

Cochrane and Piazzesi (2005a), we can conclude that these plots make the

pattern clear: the same function of the forward rates forecasts holding period

returns at all maturities. Longer maturities simply have greater holdings on

this function.

While the proportionality of the loadings is still very clear for shorter

maturities, it is not so obvious for the eight-year rate. In figure 3.1, the

two-year bond line is slightly upward-sloping between the five-year and the

eight-year loading while the ten-year line is downward-sloping. This is defi-

nitely more pronounced for the composed data set where the ten-year line is
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Figure 3.2: Loadings of the Bond Forecasting Regression: 1947-2006
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Note: Coefficients of the restricted forecasting regression (3.2) using the composed data set.

Maturity for the forward rates is indicated on the x-axis. Monthly observation of annual

returns.

clearly downward sloping. Thus the loadings of the eight-year forward rate

are not proportional to those of the five-year rates. This, however, is (graph-

ical) evidence against the hypothesis that one single factor predicts all bonds

returns as this hypothesis would imply that all coefficients were proportional.

Although the difference is so small as to seem unimportant, we will see in

section (3.3) that this is not true.

3.2.3 Is the Forecasting Factor Spanned by Level, Slope

and Curvature?

Cochrane and Piazzesi (2005a) find that their forecasting factor is not spanned

by level, slope and curvature. However, the forecasting factor estimated here

is not exactly the same. Moreover, the first three principal components of

one- to five-year rates is not the same thing as those of one to ten-year rates.

So their results do not necessarily apply to the present case. Therefore, I redo

the analysis.
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I find that R2 for the forecasting regression using the first three principal

components of yields is about a quarter below that of equation (3.2) as dis-

played in table 3.3. When the five- or the eight-year forward rate is added,

they remain strongly significant (see the second part of table 3.3). We can

conclude that the regression-based level forecasting factor is not spanned by

level, slope and curvature. This is evidence for the existence of a factor be-

yond level, slope and curvature which is also important for describing the

yield curve. It seems that an affine model should therefore contain (at least)

four factors. Cochrane and Piazzesi (2005a) end up with the same conclusion

using their forecasting factor.

3.3 A Second Risk Premium for Slope Risk

3.3.1 Duration-Neutral Portfolios

In this section, I analyze portfolios that are nearly orthogonal to single bond

returns and thus react predominately to slope shocks. By regarding these

slope portfolios instead of single bonds or conventional ’long-only portfolios’,

I reveal an additional pattern that is hidden in the Cochrane and Piazzesi

(2005a, 2008) analysis. I find that not only do level portfolios earn a premium,

but so too do slope portfolios. Their premium is comparable to that of long

maturity bonds in terms of the Sharpe ratio. However, this premium is tiny

if we look at bonds from a conventional long-only view point.

By running forecasting regressions on long-only portfolios as in the pre-

vious section, we will only detect the level-related term premium since we

predominantly fit the first principal component. Any other movement, includ-

ing slope movement, is so small that fitting this part of the expected return

pattern is of little importance relative to the first principal component and

it is not visible in the regressions. To reveal the slope-related predictability

pattern, we have to build slope portfolios: portfolios that are not dominated

by level movements.

I construct these slope portfolios from bonds with adjacent maturities.

First, I run regression of excess returns of the longer maturity bond on the

shorter bond’s excess return:

rx
(n)
t +

1

2
σ(rx(n))2 = a(n) + b(n)(rx

(n+1)
t +

1

2
σ(rx(n+1))2) + ε

(n)
t (3.3)
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I also run this regression using ten-year bonds together with two-year bonds.

Coefficients of this regression are indicated with a tilde. This portfolio is very

close to a linear combination of the portfolios with adjacent maturities that

combines these portfolios along the entire yield curve. I then construct the

slope portfolios as follows:

sr
(n)
t = rx

(n)
t +

1

2
σ2(rx(n))− b(n)(rx

(n+1)
t +

1

2
σ2(rx(n+1))) (3.4)

Of course, this is not really a portfolio, since we have summed over two ad-

justed log returns. However, the goal of this exercise is to show that slope

shocks are predictable. Cochrane and Piazzesi (2008) claim that there is only

one predictable factor in a log return framework. It is therefore sensible to

use log returns to find a counter example to that claim. The same exercise

can also be done with simple returns. Results remain very similar in this case

(not reported).

The variance adjustments, or Jensens’s inequality terms, always appear in

a log return factor model. They only affect the unconditional premium and

they do not affect predictability. I introduce them to get the Sharpe ratio

right. The next chapter rigorously shows how to construct an affine yield

curve model that produces exactly the adjustments made in equation (3.4).

Section 5.1 treats the general case of log return factor models.

The important property of portfolios constructed as in (3.4) is that they

are not sensitive to parallel shifts of the yield curve. They react to slope shifts

and possibly to curvature shifts, but certainly not to level shifts. Practitioners

would say that they are duration-neutral.

Table 3.4 shows the OLS estimates of equation (3.3). The first row of panel

A displays the values of the intercept a(n). Due to the variance adjustment, it

can be regarded as the average premium earned by holding the slope portfolio.

The absolute return on these portfolios is so tiny that it seems negligible.

However, the volatility of these portfolios is also very low, implying signifi-

cant risk adjusted returns. (In (3.3) OLS really minimizes the volatility of a

portfolio consisting of two bonds with adjacent maturities!). Looking at the

Sharpe ratio, defined here as the ratio of the expectation of sr
(n)
t divided by

its volatility, we find values between 0.14 (for the five- and six-year bond port-

folio) and 0.22 (for the portfolio consisting of the two- and ten-year bonds).

This Sharpe ratio is lower than that of equity portfolios, yet still significant.

Given the 60 years of data, a Sharpe ratio of 0.22 implies a weakly signifi-
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cant t-statistic of 1.73 (≈ √
60× 0.22) for the most successful portfolio. The

Newey-West adjusted t-statistics for a(n) are, however, higher and equal to

2.02.

Finally, the Sharpe ratio of slope portfolios is similar in magnitude to those

of long-only portfolios. For instance, two-year bonds have a Sharpe ratio of

0.22 during the same time span. With higher maturities, the Sharpe ratio

decreases monotonically and the Sharpe ratio for ten-year bonds is as low as

0.08.

3.3.2 Forecasting Slope Returns

We have seen that single bond excess returns are predictable with a very high

R2. Can similar predictability be found for slope returns? The answer is yes,

but R2 is certainly much lower than the 30 to 40 percent we see for single

bonds.

Panel A of table 3.4 displays results from regressing slope portfolio returns

on forward rates using the composed data set. I only use the spread between

the ten-year forward rate and the short rate to predict returns. Parameters

are estimated by running the following regressions:

sr
(n)
t = c

(n)
0 + c

(n)
1 (f

(10)
t − y

(1)
t ) + ξ

(n)
t+1. (3.5)

In the last row of the forecasting section of panel A, we see that the R2 of

these regressions lies between 0.06 (for sr(9)) and 0.16 (for sr(3) and sr(4)).

t-statistics vary between 6.24 (sr(3)) and 2.93 (sr(9)) in absolute terms.

Adding more forward rates or relaxing the restriction does not significantly

improve the fit of the regression. As we can see in the third last row of the

forecasting part, R2 increases only moderately when all ten forward rates are

used. Although nine variables are added on the right hand side, R2 only

increases by an average of 0.05!

The following row shows that using both the one-year rate and the ten-year

forward rate separately leaves the regression nearly unchanged. Looking at

the coefficients of the unrestricted regression (not reported), it is remarkable

how close the negative loadings of the one-year rate are to the loadings of the

ten-year forward rate. R2 for this regression is given in the second to last row

of the forecasting section of panel A. It is virtually the same as that of the

restricted regression.
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The third section of panel A shows t-statistics and R2 for the forecast

using the level forecasting factor xt. There is no evidence at all that xt helps

predicting slope returns. When only xt is used on the right-hand side R2

is close to zero, and the t-statistics insignificant for all maturities. When

f
(10)
t − y

(1)
t is also included, s̃rt is the only portfolio with a significant t-

statistics (2.25) for xt.

From all these regressions we can conclude that the slope of the yield

curve predicts returns of slope portfolios and that this predictability is highly

significant. Furthermore, the slope of forward rates summarizes the bulk

of yield curve information necessary to predict slope returns. Adding other

forward rates to the right hand side of equation (3.5) does not significantly

improve the forecasting power.

3.4 Curvature and other Risk Premia

So far we have seen that investors are compensated for bearing level and slope

risk and that there is evidence that this compensation is time-varying. In order

to be rigorous, we should also check if there is a premium for curvature risk.

I do this by running regressions similar to (3.3) using two adjacent maturities

instead of only one. To be precise, I run a regression of the n-year bonds’

excess return on the excess return of the two adjacent bonds with maturity

n− 1 and n+ 1. I build portfolios analogously to (3.4). These portfolios are

long in the n-year bond and short in the two neighboring maturities so they

are sensitive to changes in the curvature of the term structure. The Sharpe

ratio for all these portfolios is negative and never exceeds 0.14 in absolute

terms (see table 3.5). Hence, it is not statistically significant different from

zero (the t-statistic is 0.14×√
60 = 1.1). However, the Sharpe ratio is similar

in magnitude to the Sharpe ratio of level and slope portfolios.

I also run forecasting regressions using forward rates. There is no sign of

a forecasting pattern similar to that of level and slope portfolios. Significant

regression parameters occur only infrequently (not reported). R2 values for

the regressions are displayed in table 3.5. They never exceed 0.10.

Finally, I did a similar analysis for other portfolios (not reported). Specifi-

cally, I estimated the unconditional Sharpe ratio for all principal components.

None of these Sharpe ratios were statistically different from zero. However,

the fourth largest principal component has a Sharpe ratio comparable to the
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Table 3.5: Forecasting Curvature Returns

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

Sharpe ratio −0.08 −0.14 −0.11 −0.08 −0.08 −0.10 −0.11

R2 0.05 0.04 0.06 0.05 0.07 0.09 0.10

Note: Sharpe ratio of curvature portfolios and R2 for the forecasting regression using all

ten forward rates. Monthly observations of annual returns using the composed data set.

Sharpe ratio of the first three principal components. I also ran forecasting

regressions on all principal components and even using all ten forward rates,

none of these regressions had a R2 above 0.10. In short, regression analysis

does not provide any evidence of return predictability beyond the first two

principal components.

3.5 Summary of the Empirical Findings

In this chapter, the predictability pattern for U.S. government bond returns

is explored. This was achieved by running annual forecasting regressions with

forward rates as instruments. There are three key findings:

• None of the principal components of bond excess returns has delivered

a statistically significant premium over the last sixty years. Some slope

portfolios, consisting of a long position in short maturities and a short

position in longer bonds, provided positive Sharpe ratios that are weakly

significant. The Sharpe ratio on bonds with lower maturities is also

significantly positive.

• The first principal component, associated with level shifts, is strongly

predictable with an R2 of about 30 percent. In a simple forecasting

regression, we need at least four forward rates to capture all the pre-

dictability of level returns.

• The second principal component, associated with slope shifts, is also

predictable, though R2 is lower than for the first principal component.

The slope of the yield curve itself summarizes the yield curve information

necessary to predict these returns.
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In a separate analysis not reported here, these results are confirmed for

simple returns. Moreover, the appendix to this chapter adds evidence for

predictability of slope returns among German government bonds.

3.A Appendix: Robustness of Slope Return

Forecasts

Predictability of slope returns is a new result that is in conflict with previous

findings. In order to improve the confidence of this new result, I give a

variety of robustness checks for both the existence of a slope premium and its

predictability. I show that the results do not depend on the selected data set.

I also show that predictability is neither spurious due to measurement error

nor are the test statistics highly affected by the small sample size.

3.A.1 Measurement Error and Lagged Instruments

When we run the forecasting regression with lagged forward rates as right

hand variables, we can completely rule out spurious predictability due to un-

correlated measurement error. Thus, I also run forecasting regressions using

the one-month lagged differences of f10
t−1/12 − y1t−1/12. Regression coefficients

and t-statistics can be found in panel A of table 3.4. We can see that using

lagged forecasting variables does not change the result. The coefficients re-

main virtually unchanged and for most of the maturities, the t-statistics are

even higher than for the actual value of the forecasting variable.

This result is not surprising. As there is only one variable on the left

hand side of the regression, measurement error is only possible for some slope

portfolios (e.g. for those including the ten-year bond, since the price of the

ten-year bond also enters into the instrument). What is important to see,

however, is that the forecasting regression also works with lagged instruments.

3.A.2 Different Data

Panel B of table 3.4 shows the unconditional analysis and the forecasting re-

gression for the DL data. This data is noisier and so the results are not so

uniform: two portfolios even have negative Sharpe ratio; others display very

positive Sharpe ratios reaching values up to 0.41 (sr(6)). On average, there is
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still a positive Sharpe ratio of 0.16 and the Sharpe ratio for the portfolio con-

sisting of the two- and ten-year bonds reaches 0.32. This value is marginally

significant. The predictability results are in the second part of panel B. They

are also noisier and R2 seems to be lower on average. Notwithstanding, it

remains significant for most portfolios.

Of course, the DL data set is not independent from the original one. I

also want to test the result with a completely independent data set. I decided

to use the default free German term structure because it is easily available

from the German Federal Bank6 and because it is relatively long (it goes

back to the year 1972). This data set consists of smoothed yields (Svensson

method). Results from the German data are displayed in panel C. The Sharpe

ratio is positive for all portfolios with the exception of that with the shortest

maturity. The highest value is 0.16 (sr(9)) and the Sharpe ratio is quite stable

for the longer maturities. Predictability is weaker than for the US data, but

remains significant. Overall, the German data provides further evidence for

the existence of a small slope premium. The fact that the slope of the yield

curve predicts this premium is also confirmed.

3.A.3 Data Range

Historical averages of returns and historical Sharpe ratios are very sensitive

to the choice of the time period. The result could be spuriously induced by a

lucky starting point. This is not the case here. At the beginning of the data

set, the term structure is steeper than at the end. The two-year rate is 0.95

percent and the ten-year rate is 1.83 percent at the beginning (1946:12) versus

4.73 percent and 4.67 percent at the end of the sample (12:2006). We have

constructed portfolios that are duration-neutral, so the level effect evens out

and we only need to consider changes in the slope. The interest rate increase

is lower for the longer rates, so longer maturity returns are relatively higher

due to a purely random flattening of the term structure. If we assume that

the slope of the yield curve is mean reverting, this effect is a random shift

particular to the selected time period. As slope portfolios are short in long

maturities, this induces a negative one-off effect for the slope portfolio. It can

be approximated as follows:

(slopebegin − slopeend)× weight long bond× duration.

6http://www.bundesbank.de/statistik/statistik.php
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For the two-year minus ten-year bond portfolios this is: {(1.83−0.95)−(4.73−
4, 67)} × 0.15× 10 = 0.87, or 0.014 percent per year. These adjustments are

shown in the fourth row of panel A for the US data. I also report these

adjustments for the German data in panel C.

We see that for both data sets, the adjustments are positive. They are

rather small and for most portfolios they amount to approximately 10 per-

cent of unconditional average. With regard to these adjustments, it is more

likely that the choice of the time period will produce unusually low rather

than unusually high returns. The result is thus not the result of some spe-

cific starting point, rather the unconditional return of the slope portfolios is

underestimated.



Chapter 4

Return Predictability in an

Affine Yield Curve Model

Predicting returns is an important task of immense value for practitioners.

However, simply running forecasting regressions is not the ultimate goal of

academic research. We want to understand why an investor is compensated

for holding certain assets, and why this compensation varies over time. A

first step in this direction is to incorporate the forecasting evidence into a

yield curve model. Such a model must be flexible and allow for independent

movement in risk prices. In discrete time, the framework of Ang and Piazzesi

(2003) has the desired property.

The first section of this chapter therefore briefly reviews the Ang-Piazzesi

framework and points out how the forecasting evidence of the previous chap-

ter can be incorporated into the framework. In particular, it is shown how

the empirical finding that the number of factors with time-varying expected

returns is smaller than the total number of factors, can be incorporated into

the model. This is done by imposing rank restriction to the general version

of the model which is derived in the second section.

In the third section, I estimate three and four factor models with all possi-

ble number of predictable factors by maximizing the likelihood function using

the Kalman filter. I then apply the likelihood ratio test to determine the

number of forecastable factors. This analysis favors a four factor model with

three forecastable factors.

37
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It appears that estimating affine models by the Kalman filter is straight-

forward. Unfortunately, this is not the case. The likelihood function is so

flat around its maximum value that maximization by standard optimization

routines is not reliable at all. Two runs of the same maximization, starting

at different initial values, can produce maximum values that vary by as much

as 10 or more. Such an inaccurate estimation is, of course, not suitable for an

application of the likelihood ratio test.

Therefore, I derive an analytical gradient of the likelihood function. More-

over, in the second section, I derive an economically meaningful parametriza-

tion which unequivocally identifies the model. This parametrization is alge-

braically tractable, so that we can calculate the gradient, and it leads to a

likelihood function with one single global optimum. Both these measures are

very important for a reliable parameter estimation. Once they are taken, the

optimization is much faster and consistently converges to the same maximum.

Parameters of two estimates are virtually identical and the variation of the

maximum value of the likelihood function using different starting points is

below 0.1.

Finally, I discuss some properties of the Ang-Piazzesi model when maturity

approaches infinity.

4.1 Constructing Affine Yield Curve Models

4.1.1 Prices and Yields

As already noted, I follow the discrete time homoscedastic essential affine

model structure of Ang and Piazzesi (2003) also used in Cochrane and Piazzesi

(2008).

Let the vector that describes the state of the economy follow a VAR:

xt+1 = α+ Φxt + εt+1, (4.1)

where εt+1 is a Gaussian iid error with covariance matrix Σ. The state vector

can consist of latent factors, statistical factors such as level, slope and curva-

ture, or economically meaningful factors such as yields. The algebra below is

the same in all these cases.

The definition of the model is completed by specifying an exponential
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affine pricing kernel:

Mt+1 = exp(−δ0 − δT1 xt − 1

2
λT
t Σλt − λT

t εt+1) (4.2a)

λt = λ0 + λ1xt. (4.2b)

General asset pricing theory says that the price of an n-period zero bond

is equal to the n-period-ahead expectation of the pricing kernel. Based on

this proposition, expectations can be calculated recursively following Ang and

Piazzesi (2003) or Cochrane and Piazzesi (2005b), which is the web appendix

of Cochrane and Piazzesi (2005a):

p
(1)
t = logEt[Mt+1] = −δ0 − δT1 xt (4.3a)

p
(n)
t = logEt[Mt+1 exp(p

(n−1)
t+1 )]. (4.3b)

The result is a relatively simple recursive scheme: log zero bond prices are

affine functions of the state variables,

p
(n)
t = An +BT

n xt. (4.4)

This equation defines how factors are transformed into prices.

Coefficients An and Bn can be computed as follows:

A0 = 0 (4.5a)

B0 = 0 (4.5b)

BT
n+1 = −δT1 +BT

nΦ
∗ (4.5c)

An+1 = −δ0 +An +BT
n α

∗ +
1

2
BT

nΣBn (4.5d)

where α∗ and Φ∗ are defined as

Φ∗ = Φ− Σλ1 (4.6a)

α∗ = α− Σλ0. (4.6b)

These are also the parameters of the risk-neutral VAR:

xt+1 = α∗ +Φ∗xt + εt+1 (4.7)

which defines the dynamics of xt under the risk-neural measure.
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By iterating the definition of Bn, it is easy to see that Bn can be written

as a simple geometric series:

BT
n = −δT1 (1 + Φ∗ + . . . +Φ∗n−1). (4.8)

If all the eigenvalues of Φ∗ lie in the unit-circle, there is a well known explicit

solution for geometric series which in the present case reads:

BT
n = −δT1 (1− Φ∗)−1(1− Φ∗n). (4.9)

We are more familiar with yields. From

y
(n)
t = − 1

n
p
(n)
t

we find an affine representation of yields:

y
(n)
t = Ay

n +By,T
n xt

with

Ay
n = − 1

n
An (4.10a)

By
n = − 1

n
Bn. (4.10b)

Specifically, the risk-free rate reads:

y
(1)
t = δ0 + δT1 xt. (4.11)

4.1.2 Forward Rates

Forward rates are linear functions of prices. So, given prices, we can find

forward rate loadings from the definition of the forward rate:

f
(n)
t = p

(n−1)
t − p

(n)
t

= (An−1 −An) + (BT
n−1 −BT

n )xt (4.12)

= Af
n +Bf,T

n xt. (4.13)

The resulting coefficients Af
n and Bf

n are even simpler than those for yields

or prices:

Bf,T
n = BT

n−1 −BT
n

= BT
n−1(1 − Φ∗) + δT1

= δT1 Φ
∗n−1 (4.14)
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and

Af
n = An−1 −An

= δ0 −BT
n−1α

∗ − 1

2
BT

n−1ΣBn−1. (4.15)

The constant terms also have an explicit representation and need not be esti-

mated recursively as with prices.

4.1.3 Returns

We can also derive similar equations for returns. From the definition of the

return we find:

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t

= (An−1 −An) +BT
n−1xt+1 −BT

n xt

= (An−1 −An) +BT
n−1α+ (BT

n−1Φ−BT
n )xt +BT

n−1εt+1.

As returns are stochastic, they also depend on the shocks to the state variables.

Thus, there is an extra term multiplying εt+1. Defining

r
(n)
t+1 = Ar

n+1 +Br,T
n+1xt + Cr,T

n+1εt+1

we find the following coefficients:

Br,T
n = BT

n−1Φ−BT
n

= BT
n−1Φ+ δT1 −BT

n−1Φ
∗

= δT1 + BT
n−1Σλ1

= δT1 − δT1 (1− Φ∗)−1(1− Φ∗n−1)Σλ1, (4.16)

the constant is

Ar
n = An−1 −An +BT

n−1α

= δ0 +BT
n−1Σλ0 − 1

2
BT

n−1ΣBn−1

= δ0 +BT
n−1Σλ0 − 1

2
var[rx(n)]. (4.17)

The last equality holds since the coefficients multiplying the shocks are

Cr
n = Bn−1.

Expected returns follow by setting Cr
n = 0. Excess returns are also simple,

just remove δT1 from Br,T
n and δ0 from Ar

n.
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4.1.4 Restricting the Number of Forecastable Factors

The volatility of the pricing kernel, driven by the market price of risk λt

multiplying the shock εt+1, generates expected returns in our model. λ0

captures the permanent part of expected returns and λ1xt its time-varying

part. There is no other source of variation in expected returns since the model

generates homoscedastic returns.

This is most obvious from the affine parameters of returns in (4.16) and

(4.17). These equations also show that we can specify the predictability pat-

tern by restricting λ0 and λ1. For instance, excess returns are not predictable

if we set λ1 = 0, because Br
n is then equal to δ1 and the expected return

thus equal to the risk-free rate plus a constant, as in the multi-factor version

of the Vasicek (1977) model. If λ0 is also zero, the pricing kernel (4.2) is

non-stochastic, consequently, the risk neutral VAR (4.7) is equivalent to the

state equation (4.1) and there is no risk premium at all.

In the general model with unrestricted λ, each return factor has an associ-

ated predictability factor which shows at least some idiosyncratic movement.

In this case, it is possible that one factor has a relatively high premium while

another factor’s premium is relatively low at the same time.

We can restrict the number of independent predictability factors by re-

stricting the rank of λ1. Then expected returns, but not realized returns,

follow a reduced rank factor model. For example, the one factor model of

Cochrane and Piazzesi (2005a) implies that λ1 has rank 1. The regression

analysis of the previous chapter indicates a rank of 2. Throughout this chap-

ter, I denote a K-factor model with rank λ1 equal to L as an AP (K,L) model.

4.2 Parametrization

Kalman filter estimation of the affine model is very demanding for two reasons:

firstly, the likelihood function is extremely flat around its maximum, which

makes numerical optimization by standard methods impossible. Secondly,

many parameterizations are not well identified and the likelihood function

can have more than one maximum. I tackle these problems by suggesting

an algebraically tractable parametrization with meaningful factors. The rela-

tively simple structure makes it possible to analytically calculate the gradient

of the likelihood function (see the appendix to this chapter). Moreover, the

unequivocal economic interpretation of the factors identifies the model.
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Duffee (2002, 2008b, 2008a) also estimates affine models by maximum

likelihood. These papers use the standard rotation of Dai and Singleton (2000)

and find that the (quasi-) likelihood function has a large number of local

maxima. These papers thus try various starting points and then choose the

estimate with the highest likelihood. The approach proposed here obviously

differs considerably from this optimization technique. It is much more reliable

and far more efficient in terms of computation time.

The first paragraph explains the identification problem and reviews how

it has been solved in the literature. The second paragraph describes the

parametrization.

4.2.1 Rotating the Factors

If the factors in the VAR (4.1) are latent factors with no particular meaning,

there is a fundamental identification problem with affine models. We can

perform invariant transformations that leave security prices unchanged but

change the factors and the parameter vector. The parameters of the model

would remain unidentifiable even if a panel data of all possible fixed income

securities were available (Collin-Dufresne, Goldstein, and Jones (2008)).

Typically, the model is identified by rotating the factors such that some

parameters are fixed and thus the number of free parameters is reduced. This

approach is introduced in Dai and Singleton (2000). Unfortunately, these

representations possess the feature that neither the state variables nor the

parameters have an economic interpretation. Such latent factor models often

lead to models that are locally but not globally identifiable, which is to say

that the likelihood function possesses more than one maxima. For instance,

Collin-Dufresne, Goldstein, and Jones (2008) show that the so-called central

tendency model has this undesirable property. Two estimates of the same

model can lead to different parameters and states although the maximized

likelihood and the resulting yields are identical.

Alternatively, the model is identified by rotating from the set of latent

state variables to a set of observable yields (Duffie and Kan (1996)) or to

other economically meaningful or observable variables. States and parameters

then are globally identifiable. Unfortunately, this approach is very difficult

to implement for many choices of factors because there is not necessarily a

closed form solution for yields or prices. For instance, in many models we

cannot find a closed-form solution for long-term bond yields (or prices). An
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obvious example is the Ang-Piazzesi model just described.

These two observations define requirements for a good parametrization of

an affine model: factors should have an economic meaning to achieve global

identification and the algebra should be tractable. In the next paragraph, I

propose a parametrization that has the desired properties.

4.2.2 An Almost General Parametrization

Inspired by the analysis of Collin-Dufresne, Goldstein, and Jones (2008), I

decided to use the risk-free rate and its 1 . . . (K−1)-period-ahead expectations

under the risk-neutral measure as factors1. Up to a constant implied by

Jensen’s inequality, these factors happen to be the first K forward rates.

Taking the forward rates as the factors is also possible, though algebraically

more cumbersome.

More formally, the factors are defined as follows:

xt,1 = y
(1)
t (4.18a)

xt,k = E∗[xt+1,k−1], (4.18b)

where the last equation holds for k = 2 . . .K and E∗ denotes the expectation

under the risk-neutral measure. Assuming that these factors constitute a basis

of the state space, the risk-neutral VAR in equation (4.7) implies that Φ∗ has

the following structure:

Φ∗ =

⎡⎢⎢⎢⎣
0 1 0
...

. . .

0 0 1

c1 c2 · · · cK

⎤⎥⎥⎥⎦ . (4.19)

which is known as the companion form. Moreover α∗ is

α∗ =

⎡⎢⎢⎢⎣
0
...

0

αK

⎤⎥⎥⎥⎦ (4.20)

1The paper defines a general parametrization for affine yield curve models in contin-

uous time. The state vector comprises infinitesimal maturity yields and their quadratic

covariations.
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and

δ0 = 0 (4.21a)

δ1 =
[
1 0 · · · 0

]T
(4.21b)

where c1 . . . cK and αK as well as α,Φ and Σ are free parameters.

The proposed parametrization is very flexible, yet not completely general

since the factors defined in (4.18) can be linearly dependent. In this case, the

VAR (4.1), together with a subset of prices given by (4.4), is not observable

in the sense of control theory (see Harvey (1989) section 3.3 for a definition of

observability) even when there are as many or more prices than factors. Non-

observability entails that the factors cannot be constructed as affine functions

of (observable) bond prices or equivalently so that we cannot take a subset of

prices as factors. This links the parametrization (4.18 - 4.21) to the concept

of self-consistent models in Cochrane and Piazzesi (2005b). By definition, a

model is self-consistent if we can take the first K prices (or equivalently yields

or forward rates) as the state variables. Tautologically, the models resulting

from the parametrization are thus self-consistent by construction.

Almost equivalently, we could define that a model is self-consistent if any

set of K prices can be taken as the factors. The two definitions differ by

algebraically interesting yet economically unimportant cases such as Φ∗ =[
0 1

1 0

]
. These cases are thin in the sense of measure theory implying that

in empiric work we would detect them with probability zero unless we impose

constraints that force Φ∗ to have the restricted form. Thus, abusing notation

from measure theory, we can say that the two definitions are almost equivalent.

Similarly, for an arbitrary parametrization, the set of parameter vectors

implying that the factors defined in (4.18) are linearly dependent is thin. This

follows because linear dependence can only be ensured by imposing a restric-

tion on the parameters and thus lowering the dimension of the parameter

space. Again, in empiric work we will not detect these cases unless we im-

pose restrictions that force Φ∗ to have the required form. In this sense, the

parametrization (4.18 - 4.21) is almost general.

Linear dependence amongst the factors in (4.18) has a clear and meaningful

economic interpretation. It says that we have more state variables than yield

curve factors: a property that is discussed in the next chapter and plays an

important role in the rest of this thesis.
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A concern about this parametrization is that the factors are highly corre-

lated and we expect some sort of multi-collinearity problem. This, however, is

inevitable, or can at least only be transformed to other numerical instabilities,

as long as we use factors at the short end of the yield curve, which is necessary

to solve for yields. For instance, we could take the consecutive differences of

the factors proposed here as the new factors. This means taking xt,1 as the

first factor, xt,1 − xt,2 as the second, (xt,1 − xt,2) − (xt,2 − xt,3) as the third

and so on. This produces factors that are nearly orthogonal and a matrix Φ∗

that also has a treatable structure. The last of these factors, however, has a

standard deviation that is some order of magnitude lower than the standard

deviation of the first factor, so again, we face a numerical problem.2

Empirically, I find that the problem is not serious when parameter estima-

tion is performed in a state space framework. In particular, my experience is

that By is somewhat unstable, but the resulting yields and the predictability

pattern are not affected. This pattern resembles multi-collinearity in a linear

regression.

We should also mention that the companion form of a matrix is more

flexible than the diagonal form as it allows Φ∗ to have not only real but also

complex eigenvalues.3 Note that this generalization is achieved with the same

number of parameters.

Finally, there is another interesting property of the companion form of a

matrix: the roots of the polynomial

P (λ) = −cK − cK−1λ− · · · − c1λ
K−1 + λK (4.22)

are equivalent to the eigenvalues of Φ∗. This equation is useful to impose

parameter bounds.

4.3 Kalman Filter Estimation

In order to perform Kalman filter estimation, we need to put our system into

the state space form. This is done by augmenting the model-implied yields in

2Formally, the conditioning number of Φ and Φ∗, as a measure of numerical stability, is

a similarity invariant and thus, like yields, also an invariant under invariant transformations

of affine models.
3Duffee (2008a, 2008b) estimate yield curve models with diagonal Φ∗.
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equation (4.10) by a measurement error ηt:

y
(n)
t = Ay

n +By,T
n xt + η

(n)
t . (4.23)

As required by the Kalman filter, η
(n)
t is assumed to be serially and cross-

sectionally (not required) uncorrelated, and to be uncorrelated with the inno-

vations in the state equation, which is of course equation (4.1). Furthermore,

in order to keep the number of parameters small, it is assumed that the stan-

dard deviation h of η
(n)
t is the same for all maturities. The covariance matrix

of ηt is thus a scaled identity matrix. The empirical validity of this measure-

ment error specification is discussed in the last paragraph of this section.

Maximum likelihood estimation by means of the Kalman filter is now

straightforward: Take the VAR in (4.1) as the state equation and (4.23) as

the measurement equation.

All parameters, including h, are jointly estimated base on quarterly data.

The cross-section consists of yields with maturities of 3, 6 and 9 months as

well as with 1 - 10 years. In order to compare the estimate with the reminder

of this thesis, I start the DL data set only in June 1947.

Unlike the case of the return regression, the Kalman filter approach makes

it possible to estimate a quarterly model with implied quarterly return fore-

casts. Since the measurement error is explicitly modeled, the Kalman filter is

able to reveal the predictability pattern for a much lower signal-to-noise ratio

as is possible with a linear regression. Moreover, we can use the entire cross-

section, which helps smoothing away measurement error of single maturities

and thus improves the quality of the forecasting instruments. Consequently,

all results in the rest of this thesis are based on quarterly models.

Among others, Kalman filter estimates of affine yield curve models has pre-

viously been performed by Duffee (2008a, 2008b) as well as Brennan, Wang,

and Xia (2004). Duffee and Stanton (2004) show by numerical simulation

that Kalman filter estimates of yield curve model is very efficient.

The first paragraph of this section answers the question under which cir-

cumstances forecasts provided by the Kalman filter are more efficient than

those of a linear regression. Paragraph 2 deals with model selection. The

third and the fourth paragraphs explore the predictability of level and slope

portfolios. As already mentioned, the section is completed by an analysis of

the measurement error.
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4.3.1 Is Kalman Filter Estimation more Efficient?

If aK-factor model is self-consistent, as it is the case here, we can take the first

K prices as the state variables. This determines A1 . . . AK and B1 . . . BK as

well as δ0 and δ1. Moreover, we can fit the state space VAR in equation (4.1),

using OLS, for example, which determines α, Φ and Σ. By the recursive

scheme (4.5) we can calculate α∗ and Φ∗ from the cross-section of prices

and finally solve for λ0 and λ1. One single linear regression of observable

variables determines the full specification of the model. In the absence of

measurement error, OLS is equivalent to GLS because all the equations have

identical explanatory variables. Thus, the simple OLS estimator is efficient.

Consequently, the Kalman filter cannot provide a better forecast. In fact, the

two techniques are equivalent because both are maximum likelihood estimates

and thus produce exactly the same forecast (see Joslin, Singleton, and Zhu

(2010) and Greene (1997), chapter 15).

Real data, however, is noisy and, in this case, the Kalman filter is more

efficient. It disentangles ’true yields’ from measurement error. In particular,

the cross-sectional regression (the measurement update step) involved in the

Kalman filter produces a predetermined number of instruments as well as

returns for all yields that are more precisely measured than any combination

of the original yields. As outlined in the previous paragraph, forecasts based

on the Kalman filter and forecasts based on OLS are equivalent once we have

clean data. Consequently, it is really the ability to clean the data that makes

the Kalman filter a superior estimation technique.

A second advantage of the Kalman filter is that it tackles the selection bias

in a self-consistent model. Once the distribution of the measurement noise

and the dimension of the state space are defined, the Kalman filter objectively

selects the forecasting variable and leaves no subjective judgement to the

researcher. There is no possibility of data mining in this set-up. Results from

this already unambiguous process can even be improved by the rank reduction

technique of paragraph 4.1.4. This technique provides testable restrictions on

the parameter space which leave no subjective judgement to the researcher.

As a consequence, the forecasting evidence based on the Kalman filter is

essentially free of any selection bias.
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4.3.2 Model Selection: Testing for the Rank of λ1

Four Factor Models

I estimate the affine four factor model for all possible ranks of λ1 (0 − 4).

Results for the DL data are summarized in panel A of table 4.1. Panel B

contains the evaluation for the composed data set. The maximum values of

the log likelihood function are given in the first line of each panel. I use them

to perform a likelihood ratio test for the rank of λ1 implied by the number of

free parameters displayed in the last row of the same table. The last line of

the table contains critical values of the likelihood ratio test.

For the extended DL data, we find that the log likelihood of the unre-

stricted model is nearly identical to the version of the model with rank λ1

equal to 3. Consequently, the likelihood ratio test is not able to reject this

restriction. For the null of the rank 3 model against the alternative of the

rank 2 model, the likelihood ratio test statistics (twice the difference between

the maximum values of the log likelihood functions of the two models) takes

the value 17.9 = 2(6992.3 − 6984.3). The 1 percent critical value for 3 de-

grees of freedom is 11.3, thus the restriction is strongly rejected. Similarly,

the likelihood ratio tests indicates that the rank 2 model dominates the rank

1 model, which itself dominates the model with λ1 = 0. For both tests, the

p-value is far below 0.01. These findings are strongly confirmed in the longer

data set.

Overall, the evidence based on the likelihood ratio test is very compelling:

among the four factor models, the rank 3 model consistently dominates all

other specifications. Therefore, I mainly discuss the properties of the AP (4, 3)

model in the next section.

Three Factor Model

The results for the three factor models are akin to the four factor case and

summarized in table 4.2 (which is organized in the same way as table 4.1).

Again, the model with a rank one smaller than the number of factors (the

AP (3, 2) model) is very similar to the unrestricted specification. This model

is also the dominant model and the implied restriction is not rejected by the

likelihood ratio test. Further rank restrictions, however, are clearly rejected

by the test. p-values are again far below 0.01.
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Table 4.1: Kalman Filter Estimates of Four Factor Models

Panel A: US, 1970-2006

AP (4, 0) AP (4, 1) AP (4, 2) AP (4, 3) AP (4, 4)

Log Likelihood 9659.0 9673.2 9684.3 9692.3 9692.4

Std. Dev. of h 9.13 9.11 9.11 9.07 9.07

R2 of rx(10) - -0.026 0.234 0.234 0.237

R2 of s̃r - 0.036 0.056 0.161 0.183

Correlation - - 0.390 0.007 -0.070

Max. Eigv. of Φ 0.997 0.97± 0.02i 0.96± 0.01i 0.956 0.954

Max. Eigv. of Φ∗ 0.997 0.998 0.998 0.998 0.998

Panel B: US, 1947-2006

Log Likelihood 15947.5 15973.8 15987.1 16000.1 16000.1

Std. Dev. of h 7.45 7.43 7.43 7.40 7.40

R2 of rx(10) - -0.016 0.230 0.219 0.219

R2 of s̃r - 0.069 0.057 0.181 0.181

Correlation - - 0.140 0.035 0.047

Max. Eigv. of Φ 0.994 0.984 0.973 0.979 0.980

Max. Eigv. of Φ∗ 0.994 0.994 0.994 0.993 0.993

Free Parameters 20 27 32 35 36

χ2
0.99 18.5 15.1 11.3 6.63

Note: Panel A contains results for the extended DL data set and panel B for those of the

composed data set (June 1947 - June 2006) using quarterly data of the following yields:

y(1/4), y(1/2), y(3/4), y(1), . . . , y(10) . For each panel, the first row gives the maximum value

of the likelihood function for the model indicated in the header of panel A; the second row,

the estimated value of the standard deviation h. The next two lines give the R2, as defined

by equation (4.24), for the implied return forecast on rx(10) and a s̃r (using the filtered

series). The fifth line shows the correlation between the two expected returns. The last two

lines contain the eigenvalue with the largest absolute value of the two matrices Φ∗ and Φ.

Finally, the second to last line of the table indicates the number of free parameters and the

last line χ2
0.99 for the likelihood ratio test between the model in the corresponding column

and that in the next column.

As in the four factor case, these results are strongly confirmed by the

composed data set.
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Table 4.2: Kalman Filter Estimates of Three Factor Models

Panel A: US, 1970-2006

AP (3, 0) AP (3, 1) AP (3, 2) AP (3, 3)

Log Likelihood 9444.9 9453.8 9461.7 9461.8

Std. Dev. of h 11.3 11.3 11.3 11.3

R2 of rx10 0.000 0.218 0.251 0.251

R2 of s̃r 0.000 -0.014 0.089 0.096

Correlation - - 0.030 -0.05

Max. Eigenvalue of Φ 0.994 0.92+0.03i 0.952 0.949

Max. Eigenvalue of Φ∗ 0.994 0.994 0.994 0.994

Panel B: US, 1947-2006

Log Likelihood 15553.7 15566.0 15578.6 15578.7

Std. Dev. of h 9.49 9.49 9.49 9.49

R2 of rx10 - 0.247 0.227 0.228

R2 of s̃r - -0.027 0.091 0.090

Correlation - - 0.158 0.119

Max. Eigenvalue of Φ 0.996 0.970 0.979 0.979

Max. Eigenvalue of Φ∗ 0.996 0.996 0.996 0.996

Free Parameters 14 19 22 23

χ2
0.99 15.1 11.3 6.63

Note: See table 4.1 for explanation.

Three or Four Factors?

Comparing the results of the AP (3, 2) model with the favored four factor

model (AP (4, 3)), we see that the difference in the likelihood function is huge.

The measurement error is also reduced by about 20 percent. Clearly, AP (4, 3)

is the dominant model.

In order to better understand the nature of the fourth factor, I also perform

a principal component analysis from the yields implied by the AP (4, 3) model.

The result is plotted in figure 4.1. The new factor looks much like a cosine. It

loads positively on the one-year rate, then negatively on the two- and three-

year yields, then again positive on the six- and seven-year rate and finally

negatively on the ten-year yield. If we include the below-one-year maturities,

they all load positively on the fourth factor. It is apparent that we need this
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Figure 4.1: Principal Component Analysis of AP (4, 3) implied Yields
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Note: PCA on one- to ten-year yields implied by the AP (4, 3) model based on Kalman

filter estimates using quarterly extended DL data (1970-2006).

extra factor for a better fit of the very short end of the yield curve.

This fourth factor is a sensible factor that looks the way we expect it to

be. Moreover, the factor is slowly mean-reverting and not highly negatively-

autocorrelated as pure measurement error. Note that the principal component

analysis based on the raw data does not reveal this factor (not reported).

Apparently, this factor is hard to disentangle from measurement noise.

Three factor models such as AP (3, 2) and AP (3, 1), however, are also

interesting as they not only capture the bulk of the cross-sectional variation

of yields, but also the forecasting evidence of long only portfolios.
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4.3.3 Predicting the Excess Returns on Long Bonds

Four Factor Models

The forecasting ability of the Kalman filter estimates is judged by calculating

R2 as 1 minus the forecasting variance divided by the variance as follows:

R2 = 1−
∑

(rx
(10)
t − Et−s[rx

(10)
t ])2∑

(rx
(10)
t − rx(10))2

(4.24)

rx
(10)
t is the annual GSW return and Et−s[rx

(10)
t ] is the forecast from the

Kalman filter estimates (filtered series) using data known at t− 4. The third

line of panel A in table 4.1 shows that we find an R2 of 0.23 for the annual

returns implied by AP (4, 3). This is considerably below the 0.35 of the re-

gression analysis, but still very high. This decrease, however, is no surprise. I

have already discussed this point in section 3.2.1: we expect a selection bias in

the regression approach as we have selected the 4 most significant instruments

out of 10 candidates. This point is also discussed in the next paragraph.

A similar R2 is also found for the rank 2 and the rank 4 models. The

AP (4, 1) model, however, has only very little forecasting power for long bonds.

This is further evidence against the one factor specification of Cochrane and

Piazzesi (2008).

The forecasts generated by the AP (4, 3) model have a correlation of 0.73

with the regression forecast. Moreover, as we can see from figure 4.2, they also

follow a very similar pattern. The main difference between the two is that the

regression forecast sometimes takes more extreme values. In particular, the

most negative expected return implied by the Kalman Filter is −11 percent.

In comparison, this value is −28 percent using the regression approach. In our

homoscedastic model, this value implies a conditional Sharpe ratio of more

than 2.5, a number that is probably hard to explain by any utility-based

model.

Finally, note that the Kalman filter estimates quarterly forecasts by fitting

the quarterly VAR of the state variables. The one-year forecast is then pro-

duced by a 4-step-ahead forecast of this VAR. Nevertheless, these forecasts

are, except for some unrealistic outliers, very similar to those of the annual

regression. This shows how well the quarterly VAR, fitted by the Kalman

filter, captures the one-year dynamic of the yield curve.



54 CHAPTER 4. PREDICTABILITY IN AN AFFINE MODEL

Figure 4.2: Expected 1-year Excess Return on a 10-year Bond: 1970-2006
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Note: Quarterly Kalman filter estimates are based on the extended DL data set. Parameters

of the regression approach are estimated from monthly overlapping data as in table 3.1.

Understanding the Bias in the Forecasting Regression

In a separate analysis that is not reported here, I estimate regression implied

excess returns by randomly selecting four yields from the yield curve. These

forecast are typically much closer to those of the Kalman filter (correlation is

about 0.85) and they have an R2 that is also close to the 0.23 found for the

Kalman filter. Hardly any quadruple produces more extreme outliers than

the original regression.

This analysis also reveals that a large fraction of the higher R2 for the

original forecasting regression stems from a much better fit of two data points

only: March and June 1983. The difference in the forecast is clearly visible in

figure 4.2. Note that most of the yield quadruples produce a forecast that is

much closer to that of the Kalman filter. Furthermore, the Kalman smoother

detects a huge 5 percent measurement error for the eight-year forward rate at

these two data points. Figure 4.3 plots DL forward rates (remember they are

calculated by the unsmoothed Fama-Bliss method) together with the forward

rate implied by the Kalman smoother. The unsmoothed yield curve with its
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Figure 4.3: Smoothed and Raw Forward Curve: June 1983
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Note: The smooth forward curve is based on the Kalman filter. The raw data is from the

DL data set.

sawtooth long end, is so unrealistic that it is hard to interpret as the ’true

yield curve’.

Apparently, a huge measurement error has produced a boost in the fit

of the forecasting regression. This is simply a very instructive example of

how easy it is to overfit a forecasting regression. Among the
(
10
4

)
quadru-

ples we have selected one such that a huge measurement error at the right

time produces a very accurate (insample) forecast for a few extreme return

observations.

Note that this kind of bias is different from the type of measurement error

discussed in the previous chapter (and in Cochrane and Piazzesi (2005a)).

Here a few outliers followed by extreme returns boost the R2. In the previous

section we ruled out the possibility that many small measurement errors are

responsible for the very good fit of the regression.

This should have aroused our suspicion earlier. In table 3.1, we see that

some forward rates are highly significant while others are not. This looks

meaningful in a pure regression framework, as it helps us to select the fore-

casting instruments. If we, however, assume that yields are generated by an
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affine model, we expect another pattern. In this case, none of the forward

rates should be significant! In a four factor model, four yields already contain

all information. Adding an extra yield on the left hand side of the forecasting

regression does not add any new information and thus its t-statistics should

be zero. Consequently, when we use the entire yield curve for forecasting,

we should observe a significant overall regression with no single t-statistics

different from zero.

What about the tent-shaped forecasting factor?

From the smoothed yields, we can construct forward rates and the annual

expected excess return on the 10-year bond. This expectation is, by construc-

tion, an affine combination of any quartuple of forward rates. Taking the

one-, three-, five-, and eight-year rates as in the annual regression, we can try

to reconstruct the tent-shaped factor of figure 3.1. Figure 4.4 presents these

annual excess return forecasting coefficients implied by the AP (4, 3) model

estimated by the Kalman filter.

The coefficients are nothing at all like the tent-shaped factor we find in

direct annual regression. Rather, they look like a combination of the con-

ventional slope and curvature factors. In fact, the three factors explain more

than 0.99 percent of expected excess returns on the ten-year bond. More-

over, the slope factor alone explains as much as 73 percent of this return. We

are very close to the original bond forecasting regression of Fama and Bliss

(1987). Further evidence on this claim is given in the next paragraph where

the results of the three factor model are discussed.

Three Factor Models

Given the annual forecasting regressions, probably the most surprising result

of the Kalman filter estimation is that the AP (3, 1) model already contains all

of the predictability of long-only bond returns (see the third line of panel B in

table 4.2). This is actually the three factor version of the Cochrane-Piazzesi

model. R2 for the level factor is 0.25 and thus slightly higher than for the

AP (4, 3) and also the highest value among all models estimated here.

This result is in strong opposition to the annual regression. It reveals that,

once properly smoothed, the conventional level, slope and curvature factors

capture all of the predictability of excess returns on long bonds.



4.3. KALMAN FILTER ESTIMATION 57

Figure 4.4: Forecasting Regression Parameters Implied by the Kalman Filter
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Note: Coefficients of a regression of annual excess returns on y(1), f(3), f(5), f(5) implied by

the parameters of the AP (4, 3) model estimated by the Kalman filter. Quarterly extended

DL data set (1970:2006). The constant term is omitted.

Finally, AP (3, 2) is not able to improve the forecasting power for single

bonds in the longer data set.

4.3.4 Predicting Slope Portfolios

Four Factor Models

As in the previous chapter, I predict s̃r = rx(10)−6.6rx(2), which is a difference

of log returns and thus not strictly speaking a portfolio. As with level returns,

I estimate R2 using (4.24). TheAP (4, 3) model estimated by the Kalman filter

is able to improve R2 which is now 0.16 (see panel A of table 4.1). Both the

Kalman filter forecast and the regression forecast are plotted in figure 4.5.

They are relatively similar in the second half of the sample. In the first half,

however, the regression forecast is much more volatile. The largest deviation

between the two forecasts is again in March and June 1983.
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Figure 4.5: Expected 1-year Excess Return on a Slope Portfolio: 1970-2006
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Note: Quarterly data based on the extended DL data set. Parameters of the regression

approach are estimated from monthly overlapping data.

Three Factor Models

In general, the forecasting power for the slope portfolio is reduced in the three

factor specification when compared with the four factor models. The AP (3, 1)

model has no power at all, as we can see from the fourth line of each panel in

table 4.2. AP (3, 2) has an R2 of 0.09 at least which, however, is considerably

below the 0.16 of AP (4, 3).

We see that the four factor model produces better forecasts than either the

annual regression or as the three factor model. Apparently, the fourth factor

considerably improves R2 for the slope return regression (the PCA shows

that level, slope and curvature explain 73 percent). This is because on the

one hand, the three factor model cannot use the fourth factor and thus its fit

is lower; on the other hand, the regression analysis is not able to disentangle

the signal (the fourth factor) from the measurement noise and thus is also

unable to use its information. Only Kalman filtering with four factors reveals

the proper signal and uses it for a better forecast of slope portfolios.
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4.3.5 Analysis of the Measurement Error

As above, I discuss the properties of the four factor model with three predica-

bility factors. If the results are qualitatively different, I also discuss the three

factor model with rank λ1 equal to 2. As it is common practice, I ignore the

fact that the measurement errors are based on estimated parameters and thus

the usual test statistics are slightly biased. All results are for the extended

DL data set.

Bias at Different Maturities

Although the mean of the measurement error for the 6-year bond is positive

and highly significant (t-value above 4), there is no pattern visible for the

mean. For the three factor model other maturities are significant, but there

is no pattern either.

Variance at Different Maturities

Figure 4.6 shows that the short rate has clearly the lowest variance and that

the standard deviation is highest for the 10-year yield. Regressing standard

deviations against maturity (and an intercept) provides strong, highly signif-

icant results with a t-value of 3.6. In contrast to this, using smoothed yields,

Brennan and Xia (2002) find that standard deviations of the measurement

error declines for maturities over 5 years. Finally, for the three factor model,

there is no significant trend in the variance.

The principal component analysis clearly explains the difference between

the three and the four factor models: the fourth factor captures important

information at the short end of the yield curve. Thus, the variance of the

measurement error at the short end is substantially higher in the three fac-

tor model compared to AP (4, 3) (see also the discussion of cross-sectional

correlation below).

Heteroscedasticity in the Time-Series

Figure 4.7 plots the cross-sectional variance for each date. We can clearly see

that during, and for some quarters after the disinflationary period of the early

eighties, the measurement error is significantly higher. Before and after this

period, the variance is relatively stable, although it seems that it is slightly
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Figure 4.6: Standard Deviation of Measurement Error in the Cross-Section
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Note: Standard deviation of the estimated measurement errors form the AP (4, 3) model.

Quarterly extended DL data, 1970:2006.

higher in the seventies than at the end of the sample. There is also a very

high value in 1975.

Correlation in the Cross-Section

The measurement error of the three-month rate is significantly negatively

correlated with the next two bonds. This is much more pronounced with the

three factor model. Here, the correlation between the 3-month bond and the

3-quarter bond is as high as 0.86. The principal component analysis in figure

4.1 shows that the fourth factor captures some extra dynamics at the short

end of the yield curve, so this does not come as a surprise. The three factor

model is not able to capture this factor and thus generates correlated errors.

A similar pattern is also visible at the long end of the yield curve. However,

this only holds for the four factor model. Besides this, there are also quite a

few other correlations that are significant. Given the level of heteroscedasticity

we observe, that is really what we expect. These values, however, occur

randomly and cannot be attributed to a common factor.
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Figure 4.7: Standard Deviation of Measurement Error in the Time-Series
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Note: Standard deviation for measurement errors of all 13 bond yields at each data point

based on the AP (4, 3) model. Quarterly extended DL data, 1970:2006.

Autocorrelation

Probably the highest concerns about the specification of the model is the au-

tocorrelation of the measurement error for longer maturities. It peaks for the

6-year bond where its value is 0.70. Two lag autocorrelation is also significant

for longer maturities.

A possible economic interpretation of the autocorrelation for six-year bonds

is that these bonds are exceptionally illiquid (who is trading six-year bonds?).

Due to their illiquidity, their measurement error is autocorrelated on the one

hand, on the other hand, if they are traded, they are traded at a discount

because investors prefer liquid assets. This also generates the higher yield we

have discussed just above in the bias paragraph.

The cross-autocorrelation, however, is only significant for a few values that

occur randomly.
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4.4 Infinite Maturity

The behavior of the yield curve when maturity approaches infinity is not

determined by the affine set-up. In principal, it allows the long end to vary

with the state variables (when the maximal eigenvalue of Φ∗ is equal to 1) or

remain fixed (all eigenvalues of Φ∗ have absolute values below one).

We can, however, exclude an eigenvalue equal or greater than 1 by inspec-

tion of equation (4.15)

Af
n = −BT

n−1α
∗ − 1

2
BT

n−1ΣBn−1. (4.25)

Unlike in the case of eigenvalues below one, BT
n−1 is not bounded if Φ∗ has

eigenvalues greater than one. In this case, Bn grows linearly with n (see

equation 4.8). The second term on the right hand side thus grows with n2

and cannot be compensated by the first term as it grows only with n. Finally,

the second term is not zero since Σ is positive-definite. The forward rate

therefore approaches minus infinity when n approaches infinity. Consequently,

eigenvalues of Φ∗ should be bounded below 1.

Empirically, the largest eigenvalue can be as high as 0.997 or 0.998 and

these values are not statistically different from one. Furthermore, there are

no signs of convergence as long as the yield curve is observable. In fact, we

are very close to a model with a unit root empirically, but we can exclude it

for theoretical reasons.

So far we know, the eigenvalues of Φ∗ are bounded, implying that Bn−1 is

also bounded. Still, this expression can become very large (in absolute terms)

as we are very close to a unit root model. A very large Bn−1 allows the infinite

maturity forward rate in (4.25) to take almost any value. Empirically, I find

that the model implies implausible and very negative forward rates for very

long maturities. The yields remain in a plausible range only for about the first

few hundred quarters. After that, they decline strongly and finally converge

to a value below −1. It seems that the model does not get the very long end

of the term structure right when it is estimated from bonds with only limited

maturities. Economically, the empirically estimated parameters of the model

imply some sort of bubble4.

4Dybvig, Ingersoll, and Ross (1996) claim that a falling long forward or zero-coupon rate,

as we observe it here, implies an arbitrage opportunity. The present approach, however, is

free of arbitrage as it is based on a pricing kernel, but still the long forward rate falls. The
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Table 4.3: Kalman Filter Estimates with Restrictions on Af
∞

Af
∞

free 0.00 0.05 0.10 0.15 0.20

Panel A: Max. Value of the Likelihood Function

AP (4, 0) 9659.0 9652.4 9649.9 9642.3 9622.7 9591.7

AP (4, 1) 9673.2 9667.0 9664.1 9657.5 9638.7 9607.4

AP (4, 2) 9684.3 9679.0 9675.8 9668.7 9650.3 9616.5

AP (4, 3) 9692.3 9686.7 9683.8 9676.4 9658.4 9624.1

AP (4, 4) 9692.4 9687.0 9684.0 9677.0 9658.4 9624.5

Panel B: R2 of Level Returns

AP (4, 0) - - - - - -

AP (4, 1) -0.026 -0.002 0.000 -0.017 -0.025 -0.021

AP (4, 2) 0.234 0.240 0.242 0.263 0.251 0.257

AP (4, 3) 0.234 0.240 0.239 0.255 0.250 0.238

AP (4, 4) 0.237 0.238 0.240 0.245 0.250 0.239

Panel C: R2 of Slope Returns

AP (4, 0) - - - - - -

AP (4, 1) 0.036 0.039 0.039 0.044 0.044 0.041

AP (4, 2) 0.056 0.057 0.060 0.062 0.065 0.055

AP (4, 3) 0.161 0.169 0.171 0.167 0.169 0.169

AP (4, 4) 0.183 0.180 0.178 0.175 0.169 0.178

Panel D: Correlation between Level and Slope

AP (4, 0) - - - - - -

AP (4, 1) - - - - - -

AP (4, 2) 0.390 0.300 0.277 0.256 0.192 0.184

AP (4, 3) 0.007 -0.049 -0.082 -0.154 -0.103 0.001

AP (4, 4) 0.070 -0.140 -0.128 -0.123 -0.103 0.104

Note: Quarterly extended DL data (1970-2006). The first line indicates the (restricted)

value of Af
∞. The first column shows the model. R2 based on smoothed return forecasts.

For more details see also table 4.1.

In view of this result, we should try to implement a no bubble condition.

Unfortunately, there is no theoretical guideline as to how this should be done.

apparent contradiction stems from an overly general definition of arbitrage in this paper

(see McCulloch (2000)).
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The only thing we know, is that Af
∞ should take some reasonable value.

Therefore, I re-estimate the model by restricting Af
∞to annual values of 0 to

8 percent and compare the results with the original estimate. Doing this, I

find that the restriction does not influence the predictability pattern. The

model preserves its forecasting ability for level and slope portfolios and the

correlation between the two forecasting factors also remains similar (see panels

B, C, and D of table 4.3).

The maximum value of the likelihood function, however, falls dramatically

within the plausible range of Af
∞ (panel A of table 4.3). Whereas restricting

Af
∞ to 0 lowers the likelihood by about 5, the decrease is nearly 70 for Af

∞ =

0.02 (an annual rate of 8 percent). A likelihood ratio test would thus reject

the restriction. The decrease in the likelihood is also reflected in an increase

in the measurement error (not reported).

4.5 Summary of the Empirical Findings

In this chapter I, have reviewed the predictability pattern detected in the

annual regression analysis of the previous chapter by means of maximum

likelihood estimation using the Kalman filter. The key findings are:

• AP (4, 3) is the dominant model.

• Both three and four factor models predict annual returns on level port-

folios with an R2 of up to 0.25.

• The reduction of R2 compared with the annual regression can be at-

tributed to a selection bias implied by outliers in an environment with

high measurement error.

• The conventional level, slope and curvature capture all of the remaining

predictability of level portfolios.

• Slope portfolios are also predictable with an R2 of up to 0.18.

• The fourth factor revealed in the four factor model is important for

predicting slope returns. Regression analysis cannot use it because it is

hard to disentangle from measurement noise.
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4.A Appendix: Derivatives

This appendix summarizes the derivatives used to calculate the gradient of

the likelihood function for the Kalman filter estimation method. Once one

is familiar with matrix calculation, most derivatives are fairly easy. A com-

prehensive online formulary of matrix derivatives is the matrix cookbook of

Kaare Brandt Peterson and Michael Syskind Peterson5.

I deduce formulas for prices; results for yields follow from (4.10). If the

rank of λ1 is smaller than K, we can apply the chain rule to find derivatives

for the restricted parameter vector. This is easiest by parameterizing Σλ1 and

then putting Φ = Φ∗ +Σλ1 implied by (4.6a).

We only need derivatives with respect to An and Bn. Then we can con-

struct the derivative by the chain rule using the derivatives of the Kalman

filter in section 2.3.

4.A.1 Derivatives of B

Write B in the form given in (4.8):

BT
n = −δT1

n−1∑
i=0

Φ∗i (4.26)

and find the derivative with respect to c:

∂BT
n

∂ck
= −

n−2∑
j=0

Φ∗j
1,K · (BT

k+j − BT
k−1

)
. (4.27)

The proof is as follows:

∂BT
n

∂ck
= −δT1

n−2∑
j=0

n−1∑
i=j+1

Φ∗j ∂Φ
∗

∂ck
Φ∗(i−1−j)

= −
n−2∑
j=0

δT1 Φ
∗j ∂Φ

∗

∂ck

n−1∑
i=j+1

Φ∗(i−1−j)

= −
n−2∑
j=0

δT1 Φ
∗j ∂Φ

∗

∂ck

n−j−2∑
i=0

Φ∗i (4.28)

5 The matrix cookbook is available at http://matrixcookbook.com/.
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The only element of the vector δT1 Φ
∗j ∂Φ∗

∂ck
which is different from zero is the

kth element which is equal to Φ∗j
1,K . For k = 1, we find δT1 Φ

∗j ∂Φ∗

∂ck
= Φ∗j

1,KδT1
and the result follows since B0 = 0. For k > 1, we can use Φ∗i

k,[:] = Φ∗i+l
k−l,[:]

(l < k) which holds since Φ∗ is a companion matrix. Thus,

∂BT
n

∂ck
= −

n−2∑
j=0

Φ∗j
1,KeTk

n−j−2∑
i=0

Φ∗i

= −
n−2∑
j=0

Φ∗j
1,KeT1

n−j−2∑
i=0

Φ∗i+k−1

= −
n−2∑
j=0

Φ∗j
1,KδT1

(
n−j−2∑
i=0

Φ∗i −
k−1∑
i=0

Φ∗i

)
where ek is the kth column of the identity matrix. This completes the proof

since the derivative (4.27) now follows from (4.26).

An alternative way to estimate the derivative is to take one of the equations

in (4.28). This is possible for any Φ∗. For a companion matrix, however, using

equation (4.27) is computationally much more efficient.

4.A.2 Derivatives of A

In order to calculate the derivatives of A, we rewrite (4.5d) as

An =

(
n−1∑
i=0

BT
i

)
α∗ +

n−1∑
i=0

BT
i ΣBi.

Immediately, we see that the derivative with respect to α∗ is the sum in the

brackets:
∂An

∂α∗
=

n−1∑
i=0

BT
i .

The derivatives with respect to c can be calculated through the derivative

with respect to B and then applying the chain rule:

∂An

∂Bk
= α∗ + 2ΣBk.

Finally, the derivative with respect to Σ is:

∂An

∂Σ
=

1

2

n−1∑
i=0

BiB
T
i .
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To keep the covariance matrix positive-definite, it is often parameterized by

the Cholesky decomposition of Σ = CCT :

∂An

∂C
=

n−1∑
i=0

BiB
T
i C

These two formulas are given in the matrix cookbook.

We are done. We can now use the standard results for the gradient of

the Kalman filter together with the chain rule to estimate derivatives of the

likelihood function.

Write the log-likelihood function in terms of the new variables:

L = L (Φ, α,Σ, B(c), A(B(c), α∗
K ,Σ), H)

= L′ (Φ, α,Σ, c, α∗
K , H) .

Putting things together yields the gradient as a function of the new parame-

ters:

∂L′

∂Φ
=

∂L
∂Φ

∂L′

∂α
=

∂L
∂α

∂L′

∂Σ
=

∂L
∂Σ

+
∑ ∂An

∂Σ

∂L
∂An

∂L′

∂c
=

∂vec(B)T

∂c
(

∂L
∂vec(B)

+
∂AT

∂vec(B)

∂L
∂A

)

∂L′

∂α∗
K

=
∂AT

∂α∗
K

∂L
∂A

∂L′

∂H
=

∂L
∂H

.
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Chapter 5

More about Affine Models

Self consistent yield curve models imply certain features that are in obvious

conflict with the data or economic theory.

First, do we believe that the entire state of the economy is described by the

three or four yield curve factors? We do not, because this would imply that all

aggregate or macroeconomic quantities are, up to some measurement error,

described by these factors. This, of course, is strongly rejected by the data.

Thus, if we intend to describe an economy that does not consist exclusively

of the bond market, we must introduce additional state variables that are

not reflected by yields. Such an enlarged model also entails an adaption of

the yield curve model since, by definition, the self-consistent set-up of the

previous section implies that all state variables can be represented as affine

functions of yields. This adaption is the subject of the second section of this

chapter, where it is shown how variables that do not affect the current yield

curve can be integrated into an affine framework. The section also describes

its consequences for predictability and contains an example that highlights

the ability of these unspanned macro factors to improve bond return forecasts

based solely on yields.

Secondly, economic theory suggests that persistent shocks are priced. For

instance, the CAPM implies that wealth shocks are priced. Similarly, utility

theory suggests that aggregate consumption shocks are priced. In contrast

to these models, affine yield curve models associate all risk compensation

with shocks to mean-reverting state variables. In order to circumvent this

69
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discrepancy, the third section shows how to integrate persistent shocks into

the affine framework.

Before these two points are discussed, I derive a linear relationship between

risk and return that is the log version of Ross’s (1976) arbitrage pricing the-

ory (APT). It can be used to enlarge the cross-section, and thus increase the

precision of parameter estimates, particularly those related to returns fore-

casting. The section also specifies a test as to whether the model correctly

explains cross-sectional variation in unconditional returns.

5.1 Expected Returns

Let rxt be a log excess return joint normally distributed with the pricing

kernel (4.2). Then the expected excess return Et−1[rxt] satisfies:

Et−1[rxt] +
1

2
var[rxt] = cov[rxt, ε

x,T
t ]λt−1 (5.1)

which says that the loadings λt are also the market prices of risk (see Cochrane

and Piazzesi (2005b)).

The proof is not straightforward so it is outlined here: it starts with

the general pricing equation Et−1[MtRt] = 1, which holds for gross returns

Rt = exp(rt) on any asset. Using mt = log(Mt), we can write

1 = Et−1[MtRt] = Et−1[exp(mt + rt)]

= Et−1[mt] + Et−1[rt] +
1

2
var[mt] +

1

2
var[rt] + cov[rt,mt]

since mt and rt follow a joint log-normal distribution. The same expression

for the one-period bond is

1 = Et−1[mt] + y
(1)
t−1 +

1

2
var[mt].

Subtracting the two equations we find:

Et−1[rxt] +
1

2
var[rt] = −cov[rt,mt]

which implies (5.1).

The connection with the APT can be understood by writing unexpected

returns of an asset as a linear combination of the innovations to the state
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variables (or the APT factors) plus an idiosyncratic part ut

rxt − Et−1[rxt] = CT
rxε

x
t + ut. (5.2)

εxt and ut follow a joint normal distribution with cov[ut, ε
x
t ] = 0. Equation

(5.1) renders the following restrictions:

Et−1[rxt] = CT
rxΣ

xλt−1 − 1

2
var[rxt]

= Arx +BT
rxxt−1.

Bond returns in paragraph 4.1.3 are, of course, a special case of this formula.

Using the method of undetermined coefficients and expanding the variance of

rxt yields:

Arx = CT
rxΣ

xλ0 − 1

2
CT

rxΣ
xCrx − 1

2
σ2
u (5.3a)

BT
rx = CT

rxΣ
xλ1. (5.3b)

These two equation express that given the factor representation (5.2), returns

are affine in the state variables and the shocks. Thus, they can be straight-

forwardly integrated into the affine set-up. Estimation using the Kalman

filter remains possible, although we need to augment the state vector since

Et−1[rxt] depends on xt−1 (5.3.2 below for the details see paragraph).

We can also define the risk premium ζi associated with an εi-shock as:

ζit = eTi Σ
xλ0 + eTi Σ

xλ1xt

where ei is a vector of zeros with a 1 at the ith entry. This follows by set-

ting Crx = ei and omitting Jensen’s inequality terms in (5.3a). The APT

representation is completed by writing excess returns in terms of the factor

loadings and the risk premia:

Et−1[rxt] +
1

2
var[rxt] = Crx,1ζ1 + · · ·+ Crx,KζK . (5.4)

Finally, we can test the parameter restriction (5.3a) by comparing the like-

lihood of the constraint model with one leaving some Arx as free parameters.

If the restriction is rejected, one (or a subgroup) of assets has an uncondi-

tional return that is not explained by the model. This is the likelihood ratio

version of the Gibbons, Ross, and Shanken (1989) test on the cross-sectional

pricing ability of a model.
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5.2 Unspanned Macro Factors

In this section, I show how an exponential affine pricing kernel together with

a K-dimensional VAR, that describes the evolution of the state variables

must be restricted such that the resulting yield curve model has only K −R

factors. The remaining R state variables, referred to as unspanned macro

factors, affect the physical probability of the yield curve, but not the risk-

neutral probability. This allows the model to have state variables that are

relevant to explain the bond risk premium, yet are irrelevant to explain the

cross-section of bond prices. Note that they can still influence prices and

returns of other assets or actual values of macroeconomic quantities.

In general, the latent yield curve factors have no straightforward economic

interpretation. They are rather the result of some particular rotation which

forces the latent factors to have opposite effects on expected future yields and

the bond risk premium. More precisely, the two effects offset each other such

that they leave the current term structure - but not the expected future term

structure - unaffected. Duffee (2008b) gives an example: consider economic

news that increases risk premia and simultaneously leads investors to believe

the Federal Reserve Bank will soon cut short-term interest rates. The increase

in risk premia induces an immediate increase in long-term bond yields, while

the expected drop in short rates induces an immediate decrease in these yields.

Although these non-self-consistent models are mathematically a restriction

of the original model, economically, they are a generalization, since factors

that are not related to the yield curve can become state variables affecting

future yields.

This section contains two paragraphs. The first describes the inclusion

of unspanned factors. The second contains an example that provides strong

evidence for the existence of unspanned factors.

5.2.1 The Model

Duffee (2008b) and Joslin, Priebsch, and Singleton (2009) are the only two

sources I am aware of that systematically use unspanned factors. Duffee

assumes that the risk-neutral VAR (4.7) of the Ang-Piazzesi model can be

rotated such that Φ∗ is diagonal. With a diagonal Φ∗, imposing a restriction

such that the kth variable does not affect the current yield curve. Simply

set the kth value of δ1 equal to zero. In this case, forward rates f
(n)
t =



5.2. UNSPANNED MACRO FACTORS 73

Af
n + δT1 Φ

∗nxt, and hence yields and prices, do not depend on the kth state

variable.

My approach is slightly more general as it is not based on the restrictive

assumption that Φ∗ is diagonal, which excludes complex eigenvalues. I only

assume that Φ∗ has a staircase form and δ1 = e1. This parametrization simply

imposes the intended restriction that the actual values of the variables in the

second block do not affect the current yield curve but leaves all other features

of the model unaffected. Because Φ, and thus the physical VAR (4.1), does

not have a restricted structure, expected future yields depend in general on

all state variables.

More formally, we can always rotate the factors so that the risk-free rate

is the first factor and that only the first K −R factors of the first block affect

the yield curve. In order to see this, write the K ×K matrix Φ∗ as follows:

Φ∗ =

[
A11 A12

A21 A22

]
(5.5)

where A22 is a R × R matrix (which also determines the dimension of the

other variables).

We want to construct a model with δ1 = e1 and the property that the

forward rates f
(n)
t = Af

n + δT1 Φ
∗nxt only depend on the first K −R variables.

This is equivalent to requiring that for all n, the first row of Φ∗n is of the

following form:

Φ∗n
1,[:]

=

[ ∗ · · · ∗︸ ︷︷ ︸
K−R times

01×R

]
. (5.6)

∗ denotes that the corresponding values or matrices can take non-zero values.

Straightforward matrix calculation shows that this condition holds if A12 = 0,

since in this case

Φ∗n =

[
An

11 0K−R×R

∗ An
22

]
(5.7)

for all powers (n = 1, 2 . . . ). This implies that the risk-neutral process of the

first K − R factors is Markovian:

xt+1,[1...K−R] = α∗ +A11xt,[1...K−R] + εt+1,[1...K−R].

In fact, it is equivalent to the case of self-consistent models. Consequently, we

can rotate the yield curve factors in the same way as in the previous chapter.
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That is to say that the first K − R factors are the risk-free rate and its

1 . . . (K −R − 1)-period-ahead expectations under the risk-neutral measure.

For the remaining factors, none are obviously analogous to the short rate.1

Therefore, in order to complete the VAR, I usually select K − R meaningful

variables besides the yield curve factors. Consequently, equation (5.5) takes

the following staircase form:

Φ∗ =

[
C1 0

A21 A22

]
(5.8)

where C1 is a companion matrix. Models constructed this way are generally

identified.

For R = 1, however, there is a general parametrization. In this case,

block-diagonalizing Φ∗ identifies the last state variable up to a constant and

to a volatility level. If C1 is not degenerate, we can rotate the model such

that

Φ∗ =

[
C1 0

0 c

]
(5.9)

where c is a constant. Identification is achieved up to a constant (e.g. αK)

and to a volatility level (ΣKK). In a specific model, these two parameters are

identified through restrictions related to the measurement equation. I give an

example in the next paragraph.

Finally, we can generalize the classification of essential affine models. A

model with K state variables, K −R yield curve factors and rank(λ1) = L is

denoted as an AP (K,K −R,L) model.

5.2.2 Integrating Inflation Forecasts into an AffineModel

Expected inflation is not spanned by the yield curve factors. In particular,

past inflation and expected inflation from the Livingston Survey improves

inflation forecasts solely based on yields (see table 5.1). This result is robust

against changes to the time period and it is valid for different consumer price

indices: specifically for core inflation, a less volatile measure of inflation that

1A parametrization that in theory always works is to use the expected return of a 2-

period bond as the k + 1th state variable. Then the model is completed by taking its

1 . . . R−1 period ahead expectations under the risk neutral measure as the remaining state

variables. While this parametrization has the beauty that it is unequivocally identifies the

model, it has the short-coming that it is algebraically difficult.
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excludes food and energy (not reported)2. If expected inflation is a state

variable, this simple observation is evidence against the self-consistent set-up

because self-consistency implies that all state variables are spanned by the

yield curve.

Clearly, expected inflation is a plausible state variable. On inspection of

the data, it is obvious that yields and expected inflation share a lot of common

movement. Therefore, at least in the medium-term, either expected inflation

must adjust to yields or vice versa. Clearly, a joint VAR can capture this

common movement.

We can also look at the real rate, which is essentially the difference between

the nominal yield and expected inflation. According to utility theory, the

real rate is an important state variable as it measures the actual price of

intertemporal substitution. If expected inflation is not spanned by yields

neither is the real rate.3 In this case, self-consistent yield curve models do not

fully incorporate the price of intertemporal substitution. This is definitely not

a desired property of a yield curve model and thus economically motivates us

to abandon the self-consistent set-up.

This paragraph can be summarized as follows: firstly, I run the inflation

forecasting regressions; later, non-self-consistent yield curve models that in-

clude expected inflation data from the Livingston survey are estimated. A

likelihood ratio test provides strong evidence against the self-consistent set-

up.

Regression Analysis

In this section, I discuss regression based inflation forecasts. Specifically, the

four factors from the AP (4, 3) model together with realized inflation and the

inflation forecast from the Livingston Survey are used to forecast six-month-

ahead inflation. I choose a six-month forecast horizon because the survey

records the corresponding data. Results are reported for the more robust

2A similar observation is that yields of inflation protected securities (tips) are not

spanned by nominal bonds yields. As tips are far less liquid than nominal bonds this

difference, however, could also stem from a time-varying liquidity premium.
3Of course non yield curve based variation of expected inflation could exactly offset

non yield curve based movements of the expected real rate. Mathematically, this means

that the partial correlation, given yields, of expected inflation and the expected real rate is

minus one. There is barely any economic reasoning supporting such an entirely antagonistic

movement of the two quantities.
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time period 1952-2006. When the first five years are included, R2 drops

considerably in all regressions, since inflation is extremely volatile during these

five years. The main conclusions, however, remain unchanged. They are very

similar for different time periods, forecasting horizons, and various definitions

of inflation.

Table 5.1: Inflation Forecasting Regression

cte f1 f2 f3 f4 past πliv R2

1 0.00 -44.80 230.35 -334.77 150.31

0.56 -3.97 4.08 -4.02 3.94 0.51

2 0.00 -25.64 133.85 -194.81 87.14 0.44

1.07 -2.78 2.93 -2.90 2.84 5.42 0.59

3 0.01 3.61 -22.46 45.23 -27.05 1.26

4.76 0.38 -0.47 0.64 -0.84 9.66 0.70

4 0.01 3.68 -22.87 45.97 -27.45 -0.01 1.28

4.41 0.38 -0.46 0.63 -0.82 -0.09 5.87 0.70

5 0.03 1.03

2.25 9.16 0.58

Note: Forecast of 6-month inflation (cpit+2 − cpit) using a constant (cte), the four yield

curve factors at time t (f1 . . . f4), past 6-month inflation (past), and the inflation forecast

from the Livingston Survey (πliv) for the corresponding period known at time t. The

first line of each regression contains the loadings and the second line the, corresponding

t-values using 3 Newey-West lags. The last column shows the unadjusted R2. Quarterly

data (1952-2006).

First, I run a regression of the six-month realized inflation on the four

yield factors (see Table 5.1, regression 1). The corresponding R2 is 0.51.

Including past inflation (regression 2) is clearly significant and raises R2 to

0.594. The forecast from the survey data (πliv) in the third regression is even

more significant (t-stat of 9.66) and boosts R2 to 0.70. It is regression 3,

4I run these regressions for a whole bunch of other measures of inflation (not reported).

They all have the same property: their past values contain significant information about

future inflation that is not already contained in the yield curve. I also tried the GDP-

deflator and the producer prices index, the general result does not alter, though it is less

severe for producer prices.
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and to a lesser extend regression 2, that provides the strong evidence that

expected inflation is not spanned by the yield curve factors and we thus need

at least one additional state variable. Continuing with the description of the

results, we see that including past inflation in addition to the survey data is

no longer significant (regression 4). Finally, the last regression shows that the

R2 drops to 0.58 when we exclude the yield curve factors. An F -test5 shows

that the yield factors are jointly significant (F -value is 10.8 with a 99 percent

critical value of 3.4), although the high correlation between the factors entails

insignificant individual t-statistics. The yield curve thus contains additional

information about expected inflation not contained in the survey data.

Expected Inflation as an Unspanned Macro Factor

I work out an AP (4, 3, 4) as well as an AP (5, 4, 5) model, both including

expected inflation as an extra variable besides the original yield curve factors.

These models are estimated by maximum likelihood using the Kalman filter.

Empirically, the additional variable significantly improves the estimation of

the bond risk premia.

The description begins with the definition of the state equation. In order

to do this, we need only normalize the last state variable, since we can adopt

the specification given in (5.9). The variable is defined such that the expected

inflation πt is linear in the state variables

πt = BT
π xt (5.10)

with Bπ,K = 1, while also satisfying (5.9). xK is therefore the sum of the

residual and the intercept of a regression of π onto the yield curve factors. It

is unequivocally defined and has a clear economic interpretation; therefore it

globally identifies the model. This choice is algebraically easier than taking

π as the last factor, because imposing the identifying restrictions below is

more cumbersome in the latter case. For the four factor model, the implied

parameters of the risk-neutral dynamics are:

α∗ =

⎛⎜⎜⎝
0

0

α∗
3

α∗
4

⎞⎟⎟⎠ Φ∗ =

⎛⎜⎜⎝
0 1 0 0

0 0 1 0

c1 c2 c3 0

0 0 0 c4

⎞⎟⎟⎠ . (5.11)

5In order to circumvent the overlapping data problem, this test is based on non-

overlapping semi-annual data.



78 CHAPTER 5. MORE ABOUT AFFINE MODELS

The five factor case is completely analogous using a four dimensional com-

panion matrix in the upper left block of Φ∗. The rest of the parametrization

follows the general specification of non-self-consistent models in paragraph

5.2.1.

Estimation of the Models with an Unspanned Factor

I estimate the model with bonds and the inflation forecast from the survey.

By construction, bond returns are fully explained by shocks to the first K− 1

state variables. Because no other asset return is used for calibrating, the price

of risk associated with the last state variable remains undetermined. Its value

is thus restricted to zero using equation (5.3). Specifically, λ0,K = 0 and the

last row of ΣXλ1 is set to zero. For purposes of estimation, the first restriction

can also be substituted by setting α∗
K = 0, since this quantity does not enter

the likelihood function.

As in Brennan, Wang, and Xia (2004), expected inflation π is identified by

a measurement equation based on the Livingston Survey data on the expected

rate of inflation over the next six months (πliv):

πliv
t = Aliv +BT

livxt + ηlivt

= BT
π α+BT

π (1 + Φ)xt + ηlivt .

The second line is derived in the appendix to this paragraph. ηliv is a pure

measurement error that is not correlated with any other shock. Its standard

deviation is hliv. The measurement equation is completed by presuming that

the measurement of bonds remains in its original form.

Note that this specification does not account for the fact that yields add in-

formation to the inflation forecast. Since the model includes all state variables

and thus all the interesting specification for return prediction, this, however,

is of minor interest here. If we change the focus towards inflation forecasting,

we should enlarge the model and include realized inflation in the measurement

equation.

We can test whether the new variable helps to predict bond returns by

restricting the last column of ΣXλ1 to zero and performing a likelihood ratio

test. This is most obvious from equation (5.3b), which shows that in the

constraint model xK = πliv is without influence on the bond risk premia.

Table 5.2 shows that restricting ΣXλ1 is indeed significant. For the four factor

model, the decrease in the maximum of the log-likelihood function between
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Table 5.2: Affine Models Including Expected Survey Inflation

Model Likelihood R2 Level R2 Slope corr para

AP (4, 3, 3), ur. 16557.6 0.315 0.097 -0.12 36

AP (4, 3, 3), rest. 16548.9 0.243 0.079 0.15 33

AP (3, 3) 0.228 0.090 0.11

AP (5, 4, 4), ur. 16980.2 0.316 0.190 -0.33 52

AP (5, 4, 4), rest. 16973.2 0.245 0.175 -0.39 48

AP (4, 4) 0.219 0.181 0.05

Note: Model estimated based on quarterly data (1947-2006) of the following yields: y(1/4),

y(1/2), y(3/4), y(1), . . . y(10) and the expected inflation from the Livingston Survey. The

second column shows the maximum value of the log-likelihood function for the model in-

dicated on the left hand side. The next two columns give the R2, as defined by equation

(4.24), of the implied return forecast on rx(10) and a s̃r (using the filtered series). The fifth

column shows the correlation between the two expected returns. The last column indicates

the number of free parameters.

the unrestricted model in the first line and the restricted model in the second

line function is 8.7 = 16557.6 − 16548.9 compared with a 1 percent critical

value of 5.7. For the five factor models, the decrease is 7.0 and thus also above

the 1 percent critical value of 6.6.

There is also a dramatic increase in R2 for the return forecast for 10-year

bonds. It is now 0.32 for both models that allow expected inflation to predict

bond returns, compared with values below 0.25 for the restricted models.

R2 for the slope portfolio are also higher, though the effect is much weaker.

Finally, the table also repeats the estimates of the self-consistent models. As

we expect, they are very similar to the restricted model.

Efficiency

As in the case of self-consistent models, the Kalman filter approach does not

improve predictability of yield curve models with unspanned factors if there

is no measurement error. The reasoning is still the same as in paragraph

4.3.1 and we can also apply the same regression-based parameter estimation

procedure. Still analogously to the self-consistent case, estimation is improved

if measurement error is present. Consequently, the Kalman filter approach

improves parameter estimates in an environment with noisy data as it properly
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disentangles economically meaningful variables from measurement noise.

An undesired feature of models with unspanned macro factors is that se-

lection bias returns. Whereas, in the self-consistent case, the researcher has no

subjective judgement, there is no guideline as to how macro variables should

be selected in the non-self-consistent case. Virtually any macro variable can

serve as a plausible state variable. Consequently, there should be a good

motivation for incorporating further variables into the state space system in

order to reduce the danger of overfitting the predictability pattern.

Appendix: Multi-Period Expectations in the Measurement Equa-

tion

Inflation forecasts from the Livingston Survey predict two-quarters-ahead in-

flation. If we want to use them in the measurement equation, we must extract

expected two-period inflation from the one-period model. Let πt = Aπ+BT
π xt,

then expected two-period inflation at time t is

πt + Et[πt+1] = Aπ +BT
π xt +Aπ +BT

π (α+Φxt)

= 2Aπ +BT
π α+BT

π (1 + Φ)xt = Aliv +Blivxt

with the obvious definition of Aliv and Bliv. We can often parameterize the

model directly with Aliv and Bliv and then solve for Aπ and Bπ.

5.3 Shocks to Persistent Variables

As already mentioned in the introduction to this chapter, utility theory, in

particular Breeden’s (1979) consumption-based asset pricing model suggests

that aggregate consumption shocks are priced. For example, with constant

relative risk aversion the pricing kernel reads

Mt+1 = γ

(
Ct+1

Ct

)
= exp(γ ln

(
Ct+1

Ct

)
)

which is a very simple version of the exponential affine pricing kernel. In

many refinements of this basic model consumption growth plays a similar role

(e.g. Söderlind (2006)).

Similarly, the CAPM suggests that (only) wealth shocks are priced. Both

consumption and wealth are usually modeled as non-stationary variables af-

fected by unexpected and persistent shocks. In this section, I therefore outline
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how these persistent shocks, or simply any shock, can be incorporated into an

exponential affine pricing kernel.

5.3.1 Incorporating Persistent Shocks into an Exponen-

tial Affine Pricing Kernel

As will be shown below, it is possible to write the new pricing kernel as a

special case of the original one in a straightforward manner. Consequently,

the main purpose of this section is to clarify the notation and to integrate the

model into the Kalman filter framework.

Let vt be an L-dimensional random vector that is not spanned by inno-

vations to the state variables. Furthermore, recall the K-dimensional VAR

(4.1) that defines the state variables xt

xt+1 = α+ Φxt + εxt+1. (5.12)

where the possibly correlated vectors vt+1 and εxt+1 follow an iid joint normal

distribution. We can write the two processes in a single, degenerated VAR.

Define

Xt =

(
xt

vt

)
εXt =

(
εxt
vt

)
(5.13)

as well as

αX =

(
α

0R×1

)
ΦX =

(
Φ 0K×R

0R×K 0R×R

)
. (5.14)

which have the dimension (K + L)× 1 and (K + L) × (K + L) respectively.

Moreover, the covariance matrix of εX is written as ΣX . The completed VAR

including all priced shocks reads

Xt+1 = αX +ΦXXt + εXt+1 (5.15)

and the pricing kernel remains in its original form:

Mt+1 = exp(−δ0 − δT1 xt − 1

2
λT
t Σ

Xλt − λT
t ε

X
t+1)

λt = λ0 + λX
1 Xt = λ0 + λ1xt. (5.16)

λt and λ0 are (K+L)-vectors and λ1 is a (K+L)×K-matrix. The (K+L)×
(K + L) matrix λX

1 =
[
λ1 0

]
is only introduced to highlight that (5.16)
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is, in fact, a special case of the original exponentially affine pricing kernel

(4.2). The equivalence between the two notations in the second line follows

from a trivial block matrix multiplication. I will use the simpler expression

λt = λ0 + λ1xt throughout the rest of this thesis.

In order to get a vector of the right dimension, it is sometimes easier to

write prices, or other affine functions of the state variables, as a function of

Xt. In this case, I write A(·) + BT
(·)xt = A(·) + BX,T

(·) Xt, where the first K

entries of BX
(·) are as in B(·) and the last L entries are zero.

Similar notation is used for Φ∗,X and α∗,X which can be defined as in

(4.6). If we only need the state variables we can write

Φ∗ = Φ− ΣxXλ1 (5.17a)

α∗ = α− ΣxXλ0 (5.17b)

where ΣxX
ij = cov[xi, Xj ].

Finally we can denote a model with K+L prices shocks, K state variables,

K − R yield curve factors and M independent predictability factors as an

AP (K + L,K,K −R,M) model.

5.3.2 Example: A Simple Stock Bond Model

I construct a model that combines stock returns (rt) and bonds in a very

simple way. The bond model remains in its original self-consistent form. In

order to price stocks, we add homoscedastic unexpected stock returns (εrt ) to

the pricing kernel as described in the previous paragraph. The yield curve

factors follow (5.12). Defining vt = εrt defines the degenerated VAR (5.15)

and the pricing kernel (5.16) using definitions in (5.13) and (5.14).

The equation for the factor risk premia (5.3) implies that expected stock

returns (μt) are affine in the state variables:

Et−1[rt] = μt−1 = Aμ +BT
μ xt−1 (5.18)

with

Aμ = eTK+1Σ
Xλ0 − 1

2
ΣX

K+1,K+1 (5.19a)

BT
μ = eTK+1Σ

Xλ1. (5.19b)
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Taking the expected and the unexpected part together, the return process can

be written as

rt = Aμ +BT
μ xt−1 + εrt . (5.20)

Inconveniently, returns at time t are a function of xt−1, whereas contempora-

neously observed yields are a function of xt. Using the two types of equation

in a joint system of measurement equation therefore needs an adaption of the

original state equation (5.15). One possible solution is to use the following

augmented state vector:

Wt =

(
xt

xt−1

)
With this definition, the augmented state equation becomes

Wt+1 =

(
α

0

)
+

(
Φ 0

1 0

)
Wt +

(
εxt+1

0

)
.

Stock return innovations can be correlated with the innovations in the state

variables. We write

εrt = CT
r ε

x
t + ηrt

where the residuum ηrt is an iid normally distributed error uncorrelated with

the state variables. Because ηrt is independent of εxt , it can be used as an error

term in the measurement equation. More precisely, using

εxt = xt − Φxt−1 − α

we can write

εrt = CT
r xt − CT

r Φxt−1 − CT
r α+ ηrt .

This implies the following measurement equation:[
yobst

rt

]
=

[
Ay

Aμ − CT
r α

]
+

[
By 0

CT
r BT

μ − CT
r Φ

]
Wt +

[
ηyt
ηrt

]
.

The error term in the second line (ηrt ) of the measurement equation is now

an economically meaningful shock. So the interpretation of the etas as pure

measurement error is lost. Mathematically, this is, of course, not a problem

as long as they remain independent of the shocks to the state variables, as is

the case here.

The model is considerably simplified by parameterizing Ãμ = Aμ − CT
r α

and B̃T
μ = BT

μ −CT
r Φ instead of the last row of λ0 and λ1. It is completed by

assuming ηyt and ηrt to be uncorrelated and by forcing the covariance matrix

of ηyt to be a scaled identity as in the case of pure yield curve models.
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Efficiency

Due to the simplicity of the model, its empirical content is necessarily limited.

Disregarding measurement error, equation (5.18) says that we are running a

stock return forecasting regression with yields as explanatory variables, be-

sides the estimation of a yield curve model which remains in its original form.

The two parts only interact in the same way as in a system of regression equa-

tions. In particular, (5.19) does not imply a parameter restriction that could

improve parameter estimates. Thus, as with previous models, the advantage

of the Kalman filter estimates is that it cleans the noisy bond data. If we

can measure yields without error, the OLS forecast and the Kalman filter

estimates are both maximum likelihood estimators and thus equivalent (see

paragraph 4.3.1 and the references there).

Empirical Results

Table 5.3 shows the results of the implied forecast of the simple stock-bond

model. Using an unrestricted, self-consistent four factor model for bonds,

the implied R2 for the quarterly stock return (r) forecast is 0.013 and excess

returns (rx) are predicted with an R2 of 0.037. Annual excess returns for

ten-year bonds (rx(10)) and the slope portfolio (s̃r) are predicted with an R2

of 0.22 and 0.18 respectively and thus nearly identical to the results of the

AP (4, 4) model in table 4.1. Table 5.3 also contains the results for the models

based on a three factor yield curve model.

Table 5.3: Forecasts in the Simple Stock Bond Model

Model rx(10) s̃r r rx

AP(4,3,3,3) 0.228 0.090 0.010 0.034

AP(5,4,4,4) 0.218 0.180 0.013 0.037

Note: R2 for the (excess) return forecasts based on equation (4.24). The bond returns

rx(10) and s̃r are overlapping annual returns, the stock returns r and rx are quarterly

returns. Model estimated with quarterly data (1947-2006) of the following yields: y(1/4),

y(1/2), y(3/4) , y(1), . . . y(10) and aggregate stock returns.
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5.4 Summary of the Empirical Findings

In this chapter, I have extended the affine set-up to unspanned macro factors

and persistent shocks. The empirical results are:

• Expected inflation is not spanned by yields.

• Expected inflation significantly improves bond return forecasts. Espe-

cially, excess returns of 10-year bonds are much better predicted when

expected inflation is added as an unspanned macro factor.

• The four yield curve factors predict aggregate stock excess returns with

an R2 of 3.7 percent.
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Chapter 6

Dividends and Returns in

a State Space Model

In this chapter, I show how a state space model with latent variables can be

combined with the approximate present value relation of Campbell and Shiller

(1988). In this framework, expected dividends, expected returns, and the div-

idend yield are affine functions of the state variables. Moreover, unexpected

returns are an affine function of innovations in the state variables plus unex-

pected dividend growth. Due to its linearity, the entire model can be written

in the state-space form and thus be estimated by maximum likelihood using

the Kalman filter.

This is important because there is a material difference between the ap-

proach presented here and the VAR model in Campbell (1991, 1993) and

Campbell and Vuolteenaho (2004). Here, latent rather than observable vari-

ables are used; consequently, the model cannot be estimated by OLS or an-

other regression technique.

Similar state space models have recently been analyzed by van Binsenber-

gen and Koijen (2008), Rytchkov (2007), and Cochrane (2008b). This chapter

contributes to this literature by analyzing a quarterly, instead of an annual

framework. Moreover, following the advice of Cochrane (2008b), I use returns

instead of the observed dividend growth rate in the measurement equation.

87



88 CHAPTER 6. DIVIDENDS AND RETURNS

6.1 The Campbell-Shiller Approximation with

Latent Variables

I derive the Campbell and Shiller (1988) (hereafter CS) approximation in a

latent state space framework where expected returns and the expected divi-

dend growth rates are assumed to be affine in the state variables. As will be

shown, the resulting price-dividend ratio is also affine in the state variables.

Suppose that the expected return on a equity portfolio μt, and its expected

dividend growth rate gt can be written as

μt = Ar +BT
r xt (6.1)

gt = Ad +BT
d xt (6.2)

where xt follows a VAR with normally distributed error εt+1 ∼ N(0,Σ):

xt+1 = α+Φxt + εt+1 (6.3a)

= x+Φ(xt − x) + εt+1. (6.3b)

In general, the vector xt summarizes the state of the economy as implied by

a particular model and x is its unconditional mean. Write returns as

rt+1 = log

(
Pt+1 +Dt+1

Pt

)
(6.4)

where Pt denotes the price of the portfolio and Dt its period t dividend. The

dividend process

Δdt+1 = log

(
Dt+1

Dt

)
= gt + εdt+1 (6.5)

completes the definition of the model. εdt+1 is a normally distributed shock

that can be correlated with the VAR shocks εt+1.

Let pdt = log(Pt/Dt) be the log price-dividend ratio. Following CS, we

can write log linearized returns as:

rt+1 = log(1 + exp(pdt+1)) + Δdt+1 − pdt

≈ log(1 + exp(pd)) +
exp(pd)

1 + exp(pd)
(pdt+1 − pd) + Δdt+1 − pdt

= κ+ ρ pdt+1 +Δdt+1 − pdt (6.6)
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by taking a first-order Taylor expansion around the unconditional mean of the

log price-dividend ratio pd. Solving for the log price-dividend ratio we have

pdt = κ+ ρ pdt+1 +Δdt+1 − rt+1. (6.7)

The linearization parameters are defined as

κ = log(1 + exp(pd))− ρ pd (6.8)

ρ =
exp(pd)

1 + exp(pd)
. (6.9)

Iterating forward, renders the approximate price-dividend ratio:

pdt = κ+ ρ pdt+1 +Δdt+1 − rt+1

=
κ

1− ρ
+

∞∑
j=1

ρj−1(Δdt+j − rt+j), (6.10)

assuming that the usual no-bubbles condition limj→∞ ρjpdt+j = 0 holds.

Plugging in the VAR (6.3) and taking expectation yields the price-dividend

ratio as a function of the state variables:

pdt =
κ

1− ρ
+

∞∑
j=1

ρj−1Et[Δdt+j − rt+j ]

=
κ

1− ρ
+

∞∑
j=1

ρj−1Et[gt+j−1 − μt+j−1]

=
κ

1− ρ
+

∞∑
j=0

ρjEt[gt+j − μt+j ]

=
Ad −Ar + κ

1− ρ
+ (Bd −Br)

T
∞∑
j=0

ρjx+ ρjΦj(xt − x)

=
κ+ g − μ

1− ρ
+ (Bd −Br)

T (1− ρΦ)−1(xt − x)

= Apd +BT
pdxt (6.11)

where

Apd = pd−BT
pdx (6.12a)

BT
pd = (Bd −Br)

T (1− ρΦ)−1. (6.12b)
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The first three lines follow from the definition of the state variables and rewrit-

ing indices, the fourth line follows by plugging in the multiperiod forecast of

the state variables generated by the VAR:

Et[xt+j ] = x+Φj(xt − x).

The fifth line uses well-known properties of geometric series and plugs in

unconditional expectation on g and μ. Finally, the last lines separates terms

multiplying xt. It says that the price-dividend ratio is affine in the state

variables and implicitly defines the corresponding coefficients.

For the derivations below, the following variants of the linearization pa-

rameters are useful:

ρ = exp(g − μ) (6.13)

pd = log
ρ

1− ρ
(6.14)

κ = (ρ− 1) log(1− ρ)− ρ log ρ (6.15)

Finally, we can rewrite returns. Plugging in the price-dividend ration (6.11)

into the approximate return equation (6.6) gives

rt+1 = κ+ ρApd + ρBpdxt+1 +Δdt+1 − pdt

= μt + ρBT
pdεt+1 + εdt+1

= μt + ρBT
pdεt+1 + CT

d εt+1 + ηdt+1

= μt + CT
r εt+1 + ηdt+1 (6.16)

where unexpected dividend growth is written as εdt = CT
d εt + ηdt with ηdt iid

normal and independent of εt and Cr = ρBpd + Cd.

6.2 State Space Framework with Noisy Divi-

dends

The aggregate dividend stream is a very noisy measure of aggregate cash-flow

payments, especially when we analyze monthly or quarterly data. There are

at least three fundamental sources of this measurement noise: firstly, and

most importantly, dividend payout policy is strongly affected by tax issues

and trends. In particular, since the 1980’s, cash-flow distribution in the form
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of share repurchases has become more and more important. While share

repurchases were virtually non-existent in the seventies, they account now for

more than 50 percent of the total cash-flow firms paid to equity holders. This

disturbs the dividend stream because traditional dividends are no longer the

right cash-flow measure. In order to account for this trend in the pay-out

policy, I include a measure of equity repurchases in the dividend stream (see

the data appendix for details). Unfortunately, this measure lacks precision,

since the price and the date of the repurchase are not easily available. This

imprecision is captured by introducing an explicit measurement error. This

is relatively simple in the state space framework (details are outlined in the

reminder of this section). The measurement error is also assumed to account

for changes in the tax regime, which can influence the dividend policy because

taxes are lower in either the new or the old regime. In the former case,

dividends are postponed, in the latter case, they are paid earlier.

Secondly, dividend payments display a seasonal pattern. Even worse, the

pattern varies greatly over time (see also the data appendix). The standard

solution to account for the seasonality is to follow Hodrick (1992) and use one-

year trailing dividends. This implies a strong structural autocorrelation in the

dividend series when we use quarterly or monthly data. Divided growth is

thus not directly observable at higher than annual frequency. In a state space

framework, however, it is possible to jointly model the dynamic of the state

variables and the seasonality pattern of dividends in a very general manner

(see section 6.2.2 below).

Thirdly, I estimate dividends from return differences in the total return

index and the price index. This method of calculating the dividend stream

implicitly assumes that dividends paid early in the period are reinvested at

the market return. As returns are more volatile than dividend growth rates,

this substantially increases the volatility of the dividend stream (Cochrane

(2008a)). Furthermore, the resulting measurement error is correlated with

returns (see van Binsenbergen and Koijen (2008)). Measurement error partly

capture this problem. In particular, it induces the volatility increase. The

form of measurement I use, however, is not able to model the implied corre-

lation with the return and is therefore ignored throughout this thesis.
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6.2.1 Observable Variables

As outlined above, it is assumed that observable log dividends are affected by

measurement error:

dobst = dt + εMt .

where εMt is an error term more precisely specified in (6.18) below. On the

other hand, returns are assumed to be observed without measurement error.

In this case, we have three observable quantities:

robst+1 = rt+1 = μt + ρBT
pdεt+1 + εdt+1 (6.17a)

pdobst = Apd +Bpdxt − εMt (6.17b)

Δdobst = gt−1 + εDt+1 + εMt − εMt−1 (6.17c)

(t = 1 . . . τ). The exact versions of these three equations are not independent,

rather they are mechanically linked by the return approximation (6.7). Con-

sequently, either the return equation or the dividend equation is redundant

and can be omitted.

Note that the price-dividend ratio cannot be omitted in a limited sample.

Due to the recursive structure of the link between the three variables, we need

at least one observation of the price-dividend ratio to initialize the recursion.

Once this observation is available, we could even estimate the model using

realized dividend growth and returns only.

From the remaining two equations, I decided to use the return equation.

There are mainly three reasons for this. Firstly, the return equation is not

seasonal and thus we do not need to apply seasonal adjustments. Secondly,

we are fundamentally interested in returns and making inference about re-

turns that are not exactly returns is dangerous (Cochrane (2008b)). If we

use dividend growth instead, the return series implied by the framework must

be reconstructed using the CS approximation and is therefore not exactly a

return. In this case, we should work out the consequences of the approxi-

mation for returns more precisely. Conversely, if we assume that returns are

correctly mapped by the model, only dividends which are less important for

asset pricing must be reconstructed. The last advantage of utilizing returns is

that they imply a smaller measurement equation as we do not need to include

εMt−1. This will be outlined in the next paragraph.
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6.2.2 Specification of the Measurement Error

Let dividends that are postponed or paid earlier in period t be denoted as ξt ∼
N(0, σξ). Given this process, the period t measurement error for dividends is

defined as

εMt = ξt − 1

3
(ξt−1 + ξt−2 + ξt−3) (6.18)

which says that the retained dividends are paid out in equal parts over the next

three quarters. This specification of measurement error follows most closely

the advice of Hodrick (1992) because it imitates one-year trailing dividends

and thus removes seasonality in a very robust manner. It is by far the easiest

and most parsimonious filter that captures the irregular and time-varying

seasonality pattern we can see in the data. Alternatively, we must specify

how the pattern changes. This would involve more parameters, make the

model even more complicated and increase the danger of mis-specification.

Another important property of (6.18) is that it does not cause persistent

shocks to the log level of dividends, since each shock ξt is fully compensated

over the next three quarters. This is of special importance when dealing

with variables that are cointegrated with dividends. If it is not satisfied,

which simply means that measurement error aggregates over time, the growing

error drives a wedge between the observable variables and the cointegrating

relationship between the true variables remains obscured.

An unexpected feature of the model is that retained dividends are not free

of risk. Rather, they move one to one with regular dividends. This feature is

needed to circumvent a retained dividend (as it theoretically does) lowering

the leverage ratio of an asset and thus altering its risk characteristics. In the

context of our models, this would imply that the models (affine) parameters

would become time-varying. As the amount of dividends is small, the effect

is negligible and we can simply ignore it. Under the assumption of invari-

able parameters, retained dividends must have the same risk characteristics

as regular dividends because otherwise the no-arbitrage condition would be

violated.

6.2.3 Augmented State Equation

We can put the measurement equation (6.18) and the VAR into a state space

framework as follows. Firstly, define an augmented state vector that includes

the state variables at time t and t − 1 and the postponed dividends ξt plus
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three of its lags:

Wt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xt

ξt
ξt−1

ξt−2

ξt−3

xt−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which has 2×K + 4 elements. Define the transition equation

Wt = c+ TWt−1 +RεWt (6.19)

where the vector c and the matrix T are defined as

c =

[
α

0

]
, T =

⎡⎢⎢⎣
Φ 0 0

0

[
0 0

1 0

]
0

1 0 0

⎤⎥⎥⎦
as well as

εWt =

[
εxt
ξt

]
, R =

[
1

0

]
.

The identity matrix in the center of T has dimension 3. Finally, the covariance

matrix of εWt is

cov[εWt ] =

[
Σx 0

0 σ2
ξ

]
.

6.2.4 Measurement Equation

The measurement equation for the observable price-dividend ratio at time t

is

pdobst = Apd +BT
pdxt − εMt . (6.20)

Returns are exact and given by equation (6.16):

rt = μt−1 + CT
r εt + ηdt (6.21)

= Ar +BT
r xt−1 + CT

r xt − CT
r Φxt−1 − CT

r α+ ηdt (6.22)

Using yt =

(
rt

pdobst

)
as the observable vector, the matrices of the state

equation

yt = d+ ZWt + ηWt (6.23)
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have the following forms:

d =

[
Ar − CT

r α

Apd

]
ηWt =

[
ηdt
0

]
and

Z =

[
Cr 0 0 0 0 Br − CrΦ

BT
pd −1 1

3
1
3

1
3 0

]
.

Note that the second measurement equation does not contain an error, since

all measurement error is in the state equation. This is unavoidable given

the measurement error pattern defined in (6.18). A singular covariance ma-

trix of the measurement noise does not present any theoretical problems. In

fact, Kalman’s (1960) original paper contains an example that uses perfect

measurement.

6.3 The Basic Model

The basic model explored in this section defines a VAR:(
μt+1

gt+1

)
=

(
μ

g

)
+Φ

(
μt − μ

gt − g

)
+ εt+1,

together with a process for log dividends as in (6.5):

dt+1 = dt + gt + εdt+1.

It is a property of the unrestricted version of this framework that the price-

dividend ratio summarizes all the information available to the system that is

useful to forecast returns or dividends. This means that estimates for μt and

gt are necessarily perfectly correlated. In fact, in the absence of measurement

error regressing realized returns onto the price-dividend ratio produces the

same forecasts as the Kalman filter approach. Cochrane (2008b) gives an

analytical proof of this claim.1

We need some extra information to identify the independent dynamics of

μ and g. The easiest way to separate the two variables is to impose a diagonal

1Another way to understand this is to use the property that dt and pt are a cointegrated

system. Without further structure pt − dt is an unbiased predictor of Δpt+1 and thus of

rt+1 as well as of Δdt+1 by the Granger representation theorem.
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VAR:

μt+1 = μ+Φμ(μt − μ) + εμt+1

gt+1 = g +Φg(gt − g) + εgt+1.

In this case the whole history of returns and the history of dividend growth

rates contain information about the expected return and the expected divi-

dend growth. For example when the two shocks are independent, we can find

a constant a such that

rt+1 = r + a

∞∑
i=0

(Φ− a)i(rt − r) + νt+1

is a forecasting regression that does not even use the price-dividend ratio. It

says that the slow moving conditional mean of the expected return can be

forecasted by an exponentially weighted mean of the entire history of past re-

turns. The model in this section implicitly combines an analogous forecasting

instrument with the information contained in the dividend yield. It is thus

potentially able to improve the forecast of the simple regression. Moreover, it

can separate expected dividend growth and expected returns.

Independent of the specification of Φ, the covariance matrix of the observ-

able state space model is degenerate. This is because the three observable

variables (realized returns, realized dividend growth, and the price-dividend

ratio) are mechanically linked by the present value relation (see 6.17 and the

discussion following it). Thus, two variables already contain all the informa-

tion. We therefore only actually observe two processes in order to describe

three shocks. Necessarily, the estimated covariance matrix of the three er-

ror terms (εμt+1, ε
g
t+1, and εdt+1) only has rank 2. This also means that it is

not identified by the data and many covariance matrices produce the same

maximum value for the likelihood function (see Rytchkov (2007)). This paper

also shows that we can achieve identification by imposing a single restriction

on the covariance matrix. I impose the restriction that εgt+1, and εμt+1 are

uncorrelated.

6.3.1 Judging the Growth Rate Forecast

Whereas R2 for the return forecast can be estimated as in (4.24), judging

the ability of the model to forecast dividends is severely disturbed by the
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measurement error and the seasonal pattern. I therefore compare annual

changes in quarterly dividends:

Δ4d
obs
t+4 = dobst+4 − dobst

which is reasonable for the slow-moving seasonality pattern we see in the data.

In order to further reduce the influence of seasonality and measurement error,

I also consider changes in four quarter averages:

Δ4d̄
obs
t+4 =

4∑
i=1

dobst+i −
3∑

i=0

dobst−i.

The models forecast for this quantity is

Et

[
Δ4d̄t+4

]
= 4gt|t + 3(gt+1|t + gt−1|t) + 2(gt+2|t + gt−2|t) + gt+3|t + gt−3|t

where Δ4d̄t+4 is defined in the same way as Δ4d̄
obs
t+4 (without the obs super-

script) and gt|s is the expectation of gt using information up to time s. The

influence of measurement error can be even further reduced by considering

two-year changes:

Δ8d̄
obs
t+8 =

8∑
i=5

dobst+i −
3∑

i=0

dobst−i.

and the corresponding model implied quantity:

Et

[
Δ8d̄t+8

]
= 4
(
gt|t + gt+1|t + gt+2|t + gt+3|t + gt+4|t

)
+ 3(gt+5|t + gt−1|t) + 2(gt+6|t + gt−2|t) + gt+7|t + gt−3|t.

In all these cases, R2 is estimated as in (4.24).

6.3.2 Empirical Results

I use post-war data starting in June 1947 and ending in June 2006 (details

are given in the data appendix). I find that the nominal version of this frame-

work predicts quarterly aggregate stock returns with an R2 of 2.7 percent.

The implied excess returns can be predicted with an R2 of 4.6 percent. The

coefficients of the VAR matrix show that both expected returns and expected

dividend growth are highly persistent. The corresponding coefficients are

Φμ = Φ11 = 0.971 and Φg = Φ22 = 0.986. There is, however, an unpleasant
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result: the variance of εg converges to zero; thus dividend growth remains

unpredictable and the corresponding R2 are all below zero for all measures

defined in the previous paragraph.

I also estimate a real version of the model. Real equity returns are pre-

dicted with an R2 of 1.98 percent. This model implies Φg = 0.975 and

Φg = 0.743. It is also rather unrealistic because the estimate of σηd converges

to zero. This means that all short term variability of the unexpected divi-

dend growth is attributed to measurement error and innovations to the state

variables. As in the nominal case, dividend growth remains unpredictable.

Even though we have already imposed a restriction through the diagonal

VAR, the two measurement equations we have available cannot properly dis-

entangle the three shocks (εgt , η
d
t and ξt) that influence the dividend stream.

Moreover, the likelihood function has also several other (local) maxima. All

of them are border solutions or imply an unrealistic sawtooth-like impulse

response function with Φg < 0 (see van Binsenbergen and Koijen (2008) for

similar problems). In order to estimate the model, we need more structure.

This is the subject of the next chapter.



Chapter 7

Joint Stock-Bond Market

Models

So far we have understood how an affine yield curve model can be integrated

into a state space model (chapter 4) and how macro variables and returns

can be integrated into this framework (chapter 5). Then, in the last chapter,

we have seen how the Campbell-Shiller linearization can be used to put the

price-dividend ratio and equity returns into the state space form. In this

chapter, insights of the previous three chapters are combined in a joint stock-

bond market model. I explore predictability and the ability of these models

to explain the cross-section of returns.

7.1 Unspanned Factors Again

Annual dividend growth has a volatility of about 8 percent, implying an annu-

alized quarterly dividend volatility of below 12 percent1. Stock return volatil-

ity is 16 percent. The gap between return volatility and dividend volatility

must be filled by movements in the state variables. In a self-consistent set-up

this means that yield changes are able to fill the gap.

1The difference between the volatility of quarterly and annual dividends stems from the

fact that annual dividends are an average over four quarters. See Breeden, Gibbons, and

Litzenberger (1989) for similar aggregation problems.
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A closer look at the data, however, shows that self-consistent models pro-

duce a link between stocks and bonds that is too strong because they require

that bond returns and changes in the price-dividend ratio are necessarily ex-

plained by the same shocks. Equivalently, unexpected dividend growth is the

only source of equity returns that is not mimicked by bond returns. As the

model is linear, a rough estimate shows that this means the three or four

bond factors should explain at least 50 percent of aggregate equity returns.

Empirically, however, they only explain about 8 percent (in terms of R2) of

equity returns.2 Consequently, we need at least one state variable that does

not influence bond prices but whose innovations explain a potentially large

fraction of equity returns.

Of course, the theory of unspanned factors developed in section 5.2 is the

key to relaxing the relationship between bond and equity returns. In the

remainder of this section, I therefore develop and estimate models where the

dividend yield is an unspanned factor.

7.2 The Campbell-Shiller Approximation and

the Exponential Affine Pricing Kernel

General asset pricing says that given a pricing kernel, the dividend stream

defines the price-dividend ratio as well as expected and unexpected returns.

The exact solution of this problem is always non-linear to some extent (see ap-

pendix C, for the continuous time case). Under the exponential affine pricing

kernel (5.16), however, a linear solution can be found using the CS approxi-

mation. In this case, a homoscedastic dividend stream with affine expected

growth rates implies (approximate) expected returns and price-dividend ratios

that are also affine in state variables. In order to see this, write the dividend

stream as

Δdt = Ad +BT
d xt−1 + CT

d ε
X
t + ηdt (7.1)

where the process of all priced variables Xt follows the degenerated VAR

defined in (5.14). Recall that Xt can include arbitrary shocks as well as the

state variables xt. The residuals ηdt ∼ N(0, σηd) are uncorrelated with εXt .

2Note that the correlation between daily stock and bond returns varies considerably over

time. The importance of this finding for a quarterly model is difficult to determine as time

varying correlation is hard to measure at quarterly frequency.
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Given these definitions, assume for the moment that the CS approximation

holds and we can write returns as

rt+1 = μt + (ρBX
pd + Cd)

T εXt+1 + ηdt . (7.2)

As in (6.16), let Cr = ρBX
pd +Cd. Due to the affine structure of this equation

and the assumption of an exponential affine pricing kernel, we can use the risk

return relationship (5.3) to derive expected returns which are indeed affine in

the state variables

μt = Ar +BT
r xt. (7.3)

where

BT
r = ρBpdΣ

xXλ1 + CT
d Σ

Xλ1 + δT1 (7.4)

and Aμ is given in (5.3a). We can now go through (6.11) to see that equation

(7.2) was correctly assumed. This demonstrates that returns, dividends and

the price-dividend ratio are all affine in the state variables and the shocks.

We can solve for the parameters of the price-dividend ratio:

BT
pd = (BT

d − CT
d Σ

Xλ1 − δT1 )(1− ρΦ+ ρΣxXλ1)
−1

= (BT
d − CT

d Σ
Xλ1 − δT1 )(1− ρΦ∗)−1. (7.5)

To see this, plug Bμ in (7.4) into (6.12b) and solve for Bpd. Then use the

definition of Φ∗ (5.17a) for the second line. Finally, Apd can be taken from

(6.12a).

Note that this is not an explicit solution, since ρ is only implicitly defined.

In general, solving for ρ turns out to be difficult and I am not aware of a

general explicit solution.

7.3 The Stock-Bond Framework

Now we have all the ingredients for a joint stock-bond model. Simply assume

that the yield curve model and the stock market model are based on the same

VAR and priced with the same pricing kernel. In a self-consistent model we

could use the yield curve factors to define the dividend stream and thus the

equity model. In a model with unspanned factors, the state variables of the

second block of (5.8) must also be defined. I use this indeterminacy to find

an explicit solution for ρ in the next paragraph.



102 CHAPTER 7. JOINT STOCK-BOND MARKET MODELS

7.3.1 Parametrization

Many rotations of the model allow to solve for ρ. One of the most obvious

- taking the price-dividend ratio as an additional state variable - turns out

to be especially simple and is therefore used for all the models that follow. I

provide details for R = 1, yet the procedure is very similar for more than one

latent yield curve factor.

Taking the yield curve factors used above, plus the price-dividend ratio as

an additional state variables, makes the affine parameters of the price-dividend

ratio trivial (Apd = 0 and Bpd = eK) and the parameters of the risk-neutral

VAR (Φ∗ and α∗) remain in the staircase form of equation (5.8). Furthermore,

δ0 = 0, δ1 = e1, and ΣX , ΣXλ1 are unrestricted as with previous models. The

only minor adaptation of the yield curve part is that x is parameterized instead

of α, since this is algebraically easier. It allows for a straightforward solution

of ρ using (6.9). By definition, xK = pd and thus

ρ =
exp(xK)

1 + exp(xK)

which is then used to calculate Ar and Br using (7.2) and (5.3).

While in the previous section, Apd and Bpd are functions of the dividend

stream and the pricing kernel, they are now fixed and thus entail K + 1

parameter restrictions elsewhere. They are revealed by solving (7.5) for

BT
d = eTK − eTKρΦ∗ + CT

d Σ
Xλ1 + eT1 (7.6)

which is plugged into (6.13) to determine

Ad = log(ρ) +Ar + (Br −Bd)x. (7.7)

The specification of the economic part of the model is completed by allowing

Cd to be unrestricted.

Note that this parametrization involves the minimum number of parame-

ters necessary to describe the model without imposing (implicit) restrictions.

Furthermore, all state variables have an unequivocal economic interpretation,

thus the model is globally identified.

7.3.2 Definition of the State Space Model

With these definitions, the augmented state equation developed in section 6.3

remains unchanged. The measurement equation for bonds will also be used in
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its original form defined in chapter 4. Adopting the seasonality filter given in

(6.18), the same holds for the measurement of the price-dividend ratio and the

returns defined in (6.23). With these measurement equations, we only have K

independent returns (K − 1 independent bond returns and the equity return)

to price K+1 shocks (the K state variables plus ηd). Therefore, it is assumed

that the idiosyncratic dividend shocks ηd are not priced, i.e. Xt = xt, in the

definition of the pricing kernel (5.16). This identifies the model and completes

the parametrization.

Another advantage of choosing the price-dividend ratio as a state variable

becomes visible by inspection of the corresponding measurement under the

chosen parametrization:

pdobst = xt,K − ξt +
1

3
ξt−1 +

1

3
ξt−2 +

1

3
ξt−3.

This is the equation with the parameters whose derivatives relative to the like-

lihood function cannot be estimated by the method developed in chapter 2

because there is no measurement error term involved. This is no longer a prob-

lem since all parameters are now fixed. Consequently, the entire derivative can

be estimated analytically, delivering fast and reliable numerical optimization.

7.3.3 Preliminary Results

A joint stock-bond model based on an unrestricted three factor yield curve

model with the price-dividend ratio as the only unspanned macro factor is

analyzed. As already mentioned, in order to identify the model, only shocks

to the state variables are priced.

The first line of table 7.1 shows that the model predicts quarterly returns

for the aggregate stock market with an R2 of 0.043. Excess returns are fore-

casted with an R2 of 0.062 and annual dividend growth is fitted with slightly

more than two percent. The two-year forecast explains a larger fraction and

reaches an R2 of 0.101. Finally, the bond risk premium is essentially the same

as in the AP (3, 3) model.

7.3.4 Enlarging the Cross-Section of Returns

In the previous paragraph, the pricing kernel is not identified because there

are less returns than priced shocks. Clearly, this problem can be overcome
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Table 7.1: Estimates for Four-Factor Stock-Bond Models

rx10 s̃r r rx Δ4dt+4 Δ4d̄t+4 Δ8d̄t+8

1 0.215 0.096 0.043 0.062 0.023 0.025 0.101

2 0.216 0.094 0.049 0.068 0.018 0.032 0.061

3 0.217 0.093 0.052 0.071 0.017 neg. 0.083

4 0.218 0.093 0.053 0.071 0.022 0.014 0.087

Note: in model 1, dividend shocks ηdt are unpriced. For models 2-4, these shocks are priced.

The second model includes the sector portfolio returns, the third model, the size and book-

to-market sorted returns. Finally, model 4 adds the price-earnings ratio as an additional

measurement equation to the third model. All figures are R2 of the implied forecast based

on the filtered series and estimated using (4.24). Bond returns are overlapping annual

returns, stock returns are quarterly. Dividend growth rates are defined in paragraph 6.3.1.

Yields are as in table 4.1. Quarterly data, June 1947 - June 2006.

by simply adding further asset returns to the system. The corresponding

technique has already been derived in section 5.1.

Although one additional asset is already sufficient for identification, more

than one series is added. This generates (testable) overidentifying restrictions.

More precisely, two different set of returns are used. Firstly, the six size

and book-to-market sorted Fama-French portfolios and, secondly, 9 of the 10

industry portfolios (’others’ is excluded) from the same source as described in

the data appendix. It is assumed that these returns obey (5.2)

rxi
t − Et−1[rx

i
t] = Ci,T

rx εxt + ui
t

where each ui
t is an idiosyncratic shock. In this case, expected returns follow

from (5.3) and returns are therefore homoscedastic and affine. Consequently,

they can be included in the measurement equation following the method de-

scribed in paragraph 5.3.2. Finally, let the state equation that describes the

economy be defined as in the previous paragraph.

Table 7.1 shows that these extensions have similar prediction power as the

models without the extra returns. There is a small shift towards a better

return prediction, while the ability to forecast dividends is slightly reduced.
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7.3.5 Overidentifying Macro Variables

We can also add macroeconomic quantities (referred to as ymt ) to the measure-

ment equation as long as these variables can reasonably be modeled as affine

functions of the state variables. This implies extra measurement equations of

the following form:

ymt = Am +Bmxt + ηmt . (7.8)

In general, Am and Bm are unrestricted parameters. ηmt is usually assumed to

be an idiosyncratic measurement error. I estimate an example of this model

using the price-earnings ratio. In this case, the affine form can be justified by

assuming that prices, dividends and earnings are all cointegrated. This holds

under very mild conditions. Such a system is explored by Lamont (1998).

The inclusion of this variable slightly improves predictability. Of course,

the price-earnings ratio could also be included as an additional unspanned

factor. Utilizing another set of instruments, this extension is the subject of

the next section.

7.4 Increasing the Cross-Section of Prices

7.4.1 Specification

Under very general conditions, the price-dividend ratio of a dividend paying

asset is approximately affine in the state variables. For instance, if the divi-

dend stream is of the general affine form defined in (7.1), this follows from the

CS approximation derived in second section of this chapter. There are even

more involved processes that lead to an affine structure. For example, we can

generalize (7.1) as follows:

Et[gt+s+1] = A∞
d + ρsÂd +BT

d Et[xt+s].

This specification captures the feature that dividends, e.g. of growth stocks,

temporarily grow faster. It is also possible to define B in a similar way. Even

in this case, the resulting price-dividend ratio is affine in the state variables.3

Note that there is, in general, no restriction between the affine parameters of

returns (Cr) and those of the price-dividend ratio (Apd and Bpd), since the

3Details are available from the author upon request.
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above dividend processes are parameterized with at least 2×K + 1 parame-

ters. Unless there is more structure, we therefore need not specify the dividend

stream exactly, rather we can simply assume the price-dividend ratios to be

an unrestricted affine functions of the state variables. Consequently, they are

used as measurement equations in exactly the same ways as the macro factors

in equation (7.8). Seasonality of the payments is removed by using trailing

dividends as specified in (A.3).4 Error terms are interpreted as measurement

errors and thus assumed to be uncorrelated with one another and with eco-

nomic shocks. They are assumed to have the same standard deviation; their

covariance matrix is thus a scaled identity as in the case of bonds.

Finally, Φ∗ and α∗ are parameterized as

Φ∗ =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0

0 0 1 0 0

c1 c2 c3 0 0

0 0 0 0 1

φ∗
51 φ∗

52 φ∗
53 φ∗

54 φ∗
55

⎤⎥⎥⎥⎥⎥⎦ α∗ =

⎡⎢⎢⎢⎢⎢⎣
0

0

α∗
5

0

α∗
5

⎤⎥⎥⎥⎥⎥⎦ ,

which means that the first three factors are the standard yield curve factors.

The fourth factor is the price-dividend ratio and the fifth, its one-step-ahead

expectation under the risk-neutral measure.

This model is estimated using price-dividend ratios and returns of the

aggregate market and the six Fama-French portfolio as well as the 13 yields

already used before.

7.4.2 The Predictability Pattern

I perform likelihood ratio tests for the rank of λ1 in the same way as in

chapter 4. These results are displayed in panel B of table 7.2.5 The test

4It is also possible to assume that the payout policy for all equity portfolios follows the

same seasonality pattern as that of the aggregate market defined in (6.18). Although the

ability of this model to predict dividends, and to a lesser extend returns, is reduced, the

qualitative properties of this model are similar.
5Due to the large size of these models, estimation is no longer fully stable. The gradient-

based optimization algorithm was, in certain cases, unable to improve the estimate of a

constraint model because the likelihood function was so flat that even the analytical gradient

was unstable. Another starting point was then found by restricting the search space to the

previously restricted part or using the Nelder-Mead algorithm. This was possible in every

case. Once the gradient method began to improve from a reasonable starting point, it
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strongly rejects the null of rank zero against rank one and the null of rank

1 against rank 2 at all conventional significance levels. The null of rank 2 is

rejected against the alternative of rank 3 at 5 percent but not at 1 percent.

The increase in the likelihood function is clearly insignificant for higher ranks.

In the remainder of this chapter, the rank-two model is therefore discussed.

The distinguishing property of the five factor models is that they imply

much stronger cash-flow predictability. The R2 for annual changes of quarterly

dividends is now almost 10 percent. This value increases to 0.143 for yearly

changes in annual dividends and reaches a striking value of 0.219 for two-year

changes. These values are more than four times higher than those of the

previous model. Bi-annual figures have also more than doubled.

The slope return forecast has also improved and is now 0.126. The R2 for

the stock market excess return, however, has diminished to 0.048. Moreover,

the forecast for the term premia is also lower, at least for the rank two model.

All these results are summarized in panel B of table 7.2, which also contains

results for the six size an book-to-market sorted portfolios.

7.5 Cross-Section of Returns

7.5.1 Hypothesis Tests

At the end of section 5.1, a test for the cross-sectional pricing ability of an

affine model is described: we can test the parameter restriction on Arx implied

by equation (5.3a) by comparing the likelihood of the constraint model with

one leaving some Arx as free parameters. For instance, the model implied null

can be tested against the alternative that one single equity portfolio return

is not correctly specified. The one and five percent critical values are 3.3 and

1.9 respectively. These test statistics are displayed in the first row of panel

B of table 7.3. The null is rejected for the small growth portfolio and also

for the large value portfolios: in both cases, even for the one percent critical

value. For the other four portfolios, the null cannot be rejected at the five

percent level.

The joint significance of all restriction can also be tested. In this case,

there are six degrees of freedom and the null is rejected for an increase in

reached the same optimal value with reliable consistency. Still, all the results provided here

are reliable because there is no evidence for other (local) maxima.
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the likelihood function of 6.3 and 8.4 (five and one percent critical values

respectively). The test statistic is 8.1 and the null is thus rejected at the five

percent value only.

In absolute values, the pricing error of the model is −0.47 percent per

quarter for the small growth portfolio and −0.37 for the large value portfolio.

All other portfolios have a much smaller pricing error as can be seen in the

Table 7.2: Estimates for Five Factor Stock-Bond Models

Panel A: Prediction

Rank of λ1 0 1 2 3 4 unrestr.

rx(10) - 0.008 0.192 0.218 0.220 0.220

s̃r - 0.125 0.126 0.147 0.169 0.178

r - 0.008 0.030 0.028 0.042 0.043

rx - 0.027 0.048 0.047 0.060 0.062

Δ4dt+4 - 0.098 0.093 0.093 0.102 0.101

Δ4d̄t+4 - 0.170 0.143 0.147 0.158 0.159

Δ8d̄t+8 - 0.229 0.219 0.226 0.252 0.251

rx, s/g - 0.021 0.038 0.036 0.055 0.055

rx, s/m - 0.010 0.036 0.040 0.051 0.051

rx, s/v - 0.008 0.039 0.047 0.057 0.057

rx, l/g - 0.027 0.040 0.038 0.047 0.048

rx, l/m - 0.027 0.047 0.045 0.058 0.060

rx, l/v - 0.013 0.034 0.037 0.054 0.055

Panel B: Likelihood Ratio Test

Log Likelihood 18069.1 18093.3 18113.2 18119.3 18122.2 18122.5

Number of Para. 116 126 134 140 144 146

χ2
95 18.3 15.5 12.6 9.5 6.0

χ2
99 23.2 20.1 16.8 13.3 9.2

Note: the prediction section contains R2 (based on equation (4.24)) for the filtered forecasts

from the quantities indicated in the first column. The specification of the model is indicated

in the first row. Bond returns are overlapping annual returns, while stock returns are

quarterly. Dividend growth rates are defined in paragraph 6.3.1. The same yields as in

table 4.1 are used. The last two lines of the second section contain critical values for the

likelihood ratio test between the model in the corresponding column and that of the next

column. Quarterly data (June 1947 - June 2006).
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third row of panel B.

7.5.2 Loadings to the Priced Shocks

The first section of table 7.3 displays the loadings of the style portfolios relative

to the priced shocks (Crx) and the corresponding prices of risk. The most

interesting outcome is that value stocks have much higher loadings to ηd as

can be seen in the last row of the panel. For small and large caps growth

portfolios, the loading is 0.75 and 0.78 respectively. For value portfolios, the

corresponding values are equal to 1.27 and 1.34 respectively. The Sharpe ratio

of this shock is by far the highest and thus the different loadings to ηd explain

the value premium to a great extent.

Economically, this is a sensible interpretation of the value premium. ηd
affects prices and dividends in much the same way. More precisely, a one

percent ηd shock unexpectedly increases both prices and dividends by one

percent, but leaves the entire state of the economy unchanged. It is thus a pure

and persistent growth shock that increases the level of the entire economy, or

the cointegrated system consisting of dividends and stock prices, permanently

by one percent.

A concern about this interpretation is that ηd is a nominal shock rather

than a real shock. This should not be a large problem for two reasons. Firstly,

it is an unexpected growth shock and unexpected inflation is not very im-

portant at quarterly frequency. The implicit assumption that unexpected

inflation is not priced is thus not crucial (see also Brennan, Wang, and Xia

(2004) for another model with this feature). Secondly, we can reparameterize

the model as in panel A2 of table 7.3. In this case, the priced shocks are

the excess return of the stock market and innovations to the state variables.

This is the usual way to write Merton’s ICAPM. Still, including expected and

unexpected inflation into the model would be an interesting and potentially

fruitful extension.

The interpretation of the state variables, however, depends strongly on

the rotation of the model. If we rotate the model such that the market excess

return, the equity premium and the expected real growth rate (with the short

rate as a crude proxy for expected inflation) as the first three factors and

othogonalized yield curve factors as the remaining factors, we see the usual

market beta pattern with small and growth stocks having higher betas (table

7.3, panel A2). There is not much variation in the loadings to the equity
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premium. Moreover, the exposure to the shocks to dividend growth is higher

for small and value stocks. This difference and the influence of the yield curve

explain the value premium under this parametrization.

Panel A3 contains a third rotation. It uses the ηd shock instead of the

market excess return but is otherwise constructed in the same way as the

previous rotation. The ηd loadings are exactly the same as in the unrotated

model (because this is an orthogonal shock). The exposure to the equity

premium is slightly more negative for growth and small stocks whereas the

coefficients for the expected growth rate are clearly higher for small caps.

The last four rows of panel B also provide a model-implied attribution

of filtered unconditional returns using the APT-like relationship (5.4). The

variation in the loadings to ηd alone implies a value premium of more than

one percent per quarter. Moreover, this attribution also shows that small

caps have a higher premium due to an increased exposure to yield-related

risk and to a lesser extend, to the dividend growth rate. Neither the filtered

expected return nor the sample mean, however, provide evidence for a small

cap premium.

As already mentioned, a shortcoming of the model is that it is not able

to explain the poor performance of the small growth portfolio and it overesti-

mates the large value premium. This is due to the fact that the value premium

is much more pronounced for small caps, but the variation in the exposure

to the factor that explains it (ηd) is nearly identical for small and large caps.

The model is thus not able to explain the large difference between the value

premium of small caps relative to the smaller value premium of large caps.

7.6 Statistical and other Problems

7.6.1 Efficiency

If the state variables are observable, even this model provides no efficiency

gain for predictability relative to the regression approach. The reasoning is

the same as for the yield curve models. We can start the estimation with the

OLS estimates of the VAR of the state variables and the return equation (7.2).

Given these regression coefficients, Bd can be estimated from the approximate

return equation (6.6), which determines Φ∗ through (7.6) and the yield curve

model. The mechanism is quite obvious: there is no efficiency gain from
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the state space approach, as long as we add K parameters (by enlarging λ1)

for each new shock as we do in the general case. Only restrictions implied

by economic theory or rank-reduction techniques will improve efficiency and

thus lower the standard deviation of the estimated forecasting parameters.

This raises another question: if the Kalman filter forecast is the same as

the OLS forecast, how can it be that the R2 in the five factor model is lower

than in the smaller model with fewer variables? This feature stems, of course,

from the over-identifying restrictions implied by the larger cross-section of

returns. If we have as many returns as priced shock, a larger unrestricted

model would always imply a higher in-sample R2 as with OLS.

7.6.2 Stability

Stability can be a problem for large models because small mis-specifications

of one part of the model can be amplified to completely implausible estimates

of other aspects of the model due to implied restrictions or other connections.

This is partially true here. As the model explains 98.6 percent of some port-

folios (see panel C of table 7.3), an economically small pricing error of such an

asset can become statistically very important because the idiosyncratic risk

is very small. This makes the cross-sectional pricing sensitive to outliers.

Stability, however, does not depend on the parametrization. Although the

way the state variables are defined clearly causes multi-collinearity problems,

the economically meaningful variables, such as yields and filtered (expected)

returns are numerically stable and thus independent of the parametrization.

At the maximum value of the likelihood function, all covariance matrices have

an inverse of the conditional number that is at least 106 times higher than

Matlab’s numerical precision. Note that the conditional number does not

depend on the parametrization.

Sometimes, the multicollinearity problem harms optimization because we

are close to an instable model. Small deviations caused by the numerical

search algorithm can lead to a point were the analytical gradient is no longer

appropriate and the algorithm thus stops. This is not a fundamental problem

and the way it is solved is already described in footnote 5 on page 107 and in

appendix B.

A few parameters are also very unstable. Most importantly, these are the

means of the short rate and the dividend yield. As these two parameters

considerably influence unconditional risk prices, the model’s estimate of the
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unconditional equity premium is not stable either. This instability, however,

barely affects the filtered return expectations. For instance, imposing the

historical average for the short rate and the dividend yield lowers the uncon-

ditional equity premium by almost one percent, however, does not reduce the

average of the filtered return expectations. Because of their higher stability,

averages of filtered state variables are used in panel B of table 7.3. Finally,

note that the two parameter vectors are not statistically different from each

other. The reduction of the maximum value of the likelihood function implied

by the constraint is only 0.6.

I also explored different specifications of the model (not reported); specif-

ically, the version of the model with seasonally adjusted dividend-price ratios

(see footnote 4 on page 106), and different versions with more assets (sec-

tors) or where some assets are omitted. For all these specifications, there is

a substantial predictability of dividends and the value effect is greatly ex-

plained by different exposures to the persistent shock. This is not the case if

the 25 size and book-to-market sorted Fama-French returns are added to the

measurement equation. This model is numerically unstable and there seem

to be different local maxima of the likelihood function. For the model with

the largest likelihood (that I found), ηd was still the shock with the highest

risk-return ratio. This estimate also produces increasing loadings when we

move from growth to value stocks, at least for small and mid caps. This effect

vanishes for the largest size quintile.

7.6.3 Analysis of the Measurement Error

An analysis of the measurement error delivers similar results as those of para-

graph 4.3.5. Autocorrelation of the noise term in the measurement error

has, however, become even more dramatic. The autocorrelation of the price-

dividend ratios of the size and book-to-market sorted portfolios is as high

as 0.85 on average. This does not come as a surprise because seasonality is

removed by using four-quarter averages and not using a filter as for the ag-

gregate market. There is also substantial multi-lag autocorrelation of these

quantities as well. For instance, for the fourth lag, the autocorrelation is

still 0.39. This value can no longer be explained by the construction of the

dividend yield using trailing dividends.
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7.7 Summary of the Empirical Findings

In this chapter, joint stock-bond models have been explored. The main em-

pirical results are:

• Quarterly equity excess returns are predictable with an R2 of approxi-

mately five percent.

• There are at least two independent predictability factors: the term pre-

mium and the equity premium.

• Annual and bi-annual dividend growth is predictable with an R2 of 0.14

and 0.22 respectively.

• A large fraction of the value premium can be attributed to a higher

exposure of value stocks to the single persistent shock of the system.

• Small stocks have a higher exposure to interest rate risk and to shocks

to the dividend growth rate.
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Table 7.3: Five Factor Stock-Bond Model with Rank λ1 = 2

Sharpe s/g s/m s/v l/g l/m l/v

Panel A1: Not Rotated

y(1) -0.16 283.69 337.68 409.41 -130.91 77.92 146.52

f(2) -0.12 -686.80 -796.95 -959.89 291.68 -183.49 -339.90

f(3) -0.09 441.71 493.99 590.23 -162.51 114.61 209.88

dp 0.09 15.04 19.19 23.56 -6.78 3.19 8.84

E∗[dp] 0.08 -13.35 -17.96 -22.41 7.82 -2.42 -8.02

ηd 0.68 0.75 1.03 1.27 0.78 1.07 1.34

Panel A2: Rotation 1

r − y1 0.34 1.46 1.09 1.03 1.09 0.81 0.87

μ− y1 0.12 -1.29 -0.45 -0.35 -0.18 -0.38 -0.18

g − y1 0.05 2.59 4.09 4.65 -1.46 2.08 1.95

Panel A3: Rotation 2

ηd 0.68 0.75 1.03 1.27 0.78 1.07 1.34

μ− y1 0.12 -5.62 -3.68 -3.41 -3.39 -2.78 -2.76

g − y1 0.05 10.95 10.35 10.56 4.75 6.72 6.93

Panel B: Cross-Sectional Pricing

Δ Log Likelihood 4.8 0.6 0.6 0.1 1.5 4.1

Mean Sample Return 1.34 2.97 3.47 2.16 2.66 3.09

Pricing Error -0.47 0.07 0.06 -0.03 -0.18 -0.37

E[rx] 1.29 2.48 3.00 1.79 2.48 3.09

ηd Contr. 1.38 1.88 2.33 1.44 1.96 2.47

μ− y1 Contr. -1.40 -0.92 -0.85 -0.84 -0.69 -0.69

g − y1 Contr. 0.32 0.31 0.31 0.14 0.20 0.21

Yld. Contr. 0.89 0.74 0.75 0.46 0.28 0.45

Panel C: Explanation of Returns

h 7.591 3.376 3.398 2.934 4.281 5.674

Std. Dev. 26.407 20.101 20.175 17.386 14.099 15.936

R2 0.958 0.986 0.986 0.986 0.953 0.934

R2 (CAPM) 0.813 0.799 0.719 0.934 0.868 0.775

Note: panel A1 contains Crx as defined in the text and prices of risk (expected log re-

turns divided by their standard deviation). Panels A2 and A3 do the same for rotated

parametrizations: yield curve shocks are orthogonalized and not displayed, other variables

are indicated on the left. The first row of panel B contains the increase of the log likeli-

hood leaving the intercept of the corresponding return unrestricted; then the sample mean

and the pricing error of the model, followed by the average of filtered expectations and

an attribution using the parametrization of panel A3 are displayed. Panel C contains the

model-implied idiosyncratic risk and the return volatility followed by the fit of the model

and that of the CAPM. The six size and book-to-market sorted Fama-French returns are

indicated in the first row. Quarterly data June 1947 - June 2006 using the same yields as

in table 4.1.
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Conclusion

Solely based on prices of some of the most important asset classes, this thesis

has provided strong evidence in favor of return predictability that is essentially

free of any selection bias. The detected pattern is very rich and even implies

independent movement in expected returns across different risk factors and

asset classes: there are time periods where some risk premium - e.g. the

equity premium - is high while another - e.g. the term premium - is low or

even negative. This feature of the data is extremely hard to understand in a

utility-based framework and cannot even be explained by simple time-varying

risk aversion. Why should an investor fear equity risk when he has no aversion

to interest rate risk?

There are essentially two explanations of this puzzle. The first is strong

time-varying covariance between macroeconomic variables and asset returns

(see Campbell, Sunderam, and Viceira (2008) for a model with that feature).

The second is that risk-sharing is not fully efficient across asset classes.

In both cases, passive investment strategies, such as a simple buy and hold

strategy, are clearly not efficient. This is evident in the case of inefficient risk-

sharing. In the case of time-varying covariances, constant portfolio holdings

are inefficient, since individual risk aversion does not necessarily move one-

for-one with aggregate risk aversion. For example, a long-term investor who

is not exposed to macroeconomic risk should increase his holdings in risky

assets when the premium is high. Conversely, the exposure should be reduced

when the risk premium is low. Since there is independent movement in the

115
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prices of risk across different assets, this investor should even actively select

where to allocate the risk budget.

An essential feature of this thesis is that the economy is modeled as a

dynamic state space system. This is the standard approach for modeling

yield curves, but only in recent years has it become popular to describe equity

markets. I expect this trend to continue because this thesis has highlighted

many advantages of the state space analysis relative to the standard factor

approach. Probably the most distinguishing feature is that returns are linked

to movements of meaningful state variables, particularly expectations.

In practice, this connection helps to estimate actual expected returns and

thus provides the basis for an active investment strategy that accounts for the

rich time-varying predictability pattern. More precisely, once the relationship

between movements in state variables and returns is understood, this con-

nection can also be reversed. Given the sensitivity of an asset to changes of

some state variables, a cross-sectional regression of returns already provides

an estimate of changes in the state variables. If the cross-section is sufficiently

large, these estimates will be accurate. We therefore do not need to observe

all state variables immediately; returns are sufficient to provide an appropri-

ate update of expectations and to adjust the portfolio to unexpected changes

of the state of the economy. Once macroeconomic quantities are observed, we

can update the expectation and possibly reallocate the portfolio again. Using

Kalman filter terminology, these steps are, of course, (partial) measurement

updates with potentially lagged measurement.

The state space approach is also appropriate for portfolio simulation used

for asset and liability management (ALM) or to define the (strategic) asset

allocation (see e.g. Keel and Müller (1995) for an introduction to the topic).

This has some obvious advantages relative to the standard random walk hy-

pothesis or even to a model with predictable factors. Most importantly, it

links current and future returns. For instance, an increase in the equity pre-

mium produces an immediate decline in prices and thus connects the current

price shock to the expectation of future returns. An investor who erroneously

assumes that prices essentially follow a random walk and whose ability to

take risks depends on current wealth will reduce his risk exposure. If the

same investor understands the relationship between future returns and cur-

rent prices, there are two offsetting effects. On the one hand, his willingness

to take equity exposure has increased because of the higher premium; on the
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other hand, his ability to take risks is lower because of the lower reserves. This

thesis has provided evidence that shocks to the state variables explain more

than 50 percent of aggregate equity returns. Consequently, the difference of

the two approaches may be substantial and possibly even more pronounced

in the long run.

Another advantage is that it is possible to include important macroeco-

nomic quantities such as inflation and GDP growth and to properly link them

to asset returns. The long-term relationship between dividends (or equity

prices) and macroeconomic quantities such as aggregate labor income can be

particularly important in this context. For instance, they can be modeled as

a cointegrated system sharing a common macroeconomic trend as in Ribeiro

(2004). This will further reduce the random walk component of equity returns.

If the portfolio management decides to follow an optimal, and thus active,

asset management approach, this decision should also be fully reflected in the

ALM framework. More precisely, we should not only simulate constant port-

folio holdings, rather the simulation should be based on the intended active

portfolio strategy that is to be implemented. This implies that active tacti-

cal portfolio allocation and long-term strategic asset and liability matching

should be integrated in a single optimization framework that delivers deci-

sion rules based on the actual state of the economy and the investor-specific

liabilities. The conventional separation between a beta-producing strategic

asset allocation and alpha-producing active management is no longer advis-

able because it is clearly a suboptimal investment policy. It is founded on the

presumably wrong assumption that beta returns follow a random walk and

alpha returns are produced by management skills that are independent of the

state and the evolution of the economy. The recent performance of active

managers, particularly hedge funds, has produced a lot of evidence for this

claim.

As already indicated, ALM studies should potentially include more assets

and macroeconomic quantities than the joint stock-bond models of the pre-

vious section. The Kalman filter technique used in this thesis has, however,

already reached its limits in terms of numerical stability and computation

time. In order to estimate these larger models, we therefore need a more

robust and faster estimation technique. A natural way to simplify estimation

is to separate the two steps of the Kalman filter and to apply a two-stage

procedure. In the first stage, the latent state variables are estimated based on
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some rank-reduction technique such as the principal component analysis. The

predictability pattern is then fitted as a (restricted) VAR. This is not a big

loss because the Kalman filter approach does not provide better forecasts per

se. The main advantage of this technique is that it produces cleaner data. If,

however, the cross-section is sufficiently large, a cross-sectional regression al-

ready provides accurately fitted state variables. A two-stage approach might

therefore be almost as efficient as the fully efficient maximum likelihood esti-

mation based on the Kalman filter.

Clearly, this approach can also be used to incorporate those findings that I

was not able to include in the joint stock-bond market models of the previous

chapter. Specifically, these are the ability of expected inflation to improve

the level return forecast and the better predictability of slope returns in four

factor models.

Still, the Kalman filter is a natural way to estimate state space systems

that has some important advantages for the purposes of this thesis. Specifi-

cally, one goal of this thesis was to explore the predictability pattern by means

of rank-reduction techniques, using only the most important assets in order to

reduce the selection bias. This, of course, requires testable hypotheses. Sta-

tistical tests, however, are easier and more accurate for one-step estimators.

To conclude, one final advantage of the state space framework should be

highlighted again: state space models define the dynamics of the entire system,

which can therefore be simulated as a whole. Consequently, the small sample

properties of the test statistics can be simulated. This and out-of-sample tests

of return prediction are left for future research.
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Description of the Data

Sets

Dividend yields are estimated as in Ang and Liu (2004). They compute

monthly dividend yields as the difference between the return with dividends

and capital gains, and the return excluding dividends. I use the same tech-

nique for quarterly data:

D
′

t+1/4

Pt
=

D′
t+1/4 + Pt+1/4

Pt
− Pt+1/4

Pt
(A.1)

D
′

t+1/4 =

(
D′

t+1/4 + Pt+1/4

Pt
− Pt+1/4

Pt

)
Pt (A.2)

where the frequency 1/4 refers to quarterly data. The bar superscript indi-

cates a quarterly, as opposed to annual, dividends. Cochrane (1991) shows

that this procedure implies that dividends paid early in the month are rein-

vested at the portfolio return to the end of the month. This leads to an

overestimation of dividends in high-return months, and to an underestima-

tion in months with low returns.

The standard practice to remove seasonality is to sum up the dividends

over the past four quarters (see Ang and Liu (2004) and Hodrick (1992)):

Dt =

3∑
i=0

Dt−i/4. (A.3)
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Other seasonally adjusted dividends cannot be constructed because the sea-

sonal pattern of dividends changes dramatically in the 1960’s.

In recent years, a growing share of cash-flow distribution to investors was

in form of equity repurchase instead of dividend payments. The implied cash-

flow induced by these repurchases can be written as

Ct+1/4 =

∑
max (ΔN, 0) · Pt

Pt+1/4
MVt+1/4∑

MVt+1/4

where

ΔN =
NOSHt · AFt −NOSHt+1/4 ·AFt+1/4

NOSHt · AFt
.

NOSH is the number of shares. AF is a factor that adjusts for share splits

and other transactions such as face value reduction. The dividend yield at

time t is then defined as
Dt + Ct

Pt
. (A.4)

The annual dividend yield is estimated using (A.3) and the analog definition

for Ct.

Returns with dividends and capital gains as well as break points for the

size- and value-sorted portfolios are from Kenneth French’s web site.1 Equity

repurchases are estimated from Datastream stock data (all US stocks) and

therefore do not cover exactly the same universe as the Fama-French data.

They only start in 1980 for the size and value sorted portfolios and in 1973

for the aggregate market. The later start of these data is a minor problem

because equity repurchases were virtually non-existent before 1980.

The earnings-price ratio is defined as the corresponding value of the Stan-

dard & Poors (S&P) Composite Index. S&P earnings are also used by Lamont

(1998) and Shiller (2000). This data is made available by both authors on

their web pages2 and by Datastream. Robert Shiller’s data set is regularly

updated. Following Lamont (1998), I use single quarter earnings without sea-

sonal adjustment. Clearly, earnings for the current quarter are not known at

the end of the quarter, since they are published only during the next quar-

ter. To avoid any forward-looking bias implied by this fact, I use earnings for

1Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french
2See http://www.som.yale.edu/faculty/oal4/research/earnpublic.prn for Owen Lam-

ont’s data set and http://www.econ.yale.edu/˜shiller/data/ie data.xls for that of Robert

Shiller.
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the last quarter divided by the current price as the definition of quarter-end

price-earnings ratio.

CPI data is from the Federal Reserve Economic Data (FRED) and is

made available by the Federal Reserve Bank of St. Louis3. The CPI is the

seasonally-adjusted CPI for all urban consumers (CPIAUCSC).

3http://research.stlouisfed.org/fred2/
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Optimization

2.1 An Alternative Optimization Procedure

I also tested the following optimization routine:

1. For each element of the parameter vector estimate, the forward and the

backward derivative by the finite differencing method using an initial

step length h0.

2. If the ratio of the two derivatives is between ζ and 1
ζ , the average of

the two is taken as the (partial) derivative. ζ is a number close to 1.

Otherwise, the step length is divided by ψ and the forward and backward

difference is reestimated with the new step length.

3. Step 2 is repeated until the step length of the finite difference method

is hmin. If the ratio of the two derivatives is still outside the interval, it

cannot be estimated accurately and is thus set to 0.

Typically, I use h0 = 10−6, ζ = 0.9, ψ = 10, and hmin = 10−12 but sometimes

h0 must be greater. This is because for large parameters a step length that

is too small can also be problematic, due to rounding errors.

The algorithm works well for small models, but it is extremely slow for

the bigger ones, since each derivative needs at least three runs of the Kalman

filter. Consequently, all the numerical optimizations in this thesis are, when-

ever possible, based on analytical derivatives. Unfortunately, as described

123
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in section 2.3, not all derivatives can be calculated analytically when one of

covariance matrices (Q or H) is degenerate. In this case, the very high preci-

sion of this numerical algorithm is very useful. In particular, it can be used

to estimate those partial derivatives of the likelihood function relative to the

Kalman filter parameters that cannot be calculated analytically. The result-

ing numerical derivatives are then used to calculate the derivatives of the log

likelihood function relative to the model’s parameter vectors by utilizing the

chain rule in exactly the same way as in the case of analytical derivatives.

Note that the application of the chain rule requires very high precision of the

derivatives and that this is generally not provided by standard finite differ-

encing. This is because small errors can become very big through the matrix

multiplications involved in the chain rule. Consequently, I use a value of the

precision parameter ζ as high as 0.98 or higher, in this case.

Another useful application of the algorithm is based on the fact that it

also provides an upper bound for the error of the numerical derivative. This

makes it perfectly suited to check the implemented likelihood function and its

derivatives.

2.2 Numerical Stability and Convergence

I also utilize the derivative-free Nelder-Mead minimization algorithm (Matlab

routine fminsearch) for two purposes. Firstly, it has proven to be a robust

method to generate a crude parameter vector relatively close to the optimum

when I check convergence using different starting points. This is necessary

because the gradient is not accurate if the covariance matrices H and Q are

numerically unstable. The analytical gradient method thus sometimes stops

far from the optimal parameter vector. Secondly, I use the Nelder-Mead

algorithm as well as the numerical method described in the previous section

to check convergence.

Unless discussed in the text, all results presented in this thesis are robust

in the sense that they do not depend on the starting point. Computation

time, however, can be high when the starting point is far from the optimum.

This is far better if the optimization is started with a parameter vector based

on a two-stage regression or a nested model. In these cases, the analytical

gradient method always leads to quick and reliable convergence.
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State Variables and

Dividends in Continuous

Time

Originally, this thesis was planned in a continuous-time framework. This

makes modeling easier and also more flexible. However, empirical work turns

out to be much more demanding in this case. The price-dividend ratios im-

plied by these models are non-linear functions of the state variables and thus

the state space system cannot be estimated using the Kalman filter. We need

to apply simulation methods or the extended Kalman filter. Both techniques

are much more involved than the present approach based on the Campbell-

Shiller approximation. As the limits of estimation in terms of numerical sta-

bility and reliability have already been reached with the simpler approach,

there is not much hope that a large continuous-time model can be estimated

reliably using filtering techniques.

From this work, there is some remaining material that is worth including

in this thesis. Most importantly, this is a tractable generalization of a theorem

proofed in Ang and Liu (2007). It relates dividends and state variables in a

very general manner. In fact, it is the exact generalization of the Campbell-

Shiller approximation in continuous time.
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3.1 Definition of the Model

Suppose the state of the economy is described by a K-dimensional state vector

x, which follows the diffusion process:

dxk = μk(x)dt + σk(x)dzk. (C.1)

μk and σk are scalar functions of the state variables. This is a very general

definition of an economy. As prices should only depend on the state of the

economy, it also means that the value of any cash-flow stream is fully deter-

mined by x. Mathematically, it means that bond yields, dividend yields and

all other prices and valuation ratios can be written as functions of x.

A stock or a portfolio of stocks is an asset that pays the dividend stream

Dt which follows the process:

d lnD = αD(x)dt + σD(x)dzD (C.2)

or
Dt

D0
= exp(

∫ t

0

μD(xs)ds+ σd(xs)dzD). (C.3)

Shocks to the state variables may be correlated. The correlation between

shocks to the k’th and the l’th state variable is denoted by ρkl. Accordingly,

ρkD is the correlation between dzk and dzD.

By definition, the instantaneous total return is

dRt =
dPt +Dtdt

Pt
. (C.4)

Taking expectation one finds the following expression for the expected return

μR:

μRdt = Et

[
dPt

Pt

]
+

Dt

Pt
dt. (C.5)

By iterating (C.5), the price becomes

Pt = Et

[∫ T

t

exp(−
∫ s

t

μRdu)Dsds+ exp(−
∫ T

t

μRdu)PT

]
. (C.6)

Imposing the transversality condition

lim
T→∞

Et

[
exp(−

∫ T

t

μRdu)PT

]
= 0 (C.7)
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rules out bubbles in which stock prices grow so rapidly that people will buy

just to resell at higher prices later, even if there are no dividends paid (see

Cochrane (2001), chapter 1.4). Imposing this condition is not restrictive in

an economic sense, since all feasible descriptions of the economy satisfy this

condition.

The transversality condition simplifies the price formula (C.6), which be-

comes:

Pt = Et

[∫ ∞

t

exp(−
∫ s

t

μRdu)Dsds

]
. (C.8)

With these definitions the following theorem can be stated:

Theorem C.1 Suppose the state of the economy is described by x, which

follows (C.1), and the dividend process is given by (C.2). Assume that the

price-dividend ratio P
D is a function f = f(x), and that the no bubble condi-

tion (C.7) holds. Then the instantaneous total return satisfies the following

equation:

dRt =
1 +
∑

k fkμk +
1
2

∑
kl fklρklσkσl +

∑
k fkρkdσkσD

f
dt

+μD dt+
1

2
σ2
D dt+

∑
k fkσkdzk

f
+ σDdzD. (C.9)

Conversely, if the total return follows

dRt = μR(xt)dt+
∑
k

σRk(xt)dzk + σRD(xt)dzD (C.10)

then f satisfies:∑
k

fkμk +
1

2

∑
k,l

fklρklσkσl +
∑
k

fkρkDσkσD + f(μD +
1

2
σ2
D − μR) = −1

(C.11)

together with

σRk =
fk
f
σk (C.12)

σRD = σD. (C.13)

Equation (C.12) holds for k = 1, ...,K.



128 APPENDIX C. DIVIDENDS IN CONTINUOUS TIME

Theorem C.1 says that if the dynamics of the dividend process and the

price-dividend ratio are given as functions of the state variables, then the

return process is unequivocally determined by equation (C.9). Conversely, if

the return process is given together with the price-dividend ratio, then the

dividend process results as a function of these two from (C.11, C.12, and

C.13).

More generally, theorem C.1 says that there are two restrictions among

the following five variables: the expected dividend growth rate, the dividend

volatility, the expected stock return, the stock return volatility, and the price-

dividend ratio. The first is induced by the definition of the return in (C.6)

together with the transversality condition (C.7) through equation (C.10). The

second stems from the definition of f , the price-dividend ratio.

Proof. Under the transversality condition (C.7), the conditions to apply

Ito’s lemma are satisfied. Applying the product rule to P = f · D gives

dP = df ·D+ dD · f + df · dD. A second application of Ito’s lemma, this time

to the definition of f = f(x) yields:

df =
∑
k

fk dxk +
1

2

∑
k,l

fkldxk dxl

=
∑
k

fkμk dt+
1

2

∑
kl

fklρklσkσl dt+
∑
k

fkσk dzk.

To deduce (C.11), first plug in dP into the definition of the return

dR =
dP +Ddt

P
=

df

f
+

dD

D
+

1

f
dt+

df · dD
f ·D

and then expand this expression using df :

dR =
1 +
∑

k fkμk +
1
2

∑
kl fklρklσkσl +

∑
k fkρkDσkσD

f
dt

+μD dt+
1

2
σ2
D dt+

∑
k fkσkdB

k

f
+ σD dzD.

Equating coefficients completes the proof.
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