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Abstract

How do option and equity markets interact with each other? This is the central

question that is answered from three different angles in this dissertation.

The first Chapter discusses how option-implied information is incorporated into

equity markets. Based on a novel rescaled option-implied Value-at-Risk (rVaR) mea-

sure, it is shown that option-implied information is priced differently depending on

whether it is based on options with strikes close to the current price of the underlying

or far-out-of-the-money options. The findings provide novel insights in the joint inter-

action between option and equity markets and help to explain contradictory results

in previous studies.

The second chapter provides an in-depth analysis of how to estimate risk-neutral

moments robustly. A simulation and an empirical study show that estimating risk-

neutral moments presents a trade-off between (1) the bias of estimates caused by

a limited strike price domain and (2) the variance of estimates induced by micro-

structural noise. The best trade-off is offered by option-implied quantile moments

estimated from a volatility surface interpolated with a local-linear kernel regression

and extrapolated linearly.

The third chapter expands volatility targeting to option strategies. The chap-

ter shows that option trading strategies can be managed by increasing exposure if

volatility is low and reducing exposure if volatility is high to achieve a constant risk

exposure over time. These volatility controlled option strategies generate econom-

ically and statistically significant alphas over their unmanaged counterparts, have

reduced maximum drawdowns, lower downside risk, and more normal return distri-

butions.
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Zusammenfassung

Wie interagieren Options und Aktienmärkte miteinander? Die vorliegende Dis-

sertation beantwortet diese Frage aus drei verschiedenen Blickwinkeln.

Das erste Kapitel diskutiert wie Informationen aus Optionsmärkten in Aktienmärkte

inkorporiert werden. Basierend auf einem neuen Options-implizierten Value-at-Risk

(rVaR) Mass, wird gezeigt, dass Information aus Optionsmärkten anders in Ak-

tienmärkte eingepreist wird abhängig davon ob rVaR von Optionen mit Ausübungspreisen

nahe des aktuellen Aktienpreises oder von Optionen die weit aus dem Geld sind

geschätzt wird. Die Ergebnisse liefern neue Erkenntnisse über die gemeinsame In-

teraktion von Options und Aktienmärkten und helfen widersprchliche Ergebnisse aus

vorherigen Studien zu erklären.

Das zweite Kapitel enthält eine detaillierte Analyse der Messmethoden von risiko-

neutralen Momenten. Eine simulations und eine empirische Studie zeigen, dass

die Schätzung risiko-neutraler Momente einen Kompromiss darstellt zwischen (1)

der Verzerrung von Schätzungen, die durch einen begrenzten Ausübungspreisbereich

verursacht wird und (2) der Varianz von Schätzungen, die durch Mikrostruktur-

rauschen verursacht wird. Der beste Kompromiss wird durch Options-implizierte

Quantilmomente geboten, die von einer Volatilitätsoberfläche geschätzt werden, die

mit einer lokal-linearen Kernelregression interpoliert und linear extrapoliert wird.

Das dritte Kapitel zeigt, dass Volatilitätsmanagement auch auf Optionsstrategien

anwendbar ist. Das Risiko von Optionshandelsstrategien kann kontrolliert werden, in-

dem das Investment in eine Strategie erhöht wird, wenn die Volatilität niedrig ist und

das Investment reduziert wird, wenn die Volatilität hoch ist. Diese volatilitätsgemanageten

Optionsstrategien generieren ökonomisch und statistisch signifikante Alphas, haben

kleinere maximale Drawdownsx und normalere Renditeverteilungen.
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Synopsis

Equity and Option markets are inherently connected and in a frictionless perfect

market both equity and option markets would contain the same information. How-

ever, in reality equity and option markets contain different sets of information and

interact with each other. In this dissertation the interaction of equity and option

markets is analyzed from three different perspectives.

The first chapter of the dissertation analyzes the interaction between single stock

option markets and their underlying equity returns. The chapter aims to unify prior

contradictory results on the joint cross-section of option and equity markets. The

results show that option-implied rescaled Value-at-Risk is incorporated into equity

markets differently depending on whether it is based on options with strikes close

to the current price of the underlying or far-out-of-the-money options. If the rVaR

is estimated from options close-to-the-money, i.e., the 50% rVaR, stocks with high

risk outperform stocks with low risk by 0.60% per month. This finding is in line

with downside risk-averse investors and confirms previous findings of, e.g., Conrad,

Dittmar, & Ghysels (2013). In contrast, if rVaR is estimated from far-out-of-the-

money options, i.e., the 90% rVaR, stocks with high risk underperform stocks with

low risk by 0.42% per month, implying that stocks with low risk have higher returns

in the cross-section of returns. These findings are consistent with Rehman & Vilkov

(2012), Schneider, Wagner, & Zechner (2015), and Stilger, Kostakis, & Poon (2016).

Our results show that it is important where option-implied risk measures are mea-

sured and are consistent with investors who prefer reliable information over unreliable

information and explain contradictory results of prior studies.

The second chapter of the dissertation complements the first chapter by providing

an in-depth analysis of how to estimate risk-neutral moments robustly. Information

embedded in option prices is valuable for practitioners, regulators and academics alike.
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Unsurprisingly, an extensive literature has developed around the use of option-implied

information, but there is surprisingly little literature which rigorously examines the

efficiency of different risk-neutral moment estimators. The second chapter of the dis-

sertation closes this gap in the literature. In theory, the estimation of risk-neutral

moments from a continuum of option prices is a straight forward task. However, the

practical estimation of risk-neutral densities from empirical option data is subject

to many biases caused by discrete option strike prices and micro-structural noise.

The second chapter performs a horse race among different estimation techniques for

option-implied central and quantile moments. The results show that risk-neutral mo-

ment estimation is subject to a trade-off between the bias of estimates caused by a

limited strike price domain and the variance of estimates induced by micro-structural

noise. However, two tested methods offer especially favorable bias-variance trade-

offs. First, model-free quantile moments estimated from a local-linear kernel regres-

sion with linear extrapolation have only a small bias even under narrow domains and

are only moderately affected by micro-structural noise. Second, central risk-neutral

moments based on a cubic smoothing spline with horizontal extrapolation are not

strongly affected by micro-structural noise and their bias under narrow domains is

acceptable.

In the third chapter the interaction between index option markets and their un-

derlying index is analyzed. In contrast, the first chapter analyzed the interaction for

single stock options. Investment strategies that combine option and equities, such

as covered call or put-write strategies, are popular investments. They offer returns

comparable to an investment into the underlying at a lower volatility thus generating

high Sharpe ratios (Israelov & Nielsen, 2015a). However, put- and buy-write strate-

gies also carry high levels of downside risk which materializes in occasional crashes.

The third chapter shows that option trading strategies can be managed by increasing

exposure if volatility is low and reducing exposure if volatility is high to achieve a con-

stant risk exposure over time. These volatility controlled option strategies generate
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economically and statistically significant alphas over their unmanaged counterparts,

have reduced maximum drawdowns, lower downside risk, and more normal return

distributions. The chapter also analyzes the drivers of the success of volatility con-

trol in option strategies. Option trading strategies expose investors to the equity

risk premium and the variance risk premium (Coval & Shumway, 2001). Using the

decomposition of Israelov & Nielsen (2015a), the chapter shows that the gains from

volatility control are the most statistically significant for the variance risk premium

return.
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1 Option-Implied Value-at-Risk and the Cross-Section of Stock

Returns

Manuel Ammann & Alexander Feser

Status: Published in the Review of Derivatives Studies

ABSTRACT

Based on a novel rescaled option-implied Value-at-Risk (rVaR) measure, we show

that option-implied information is priced differently depending on whether it is based

on options with strikes close to the current price of the underlying or far-out-of-the-

money options. If the rVaR is estimated from options close-to-the-money, i.e., the

50% rVaR, stocks with high risk outperform stocks with low risk by 0.60% per month,

in line with downside risk-averse investors. In contrast, if rVaR is estimated from far-

out-of-the-money options, i.e., the 90% rVaR, stocks with high risk underperform

stocks with low risk by 0.42% per month, implying that stocks with low risk have

higher returns in the cross-section of returns. Our results are consistent with investors

who prefer reliable information over unreliable information and explain contradictory

results of prior studies.

Keywords: option-implied moments, option-implied skewness, downside risk
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1.1 Introduction

A vast literature documents the predictive power of option-implied information

for equity markets (e.g. Xing, Zhang, & Zhao, 2010; Rehman & Vilkov, 2012; Con-

rad et al., 2013; An, Ang, Bali, & Cakici, 2014; Stilger et al., 2016; Schneider et al.,

2015). Consequently, option-implied information is commonly used by practitioners

and academics alike. However, relatively little is known about the source of this re-

turn predictability.

We document that the pricing of option-implied information is dependent on the

moneyness of the underlying options. In particular, we find that option-implied in-

formation based on options with strikes close to the current price of the underlying

generates economically sensible premia in the cross-section of returns, i.e., stocks with

higher implied risk have higher returns than stocks with low risk. In contrast, we find

a market anomaly if option-implied information is obtained from far-out-of-the-money

options. In that case, stocks with low implied risk have higher returns than stocks

with high risk.

Our contribution to the literature is twofold: First, we introduce option-implied

rescaled Value-at-Risk (rVaR). Value-at-Risk (VaR) is a popular risk-measure among

practitioners and academics as it is easy to interpret and compute. VaR is essentially

a quantile in the left tail of the distribution of stock returns and can thus also be

obtained from the risk-neutral distribution. The reliance on quantiles to compute

VaR makes it inherently robust to noisy and sparse data, two challenges frequently

encountered when working with option data. More importantly, the VaR at a certain

confidence level depends only on the options relatively close to the corresponding

quantile. For example, a 30 day 90% VaR is estimated from options far in the left

tail of the risk-neutral distribution. In contrast, a 30-day 50% VaR is estimated from

options close to the current strike price. This offers two advantages: First, rVaR

measures are local tail risk measures allowing us to measure tail risk from a spe-
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cific set of options. Second, their local construction ensures that rVaR measures are

not affected by the truncation errors that impact VIX and option-implied skewness,

which are based on infinite sums of options Barone Adesi (2016). Moreover, another

major advantage of risk-neutral VaR measures over risk-neutral central moments is

that they are less affected by the change of measure at short horizons making the risk-

neutral VaR is closer to the real-world VaR. Barone Adesi (2016). We rescale VaR

because it is strongly dependent on the level of volatility. Rescaling is necessary as

option-implied volatility has seasonal patterns, for example before the announcement

of earnings and major news (e.g. Jin, Livnat, & Zhang, 2012; Lucca & Moench, 2015).

Second, and more importantly, we contribute to the literature by showing that

option-implied information has two distinct pricing effects depending on the money-

ness of the underlying options. To the best of our knowledge, this is the first study

that documents that information from the option markets is not incorporated homo-

geneously into the equity markets. Instead, investors have informational preferences

for information obtained from options with reliable price data close-to-the-money

while disregarding information from far-out-of-the-money options. In our study, we

analyze the pricing of option-implied information based on rVaR. If the rVaR is es-

timated from options close-to-the-money, stocks with higher implied risk outperform

stocks with lower implied risk. For example, a portfolio that is long in the upper

tercile of stocks sorted on the 50% rVaR and short in stocks in the lower tercile yields

a monthly return (t-statistic) of 0.60% (4.51) per month. This finding is in line with

downside-risk averse investors (e.g. Lettau, Maggiori, & Weber, 2014). In contrast, if

rVaR is estimated from far-out-of-the-money options, the pricing effect reverses and

stocks with low implied risk outperform stocks with high implied risk. For example,

a High-minus-Low (HML) portfolio sorted on the 90% rVaR yields a monthly return

(t-statistic) of -0.42% (2.90) per month.

Our findings are consistent with investors who prefer information from reliable

3



sources over information embedded in unreliable sources, such as options far-out-of-

the-money. Options with strike prices close to the current price of the underlying are

often relatively liquid and their prices are therefore considered reliable. In contrast,

far-out-of-the-money options are often illiquid and their prices can be stale. There-

fore, information obtained from far-out-of-the-money options can be viewed as less

reliable and is potentially neglected by investors, despite containing valuable informa-

tion. Research by Chakravarty, Gulen, & Mayhew (2004) and Augustin, Brenner, &

Subrahmanyam (2015) shows that far-out-of-the-money options contain valuable in-

formation. Chakravarty et al. (2004) and Augustin et al. (2015) argue that informed

traders prefer to trade in out-of-the-money options as they offer greater leverage.

Some information is thus incorporated into far-out-of-the-money option prices before

it is incorporated into the stock market. This explanation is consistent with the find-

ings of Stilger et al. (2016) and Gkionis, Kostakis, Skiadopoulos, & Stilger (2018).

Stilger et al. (2016) show that the anomaly is particularly pronounced among over-

valued stocks that are difficult to sell short. If an insider possesses information about

the true (lower) valuation of such a company, buying far-out-of-the-money put op-

tions is a viable strategy as they offer greater leverage and protect the investor from

margin calls before the true valuation is released, e.g. at the next earnings announce-

ment. Our argumentation hinges on the idea that investors neglect information in

far-out-of-the-money options even though valuable information is contained in their

prices. The observed market anomaly of stocks sorted on the 90% rVaR is consistent

with a combination of exploitable information in far-out-of-the-money options and

the informational preference for close-to-the-money information.

Our hypothesis that the findings are driven by investors that prefer reliable over

unreliable information implies that the pricing effect should be largest if the informa-

tion from close-to-the-money and far-out-of-the-money options is contradictory, i.e.

the 50% rVaR implies a high risk and the 90% rVaR implies a low risk. We test

this implication of our hypothesis in a double sort on the 50% and 90% rVaR. The
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results show that the diagonal High-Low minus Low-High portfolio yields a monthly

return of 1.14% with a t-statistic of 4.83. In contrast, if stocks with a low disagree-

ment between close-to-the-money and far-out-of-the-money options are traded, i.e

the High-High minus Low-Low diagonal portfolio, the return decreases to 0.35% per

month.

The two different pricing effects of option-implied information are distinct from

each other. We find that the pricing of risk measures based on far-out-of-the-money

options, such as the 90% rVaR, is persistent for up to 6 months. In contrast, the

majority of the return of risk measures based on options close-to-the-money occurs

within 5 days of portfolio formation. This finding shows that the information from

close-to-the-money options is incorporated into the prices of the underlying at a much

faster rate.

Furthermore, our results provide an explanation for contradictory results on the

pricing of option-implied skewness in previous studies. Investors are downside risk-

averse (e.g. Lettau et al., 2014). Therefore, stocks that exhibit a higher level of

downside risk than upside potential (left-skewed) should carry a premium in the

cross-section of returns. Even though there is plenty of evidence that stocks with

more negatively skewed historical returns carry a risk premium (e.g., Kraus & Litzen-

berger, 1976; Harvey & Siddique, 2000), the literature does not agree on the premium

of stocks with left-skewed risk-neutral distributions. Conrad et al. (2013) find that

left-skewed stocks have a higher return than right-skewed stocks. However, Rehman

& Vilkov (2012), and Stilger et al. (2016) find that left-skewed stocks have signifi-

cantly lower returns than right-skewed stocks. These contradictory findings constitute

a puzzle of risk-neutral skewness pricing. All studies rely on the option-implied mo-

ments of Bakshi, Kapadia, & Madan (2003) but implement them differently. The

study of Conrad et al. (2013) relies to a larger extend on traded and relatively liquid

options. In contrast, the studies of Rehman & Vilkov (2012) and Stilger et al. (2016)
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extrapolate the implied volatility surface and thus rely to a larger extent on the in-

formation content of far-out-of-the-money options. The findings of these studies are

consistent with our results. Conrad et al. (2013) appear to measure skewness from

close-to-the-money options and thus find an effect consistent with the pricing of 50%

rVaR. In contrast, Rehman & Vilkov (2012) and Stilger et al. (2016) find an effect

which is consistent with the pricing of 90% rVaR.

Our work is of economic importance because it shows how information from op-

tion markets is incorporated into equity prices. If investors receive information from

multiple options, they will focus on information obtained from more reliable options.

Therefore, even if information from far-out-of-the-money options exists, investors will

still prefer to rely on information from options closer to the money. This behavior

allows market inefficiencies, such as in Rehman & Vilkov (2012), Schneider et al.

(2015), and Stilger et al. (2016), to persist even in a sample of S&P 500 stocks. This

preference for reliable information is therefore a soft limit to arbitrage persisting even

among large stocks. Traders searching for arbitrage opportunities should therefore

attempt to trade on competing information where one source of information is rela-

tively more reliable, but both sources contain valuable information. Previous work

in this area delivers explanations for the existence of the momentum or the book-to-

market effect. However, in contrast to our study, past studies usually assume that

information uncertainty is related to firms. For example, G. Jiang, Lee, & Zhang

(2005) and Zhang (2006) provide evidence that the momentum effect is particularly

pronounced for firms with high information uncertainty. Daniel & Titman (2006)

show that the book-to-market value ratio generates return predictability because it

proxies for the past intangible return of a company which is not priced.

Moreover, we contribute to the literature on the pricing of option-implied informa-

tion by providing an explanation for contradictory results of previous studies. Conrad

et al. (2013) sort portfolios on the central risk-neutral moments of Bakshi et al. (2003)
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and find that low skewness stocks earn a premium. They motivate their findings by

the theoretical model of Barberis & Huang (2008) who argue that investors with

cumulative prospect theory preferences demand securities with right-skewed payoffs

(lottery stocks). Bali & Murray (2013) create skewness assets from portfolios of op-

tions which are statically delta and vega hedged and find that skewness is negatively

related to returns. Therefore, their approach is related to the skewness risk premium

of Kozhan, Neuberger, & Schneider (2013). Rehman & Vilkov (2012) and Stilger

et al. (2016) sort portfolios on the risk-neutral moments of Bakshi et al. (2003) esti-

mated from an extrapolated implied volatility smile but find that high skewness stocks

carry a premium. Both studies show that option traders are able to identify overval-

ued stocks and that short-sale constraints increase the effect of risk-neutral skewness

on future stock returns, consistent with a limits of arbitrage argument (Shleifer &

Vishny, 1997). Gkionis et al. (2018) extend the results of Stilger et al. (2016) and

find that risk-neutral skewness also captures upside information in stocks. Schnei-

der et al. (2015) confirm the results of Rehman & Vilkov (2012) and Stilger et al.

(2016). They show theoretically that skewness is linked to credit risk and to low

risk anomalies such as betting-against-beta (Frazzini & Pedersen, 2014) or the low

volatility anomaly (Ang, Hodrick, Xing, & Zhang, 2006, 2009). Xing et al. (2010)

use the slope of the implied volatility surface as a proxy for skewness and find that

stocks with the steepest slopes underperform stocks with flat slopes. They motivate

their results by informed trading and demand-based option pricing as in Garleanu,

Pedersen, & Poteshman (2009).

The paper proceeds as follows. Section 1.2 presents the data used in the study.

Section 1.3 introduces rVaR and describes the estimation procedure from option data.

Section 1.4 presents our main empirical results. Section 1.5 analyzes the robustness

of our results. Section 1.6 concludes.
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1.2 Data

Daily option data of all S&P500 constituents is sourced from the OptionMetrics

databases (provided by Wharton Research Data Service) for the sample time period

from January 1996 to August 2015. The Volatility Surface database contains implied

volatilities with fixed maturities and fixed deltas. Implied volatilities are reported

for (absolute) deltas of 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70,

0.75 and 0.80. OptionMetrics only reports implied volatilities if there is sufficient

underlying option data to compute it. Our results are based on a maturity of 30

days. Volume and open interest data of options is also sourced from the Option-

Metrics volume database. Option data is downloaded for the S&P 500 constituents

from 1996-2015 on a daily basis.

Price and return data is downloaded from the Center for Research in Security

Prices (CRSP). The CRSP value-weighted US equity market index is used as a mar-

ket proxy. Risk factors of the Fama & French (2016) five factor model are downloaded

from Kenneth French’s website. S&P500 constituents are obtained from Compustat.

We only include a particular stock-month combination in our sample if the stock is

part of the S&P500 at the time of portfolio creation.

1.3 Estimating option-implied Value-at-Risk

The extraction of option-implied Value-at-Risk is similar to the extraction of risk-

neutral densities and has recently been outlined by Barone Adesi (2016). The VaR

of a stock is defined as q(1− p) where q is the quantile function and p is the desired

confidence level. To find the VaR at a certain level p, we need to obtain the quantile

function which is the inverse of the cumulative distribution function (CDF). The

seminal paper of Breeden & Litzenberger (1978) outlines the theory to obtain the

CDF. The primary reason for the popularity of the Breeden-Litzenberger theorem is

that it does not make an assumption about the price process of stocks and therefore
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allows recovery of the CDF in a model-free way as:

F (ST < K) =erτ
δP

δK
(1)

(2)

where P is the price of a put, r is the risk-free rate, τ is the time to maturity, and

F is the CDF of the underlying under the risk-neutral measure. Hence, the CDF of

the option-implied price distribution can be obtained by estimating the first order

derivative of a put option with respect to the strike price. Once the CDF is obtained

it can be inverted.

While the Breeden-Litzenberger theorem provides an elegant theoretical approach

to obtain the risk-neutral distribution, it requires a continuum of option prices to

compute the first order derivative. However, real-world option data of single stock

equities is often sparse, spanning a narrow domain with large gaps between strike

prices. Therefore, estimating the risk-neutral cumulative density function reliably

requires to interpolate between the known strike prices, and to extrapolate outside

of the observed strike-price domain. We interpolate between strikes with a cubic

smoothing spline and extrapolate horizontally as in Carr & Wu (2009) or Rehman

& Vilkov (2012) which is the standard practice in the literature. Horizontal extrap-

olation is popular as it is a simple and robust method that leads to relatively stable

estimates over time. Moreover, horizontal extrapolation of the volatility smile as-

sumes that the volatility smile is flat beyond the observed strike-price domain. This

assumption thus effectively adds the tails of a normal distribution to the observed

part of the risk-neutral distribution. To make sure that our results do not depend on

this assumption, we also present a different implementation in Section 1.5.

Our estimation strategy is as follows: We begin by filtering out all options with an

absolute delta larger than 0.55 and options with negative implied volatility. Based on
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the remaining options, we proceed by interpolating the implied volatility surface with

a cubic spline and extrapolate the volatility smile horizontally over a log-moneyness

range from −5 to +5 with a spacing of 1 cent between strikes. It is important to note

that options of single equities are American options, but the Breeden & Litzenberger

(1978) theorem holds for European options only. We follow the standard approach in

the literature and convert the implied volatility smile of American options into Eu-

ropean option prices (e.g., Carr & Wu, 2009; Rehman & Vilkov, 2012). Tian (2011)

analyzes the bias introduced by this procedure and finds that the bias is small for

out-of-the-money options. Moreover, using American option data introduces another

rarely discussed challenge. The put-call parity only holds for European options and

thus implied volatilities of American put and call options close-to-the-money often

diverge. Simply joining the implied volatility at-the-money will introduce a jump in

most cases which leads to instable results. To avoid this issue, we overlay the implied

volatilities of put and call options by filtering out options with an absolute delta larger

than 0.55 and not, as usually, by filtering out in-the-money options. We differentiate

the option prices obtained from our inter- and extrapolation scheme numerically by

centered differences. This provides us with a dense set of point estimates of the CDF.

We convert strikes to the natural logarithm of moneyness to ensure that we are esti-

mating return distributions and not price distributions. Moreover, in some cases the

estimated CDF is not monotonic leading to negative PDFs. We follow the suggestion

of Aı̈t-Sahalia & Lo (1998) and run an isotonic regression on the CDF to ensure it

is monotonic. Ensuring monotonicity is important as horizontal extrapolation some-

times leads to non-monotonic CDFs at the end points of the observable strike prices.

Finally, we interpolate our dense set of point estimates linearly to find the exact lo-

cation of the quantiles from 0.05 to 0.95 in 0.05 steps and estimate option-implied

rVaR as:

rV aR(p) = − q(1− p)

q(0.75)− q(0.25)
(3)
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where q is the quantile function. Option-implied rVaR is the rescaled Value-

at-Risk. It is necessary to rescale the VaR to remove the influence of changes in

volatility. An increase in volatility automatically increases the rVaR as the distribu-

tion is stretched. The influence of volatility on VaR is particularly large for quantiles

that are further in the tail. For example, the correlation between the implied 30-day

5% VaR and Bakshi et al. (2003) (BKM) implied volatility is 0.93. In contrast, the

correlation between implied 30-day 5% rVaR and BKM implied volatility is -0.004.

To make sure that our results are not driven by patterns in volatility, such as the

volatility drift before news announcements (e.g. Jin et al., 2012; Lucca & Moench,

2015), we rescale VaR. Note that we choose to rescale with the inter-quartile range

to make our measure more robust to outliers. However, our results are unaffected

by the choice of the scaler and in Section 1.5 we also provide results scaled with

option-implied volatility. We also multiply the rVaR with −1 and therefore a higher

rVaR corresponds to a higher tail risk. The estimation procedure is perfomed daily

for all stocks in our sample, but we keep only the last observation in each month.

Furthermore, we choose to omit the maturity of rVaR and write e.g. 90% rVaR in-

stead of 30-day 90% rVaR to increase readability. All results are based on options

with a maturity of 30 days.

rVaR is a scale free measure of downside risk, i.e. it measures how far a certain

quantile is shifted to the left. A high rVaR thus corresponds to a high risk. The in-

terpretation is similar to that of the regular Value-at-Risk. For example, the 30-day

95% rVaR indicates the maximum rescaled loss with 95% certainty over a period of 30

days. However, unlike the classic VaR, rVaR provides a volatility invariant measure

of tail risk, such as skewness or kurtosis. After the estimation and merging of data we

are left with 926 firms which were members of the S&P 500 during the sample period

with an average of 468 firms per month. The firms come from a broad spectrum of

industries with 110’467 firm-month combinations. We also estimate the moments of

Bakshi et al. (2003) from the same volatility smile.
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Table 1: Summary statistics of option-implied rVaR

This table displays descriptive statistics of option-implied rescaled Value-at-Risk
(rVaR) estimated from 30 day options at different quantiles. Option-implied rVaR

is defined as − q(1−p)
q(0.75)−q(0.25)

where q is the quantile function and p is the desired

percentile. For example, the 95% rVaR corresponds to the common 30 day 95%
Value-at-Risk rescaled with the interquartile range. The sample contains 926 stocks
and spans the period between January 1996 and August 2015 with a total of 110’467
month-company combinations.

Mean Std. min 25% 50% 75% max

50% rVaR -1.74 2.98 -9.40 -3.71 -1.98 0.22 5.02
55% rVaR 0.79 3.23 -7.39 -1.66 1.10 3.15 8.00
60% rVaR 3.71 3.77 -5.23 1.46 4.37 6.31 11.89
65% rVaR 7.33 4.29 -3.55 5.35 8.10 10.11 15.93
70% rVaR 11.43 4.54 -2.63 9.52 12.14 14.38 20.11
75% rVaR 15.79 4.85 -1.00 13.72 16.53 18.87 24.94
80% rVaR 21.76 6.02 2.69 18.47 22.65 26.59 30.90
85% rVaR 30.74 6.37 5.83 30.55 32.64 34.17 37.81
90% rVaR 39.92 5.26 10.16 38.79 40.70 42.42 47.56
95% rVaR 52.15 3.70 41.13 49.95 52.14 54.26 63.67

Summary statistics for option-implied moments are provided in Table 1. The

mean of the rVaR increases from -1.74% to 52.15% as the confidence level increases

from 50% to 95%. Our rVaR measure contains no visible outliers and the standard

deviation of all confidence levels is low compared to the mean. For example, the

standard deviation of the 95% rVaR is 3.70% with a mean of 52.15%.

1.4 Empirical results

In this section we present our main empirical findings. We document that the

pricing of option-implied information is dependent on the moneyness of the options

leading to two distinct pricing phenomena. Our results are consistent with investors

that prefer reliable over unreliable information. Consequently, investors rely on in-

formation obtained from options close-to-the-money and disregard information from
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far-out-of-the-money options. Our findings are also consistent with the observed puz-

zle of risk-neutral skewness and deliver an explanation for the contradictory results

of previous studies (e.g., Conrad et al., 2013; Stilger et al., 2016).

1.4.1 Option-implied rVaR

At the end of the last trading day of each month all current members of the

S&P 500 are sorted into three tercile portfolios based on their 30 day option-implied

rVaR with varying confidence levels. We begin with the 95% rVaR and decrease the

confidence level in 5% steps until we reach the 50% rVaR. The portfolio sorts are

independent of each other and each sort is performed on the entire sample. With this

strategy we are able to capture information content from different areas of the implied

volatility surface because rVaR is only dependend on options close to the particular

percentile. A higher confidence level of rVaR is estimated from smaller percentiles,

i.e. the 95% rVaR is based on the 5th percentile, while the 50% rVaR is based on

the 50th percentile. Consequently, higher confidence levels are estimated from put

options that are further out-of-the-money. We use breakpoints of 0.33 and 0.67.

The results in Table 2 show the portfolio returns over the next month. The aver-

age return of the equal-weighted HML portfolio increases from -0.37% per month to

0.61% per month as the confidence level decreases from 95% to 50%. Furthermore,

the t-statistic changes its sign from -2.37 to 3.95. The results uncover two clearly dis-

tinct pricing effects. Stocks sorted on rVaRs with confidence levels larger than 80%

have a significantly negative HML return, i.e. stocks with lower risk carry a higher

return which is inconsistent with downside risk-averse investors. In contrast, stocks

with confidence levels smaller than 75% have a significantly positive HML portfolio

return, i.e. stocks with higher risks carry a higher return which is consistent with

downside risk-aversion. This finding is interesting because it shows that information

from the option market is not incorporated homogeneously into the equity markets.
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Instead, information from the center of the risk-neutral distribution is incorporated

differently than information from the tail of the risk-neutral distribution. Prices of

options close-to-the-money are usually considered reliable as they have low bid-ask

spreads and are liquid. In contrast, information obtained from non-traded options

priced by extrapolating the implied volatility smile is considered as unreliable and

is therefore not incorporated into option prices. The returns of the HML portfolio

are sizable, a 90% rVaR sorted HML portfolio generates a monthly return of -0.36%,

while an 50% rVaR sorted portfolio generates a monthly return of 0.61%.

The observed effect becomes even stronger for value-weighted portfolios. A value-

weighted HML portfolio sorted on 90% rVaR has a monthly return of -0.42% with

a t-statistic of -2.90. In contrast, a value-weighted HML portfolio sorted on 50%

rVaR has a return of 0.66% with a t-statistic of 4.51. Moreover, the observed pricing

effects persist after controlling for the Fama & French (2016) five factor model and

the t-statistics even increase.

These findings are consistent with our explanation that investors prefer to rely

on information from options close-to-the-money. Information obtained from traded

options in the center of the distribution is reflected in the cross-section of returns. If

the rVaR is estimated from options in the center, we observe that riskier stocks carry

a premium consistent with downside risk-averse investors. In contrast, information

obtained from the extrapolated tail is viewed as less reliable and is thus ignored by

investors despite the information content in far-out-of-the-money options as shown

by Chakravarty et al. (2004) or Augustin et al. (2015). Informed traders prefer to

trade in out-of-the-money options as they offer greater leverage and thus incorporate

information into far-out-of-the-money prices before it becomes apparent to investors

trading in close-to-the-money options or the underlying stock. This combination of

exploitable information in far-out-of-the-money options and the informational pref-

erence for close-to-the-money information likely generates the market inefficiency ob-
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served by Rehman & Vilkov (2012), Schneider et al. (2015) and Stilger et al. (2016).

Investors prefer to rely on information generated from liquid options which is believed

to be more reliable. They base their decisions on option-implied information obtained

from option data close-to-the-money. In contrast, far-out-of-the-money options are

often illiquid and might even be based on an extrapolation of the volatility surface.

Their informational content is therefore considered more unreliable.

Furthermore, we observe that the absolute return and t-statistic of the 95% rVaR

sorted HML portfolio is smaller than the return and t-statistic of the 85% rVaR sorted

portfolio. This finding is likely due to the declining quality of option data in the tail

of the distribution. Sorting stocks on option-implied information based on the tail

of the distribution requires that there is exploitable information in these options. If

the underlying price data becomes more unreliable, the results become more noisy

leading to lower t-statistics and lower absolute returns.

Our results also provide a potential explanation for previous contradictory results

in the literature. Conrad et al. (2013) document that left-skewed stocks carry a pre-

mium over right-skewed stocks in the cross-section of returns. In contrast, Rehman

& Vilkov (2012), Schneider et al. (2015) and Stilger et al. (2016) report that right-

skewed stocks carry a premium. Conrad et al. (2013) use heavily filtered raw option

data to estimate risk-neutral moments. This truncates the domain of available option

prices, and their option-implied skewness estimates are strongly dependent on option

prices close-to-the-money. Therefore, Conrad et al. (2013) seem to estimate skewness

from the center and shoulder of the risk-neutral distribution and not from its tails.

Consequently, their dataset is unlikely to include far out-of-the-money options and it

appears plausible that Conrad et al. (2013) do not pick up the effect of skewness in

the tails.

Moreover, our results of 90% rVaR are consistent with Rehman & Vilkov (2012)
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and Stilger et al. (2016) for rVaR with confidence levels larger than 80%. The tradi-

tional central skewness measure places a large weight on changes in probability mass

far in the tail of the distribution. Pearson skewness is defined as E
[
X−µ

σ

]3
. The

X3 term causes the traditional skewness measure to be very sensitive to changes in

probability mass in the tails. Rehman & Vilkov (2012) and Stilger et al. (2016) inter-

polate and extrapolate the implied volatility surface and thus their skewness measure

is strongly dependent on the information contained in far-out-of-the-money options.

The differences in results between Conrad et al. (2013), Rehman & Vilkov (2012) and

Stilger et al. (2016) are consistent with our findings.

1.4.2 Competing information

Our proposed explanation for the occurrence of two distinct pricing effects of

option-implied information implies that the observed effects should amplify if the in-

formation from the tail and center of the distribution are mismatching. If investors

indeed prefer information obtained from close-to-the-money options over information

from far-out-of-the-money options, contradictory information from the tails and cen-

ter should lead to an even stronger pricing effect. We test this idea by performing two

double sorts on 50% rVaR and 90% rVaR. Sorts are performed at the end of the last

trading day every month and portfolios are kept constant in the subsequent month.

The results are presented in Table 3.

Panel A presents the results of first sorting on information from close-to-the-money

options (50% rVaR ) and then sorting on information from far-out-of-the-money op-

tions (90% rVaR). More importantly, we also present the returns of the two diagonal

portfolios. The High-Low minus Low-High portfolio (HL-LH) trades stocks which

have contradictory information implied by the 50% rVaR and 90% rVaR. The port-

folio is long in stocks which have a high 50% rVaR , indicating high risk, and a low

90% rVaR, indicating low risk (top right portfolio). It is short in stocks with low 50%
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rVaR and high 90% rVaR (bottom left portfolio). The return of the HL-LH portfolio

is 1.14% per month with a t-statistic of 4.83. This finding confirms our hypothesis

that the pricing effects are strongest if the two signals are contradictory. If the infor-

mation from close-to-the-money and far-out-of-the-money options disagree, investors

prefer the reliable information source and ignore the information from the tail of the

risk-neutral distribution.

We also create a High-High minus Low-Low (HH-LL) portfolio. The HH-LL port-

folio is formed by taking a long position in the High-High portfolio (bottom right)

containing stocks which have a high 50% rVaR and a high 90% rVaR and shorting

the diagonally opposite Low-Low portfolio (top left) containing stocks which have a

low 50% rVaR and a low 90% rVaR. The HH-LL portfolio yields a monthly return

of 0.35 with a t-statistic of 1.99 which is in line with downside risk-aversion. Fur-

thermore, we can observe that the 90% rVaR anomaly is strongest for stocks with a

high 50% rVaR. This is likely due to more liquid option markets for stocks with a

high option-implied 50% rVaR. If close-to-the-money options indicate a higher risk,

more market participants buy insurance against downside moves providing additional

liquidity thus making the 90% rVaR estimates less noisy.

Panel B shows the results of an inverted sort order. In a first step, we sort on

the option-implied 90% rVaR, and in a second step we sort on the 50% rVaR . The

results are comparable to the observations from Panel A and further confirm our

hypothesis that competing information leads to an even stronger pricing effect. The

HL-LH portfolio yields a monthly return of -0.90% with a t-statistic of -3.33.

1.4.3 The effect of liquidity

The previously observed pricing effect of 90% rVaR requires that there is informa-

tion in the out-of-the-money put options that can be used to predict the cross-section
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Table 3: Competing information

This table presents results of double sorted portfolios. In Panel A (B) stocks are first
sorted into tercile portfolios at the end of each month based on the 30 day 50% (90%)
rVaR and second on the 30 day 90% (50%) rVaR. Portfolios are kept constant for the
next month. The table also displays the returns of the diagonal portfolios High-High
minus Low-Low (HH-LL) and High-Low minus Low-High (HL-LH). Monthly return
data covers the period from February 1996 to August 2015, with a total of 235
monthly observations for all S&P 500 constituents. Returns are value-weighted.
Standard errors are Newey & West (1987) adjusted with five lags. All results, except
t-statistics, are reported in percent.

Panel A: 50% rVaR Diagonal Portfolios
Low Mid High HH-LL HL-LH

9
0
%

rV
a
R Low 0.51 0.87 1.51

Mid 0.48 0.91 1.08
High 0.36 0.79 0.86
HML -0.15 -0.08 -0.65 0.35 1.14
t-Stat -0.73 -0.45 -2.90 1.99 4.83

Panel B: 90% rVaR Diagonal Portfolios
Low Mid High HH-LL HL-LH

5
0
%

rV
a
R Low 0.81 0.44 0.36

Mid 1.05 0.67 0.68
High 1.26 1.15 0.79
HML 0.45 0.71 0.43 -0.02 -0.90
t-Stat 2.28 3.38 2.21 -0.10 -3.33
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of returns. If there is no additional information in the prices of far-out-of-the-money

put options, e.g. because they are too illiquid, no information rent can be gained by

sorting stocks on 90% rVaR. We confirm this intuition by performing a double sort

on three proxies for option market liquidity: First, the liquidity of the underlying

stock measured by Amihud (2002) illiquidity over the past month. The liquidity of

the underlying is strongly related the liquidity of the option market (e.g. Cao & Wei,

2010). Second, the cumulative dollar volume of all put option contracts aggregated

over the past month. Third, the cumulative open interest of all put options on the

last trading day of the month. The results are presented in Table 4. Panel A presents

the results for 50% rVaR. The results show that the predictive power of 50% rVaR

does not interact with any liquidity proxies. For example, the double sort on put

volume and 50% rVaR reveals that the HML portfolio sorted on 50% rVaR for stocks

within the lowest 33% of put option volume has a return (t-statistic) of 0.53% (5.14).

The return and t-statistic do not change significantly for stocks in the mid and upper

third subsets of put volume where the HML portfolios have a return (t-statistic) of

0.66% (3.93) and 0.57% (3.10) respectively. The same finding can be observed if the

first sort is performed on Amihud (2002) illiquidity or put open interest. This finding

is in-line with our expectations. 50% rVaR is based on options close-to-the-money

which are reasonably liquid within our sample of S&P500 stocks and therefore always

contain enough extractable information.

The results in Panel B show the results of double sorts for 90% rVaR. We observe

that the observed market inefficiency is strongest for stocks with relatively liquid op-

tion markets and disappears for stocks with illiquid option markets. Double sorting

on put option volume reveals that the return predictability is driven by those stocks

with liquid option markets. The HML portfolio for those stocks with a high put

option volume yields a return of -0.42% per month with a t-statistic of -2.25, com-

pared to an insignificant return of -0.20% for stocks with a low put option volume.

The results are comparable among the three proxies for option market liquidity and
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confirm that option-implied information obtained from far-out-of-the-money options

can only be traded successfully if the option market is liquid enough.

1.4.4 Interactions with risk-neutral moments

We are interested how our results based on the rVaR measure compare to other

studies that rely on the option-implied moments of Bakshi et al. (2003) such as

Rehman & Vilkov (2012) and Stilger et al. (2016). Our interest is sparked by the

observation that the cross-sectional pricing of 90% rVaR is similar to the findings of

Rehman & Vilkov (2012), Stilger et al. (2016), and Schneider et al. (2015). In con-

trast, the results of 50% rVaR are comparable to those in Conrad et al. (2013). We

expect that our results of 90% rVaR are more closely related to the results of Rehman

& Vilkov (2012) and Stilger et al. (2016) because both studies extrapolate the implied

volatility surface. Skewness and kurtosis are very sensitive to changes in the tail of

the probability distribution as they include a power of 3 and 4 respectively. Thus,

any option-implied skewness or kurtosis measure relies strongly on the information

contained in far-out-of-the-money options. In contrast, Conrad et al. (2013) filter out

all options with a bid below 50 cent and do not extrapolate the implied volatility

surface. Therefore, their skewness and kurtosis measures are much more dependent

on options which are relatively close-to-the-money which explains why their results

are comparable to the findings of our 50% rVaR measure.

To further study the relation between the option-implied moments of Bakshi et al.

(2003) and rVaR, we perform double sorts by first sorting on option-implied moments

and then on rVaR. The option-implied moments of Bakshi et al. (2003) are estimated

from the same volatility surface as our rVaR measures which is extrapolated horizon-

tally and interpolated with a cubic spline similar to Carr & Wu (2009) and Rehman

& Vilkov (2012). The results of the double sorts are presented in Table 5. Panel A

shows the results of 50% rVaR double sorts. Our 50% rVaR measure is not related to
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Table 4: The effect of liquidity

This table presents results of double sorted portfolios. At the end of each month
stocks are first sorted on the liquidity of their markets. More specifically, we sort
on Amihud (2002) illiquidity of the underlying stock in the past month (columns
1–3), dollar volume of all traded put options over the last month, and cumulative
open interest (columns 7–9) of all traded put options on the last trading day.
Within each tercile portfolio stocks are then sorted on their 50% rVaR (Panel A)
or 90% rVaR (Panel B). Portfolios are kept constant for the next month. Monthly
return data cover the period from February 1996 to August 2015, for a total of 235
monthly observations for all S&P 500 constituents. Returns are value-weighted.
Standard errors are Newey & West (1987) adjusted with five lags. All results, except
t-statistics, are reported in percent.

Panel A: 50% rVaR

Illiquidty Put volume Put open interest
Low Mid High Low Mid High Low Mid High

5
0
%

rV
a
R Low 0.42 0.75 0.73 0.66 0.63 0.46 0.75 0.56 0.44

Mid 0.77 0.96 0.94 0.98 0.84 0.77 0.94 0.96 0.73
High 0.97 1.20 1.23 1.20 1.29 1.03 1.19 1.32 1.08
HML 0.55 0.45 0.50 0.53 0.66 0.57 0.43 0.76 0.63
t-Stat 3.17 2.82 3.42 5.14 3.93 3.10 3.47 4.60 3.42

Panel B: 90% rVaR

Illiquidty Put volume Put open interest
Low Mid High Low Mid High Low Mid High

9
0
%

rV
a
R Low 1.00 1.09 1.07 1.08 1.14 0.97 1.06 1.09 0.95

Mid 0.69 0.94 0.85 0.87 0.95 0.73 0.82 0.94 0.78
High 0.53 0.87 0.96 0.88 0.68 0.55 0.90 0.64 0.54
HML -0.47 -0.22 -0.12 -0.20 -0.46 -0.42 -0.16 -0.45 -0.41
t-Stat -3.06 -1.78 -0.70 -1.79 -3.07 -2.25 -1.33 -3.14 -2.14
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option-implied skewness and kurtosis of Bakshi et al. (2003). For example, the return

(t-statistic) of the HML portfolio sorted on 50% rVaR for stocks in the low kurtosis

subset is 0.61% (2.42). Among high kurtosis stocks the return (t-statistic) of the HML

portfolio is 0.66% (2.86). The results are slightly weaker for option-implied skewness

indicating that option-implied skewness captures some of the information contained

in the 50% rVaR measure. Indeed, the difference between median and mean is some-

times used as a proxy for skewness. The mean of the risk-neutral distribution is the

same for all stocks and thus the measures based on the median of the risk-neutral

distribution may be related to skewness. The return (t-statistic) of the HML portfolio

sorted on 50% rVaR for stocks in the low skewness subset is 0.40% (2.63). In the high

skewness subset the return (t-statistic) of the HML portfolio is 0.39% (1.91). The

results show that 50% rVaR is not strongly related to the option-implied moments of

Bakshi et al. (2003) and the pricing of the center of the risk-neutral distribution thus

constitutes a separate asset pricing phenomenon.

In contrast, 90% rVaR is strongly related to option-implied skewness and kurtosis.

Panel B presents the results for 90% rVaR double sorts. Option-implied kurtosis

completely subsumes 90% rVaR. The returns of the HML portfolios which are first

sorted on option-implied kurtosis are -0.13%, 0.07%, and 0.24% for stock in the low,

mid, and high kurtosis subsets respectively. The results are similar when the first

sort is performed on option-implied skewness. The effect vanishes for the low and

mid skewness subset. However, for stocks with relatively high skewness the 90%

rVaR anomaly persists and even becomes stronger yielding a return (t-statistic) of

-0.51% (-2.40). The results confirm our intuition that 90% rVaR is closely related to

skewness and that it is a measure of tail risk, therefore providing further evidence that

Rehman & Vilkov (2012) and Stilger et al. (2016) pick up the pricing effect from far-

out-of-the-money put options. In contrast, Conrad et al. (2013) use the information

of close-to-the-money options.

23



Table 5: Interaction with risk-neutral moments

This table presents results of double sorted portfolios. At the end of each month
stocks are first sorted on the option-implied moments of Bakshi et al. (2003). More
specifically, we sort on option-implied skewness (columns 1–3) and option-implied
kurtosis (columns 4–6) . Within each tercile portfolio stocks are then sorted on their
50% rVaR (Panel A) or 90% rVaR (Panel B). Portfolios are kept constant for the
next month. Monthly return data cover the period from February 1996 to August
2015, for a total of 235 monthly observations for all S&P 500 constituents. Returns
are value-weighted. Standard errors are Newey & West (1987) adjusted with five
lags. All results, except t-statistics, are reported in percent.

Panel A: 50% rVaR

Impl. skewness Impl. kurtosis
Low Mid High Low Mid High

5
0
%

rV
a
R Low 0.34 0.66 0.88 0.79 0.58 0.31

Mid 0.50 0.79 1.07 1.17 0.73 0.65
High 0.73 1.14 1.28 1.40 0.91 0.96
HML 0.40 0.48 0.39 0.61 0.34 0.66
t-Stat 2.63 1.89 1.91 2.42 1.93 2.86

Panel B: 90% rVaR

Impl. skewness Impl. kurtosis
Low Mid High Low Mid High

9
0
%

rV
a
R Low 0.66 0.96 1.42 1.13 0.65 0.61

Mid 0.53 0.84 1.04 1.31 0.84 0.70
High 0.51 0.87 0.91 0.99 0.72 0.38
HML -0.15 -0.09 -0.51 -0.13 0.07 -0.24
t-Stat -0.80 -0.53 -2.40 -0.45 0.32 -1.24
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1.4.5 Interactions with low-risk anomalies

Schneider et al. (2015) link beta- and volatility-based low-risk anomalies, such as

the low-beta anomaly (Frazzini & Pedersen, 2014), to option-implied skewness. They

argue that standard asset pricing models fail for stocks with high downside risk as

they cannot capture the non-linear relation between market returns and stock returns

induced by downside risk. Therefore, these anomalies yield a skewness risk premium.

We are therefore interested in the relation between our results, realized beta, and

volatility. We estimate realized volatility as a rolling 1 year standard deviation com-

puted from daily returns and beta from a rolling covariance matrix over a 5 year

window and a 1 year standard deviation of market returns as in Frazzini & Pedersen

(2014). The results are presented in Table 6.

Panel A shows the results for double sorts of 50% rVaR. The results show that

the 50% rVaR pricing is stronger for mid and high levels of realized volatility than

for low realized volatility stocks. HML portfolios of mid and high realized volatility

stocks yield a monthly return (t-statistic) of 0.71% (3.40) and 0.54% (2.05) respec-

tively. For low realized volatility the HML return (t-statistic) is 0.25% (1.53). A

possible explanation for this finding is that the Low-Low portfolio generates a rel-

atively high return of 0.63% per month which could be due to a low-risk anomaly.

The results for the double sort of rolling beta and 50% rVaR show a similar pattern.

The return of the HML portfolio is highest for mid and high beta stocks with returns

(t-statistics) of 0.60% and (2.98) and 0.64% (3.03). In contrast, the return of the

HML portfolio for the subset of low beta stocks is 0.49% (3.31). In conclusion, the

50% rVaR pricing seems to be largely unaffected by low-risk anomalies, except for the

low risk subsets where the low-risk anomalies partially offset the pricing of 50% rVaR.

The results for 90% rVaR can be found in Panel B. In contrast to 50% rVaR,

90% rVaR interacts more strongly with realized volatility and beta. The anomaly

is particularly strong among low risk stocks which is consistent with the findings of
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Schneider et al. (2015). For example, the return (t-statistic) of the HML portfolio

is -0.46% (-3.21) for low beta stocks. In contrast, the HML portfolio for the subset

of high beta stocks has a return (t-statistic) of -0.32% (-1.40). A similar observation

can be made for realized volatility. The effect is the most pronounced for low realized

volatility stocks and insignificant for mid and high beta stocks. The results show

that 90% rVaR is stronger among low risk stocks. However, both 50% and 90% rVaR

persist when controlling for low-risk anomalies and are thus distinct effects.

1.4.6 Persistence of the return predictability

Conrad et al. (2013) and Rehman & Vilkov (2012) report that the returns from

portfolios sorted on risk-neutral skewness are persistent for subsequent months. There-

fore, we hypothesize that the return of portfolios sorted on rVaR is also persistent.

The persistence of returns allows us to draw further conclusions about the source of

this asset pricing phenomenon. An et al. (2014) argue that the return predictability

in their study is caused by informed traders who prefer to trade in option markets,

thus incorporating information in the option market first. Their model is similar to

the model of Easley, O’Hara, & Srinivas (1998). If our results are indeed driven by

informed traders, the return predictability should only persist in the first few days

after portfolio formation and should disappear or even reverse afterwards. In contrast

to a micro-structural informed trading explanation, option traders could be able to

identify some underlying fundamental characteristics. Rehman & Vilkov (2012) and

Stilger et al. (2016) show that the return predictability of risk-neutral skewness is

particularly strong among overvalued firms.

In Table 7 we report the returns of portfolios sorted on rVaR 2, 3, 6, and 12

months after their initial portfolio formation. The reported returns are monthly re-

turns in the respective months, not cumulative returns from the formation date. We

also report the return for the first 5 trading days after portfolio formation and the

26



Table 6: Interaction with low-risk anomalies

This table presents results of double sorted portfolios. At the end of each month
stocks are first sorted on other asset pricing phenomena. More specifically, we first
sort 1 year rolling realized volatility (columns 1–3), and rolling beta as in Frazzini &
Pedersen (2014) (columns 4–6) . Within each tercile portfolio stocks are then sorted
on their 50% rVaR (Panel A) or 90% rVaR (Panel B). Portfolios are kept constant
for the next month. Monthly return data cover the period from February 1996 to
August 2015, for a total of 235 monthly observations for all S&P 500 constituents.
Returns are value-weighted. Standard errors are Newey & West (1987) adjusted
with five lags. All results, except t-statistics, are reported in percent.

Panel A: 50% rVaR

Realized volatility Rolling beta
Low Mid High Low Mid High

5
0
%

rV
a
R Low 0.63 0.49 0.59 0.54 0.40 0.42

Mid 0.75 0.93 0.87 0.95 0.78 0.74
High 0.88 1.20 1.14 1.03 1.00 1.06
HML 0.25 0.71 0.54 0.49 0.60 0.64
t-Stat 1.53 3.40 2.05 3.31 2.98 3.03

Panel B: 90% rVaR

Realized volatility Rolling beta
Low Mid High Low Mid High

9
0
%

rV
a
R Low 0.96 1.03 1.03 1.11 0.95 0.94

Mid 0.66 0.68 1.02 0.77 0.72 0.73
High 0.65 0.84 0.64 0.66 0.56 0.62
HML -0.31 -0.18 -0.39 -0.46 -0.39 -0.32
t-Stat -2.41 -0.84 -1.46 -3.21 -2.13 -1.40
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return from the 6th trading day until the end of the first month post formation.

The results show that the return predictability for rVaR measured far in the tail

(85-95% rVaR) is persistent for up to 6 months after portfolio formation. For example,

for 90% rVaR the return of the HML portfolio in the third month after portfolio for-

mation is -0.39% with a t-statistic of -2.25. For subsequent months the average HML

return remains significant up to 6 months after portfolio formation. Furthermore,

the return in the first 5 days after portfolio formation is not statistically significant

if rVaR is computed from far-out-of-the-money options and the effect sets in during

the rest of the month. The return of the 90% rVaR HML portfolio generates a return

(t-statistic) of -0.08% (-1.11) over the first 5 days whereas the return (t-statistic)

over the subsequent trading days is -0.36 (-2.49). This observation is in line with the

results of Rehman & Vilkov (2012) and Stilger et al. (2016). Both studies link the

anomaly to over- or undervaluation of the underlying firms.

In contrast to the pricing of information from far-out-of-the-money options, option-

implied information from options close-to-the-money carries more information for re-

turns over a short time horizon. For example, returns of the HML portfolio sorted

on 50% rVaR yield a return (t-statistic) of -0.03% (-0.18) and 0.18% (1.29) 2 and

3 months after portfolio inception respectively. In fact, most of the effect can be

attributed to the first 5 trading days after the portfolio creation. The return (t-

statistic) of the 50% rVaR HML portfolio during the first 5 days is 0.39% (4.18). In

contrast, the return (t-statistic) during the remainder of the month drops to 0.28%

(2.24) even though the time horizon is much longer. This phenomenon is similar to

the findings of Goncalves-Pinto, Grundy, Hameed, van der Heijden, & Zhu (2016)

who construct a measure based on the difference between option-implied stock price

and traded price. Their measure relies mostly on options close-to-the-money. They

find that the return predictability of their measure is strongest one day after portfolio

formation. Goncalves-Pinto et al. (2016) conclude that their finding is likely related to
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price pressure in the stock market. In conclusion, the results of Table 7 further show

that the return predictability from far-out-of-the-money options is distinct from the

return predictability of close-to-the-money options. The pricing effect of 50% rVaR is

particularly present over short horizons, whereas the predictability derived from 90%

rVaR persistent for up to 6 months.

1.5 Robustness

Measures of option-implied information are difficult to construct reliably. There-

fore, we perform extensive tests to ensure that our results are not driven by our par-

ticular choice of methodology. First, we investigate if the effect is driven by artifacts

in the data which could create the observed effects. Second, we test if our results

persist if we choose a different interpolate and extrapolation methodology. Third,

we scale our option-implied rVaR measure with the square root of option-implied

variance. The robustness checks show that our results are robust to our choice of

methodology.

1.5.1 Correlations between portfolio positions

Our results show that sorting returns on 50% rVaR and 90% rVaR yields results

with opposing signs. The two effects occur over different time horizons and interact

differently with other asset pricing phenomena. However, we want to rule out that

our results are driven by artifacts in the data that “mechanically” create the change

in sign between 50% and 90% rVaR. To ensure that the sorts of 90% rVaR are not

merely inverted sorts of 50% rVaR, we compute Spearman’s rank correlation between

the portfolio positions of the stocks. A stock sorted into the upper tercile is assigned

a portfolio position of 1, in the mid tercile 0, and in the lowest tercile -1. If 50%

rVaR and 90% rVaR indeed measure the same effect with different signs, the portfo-

lio positions should be inverted and Spearman’s rank correlation should be close to -1.
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Table 8: Spearman’s Rank Correlation of Portfolio Positions

This table displays the Spearman’s rank correlation of portfolio positions of stocks
sorted on different rescaled Value-at-Risk (rVaR) for the S&P 500 constituents. At
the end of each month stocks are sorted into tercile portfolios with breakpoints of
0.33 and 0.67. Portfolios are kept constant for the next month. Option-implied rVaR
is defined as − q(1−p)

q(0.75)−q(0.25)
where q is the quantile function. We begin by sorting

stocks into buckets based on a value of p = 0.95. We record the portfolio positions
of stocks as 1, 0, and -1 for stocks sorted into the upper, mid, and lowest tercile
respectively. Then we repeat the procedure for p = 0.90. The estimation procedure is
continued for values down to p = 0.50 (the median) in steps of 0.05. Monthly return
data cover the period from February 1996 to August 2015, for a total of 235 monthly
observations. Spearman’s rank correlations and rVaRs are reported in percent.

rVaR 50 55 60 65 70 75 80 85 90

55 80.14 100.00
60 55.02 74.93 100.00
65 23.48 38.43 63.06 100.00
70 0.80 6.01 24.12 59.89 100.00
75 -7.04 -12.81 -5.52 18.20 56.12 100.00
80 -4.67 -9.97 -9.94 -5.93 7.03 35.00 100.00
85 -18.53 -14.24 -11.64 -14.60 -22.27 -23.88 22.29 100.00
90 -19.10 -11.20 -7.28 -11.53 -24.50 -35.32 2.73 66.92 100.00
95 -18.32 -9.55 -5.17 -9.19 -22.99 -36.10 -1.30 58.39 89.96

Table 8 shows Spearman’s rank correlations of portfolio positions of stocks sorted

on different rVaRs. The results show that the observed effects are distinct from each

other. In particular, Spearman’s rank correlation between the portfolio positions ob-

tained from sorts on 50% and 90% rVaR is -19.10% which is relatively low. Moreover,

we can recognize two clear clusters of portfolio positions. One cluster can be observed

for portfolio positions based on 50-60% rVaR where Spearman’s rank correlations are

55.02%, 74.93% and 80.14%. A second cluster can be observed for option-implied

information based on far-out-of-the-money options. Spearman’s rank correlations be-

tween portfolio positions sorted on 85-95% rVaR are 66.92%, 58.39%, and 89.96%.

Therefore, the results support our finding that option-implied information is incorpo-

rated differently into the cross-section of returns, depending on whether it is obtained

from far-out-of-the-money or close-to-the-money options.

32



1.5.2 A different interpolation and extrapolation methodology

To alleviate concerns that our results are driven by our particular choice of in-

terpolation and extrapolation methodology, we repeat the estimation of risk-neutral

moments with different estimators. In particular, we aim for a different extrapola-

tion methodology of the implied-volatility smile. The most common alternative to

horizontal extrapolation is linear extrapolation as described in G. J. Jiang & Tian

(2007). Linear extrapolation is essentially a first order tailor approximation and has

the advantage that it eliminates potential kinks at the last observed strike price.

The slope at the bounds of the observed volatility surface is calculated with respect

to the strike price. However, the main drawback of using linear extrapolation is

that it adds noise to the estimates as the extrapolation is strongly dependent on the

slope of the of the volatility smile at the boundary. Moreover, we follow the proce-

dure of Aı̈t-Sahalia & Lo (1998) who smooth the implied volatility surface with the

local-constant or Nadaraya-Watson kernel estimator. However, in small samples the

local-constant estimator tends to be inaccurate at the boundaries of the domain (e.g.,

Li & Racine, 2004). To avoid under- or over-estimation of the implied volatility at

the boundary, we use the local-linear estimator proposed by Stone (1977) and Cleve-

land (1979). Similar to Aı̈t-Sahalia & Lo (1998) we choose to use a Gaussian kernel

and use leave-one-out cross-validation to select the bandwidth. The results of portfo-

lio sorts on rVaR obtained from our alternative methodology are presented in Table 9.

The results show that our previous results are not dependent on our particular

choice of methodology. The return (t-statistic) of an equal-weighted HML portfolio

sorted on 95% rVaR is -0.33% (-3.41). In, contrast, the return (t-statistic) of a 55%

rVaR HML portfolio is 0.31% (2.29). The results also persist after controlling for

the five factors of Fama & French (2016). The adjusted return (t-statistic) of the

95% rVaR HML portfolio is -0.21% (-2.52) and 0.31 (2.87) for the 55% rVaR HML

portfolio. However, results based on our alternative methodology are slightly weaker

which is likely due to the increased noise of the linear extrapolation. Nevertheless,
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the two distinct effects are still clearly observable and statistically significant.

1.5.3 Scaling with option-implied volatility

We choose to rescale option-implied VaR with the inter-quartile range. However,

our results are unaffected if we instead scale with the square root of Bakshi et al.

(2003) option-implied variance. The results are presented in Table 10.

The results are almost identical to the results in Table 2. The monthly return

(t-statistic) of an equal-weighted HML portfolio sorted on 90% rVaR is -0.36% (-

2.55) on average. Moreover, for 50% rVaR the return (t-statistic) is 0.61% (3.95).

The results again become stronger if portfolios are value-weighted. Furthermore, the

results persist after adjusting returns for the Fama & French (2016) five factor model.

1.6 Conclusion

We analyze the pricing of option-implied information based on a novel option-

implied rescaled Value-at-Risk measure. We show that option-implied information is

incorporated differently into the cross-section of returns depending on whether it is

estimated from far-out-of-the-money or close-to-the-money options. If the rVaR is

estimated from options close-to-the-money, stocks with higher implied risk outper-

form stocks with lower implied risk. For example, a HML portfolio sorted on 50%

rVaR yields a monthly return (t-statistic) of 0.60% (4.51) per month. This finding is

in line with downside-risk averse investors (e.g. Lettau et al., 2014). In contrast, if

rVaR is estimated from far-out-of-the-money options, the pricing effect reverses and

stocks with low implied risk outperform stocks with high implied risk. For example,

a HML portfolio sorted on 90% rVaR yields a monthly return (t-statistic) of -0.42%

(2.90) per month.
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These findings are in line with investors who prefer information from reliable

sources, such as options close-to-the-money, over information embedded in unreli-

able sources, such as options far-out-of-the-money. Information obtained from traded

options in the center of the distribution is reflected in the cross-section of returns,

and is consistent with downside risk-aversion. If the rVaR is estimated from options

close-to-the-money, we observe that riskier stocks carry a premium consistent with

downside risk-averse investors. In contrast, information obtained from the far-out-

of-the-money options is viewed as less reliable and is thus neglected by investors.

However, there is evidence that there is usable information in far-out-of-the-money

options. Chakravarty et al. (2004) and Augustin et al. (2015) argue that informed

traders prefer to trade in out-of-the-money options as they offer greater leverage.

The combination of exploitable information in far-out-of-the-money options and the

informational preference for close-to-the-money information generates the observed

market anomaly. If stocks are sorted on information obtained from far-out-of-the-

money options, stocks with lower implied risk outperform stocks with higher implied

risk, which is not in line with economic intuition.

The observed pricing effect is especially strong if the information from the close-

to-the-money and far-out-of-the-money options is contradictory. This observation is

consistent with investors who prefer information obtained from close-to-the-money

options over information from far-out-of-the-money options. In particular, we per-

form a double sort on 50% rVaR and 90% rVaR and find that the diagonal High-Low

minus Low-High portfolio yields a monthly return (t-statistic) of 1.14 (4.83).

Moreover, our results provide an explanation for contradictory results on the pric-

ing of option-implied skewness in previous studies. Investors are downside risk-averse

and want to be compensated for exposure to expected downside tail-risk. There-

fore, negatively skewed stocks should have a higher return in the cross-section. This

hypothesis is confirmed by Conrad et al. (2013), who find that stocks with nega-
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tive skewness carry a premium compensating investors for the asymmetry of returns.

However, studies by Rehman & Vilkov (2012) and Stilger et al. (2016) present con-

tradictory evidence showing that stocks with high positive skewness earn a premium.

All studies rely on the option-implied moments of Bakshi et al. (2003) but imple-

ment them differently. The study of Conrad et al. (2013) relies on to a larger extend

on traded and relatively liquid options. In contrast, the study of Rehman & Vilkov

(2012) and Stilger et al. (2016) extrapolate the implied volatility surface and thus

rely to a larger extent on the information content of far-out-of-the-money options.

The findings of these studies are consistent with our results. Conrad et al. (2013)

appear to measure skewness from close-to-the-money options and thus find an effect

consistent with the pricing of 50% rVaR. In contrast, Rehman & Vilkov (2012) and

Stilger et al. (2016) find an effect which is consistent with the pricing of 90% rVaR.
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2 Robust Estimation of Risk-Neutral Moments

Manuel Ammann & Alexander Feser

Status: Accepted for publication in the Journal of Futures Markets

ABSTRACT

This study provides an in-depth analysis of how to estimate risk-neutral moments

robustly. A simulation and an empirical study show that estimating risk- neutral

moments presents a trade-off between (1) the bias of estimates caused by a limited

strike price domain and (2) the variance of estimates induced by micro-structural

noise. The best trade-off is offered by option-implied quantile moments estimated

from a volatility surface interpolated with a local-linear kernel regression and extrap-

olated linearly. A similarly good trade-off is achieved by estimating regular central

option-implied moments from a volatility surface interpolated with a cubic smoothing

spline and flat extrapolation.

Keywords: risk-neutral moments, risk-neutral distribution
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2.1 Introduction

Information embedded in option prices is valuable for practitioners, regulators and

academics alike. Unsurprisingly, an extensive literature has developed around the use

of option-implied information (e.g. Carr & Wu, 2009; Chang, Christoffersen, Jacobs,

& Vainberg, 2011; Buss & Vilkov, 2012; Conrad et al., 2013; Kozhan et al., 2013;

Jurek, 2014; Stilger et al., 2016). Yet, there is surprisingly little literature which rig-

orously examines the efficiency of different risk-neutral moment estimators. In theory,

the estimation of risk-neutral moments based on the theorem of Breeden & Litzen-

berger (1978) is an easy exercise given that a continuum of option prices is available.

However, the practical estimation of risk-neutral densities from empirical option data

is subject to many biases from discrete option prices and micro-structural noise (e.g.

Bliss & Panigirtzoglou, 2002; Dennis & Mayhew, 2009). These biases may also be

reflected in the results of empirical studies. For example, the question of how option-

implied skewness is priced cannot be answered conclusively. Conrad et al. (2013)

find that right skewed stocks carry a lower return than left skewed stocks, whereas

Rehman & Vilkov (2012) find the opposite. Both studies use the method of Bakshi

et al. (2003) to obtain risk-neutral skewness, but implement it differently. Thus, the

differences in results could be driven by the difference in the estimation method. The

main two studies analyzing the efficiency of risk-neutral moment estmators, Dennis &

Mayhew (2009) and Bliss & Panigirtzoglou (2002), rely on early implementations of

risk-neutral moments and only provide comparisons between a few select estimators.

For example, Dennis & Mayhew (2009) do not use any interpolation or extrapolation,

whereas the study of Bliss & Panigirtzoglou (2002) was published before the seminal

work of Bakshi et al. (2003) and does not incorporate the use of the central moment

formulas of Bakshi et al. (2003). We fill this gap in the literature by providing a

comprehensive overview over the efficiency of the central moments of Bakshi et al.

(2003), quantile-moments, the simple VIX (SVIX) of Martin (2017), and the rare

disaster index (RIX) of Gao, Gao, & Song (2018); Gao, Lu, & Song (2018).
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This study makes two contributions to the literature. First, it analyzes the ef-

ficiency of different estimation techniques for the popular risk-neutral moments of

Bakshi et al. (2003), the simple VIX (SVIX) of Martin (2017), and the rare disaster

index (RIX) of Gao, Gao, & Song (2018); Gao, Lu, & Song (2018) in-depth. A Monte

Carlo simulation is used to price options under a stochastic volatility and jump (SVJ)

model (Bates, 1996). The SVJ model nests the Black & Scholes (1973), the Heston

(1993), and the Merton (1976) model and generates a distribution with higher lev-

els of skewness and kurtosis than the normal distribution. Based on this simulated

option data a classical horse race between three popular risk-neutral moment estima-

tion methods is performed. In the horse race risk-neutral moments estimated from

an implied volatility surface obtained from a cubic smoothing spline with horizontal

extrapolation (e.g. Carr &Wu, 2009; Rehman & Vilkov, 2012; Neumann & Skiadopou-

los, 2013), from a cubic smoothing spline with linear extrapolation (e.g. G. J. Jiang

& Tian, 2007), from a local-linear kernel regression with linear extrapolation (Song

& Xiu, 2016), and from a local-constant kernel regression with linear extrapolation

(Aı̈t-Sahalia & Lo, 1998) are tested. The robustness of the estimation methods is

tested under real-world data quality by restricting the range of available strike prices,

increasing the spacing between strikes, and by adding noise to the price data. All

methods deliver accurate results if a large number of options over a wide range is

available. As the domain spanned by available option prices declines, methods that

extrapolate the implied volatility surface linearly in strike still perform reasonably

well whereas horizontal extrapolation of the volatility surface performs poorly. In

contrast, horizontal extrapolation is less affected by high levels of micro-structural

noise, whereas methods which rely on linear extrapolation are strongly affected by

small levels of micro-structural noise. This finding represents a bias-variance trade-off

in real-world datasets: Researchers can choose methods that minimize the estimation

error caused by a limited strike price domain or they can choose to minimize the

variance of estimates induced by micro-structural noise in option-prices.
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The second contribution is to propose the use of quantile moments to describe the

risk-neutral distribution. Quantile moments are more robust and allow for greater

flexibility than central moments. In contrast to central moments, quantile moments do

not rely on probability weighting of outcomes making them more robust to the choice

of extrapolation method and to data errors in far out-of-the-money options. Under

real-world data quality the tails of the risk-neutral distribution are rarely observed

as they require valid prices of far out-of-the-money options. Therefore, researchers

will typically have to extrapolate the implied volatility surface or the risk-neutral

distribution to artificially obtain prices of far out-of-the options. The extrapolation

of the volatility surface requires an implicit assumption on the shape of the tail of

the risk-neutral distribution. Central moments place a high weight on the tails of

the distribution. For example, central skewness probability weights the cubed return

thus placing an over-proportional weight on the prices of far out-of-the-money op-

tions.1 Therefore central moments react sensitively to the choice of the extrapolation

method. In contrast, quantile moments are computed by comparing the position of

quantiles and thus are less sensitive to the choice of extrapolation method. Hinkley’s

(1975) measure of quantile skewness is used in this study. Hinkley’s skewness com-

pares the distance between the median and a quantile in the right tail to the distance

between the median and a quantile in the left tail. The choice of quantiles provides

additional flexibility compared to central moments, allowing researchers to measure

the symmetry of the distribution at different points. Quantile kurtosis is measured

by Ruppert’s (1987) ratio of quantile ranges and quantile volatility is defined as the

inter-quartile range. Quantile moments are by construction more robust to sparsely

available option prices over a narrow domain than central moments. This intuition is

confirmed in our simulation study. The findings show that quantile moments deliver

accurate estimates of risk-neutral moments even if strike prices are truncated to a

small domain. However, despite their practical and theoretical advantages, quantile

moments have only been used rarely in the literature, for example Mirkov, Pozdeev,

1There seems to be evidence that traders use the over-proportional weight of far out-of-the-
money options to manipulate central moments (Griffin & Shams, 2017).
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& Söderlind (2019) use Hinkley’s skewness to measure uncertainty around the re-

moval of Swiss Franc cap. To the best of our knowledge, this is the first paper to

propose the use of quantile kurtosis and inter-quartile range to describe the shape of

the risk-neutral distribution.

The estimation of risk-neutral moments from real option data is subject to many

biases. Option prices that span only a small domain truncate the available infor-

mation. Consequently, narrow strike price domains supply us only with accurate

information close to the current stock price, whereas tail information is lost. Further-

more, if the difference between two adjacent strike prices is large, the information is

more sparse leading to potentially inaccurate estimates of the risk-neutral distribu-

tion. In addition to the bias caused by discrete prices, micro-structural noise in option

prices is another important source of variance in estimates of risk-neutral moments.

Observed option prices in empirical datasets are noisy. Prices are usually reported

at a daily frequency, but often the last trade in each option contract happened at a

different time of the day. This asynchroneous trading is a source of micro-structural

noise. In addition, option prices have a bid-ask spread which requires to make an

assumption on the true value of the option. Typically, the true value of the option

is assumed to be the mid-price, but it could be anywhere between bid- and ask-price

(Bliss & Panigirtzoglou, 2002).

Our study is most closely related to Dennis & Mayhew (2009) and Bliss & Pani-

girtzoglou (2002). Dennis & Mayhew (2009) simulate a range of European option

prices from the Black-Scholes model. Therefore, returns follow a normal distribution

and the real values of the risk-neutral moments are known and can be compared to

the estimates. The drawback of the approach of Dennis & Mayhew (2009) is that

they can only evaluate the bias in option prices which are based on a normal distri-

bution, which is inconsistent with a the commonly observed implied volatility skew.

Moreover, they do not interpolate or extrapolate the volatility surface, which is the
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approach used by most recent studies such as Conrad et al. (2013) or Jurek (2014).

Nevertheless, their results show that too large gaps between option prices or an in-

sufficiently small range of option prices causes errors in option-implied moments. In

particular they increase the spacing between strikes from 0.1 to 5 dollar in intervals of

10 cents. They find that for a stock with a current price of 70 dollar and a volatility of

20% risk-neutral skewness and kurtosis will start to oscillate around their true values.

The amplitude is initially small but induces non-neglectable errors at larger spacings.

For example, at a spacing just above 4.5 dollar between strikes, risk-neutral skewness

takes a value smaller than -0.4, compared to the true value of 0. Dennis & Mayhew

(2009) make a similar finding about the domain width, i.e. how far option data ex-

tends into the tails. In their normally distributed example of a stock with a volatility

of 20% the skewness estimates are only unbiased if the strike prices extend about

20% into both tails. Bliss & Panigirtzoglou (2002) test the stability of a lognormal

mixture model similar to Söderlind & Svensson (1997) and a method based on cubic

smoothing splines similar to Jackwerth & Rubinstein (1996). They use real option

data and add normally distributed noise to the prices to simulate micro-structure

noise. Their results indicate that the smoothing spline implementation similar to

Jackwerth & Rubinstein (1996) is more robust to noise than mixture based methods.

In particular they find that the mixture based model often leads to unstable solutions

or produced spurious spikes. In contrast to our study, they do not analyze the bias

induced by small domains and discrete option data on the estimates of risk-neutral

moments.

The results in our study go far beyond the results in Dennis & Mayhew (2009)

and Bliss & Panigirtzoglou (2002). Our findings show that the properties of option-

implied moment estimators depend on the interplay between the inter- and extrap-

olation method. This has important and actionable consequences for researchers

implementing option-implied moment estimators. For example, linear extrapolation

combined with local-linear kernel regressions leads to less noise sensitive estimates
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than linear extrapolation combined with cubic smoothing splines, while having a

similar bias due to narrow domain widths. Researchers that are concerned with low

bias estimates of risk-neutral moments and that have access to relatively clean option

prices, such as foreign exchange options, should thus prefer linear extrapolation com-

bined with local-linear kernel regressions. In contrast, if researchers are estimating

option-implied information from relatively noisy options, such as single stock equity

options, horizontal extrapolation combined with cubic smoothing splines should be

preferred over linear extrapolation combined with local-linear kernel regressions.

The paper proceeds as follows. Section 2.2 briefly reviews the risk-neutral mo-

ments of Bakshi et al. (2003) and introduces quantile moments. Section 2.3 discusses

the different estimation techniques. Section 2.4 presents the methodology and the

result of the horse-race between the different estimators. Section 2.5 presents our em-

pirical results. Section 2.6 presents alternative specifications of the simulation study.

Section 2.7 concludes.

2.2 Estimating Risk-Neutral Moments

Most of the modern literature (e.g. Bakshi et al., 2003; Carr & Wu, 2009; Kozhan

et al., 2013; Martin, 2017) on risk-neutral moments relies on the theorem of Breeden

& Litzenberger (1978) to obtain the risk-neutral density. The Breeden-Litzenberger

theorem does not make an assumption about the price process of stocks and therefore

allows recovery of the probability density function in a model-free way as:

F (ST < K) =erτ
∂P

∂K
(4)

f(ST ) =erτ
∂2P

∂K2
(5)

where P is the price of a put, r is the risk-free rate, τ is the time to maturity, F

is the cumulative density function (CDF), and f is the probability density function

(PDF) of the underlying under the risk-neutral measure. Hence, the CDF or the
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PDF of the option-implied price distribution can be obtained by estimating the first

or second derivative of a put option with respect to the strike price.

2.2.1 The risk-neutral moments of Bakshi, Kapadia and Madan (2003)

Bakshi et al. (2003) develop an analytical solution to obtain estimates of risk-

neutral moments without obtaining the PDF first. They construct three synthetic

securities that pay the squared, cubic, and quartic return at maturity respectively.

The result of Bakshi & Madan (2000) allows to derive the analytical value of these

contracts as:

V [t, τ ] =

∫ ∞

St

2(1− ln[K
St

])

K2
C(t, τ,K)dK

+

∫ St

0

2(1− ln[St
K
])

K2
P (t, τ,K)dK

(6)

W [t, τ ] =

∫ ∞

St

6ln[K
St

]− 3(ln[K
St

])2

K2
C(t, τ,K)dK

−
∫ St

0

6ln[St
K
]− 3(ln[St

K
])2

K2
P (t, τ,K)dK

(7)

X[t, τ ] =

∫ ∞

St

12(ln[K
St

])2 − 4(ln[K
St

])3

K2
C(t, τ,K)dK

+

∫ St

0

12(ln[St
K
])2 − 4(ln[St

K
])3

K2
P (t, τ,K)dK

(8)

The challenge in the estimation of central risk-neutral moments is to evaluate the

integrals in Equations (6) - (8). A numerical approximation of the integrals only

delivers a reasonable approximation if a densely spaced set of option prices is available

over a wide domain. The need for a wide domain is especially pressing for higher order

moments that place a large weight on the tails of the distribution and thus on far

out-of-the-money options. Inserting the prices of these contracts into the definitions
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of central moments yields:

V olQ =
√

erτV − µ2 (9)

SkewQ =
erτW − 3erτµV + 2µ3

[erτV − µ2]3/2
(10)

KurtQ =
erτX − 4µW + 6erτµ2V − µ4

[erτV − µ2]2
(11)

where

µ = erτ − 1− erτ
V

2
− erτ

W

6
− erτ

X

24
(12)

2.2.2 Quantile Moments

Quantile moments are a convenient alternative to describe the shape of probability

distributions. The quantile function is the inverse of the CDF and thus maps from

the interval [0, 1] onto the real line. The quantile function is obtained by numerically

inverting the estimated CDF. Quantile moments, such as the median, have the ad-

vantage that they are more robust in the presence of data errors and outliers than

traditional central moments. The idea behind quantile moments is to compare the

relative position of quantiles to describe the shape of a probability distribution. Thus,

it is possible to describe the shape of different portions of the probability distribution

depending on the choice of the quantiles. For example, quantile skewness can be used

to measure the symmetry in the center or tails of the distribution, making quantile

moments more flexible than central moments. The principle behind quantile moments

is illustrated in Figure 1. Their main difference from central moments is that they are

not based on probability weighting of outcomes. Therefore, quantile moments react

less to extreme events in the tails, making them inherently more robust than central

moments. The inter-quartile range is used to measure quantile volatility which is

defined as:

QVol = Q(0.75)−Q(0.25) (13)
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Inter-quartile range is a measure of dispersion that corresponds to the standard de-

viation of a probability distribution. It can be interpreted as the expected 50%

confidence interval of the stock return (Figure 1 b). If the quantiles are further apart,

the uncertainty about future returns is higher. It is also possible to compute the

inter-quantile range from different quantiles given that they have the same distance

from the median.2 Quantile skewness allows for an equal flexibility. Hinkley (1975)

defines quantile skewness as:

QSkew(p) =
[Q(p)−Q(0.5)]− [Q(0.5)−Q(1− p)]

Q(p)−Q(1− p)
(14)

where 0.5 < p < 1. Quantile skewness can take values between −1 and 1 whereas a

value of 0 indicates that the distribution is symmetric (Groeneveld & Meeden, 1984).

Quantile skewness is the normalized difference in the distance of the p quantile to the

median and the 1−p quantile to the median. Therefore, it compares the length of the

right tail to the length of the left tail (Figure 1c). Economically, quantile skewness

measures whether there is more (risk-neutral) upside potential than downside risk.

The study relies on Ruppert’s (1987) measure of quantile kurtosis which is defined

as:

QKurt(p) =
Q(p)−Q(1− p)

Q(q)−Q(1− q)
(15)

where 0.5 < q < p < 1. Quantile kurtosis is the ratio between two quantile ranges.

It is always positive and larger than 1. Quantile kurtosis measures how far the tails

extend in comparison to a reference interval. We choose p = 0.95 and q = 0.75 be-

cause in this case we scale with the inter-quartile range. The flexibility in the choice

of p and q is an advantage over the traditional central kurtosis. Central kurtosis is

2An interesting case arises if the confidence interval is increased to nearly 100% because then the
confidence interval of the risk-neutral measure Q is identical to the confidence interval of the real
probability measure P. The idea behind risk-neutral pricing is that in a complete and arbitrage-free
market the risk-neutral measure Q exists and is equivalent to the real probability measure P. The
definition of equivalence states that if Q is equivalent to P, both probability measures must agree
on the states of the world with zero probability. Therefore, the 0th and 100th percentiles of both
distributions must be identical. Even though the information embedded in the confidence interval
is less exhaustive than the information of the complete physical density, it can be obtained with
mild assumptions (uniqueness of the risk-neutral density) compared to e.g., Ross (2015).
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difficult to define as it measures tail-weight and peakedness at the same time. Ba-

landa & MacGillivray (1988) define central kurtosis as the “location- and scale-free

movement of probability mass from the shoulders of a distribution into its center

and tails”. Schmid & Trede (2003) discuss that depending on the choice of p and q,

quantile kurtosis can measure either tail-weight or peakedness. For large values of p,

quantile kurtosis measures tail-weight, but for small values it measures peakedness.

Economically, quantile kurtosis can be interpreted as an indication of how large ex-

treme returns are in comparison to normal returns.

Obtaining the quantile function requires an estimated CDF. The CDF is obtained

using the theorem of Breeden & Litzenberger (1978) and estimate the derivatives with

central differences3.

2.2.3 A näıve quantile approximation

In addition to the model-free method based on the theorem of Breeden & Litzen-

berger (1978) this study tests a näıve approximation of the CDF based on the model

of Black & Scholes (1973) and Merton (1976). The Black-Scholes model states that

the price of a put is:

P (S,K, σK , τ, r) = e−rτKΦ(−d2(σ))− S0Φ(−d1(σ)) (16)

where Φ is the CDF of the normal distribution, σ is the implied volatility, and d1 and

d2 are defined as usual. Differentiating once with respect to the strike and rearranging

yields:

F (Sτ < K) =erτΦ(−d2(σ)) (17)

3The choice of numerical differentiation method is not of particular relevance as we take the
derivative of the interpolated volatility surface which has a very dense continuum of strike prices.
Using other differentiation methods, e.g. a five point approximation, does not change the results.
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Figure 1: Quantile moments

This figure illustrates the principle behind quantile moments. The plotted distribution is a
sinh-arcsinh transformed normal distribution (Jones & Pewsey, 2009).Quantile volatility is
the inter-quartile range which is defined as the difference between the 75th and 25th per-
centile. Quantile skewness is defined by Hinkley’s (1975) measure at the 90th percentile.
Quantile kurtosis is defined by Ruppert’s (1987) ratio of quantile ranges with an outer range
between the 95th and 5th percentile and an inner range between the 75th and 25th percentile.
However, the quantiles can be varied to describe a different portion of the probability distri-
bution.

(a) Median (b) Quantile volatility

(c) Quantile skewness (d) Quantile kurtosis
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Hence, the CDF of the stock price is näıvely recovered from the Black-Scholes for-

mula. Note that the näıve approximation of the CDF is biased as it does not account

for the implied volatility skew.4 However, we opt to include the näıve approximation

as it avoids taking a numerical derivative and should therefore be more stable than

the model-free methodology.

2.2.4 Beyond option-implied moments: RIX, VIX, SVIX

The recent literature introduces a number of innovative option-implied measures.

In particular, we analyze three measures in-depth. To begin with, Martin (2017)

introduces a simplified volatility index SVIX which estimates option-implied variance

more robustly. Traditional variance swaps and the VIX are based on the entropy of

the underlying return process, i.e. they estimate the risk-neutral variance from log

returns. However, the entropy based definition of the VIX only provides an unbiased

estimate of volatility if the underlying process does not contain any jumps. Martin

(2017) points out additional deficiencies of the traditional variance swaps, e.g. if the

underlying stock goes bankrupt, the payoff of a variance swap would be infinite. To

alleviate these problems, Martin (2017) proposes to estimate the variance from simple

returns:

SV IXt =
2erτ

τFt(τ)2

(∫ Ft(τ)

0

P (t, τ,K)dK +

∫ ∞

Ft(τ)

C(t, τ,K)dK

)
(18)

where Ft(τ) is the forward price at time t with maturity τ . The major difference of

the SVIX to the VIX is that the VIX measures entropy whereas the SVIX measures

variance. Entropy is more sensitive to the left tail of the distribution and thus the

VIX loads more strongly on out-of-the-money put options. It is possible to construct

a measure of non-lognormality by comparing VIX and SVIX (Martin, 2017). This

idea is also used by Gao, Gao, & Song (2018) and Gao, Lu, & Song (2018) who

4Practitioners often use a skew correction (Gatheral, 2011, p. 104) which involves the derivative
of the implied volatility surface with respect to the strike price and is essentially identical to the
model-free methodology.
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propose a rare disaster concern index (RIX) incorporating all higher-order moments.

Their RIX measure is essentially the left-tail difference between the VIX and the

jump-invariant version of the VIX similar to the variance measure of Bakshi et al.

(2003) in Equation 6:

RIX =
2erτ

τ

(∫ St

0

ln(St/K)

K2
P (t, τ,K)dK

)
(19)

Gao, Gao, & Song (2018) show that their RIX incorporates all higher-order cumu-

lants and thus provides a natural downside tail-risk measure. Finally, we also include

the classic VIX in our analysis:

V IX =
2erτ

τ

(∫ St

0

1

K2
P (t, τ,K)dK +

∫ ∞

St

1

K2
C(t, τ,K)dK

)
(20)

2.3 Robust estimation of risk-neutral moments

To obtain an accurate estimate of risk-neutral moments densely-spaced strike

prices over a wide domain are needed. This requirement poses two problems: First,

interpolation of the existing data, and second, the extrapolation outside the observed

domain of option prices. The accuracy of the estimation of risk-neutral moments is

thus dependent on the amount of available option data.

2.3.1 Interpolating the volatility surface

While there are many different approaches to obtain a smooth implied volatility

surface, we focus on two approaches that are common in the literature and are easy

to implement as they are available in most common software packages. The first

approach uses a cubic smoothing spline and is the most common in the literature

(e.g. Carr & Wu, 2009; Rehman & Vilkov, 2012). A smoothing spline fits multi-

ple polynomials which connect smoothly to each other at knots. Smoothing splines

require two parameters: The degree of the polynomials and the smoothness of the

spline. We follow the most common approach to use cubic polynomials of order three.
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We set the smoothing parameter to allow for an average variation of 0.01 in implied

volatilities. In most software packages the smoothing factor is the maximum sum of

squared errors that is admissible and the number of knots will be increased until this

condition is achieved.

Second, we follow Aı̈t-Sahalia & Lo (1998) and Song & Xiu (2016) and interpolate

the implied volatility surface with a non-parametric kernel regression. Aı̈t-Sahalia &

Lo (1998) smooth the implied volatility surface with the local-constant or Nadaraya-

Watson kernel estimator. However, in small samples the local-constant estimator

tends to be inaccurate at the boundaries of the domain (e.g., Li & Racine, 2004)

and thus artificially flattens the volatility surface. This leads to flatter than im-

plied surfaces and should thus bias estimates of risk-neutral moments. Song & Xiu

(2016) propose to use a local-linear kernel-regression instead to avoid under- or over-

estimation of the implied volatility at the boundary. We use the local-linear estimator

proposed by Stone (1977) and Cleveland (1979). The local-linear estimator has su-

perior properties over the local-constant estimator (e.g., Fan, 1993). We choose to

use a Gaussian kernel, but the choice of the kernel has little influence on the results

(Aı̈t-Sahalia & Lo, 1998). In contrast, the choice of the bandwidth is crucial to avoid

over- or under-smoothing the implied volatility surface. We use leave-one-out cross-

validation to select the bandwidth which is readily available in most software packages.

2.3.2 Extrapolating the volatility surface

Extrapolating the implied volatility surface is more challenging than interpolat-

ing it. The strikes of most traded options are located around the current stock

price. In contrast, far out-of-the-money options are traded less frequently. Thus,

we are observing the center portion of the risk-neutral distribution and under real-

world data researchers will have make a choice about the extrapolation of the implied

volatility surface. The extrapolation of the implied volatility surface is comparable
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to adding tails to the risk-neutral probability density function. Extrapolating the im-

plied volatility surface is a crucial step in the estimation of risk-neutral moments as

higher order moments place a large weight on the tails of the risk-neutral distribution.

We analyze three different extrapolation techniques: First, we analyze risk-neutral

moments if the volatility surface is not extrapolated similar to Conrad et al. (2013).

If the volatility surface is not extrapolated researchers avoid making a decision about

the shape of the tails of the risk-neutral distribution. However, under sparse option

data the risk-neutral moment estimates will be biased as they focus only on the center

of the distribution. For example, risk-neutral central skewness estimated from raw

option data will estimate the skewness mostly from the center and shoulders of the

risk-neutral distribution thus effectively creating a different measure of skewness. This

limitation is particularly unfavorable if the risk-neutral moments of different assets

should be compared, i.e. when sorting stocks on an estimate of risk-neutral skewness.

Without extrapolation, stocks with more liquid option markets will generate skewness

estimates which are mainly driven by the tail of the distribution while stocks with less

liquid option markets generate skewness estimates which are constrained to the center

of the risk-neutral distribution. Second, we extrapolate the implied volatility surface

horizontally outside the known domain of strike prices, which is the most common

procedure in the literature (e.g. Carr & Wu, 2009; Rehman & Vilkov, 2012). Assum-

ing that the volatility surface is flat beyond the last observed strike is equivalent to

assuming that the tails are normal. This assumption is unlikely to be true because

the implied volatility surface typically exhibits a volatility skew and thus risk-neutral

distributions are not normal. Moreover, horizontal extrapolation causes additional

problems because it induces a kink in the volatility surface at the lowest and high-

est observed strike if the volatility surface is not flat at this point. The kink in the

volatility surface is a discontinuity which can cause the risk-neutral PDF to become

negative. Therefore, it is necessary to run an isotonic regression on the estimated

cumulative density function to ensure that it is strictly increasing. Nevertheless, ex-

54



trapolating the implied volatility surface horizontally is a simple procedure which

avoids any erratic behavior in the tails of the distribution making it a robust choice.

Third, we use linear extrapolation, which extends the implied volatility surface as a

linear function beyond the last observed options. G. J. Jiang & Tian (2007) show

that extrapolating linearly is superior to the common method of flat extrapolation. If

the volatility surface is upward sloping at the bounds the resulting tail will be heavier

than the tail generated by a normal distribution. Linear extrapolation also has the

advantage that the volatility surface is not kinked at the bounds helping to avoid a

negative risk-neutral PDF. The slope at the bounds of the observed volatility surface

is calculated with respect to the strike price.

2.3.3 Further considerations: Smoothing factor, degree of splines, and

choice of variable

The estimation of risk-neutral moments is dependent on a variety of additional

parameters. We opted to restrict this paper to the most relevant parameters, but for

completeness we discuss these additional estimation options. To begin with, all our

estimations are based on smoothing the implied volatility over strike prices. How-

ever, Shimko (1993) or Jurek (2014) propose to smooth the implied volatility surface

over option delta calculated with the at-the-money implied volatility. Other authors

(e.g. Carr & Wu, 2009; Stilger et al., 2016) choose to smooth the volatility surface

over log-moneyness. In unreported results we also tested smoothing over deltas and

over log-moneyness. In general, smoothing over strike prices and log-moneyness is

less affected by narrow domains and noisy option data and the differences between

both methods are neglectable. Smoothing over deltas has the theoretical advantage

that it allows for most variation in close to-the-money implied volatilities where op-

tion prices are the most accurate. However, higher order moments are sensitive to

the prices of far out-of-the-money options and changes in options close-to-the-money

have relatively little influence on the risk-neutral moments. Therefore, the relatively
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lower variation in the tail is a disadvantage leading to a slightly increased bias. Never-

theless, differences are small compared to total errors induced by narrow strike price

domains and micro-structural noise. Furthermore, we vary the smoothing factor. In

unreported results we tested smoothing factors allowing for an average approxima-

tion error in implied volatilities of 0.1 and 0.001, but found only minor differences in

results. Finally, splines require that the degree of the polynomial functions between

knots is defined. We repeated our simulation study with quartic splines and found

little differences. In addition, we tested quartic smoothing splines with a single knot

placed at-the-money as suggested by Birru & Figlewski (2012) but found no signifi-

cant differences to cubic splines.

2.4 Results of the simulation study

To test the efficiency of the different extraction methods we extend the idea of

Dennis & Mayhew (2009) and simulate option data. Simulated option data has the

advantage that the true underlying distribution is known and estimates of moments

can be compared to their true values. We test the efficiency of the different extraction

methods by limiting the strike price domain of option prices, increasing the spacing

between option prices, and by adding noise to the data.

2.4.1 Simulating option prices

Option prices generated by a stochastic-volatility-jump model similar to Bates

(1996), where stock prices have stochastic volatility and a Poisson jump process with

normally distributed jumps. An SVJ model gives us the flexibility to simulate non-

normal distributions that are more realistic than the normal distribution assumed in

the Black-Scholes model. The stochastic-volatility jump process is defined as:
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dSt

St
= (r − λµJ)dt+

√
σtdZ

1
t + JtdNt (21)

dσt = κ(σL − σt)dt+ ν
√
σtdZ

2
t (22)

corr(dZ1, dZ2) = ρdt (23)

prob(dN = 1) = λdt (24)

Z1, Z2 ∼ N(0, 1) (25)

ln(1 + J) ∼ N(ln(1 + µJ)− 0.5σ2
J , σ

2
J) (26)

Where S is the stock price, r is the risk-free rate, σ is the volatility, κ is the mean

reversion speed, σL is the long-run variance, ν is the volatility of volatility, Z1 and

Z2 are two correlated standard normally distributed variables with correlation ρ, N

is a Poisson distributed random variable with intensity λ where jumps, Jt, are log-

normally distributed. The equations are discretized with an Euler scheme and option

prices are based on 100’000 paths simulated with antithetic variables and moment

matching. The volatility process is initialized with the long-run variance.

We generate two different scenarios: First, a standard scenario with central (quan-

tile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61).

And second, a crisis scenario with central (quantile) volatility of 0.64 (0.30), skewness

of -2.27 (-0.55), and kurtosis of 10.39 (3.07). In both scenarios we simulate option

data with 90 days to maturity, time steps of half a day, an interest rate of 5%, and

a stock price of 100 dollars. Based on the process we create option data that spans

the domain from 1 dollar to 199 dollars in 0.5 dollar intervals. Thus, the domain

half-width is 99% of the stock price and the spacing is 0.5 dollars or 0.5% of the stock

price.5

5The exact parameters for replication in the standard scenario are: κ = 2, σL = 0.05, ν = 0.1,
ρ = −0.6, λ = µJ = σJ = 0. The parameters are chosen to match the moments on a regular day,
e.g. July 30 1997. Parameters for replication in the crisis scenario are: κ = 0.5, σL = 0.3, ν = 0.4,
ρ = −0.95, λ = 1, µJ = −0.15, σJ = 0.05. The parameters are chosen to match the moments on
a crisis day, e.g. October 12 2008 where the S&P500 had a return of -5.20%.
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In each of the scenarios, the impact of narrow domains and micro-structural noise

on the risk-neutral moments is tested following the methodology of Dennis & Mayhew

(2009) and Bliss & Panigirtzoglou (2002). We also test the impact of wide strike price

spacings. However, increased spacing between strike prices is relatively benign as

filling the gaps is an interpolation exercise that is inherently easier then extrapolation.

To keep the paper concise, we opt to present the results of restricted strike price

domains and micro-structural noise in more depth. To test the effect of reduced

domain width on risk-neutral moment estimates, the spacing is held constant at 50

cent and the dataset is truncated to a domain half-width of 10% of the stock price,

from 90 to 110 dollars. Risk-neutral moments are then estimated from the truncated

dataset. The domain half-width is then increased in 1% steps to a maximum of 99%.

In each step, the risk-neutral moments are estimated from the truncated dataset. A

similar procedure is also applied to test the effect of different strike price spacings.

The domain half-width is held constant at 99% of the stock price and the spacing

between strike prices is increased from 1 dollar (1%) to 10 dollars (10%) in 50 cent

steps. The bias induced by market micro-structural noise is analyzed by perturbing

the option prices in the dataset. Micro-structure noise is simulated by perturbing

option prices as follows:

P̃i = Pi(1 + θη) η ∼ N(0, 1) (27)

where θ is increased from 1% to 10%. Micro-structural noise can be interpreted as

the uncertainty about the true value of an option within the bid-ask spread. Assum-

ing that perturbed option prices fall into the bid-ask bounds in 95% of all cases, the

simulation can also be interpreted as varying the bid-ask spread from approximately

3.9% to 39%. After perturbing option prices, implied volatilities are again extracted

and quantile and central moments are estimated and compared to the true moments.

This procedure is repeated 1000 times for each noise level. To test the influence of

micro-structural noise under realistic conditions we restrict the domain from 80 to
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120 dollar and keep the spacing at 2.5 dollar.

In each step we interpolate and extrapolate the implied volatility surface using

three different methods: First, we use a cubic smoothing spline with horizontal ex-

trapolation (spline-flat), second, a cubic smoothing spline with linear extrapolation

(spline-linear), and third, a local-linear kernel regression with linear extrapolation

(kernel-linear). The smoothing factor of the splines allows for an average error in

implied volatilities of 0.01 and the bandwidth of the local-linear kernel regression

is determined through leave-one-out cross-validation. Our results are benchmarked

against a plain-vanilla implementation of Bakshi et al. (2003) with no inter- or extrap-

olation as used by Dennis & Mayhew (2009) and Conrad et al. (2013). In addition

to the central risk-neutral moments of Bakshi et al. (2003), we also estimate quantile

moments based on the model-free approach and the näıve Black-Scholes approxi-

mation. Quantile volatility is defined as the inter-quartile range between the 75th

and 25th percentile. Quantile skewness is measured at the 10th and 90th percentile

(p = 0.9) and quantile kurtosis is estimated with an outer range between the 95th

and 5th percentile and an inner range between the 75th and 25th percentile (p = 0.95

and q = 0.75). Estimation errors are calculated in percent of the true values because

the estimates of quantile and central moments are not on the same scale.

2.4.2 Results of risk-neutral moments

We begin by analyzing the bias in risk-neutral moments introduced by an insuffi-

ciently wide domains. The results are presented in Table 11 and Figure 2. Panels A

& B of Figure 2 show the efficiency of different inter- and extrapolation techniques.

In the calm scenario all estimation methods provide accurate estimates of central

volatility. However, the plain-vanilla implementation (BKM-raw) converges more

slowly to the true value in comparison to the other methods. The estimation errors

are higher for estimates of central skewness. Notably, the two methods that rely on
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linear extrapolation deliver a speedy convergence to the true value of skewness. In

contrast, a smoothing spline approach with horizontal extrapolation estimates skew-

ness initially with an absolute error of 40% and converges at a domain half-width of

60%. Moreover, no inter- or extrapolating yields an error of 60% initially. The results

are similar for kurtosis. Linear extrapolation delivers lower initial errors and faster

convergence to the true value. This finding becomes even more apparent in the crisis

scenario (Panel B). While both extrapolation methods only converge to the true value

of central moments at a domain half-width of approximately 90%, linear extrapola-

tion has a significantly lower estimation bias if the domain of option prices spans only

a narrow domain. This observation is in line with the results of G. J. Jiang & Tian

(2007) and can be attributed to the different tail shapes of the risk-neutral density

that are caused by the different extrapolation methods. Horizontal extrapolation

assumes a flat volatility surface beyond the last available option prices and thus es-

sentially adds the tail of a normal distribution. In contrast, linear extrapolation leads

to heavier than normal tails if the surface is upward sloping at the bounds, leading

to a better approximation of the underlying distribution. Moreover, the choice of the

smoothing method, cubic smoothing splines or a kernel regression, does not have a

large influence on the bias of the estimation caused by an insufficiently wide domain.

Panels C & D show a comparison of quantile and central moments based on a ker-

nel regression. Notably, the model-free implementation of quantile moments delivers

accurate estimates even for narrow domains under both scenarios for all moments.

This finding becomes especially apparent when the performance of the model-free

quantile moments estimator is compared to the common Bakshi et al. (2003) cubic

spline implementation with horizontal extrapolation. This finding is not coincidental

and is related to the construction of quantile and central moments. Central moments

require to find E[X], E[X2], E[X3], etc. The higher the order of the desired mo-

ment, the larger is the weight on the tail of the distribution. Thus, the estimation

of higher order central moments is almost certainly biased until the entire PDF is

recovered. In contrast, quantile moments only require the correct estimation of the
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relevant quantiles and thus can deliver accurate estimates even when option prices

do not reveal the entire PDF. Moreover, the näıve Black-Scholes approximation does

not converge to the true value of any quantile moment; however, it nearly instantly

converges to a stable value. In addition to the results in Figure 2, Table 11 shows the

results in tabular from for the domain half-widths of 10%, 50%, and 80%. In addition,

Table 11 also contains estimates of quantile moments based on cubic splines with flat

extrapolation. Even under a horizontal extrapolation quantile moments have a lower

bias under narrow domains than their central counterparts. However, the estimation

of model-free quantile skewness from a spline-linear model does not converge to the

true value of quantile skewness in the standard scenario. This finding is most likely

due to the kink in the implied volatility surface caused by the horizontal extrapola-

tion leading to numerical problems when differentiating the option-price surface to

obtain the CDF. If the relevant quantile happens to be close to the kink, estimates of

quantile moments become unstable and biased. We therefore recommend to estimate

quantile moments from linearly extrapolated volatility surfaces. Moreover, Table 11

also contains estimates obtained from a local-constant kernel regression comparable

in magnitude to the bias of the cubic smoothing spline with horizontal extrapolation.
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Table 11: Errors from truncated domain half-width - SVJ

This table shows the approximation errors of option-implied moments for different strike price
domain half-widths in percent. The strike price spacing is held constant at 50 cents. The
return process is based on a stochastic volatility jump process (Bates, 1996). Option-implied
moments are estimated under two different scenarios: Panel A shows the results of a standard
scenario with central (quantile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis
of 4.72 (2.61). Panel B displays the results of a crisis scenario with central (quantile) volatility
of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). For each of the scenarios
risk-neutral moments are estimated under different domain half-widths (10%, 50%, & 80%).
Moments are estimated from raw option data (raw), or a smoothed volatility surface based on
cubic splines with flat or linear extrapolation, a non-parametric local-linear kernel regression
(kernel), or a local-constant kernel regression (lckernel). Quantile moments are estimated
either model-free (MFree) or from a näıve Black-Scholes approximation (BS). The central
risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 12.35 0.06 0.08 61.45 1.58 0.81 68.22 2.54 0.46
BKM-spline-flat 2.56 0.08 0.00 38.34 2.55 1.63 30.45 1.36 0.31
BKM-spline-linear 0.22 0.08 0.00 3.17 2.40 1.25 2.51 0.94 1.05
BKM-kernel-linear 0.20 0.00 0.01 2.01 0.92 0.45 2.90 0.91 0.57
BKM-lckernel-linear 2.66 0.01 0.01 37.26 0.35 0.36 29.40 0.08 0.10

Quantile Moments
MFree-kernel-linear 0.11 0.11 0.11 6.00 0.61 0.64 0.56 0.09 0.09
MFree-spline-flat 0.55 0.17 0.33 17.96 16.16 12.94 0.24 0.57 0.06
MFree-lckernel-linear 0.25 0.32 0.32 20.70 1.71 1.71 0.34 0.39 0.39
BS-kernel-linear 7.53 7.53 7.53 11.35 13.02 13.02 1.99 1.09 1.09
BS-spline-flat 7.55 7.37 7.49 35.06 15.54 14.72 6.73 0.65 0.98
BS-lckernel-linear 7.89 7.89 7.89 35.49 13.23 13.23 7.41 1.72 1.72

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 44.66 8.37 0.72 94.86 35.40 5.84 94.50 58.44 14.65
BKM-spline-flat 19.30 4.37 0.40 71.28 21.02 3.48 70.66 39.71 8.92
BKM-spline-linear 1.92 0.97 0.19 1.41 6.22 1.78 8.79 14.07 4.20
BKM-kernel-linear 0.77 1.00 0.19 6.89 6.36 1.87 15.59 14.30 4.41
BKM-lckernel-linear 19.21 4.44 0.39 70.65 21.41 3.37 71.06 40.80 9.28

Quantile Moments
MFree-kernel-linear 0.70 0.04 0.04 2.63 0.32 0.36 2.79 0.20 0.19
MFree-spline-flat 14.84 0.05 0.75 17.77 0.24 0.64 22.97 11.26 0.36
MFree-lckernel-linear 14.53 0.13 0.21 18.30 0.23 0.23 22.55 11.32 0.12
BS-kernel-linear 28.35 28.01 28.01 18.40 18.00 18.00 10.61 10.76 10.55
BS-spline-flat 14.84 27.88 27.67 73.32 18.21 18.22 22.97 14.80 10.22
BS-lckernel-linear 14.27 27.21 27.21 72.63 18.01 18.01 22.47 14.41 10.03
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Figure 2: Errors in the approximation of implied moments by domain
half-width

This figure shows the approximation errors of option-implied moments for different strike
price domain half-widths. The strike price spacing is held constant at 50 cents. The re-
turn process is based on a stochastic volatility jump process (Bates, 1996). Option-implied
moments are estimated under two different scenarios: Panels A & C show the results of a
standard scenario with central (quantile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20),
and kurtosis of 4.72 (2.61). Panels B & D display the results of a crisis scenario with central
(quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07).
For each of the scenarios risk-neutral moments are estimated under different domain half-
widths. Panel A & B show the performance of different inter- and extrapolation techniques.
Risk-neutral moments in these panels are based on Bakshi et al. (2003, BKM). Moments
are estimated from raw option data (raw), or a smoothed volatility surface based on cubic
splines with flat or linear extrapolation or a non-parametric local-linear kernel regression
similar to Song & Xiu (2016). Panel C & D compare the standard approach of Bakshi et
al. (2003) with quantile-moments estimated either model-free (QuantMF) or from a näıve
Black-Scholes approximation (QuantBS). The error in the plots is truncated at 80%.

Panel A: Standard Scenario - Different Inter- and Extrapolation

(a) Central volatility (b) Central skewness (c) Central kurtosis

Panel B: Crisis Scenario - Different Inter- and Extrapolation

(d) Central volatility (e) Central skewness (f) Central kurtosis

continued on the next page
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Figure 2 continued

Panel C: Standard Scenario - Different Estimators

(g) Quantile and central
volatility

(h) Quantile and central
skewness

(i) Quantile and central kur-
tosis

Panel D: Crisis Scenario - Different Estimators

(j) Quantile and central
volatility

(k) Quantile and central
skewness

(l) Quantile and central kur-
tosis

The sensitivity of estimates to micro-structural noise is shown in Figure 3 and Ta-

ble 12. Panels A and B show the standard deviation of estimates from different inter-

and extrapolation methods to micro-structural noise under a standard (Panel A) and

crisis scenario (Panel B). We can observe that a plain-vanilla implementation of Bak-

shi et al. (2003), without inter- and extrapolation, is the most robust to noise for all

moments and for both scenarios. Moreover, a cubic spline with linear extrapolation is

very sensitive to micro-structural noise. For example under the spline-linear method,

perturbing option prices with a standard deviation of 5% leads to a standard deviation

of central skewness estimates of 147.09% in the standard scenario (Panel A of Table

12). In contrast, the commonly used method of cubic smoothing splines with horizon-

tal extrapolation fares relatively well for all moments in all scenarios. For example,
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even under micro-structural noise with a standard deviation of 10%, the standard

deviation of central skewness estimates is just 6.60% under the crisis scenario (Panel

B of Table 12). Estimates of the kernel regression technique are reasonably robust

to micro-structural noise, but are slightly more affected than estimates using cubic

smoothing splines with horizontal extrapolation. Moreover, the local-constant kernel

regressions with linear extrapolation deliver relatively stable estimates and perform

even slightly better than the cubic smoothing splines with horizontal extrapolation

in some cases. The standard deviations of quantile moments are comparable to their

central counterparts. Under the standard scenario (Panel C in Figure 3) the quantile

moments estimated from a näıve Black-Scholes approximation are the least affected

by noise. In contrast, model-free quantile moments tend to pick up more micro-

structural noise. In comparison with central moments, näıve Black-Scholes quantile

moments are slightly less affected by noise, whereas model-free quantile moments are

more affected by micro-structural noise. Under the crisis scenario, the differences be-

tween estimation methods are smaller. Central moments estimated with smoothing

splines and horizontal extrapolation are the most robust to micro-structural noise.

However, the differences between moments are relatively small.

The previous results reveal a bias-variance trade-off.6 Methods with a relatively

low bias under narrow domains, i.e. central moments estimated from a smoothed

volatility surface with linear extrapolation, are relatively strongly affected by micro-

structural noise leading to a high variance in the estimates. In contrast, methods with

a high bias under narrow domains, i.e. a plain-vanilla implementation of Bakshi et

al. (2003), have a low variance of estimates even under high levels of micro-structural

noise. The most common method in the literature, central moments estimated from

cubic smoothing splines with flat extrapolation, has a relatively high bias under nar-

row domain-width, but is relatively little affected by micro-structural noise. These

properties make this method attractive for datasets with relatively wide domains,

6The bias-variance trade-off exists under real-world data. Asymptotically all methods are un-
biased.
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such as single stocks with highly liquid option markets or S&P 500 index options.

In contrast, central moments estimated from datasets with narrow domains, such as

single stocks with relatively illiquid options, likely carry a high bias and under or

over estimate risk-neutral moments. At the same time, the relatively high level of

micro-structural noise in prices of illiquid single stock options will have only a minor

affect on the estimates of risk-neutral moments based on the spline-flat method. An

opposite result is delivered by quantile moments estimated from a linearly extrapo-

lated volatility surface. While the estimates carry a low bias, they are affected by

micro-structural noise to a greater extent. Quantile moments estimated from a lin-

early extrapolated volatility surface have a significantly lower bias compared to the

standard method, especially under narrow domains.
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Table 12: Errors from micro-structural noise - SVJ

This table shows the standard deviation of estimates of option-implied moments for different
levels of micro-structural noise in percent. The strike price spacing is set to 2.5 dollar
and strikes cover a range from 80% to 120% of the strike price. The return process is
based on a stochastic volatility jump process (Bates, 1996). Option-implied moments are
estimated under two different scenarios: Panel A shows the results of a standard scenario
with central (quantile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis of
4.72 (2.61). Panel B displays the results of a crisis scenario with central (quantile) volatility
of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). Micro-structure
noise is simulated by perturbing option-prices by a percent of their value. Percentages are
drawn randomly from a normal distribution with a standard deviation of either 1%, 5%,
or 10%. For each level of micro-structural noise risk-neutral moments are estimated 1000
times. Moments are estimated from raw option data (raw), or a smoothed volatility surface
based on cubic splines with flat or linear extrapolation, a non-parametric local-linear kernel
regression (kernel), or a local-constant kernel regression (lckernel). Quantile moments are
estimated either model-free (MFree) or from a näıve Black-Scholes approximation (BS). The
central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.14 0.72 1.42 0.50 2.47 5.04 0.34 1.66 3.28
BKM-spline-flat 0.15 1.90 18.13 0.57 9.92 16.86 0.51 2.72 7.75
BKM-spline-linear 0.20 22.47 104.44 2.43 147.09 339.19 3.31 312.15 565.41
BKM-kernel-linear 0.20 0.80 1.58 2.11 7.25 18.54 2.84 10.03 34.48
BKM-lckernel-linear 0.15 0.75 1.49 0.64 3.80 6.86 0.53 2.87 5.27

Quantile Moments
MFree-kernel-linear 2.38 6.14 9.15 10.86 22.05 28.64 2.55 7.62 15.73
MFree-spline-flat 0.99 13.27 22.13 4.79 54.83 90.14 1.15 17.32 696.33
MFree-lckernel-linear 5.73 8.57 12.54 25.27 32.45 43.07 5.90 10.16 31.29
BS-kernel-linear 0.31 1.05 1.89 0.80 2.69 5.24 0.34 1.25 2.50
BS-spline-flat 0.21 2.22 4.93 0.65 4.96 25.13 0.26 2.13 11.82
BS-lckernel-linear 0.37 1.28 2.46 0.95 3.56 6.56 0.37 1.44 2.62

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.09 0.46 0.92 0.13 0.67 1.38 0.05 0.25 0.49
BKM-spline-flat 1.00 5.73 6.59 0.55 7.11 6.60 0.75 3.22 3.98
BKM-spline-linear 20.36 80.89 67.27 34.09 1.02e3 1.12e3 44.56 1.24e3 1.77e4
BKM-kernel-linear 2.50 9.17 19.22 6.05 15.05 24.77 8.15 19.02 25.25
BKM-lckernel-linear 0.24 1.06 2.03 0.46 2.22 4.42 0.27 1.36 2.57

Quantile Moments
MFree-kernel-linear 3.06 8.62 12.92 2.90 9.18 14.35 3.67 14.69 28.66
MFree-spline-flat 8.25 18.71 21.30 14.11 30.86 31.27 8.13 67.96 103.64
MFree-lckernel-linear 5.86 16.52 21.45 6.50 12.83 15.97 5.69 16.44 23.56
BS-kernel-linear 0.95 5.01 30.41 3.00 8.72 14.47 2.92 7.96 11.33
BS-spline-flat 0.80 3.12 7.00 1.60 4.18 5.84 0.52 1.62 32.55
BS-lckernel-linear 0.50 2.19 3.81 0.60 3.00 5.70 0.13 0.96 1.25
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Figure 3: Errors in the approximation of implied moments for different
levels of micro-structural noise

This figure shows the standard deviation of estimates of option-implied moments for different
levels of micro-structural noise. The strike price spacing set to 2.5 dollar and strikes cover
a range from 80% to 120% of the strike price. The return process is based on a stochastic
volatility jump process (Bates, 1996). Option-implied moments are estimated under two
different scenarios: Panels A & C show the results of a standard scenario with central (quan-
tile) volatility of 0.23 (0.14), skewness of -0.89 (-0.20), and kurtosis of 4.72 (2.61). Panels B
& D display the results of a crisis scenario with central (quantile) volatility of 0.64 (0.30),
skewness of -2.27 (-0.55), and kurtosis of 10.39 (3.07). Micro-structure noise is simulated by
perturbing option-prices by a percent of their value. Percentages are drawn randomly from
a normal distribution with a standard deviation ranging from 1% to 10%. For each level of
micro-structural noise risk-neutral moments are estimated 1000 times. Panel A & B show the
performance of different inter- and extrapolation techniques. Risk-neutral moments in these
panels are based on Bakshi et al. (2003, BKM). Moments are estimated from raw option data
(raw), or a smoothed volatility surface based on cubic splines with flat or linear extrapolation
or a non-parametric local-linear kernel regression similar to Song & Xiu (2016). Panel C &
D compare the standard approach of Bakshi et al. (2003) with quantile-moments estimated
either model-free (QuantMF) or from a näıve Black-Scholes approximation (QuantBS). The
standard deviation of the estimates in the plots is truncated at 100%.

Panel A: Standard Scenario - Different Inter- and Extrapolation

(a) Central volatility (b) Central skewness (c) Central kurtosis

Panel B: Crisis Scenario - Different Inter- and Extrapolation

(d) Central volatility (e) Central skewness (f) Central kurtosis

continued on the next page
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Figure 3 continued

Panel C: Standard Scenario - Different Estimators

(g) Quantile and central
volatility

(h) Quantile and central
skewness

(i) Quantile and central kur-
tosis

Panel D: Crisis Scenario - Different inter- and Extrapolation

(j) Quantile and central
volatility

(k) Quantile and central
skewness

(l) Quantile and central kur-
tosis

The approximation errors for different domain spacings (Table 13) are generally

smaller than the approximation errors caused by a small domain. The error is also

easier to control as smoothing over strike prices is an interpolation task whereas ex-

tending the domain requires extrapolation. The approximation errors of all methods

do not seem to be systematically biased by strike price spacings and are negligible

in most scenarios. The only exception are the estimation errors of the plain-vanilla

implementation of Bakshi et al. (2003) without inter- or extrapolation, which increase

slightly with larger strike price spacings.

2.4.3 Results of RIX, VIX, and SVIX

In addition to the classic risk-neutral moments and their quantile equivalents we

also analyze the sensitivities of the RIX (Gao, Gao, & Song, 2018; Gao, Lu, & Song,
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Table 13: Errors from different strike price spacing - SVJ

This table shows the approximation error of option-implied moments for different strike
price spacings in percent. The domain-half width is set to 99% of the current stock
price. The return process is based on a stochastic volatility jump process (Bates, 1996).
Option-implied moments are estimated under two different scenarios: Panel A shows the
results of a standard scenario with central (quantile) volatility of 0.23 (0.14), skewness of
-0.89 (-0.20), and kurtosis of 4.72 (2.61). Panel B displays the results of a crisis scenario
with central (quantile) volatility of 0.64 (0.30), skewness of -2.27 (-0.55), and kurtosis of
10.39 (3.07). For each of the scenarios risk-neutral moments are estimated under different
strike price spacings (1%, 2%, & 5%). Moments are estimated from raw option data (raw),
or a smoothed volatility surface based on cubic splines with flat or linear extrapolation, a
non-parametric local-linear kernel regression (kernel), or a local-constant kernel regression
(lckernel). Quantile moments are estimated either model-free (MFree) or from a näıve
Black-Scholes approximation (BS). The central risk-neutral moments are based on Bakshi
et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.08 0.13 0.44 0.81 0.34 10.53 0.46 0.38 2.93
BKM-spline-flat 0.00 0.01 0.02 1.63 1.01 1.51 0.31 0.49 0.56
BKM-spline-linear 0.00 0.01 0.04 1.25 0.02 0.84 1.05 3.32 1.85
BKM-kernel-linear 0.01 0.02 0.09 0.45 0.47 0.83 0.57 0.70 0.62
BKM-lckernel-linear 0.00 0.00 0.02 0.34 0.35 0.35 0.08 0.11 0.20

Quantile Moments
MFree-kernel-linear 0.11 0.55 0.25 0.64 0.76 4.03 0.09 0.58 0.27
MFree-spline-flat 0.33 0.28 0.26 12.94 6.78 12.09 0.06 0.71 0.07
MFree-lckernel-linear 0.02 0.51 7.48 15.82 3.87 6.48 0.47 0.67 12.66
BS-kernel-linear 7.53 7.54 7.63 13.02 13.12 13.77 1.09 1.11 1.15
BS-spline-flat 7.49 7.52 7.53 14.72 13.62 14.24 0.98 0.94 0.96
BS-lckernel-linear 7.45 7.91 10.22 14.11 14.62 17.33 1.58 1.31 4.60

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.04 0.07 0.04 0.59 0.51 0.19 0.33 0.27 0.36
BKM-spline-flat 0.08 0.07 0.09 0.82 0.85 1.14 1.29 1.36 2.30
BKM-spline-linear 0.05 0.05 0.03 0.47 0.52 0.47 0.01 0.14 0.05
BKM-kernel-linear 0.06 0.05 0.01 0.62 0.59 0.46 0.56 0.45 0.11
BKM-lckernel-linear 0.05 0.05 0.03 0.64 0.60 0.62 1.67 1.60 1.94

Quantile Moments
MFree-kernel-linear 0.04 0.06 0.16 0.33 0.50 0.83 0.20 0.04 0.18
MFree-spline-flat 0.25 0.45 1.04 0.92 0.88 0.14 0.14 0.31 0.97
MFree-lckernel-linear 0.76 0.37 3.90 1.40 5.74 5.79 0.37 2.19 1.33
BS-kernel-linear 28.01 28.01 27.98 18.00 18.01 18.13 10.55 10.54 10.48
BS-spline-flat 27.95 28.00 27.77 18.20 18.19 18.25 10.38 10.42 10.22
BS-lckernel-linear 27.17 27.17 29.24 18.13 17.93 20.28 9.51 9.29 11.41
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2018), the classic VIX, and the SVIX (Martin, 2017) to changes in the domain width,

micro-structural noise, and strike price spacing with the same methodology. The re-

sults are presented in Table 14.

Panel A shows the effect of reduced domain half-widths on the estimates of the

VIX, RIX, and SVIX. The results of the VIX and SVIX are comparable to the option-

implied volatility measure of Bakshi et al. (2003). All three measures provide accurate

estimates at a domain half-width of 50% under both the standard and crisis scenario.

Notably, the RIX requires a much narrower domain than corresponding central mo-

ments, e.g. skewness or kurtosis, to deliver accurate an unbiased estimate. For

example, RIX estimated with a local-linear kernel regression at a domain half-width

of 50% has an error of 0.01% under the crisis scenario. In contrast, the risk-neutral

kurtosis measure of Bakshi et al. (2003) is estimated with an error of 14.30%. The

RIX should provide a complete measure of all higher order moments and is therefore

a suitable candidate for studies that aim to estimate downside risk. The differences

between estimation methodologies mirrors the previous findings. Linear extrapola-

tion leads to a lower bias under narrow domain half-width, but the differences are

less severe as the VIX, RIX, and SVIX converge faster to their true values.

Panel B shows the impact of micro structural noise on the VIX, RIX, and SVIX

estimates. The results are approximately on par with the previous findings. Linear

extrapolation combined with a local-linear kernel regression leads to a higher sensi-

tivity towards micro-structural noise, especially in the crisis scenario. In contrast,

the spline-flat method is less affected by micro structural noise under the the crisis

scenario, but slightly more affected under the standard scenario. The best performing

methodology is the local-constant kernel regression of Aı̈t-Sahalia & Lo (1998) with

linear extrapolation. For example, under the crisis scenario, the percentage error of

the RIX estimate from a local-constant kernel regression has a standard deviation of

32.49% whereas the standard deviation from the spline-flat method is 37.84%.
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Panel C displays the effect of changes in strike price spacing on the estimates

of VIX, RIX, and SVIX. Changes in strike price spacing are negligible compared to

other errors. The error induced by a 5% strike price spacing on is less than 1% for all

methodologies for VIX, RIX, and SVIX if the volatility surface is interpolated. Even

if the volatility surface is not interpolated the maximum error is only 5.13% for the

RIX estimated under the standard scenario. In conclusion, the local-constant ker-

nel regression estimator with linear extrapolation appears to offer the best trade-off

between bias and variance. Local-linear kernel regression leads to reduced bias but

increased variance. Cubic smoothing splines with horizontal extrapolation lead to a

similar bias as the local-constant kernel regression with linear extrapolation but their

estimates are more affected by micro-structural noise.

2.5 Empirical estimation

We aim to verify the efficiency of the extraction methods also empirically by com-

paring summary statistics for different inter- and extrapolation techniques as well as

for quantile and central moments.

2.5.1 Data and estimation

The analysis focuses on S&P 500 options. Daily option data is sourced from the

OptionMetrics price database (provided by Wharton Research Data Service) for the

sample time period from January 1996 to December 2017.

OptionMetrics provides two datasets, raw option data and a pre-smoothed volatil-

ity surface. For most applications the use of the volatility surface will lead to stable

results and computations will be less expensive. However, to provide a true compar-

ison between the previous methods, we estimate option-implied moments from raw
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Table 14: Results of VIX, RIX, and SVIX

This table shows the approximation errors of the VIX, RIX, and SVIX measures for differ-
ent strike price domain half-widths (Panel A), micro-structural noise (Panel B), and different
strike price spacings (Panel C) in percent. The return process is based on a stochastic volatil-
ity jump process (Bates, 1996). Option-implied moments are estimated under two different
scenarios: A standard scenario and a crisis scenario. For each of the scenarios risk-neutral
moments are estimated under different domain half-widths levels, levels of micro-structural
noise, and strike price spacings. Moments are estimated from raw option data (raw), or
a smoothed volatility surface based on cubic splines with flat or linear extrapolation, a
non-parametric local-linear kernel regression (kernel), or a local-constant kernel regression
(lckernel). Panel A and C display the absolute percentage error compared to the true esti-
mate. Panel B shows the standard deviation of the percentage error. All results are shown
in percent.

VIX RIX SVIX

Panel A: Domain half-width

10% 50% 80% 10% 50% 80% 10% 50% 80%

Standard scenario
kernel-linear 0.41 0.00 0.00 0.34 0.01 0.01 0.67 0.00 0.00
lckernel-linear 4.01 0.00 0.00 25.91 0.00 0.00 1.96 0.00 0.00
spline-flat 4.05 0.02 0.02 26.11 0.30 0.24 1.98 0.04 0.03
spline-linear 1.06 0.02 0.02 3.76 0.30 0.23 1.03 0.04 0.03
raw 21.92 0.00 0.00 64.35 0.04 0.00 19.50 0.00 0.00

Crisis scenario
kernel-linear 0.41 0.00 0.00 0.34 0.01 0.01 0.67 0.00 0.00
lckernel-linear 4.01 0.00 0.00 25.91 0.00 0.00 1.96 0.00 0.00
spline-flat 4.05 0.02 0.02 26.11 0.30 0.24 1.98 0.04 0.03
spline-linear 1.06 0.02 0.02 3.76 0.30 0.23 1.03 0.04 0.03
raw 21.92 0.00 0.00 64.35 0.04 0.00 19.50 0.00 0.00

continued on the next page
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Table 14 continued

VIX RIX SVIX

Panel B: Noise

1% 5% 10% 1% 5% 10% 1% 5% 10%

Standard scenario
kernel-linear 0.36 1.58 3.12 1.92 6.60 31.81 0.34 1.53 2.83
lckernel-linear 0.31 1.55 3.05 0.48 2.92 5.35 0.32 1.56 3.07
spline-flat 0.31 1.58 3.46 0.46 2.62 79.31 0.31 1.59 3.42
spline-linear 0.39 365.81 533.75 2.55 2.06e4 2.83e4 0.33 43.88 153.16
raw 0.30 1.47 2.95 0.37 1.87 3.61 0.30 1.49 2.99

Crisis scenario
kernel-linear 5.90 19.20 70.19 78.89 287.17 1.72e3 1.55 4.94 10.75
lckernel-linear 0.64 2.80 5.38 3.82 16.91 32.49 0.40 1.81 3.51
spline-flat 0.67 3.04 6.14 3.85 18.00 37.84 2.71 3.65 6.72
spline-linear 56.29 445.50 421.62 1.15e3 1.33e4 1.18e4 10.42 142.22 363.67
raw 0.26 1.28 2.54 0.39 1.96 3.90 0.26 1.27 2.51

Panel C: Strike price spacing

1% 2% 5% 1% 2% 5% 1% 2% 5%

Standard scenario
kernel-linear 0.01 0.02 0.08 0.01 0.01 0.01 0.01 0.02 0.10
lckernel-linear 0.01 0.01 0.05 0.00 0.02 0.15 0.01 0.01 0.05
spline-flat 0.00 0.02 0.10 0.24 0.20 0.14 0.04 0.03 0.06
spline-linear 0.00 0.02 0.10 0.23 0.20 0.13 0.04 0.03 0.06
raw 0.14 0.27 1.22 0.11 0.22 5.13 0.14 0.28 1.91

Crisis scenario
kernel-linear 0.00 0.01 0.01 0.10 0.08 0.06 0.01 0.00 0.02
lckernel-linear 0.01 0.01 0.01 0.24 0.21 0.12 0.01 0.00 0.00
spline-flat 0.03 0.03 0.07 0.24 0.24 0.43 0.01 0.01 0.04
spline-linear 0.01 0.02 0.04 0.09 0.10 0.15 0.01 0.01 0.04
raw 0.02 0.04 0.03 0.01 0.02 0.48 0.03 0.06 0.38
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option data. The estimation of risk-neutral moments from raw option price data

poses a number of additional challenges. To begin with, the goal of most studies is

to compare option-implied information at a constant maturity. However, real-world

option data is often not available at the target maturity. Especially, when working

with single stock options this poses a challenge as options mature only once a month.

We tackle this challenge by first interpolating implied volatility across log-moneyness

and then interpolate linearly between volatilities. Moreover, the implied volatility

of an option can be computed either at its ask, bid, or mid price. We use the Op-

tionMetrics provided implied volatilities which are estimated at the mid price and

account for dividends.

Another challenge is to ensure that sufficient option data is available. Many

studies (e.g. Conrad et al., 2013) filter out options with zero volume or zero open-

interest to avoid stale prices. In our experience, strong filters, e.g. requiring strictly

positive volume, lead to more noisy estimates especially when combined with an

extrapolation technique. This might seem counter-intuitive at first, as strong filters

should remove stale prices. However, strong filters also change the available data

from period to period. This effect is particularly severe if the surface is extrapolated.

Removing a deep out-of-the-money option can have a drastic effect, especially on

option-implied information that rely on the tails of the distribution such as skewness.

We do not employ any volume or open-interest filters. Instead, we filter out all options

with a delta absolutely smaller than 0.1 to avoid erratic behavior in the tails of the

distribution. However, the choice of filter should always be tailored to the research

application of the extracted option-implied information.

Moreover, we rely only on out-of-the-money options, thus all options with a strike

below the current stock price are put options and all options with strikes above the

current strike prices are calls. Therefore, the call and put volatilities have to be joined

at-the-money. For the S&P 500 at-the-money put and calls typically have identical

volatilities.7

7Note that this is non-trivial for single-stock options. Single-stock options are American options
and thus calls and puts do not necessarily have the same volatility (see Cremers & Weinbaum,
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Our estimation approach is as follows: We begin by filtering out all in-the-money

options and options with a negative implied volatility as well as all options with an

absolute delta smaller than 0.1. We restrict our sample to options between with a ma-

turity 1 and 60 days and target a constant maturity of 30 days. Implied volatilities

are first interpolated for each maturity across strikes the implied volatility surface

over a strike price interval from −99% to +99% with a spacing of 1 cent between

strikes. We create volatility surfaces using the two most promising techniques from

section 2.4: A local-linear kernel regression with linear extrapolation and a cubic

smoothing spline with horizontal extrapolation. From the volatility surface we obtain

risk-neutral quantile moments using the previously described methodology and the

moments of Bakshi et al. (2003).

Summary statistics of the S&P 500 options are provided in Table 15. The S&P

500 has a large and liquid option market with an average contract volume of 371.83

contracts traded daily per option. Moreover, on average the open interest is 4064.11

contracts per options and the average domain width of the S&P 500 is 103.85% and

the spacing between strikes is on average 1%.

2.5.2 Comparison of quantile and central moments

Summary statistics for option-implied moments and the VIX, RIX, and SVIX, are

provided in Table 16. Panel A shows that the risk-neutral distribution of the S&P

500 is on average left-skewed and leptokurtic. This observation matches the findings

of other studies in the literature (e.g. Neumann & Skiadopoulos, 2013). However,

we can observe notable differences between the different estimation techniques as

well as between central and quantile moments. The summary statistics of quan-

tile moments estimated from a kernel-linear and spline-flat method are similar. The

spline-flat method leads to slightly (absolutely) higher estimates of quantile-skewness

and quantile-kurtosis although the differences are not statistically significant. Fur-

2010). Naively joining put and call volatilities at-the-money will lead to a jump at-the-money.
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Table 15: Summary statistics of options

This table displays descriptive statistics of the sample of S&P 500 options. The sample
is restricted to options with an absolute delta larger or equal to 0.1. Days to expiration
measures the days until the option expires. The domain width is calculated for each day-
maturity combination by subtracting the smallest strike from the largest strike and dividing
this range by the closing price of the S&P 500 (SPX). Spacing is the average spacing between
strike prices for each day-maturity combination divided by the closing price of the S&P 500.
Domain and spacing are displayed in percent. The sample spans the period between January
1996 and December 2017.

Mean Std. Med. Min Max

Days to expiration 28.80 16.45 28.00 2.00 59.00
Strike Price 1725.46 517.96 1770.00 50.00 3500.00
Implied Volatility 0.33 0.32 0.24 0.02 3.00
Volume 371.83 1960.44 0.00 0.00 200777.00
Open interest 4064.11 13697.76 100.00 0.00 370769.00
Delta 0.15 0.57 -0.00 -1.00 1.00
Domain width in % of SPX 103.85 43.17 93.85 26.30 266.06
Spacing in % of SPX 1.07 0.47 1.07 0.38 2.62

thermore, the summary statistics for central volatility are similar for both estimation

methods. In contrast, central skewness and central kurtosis are heavily affected by

the choice of the estimation method. Central moments estimated with the kernel-

linear method show that the implied distribution of the S&P 500 is more left skewed

and leptokurtic than if central moments are estimated with the spline-flat method.

For example, the spline-flat method estimates the mean option-implied skewness as

-0.79. This result is consistent with estimates in the literature that use a similar

technique, e.g. -0.91 for 60 day maturity options in the study of Neumann & Ski-

adopoulos (2013). In contrast, the kernel-linear method estimates central skewness

to be -0.97. However, central skewness estimates from the kernel-linear method are

more volatile (standard deviation of 0.49%) than those obtained from the spline-flat

method (standard deviation 0.37%). Moreover, the results of quantile skewness and

kurtosis results are more robust to the modeling choice of the volatility surface and

deliver consistent results for both estimation methods. In contrast, central moments

use probability weighting of outcomes and are very sensitive to small shifts in the tail

probability mass. For example, central excess kurtosis has a mean of 1.04 and takes
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a maximum value of 6.85 if it is estimated with the spline-flat method. In contrast,

it has a mean of 1.93 and takes a maximum value of 59.55 if it is estimated with the

kernel-linear method. The results of the VIX, and SVIX show that their distribution

is relatively unaffected by the choice of estimation method. This finding is in line

with the previous results from the simulation study.

The observed results mirror the bias-variance trade-off observed in the simulation

study. Moments obtained from the spline-flat method likely carry a bias but are

less volatile than moments obtained from the kernel-linear method. Panels B and C

show the correlations between the time series of moments. The correlations between

quantile and central moments estimated from the kernel-linear (spline-flat) method

are 75.05% (71.40%), 60.10% (73.84%), and 38.37% (48.74%) for volatility, skew-

ness, and kurtosis, respectively. The correlations and show that quantile and central

moments capture similar properties of the risk-neutral distribution. Moreover, the

correlation between central and quantile kurtosis is notably lower than for volatil-

ity and skewness in Panel C. Quantile kurtosis of Ruppert (1987) is a pure measure

of tail-weight, while central kurtosis measures tail-weight and peakedness simulta-

neously. Furthermore, the correlation pattern within quantile and central moments

matches in sign. The findings indicate that quantile and central moments measure

similar attributes of the risk-neutral distribution. The correlation of the VIX, RIX,

and SVIX also provides interesting insights. SVIX and quantile volatility are all

highly correlated with a correlation coefficient of 94.54% (94.24%) estimated with the

kernel-linear (spline-flat) methodology. In contrast, VIX and central volatility are

highly correlated 99.94% (99.98%). Moreover, RIX is only weakly correlated with

the skewness and kurtosis showing that RIX captures left tail-risk differently than

traditional risk-neutral moments.
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2.6 Robustness tests

To address concerns that our results are driven by our particular choice of dis-

tribution, the analysis is repeated with two alternative distribution choices. First, a

sinh-arcsinh transformed (Jones & Pewsey, 2009) normal distribution and second, a

mixture of two normal distributions to capture multi-modal distributions. The sinh-

arcsinh distribution transforms a random variable with a standard normal distribution

to a new random variable with different skewness and kurtosis. The transformation

is defined as follows:

Yϵ,δ(x) ≡ sinh[δsinh−1(z)− ζ] z ∼ N(0, 1)

ζ controls the symmetry of the distribution of the new random variable Yϵ,δ(z) and δ

controls its tail weight. The hyperbolic sine function is denoted by sinh. A property

of the transformation is that it defaults to the standard normal distribution if ζ = 0

and δ = 1. The advantage of the sinh-arcsinh transformation is that it has a parsimo-

nious form that allows us to modify higher moments and offers easy implementation.

Pricing European options based on the sinh-arcsinh distribution and the mixture of

normals distribution is done by a Monte Carlo simulation with 100’000 repetitions

and antithetic variables. The mean of the prices is forced to be equal to the forward

price to make sure that our sample is arbitrage-free.

The results for the sinh-arcsinh distribution are presented in Tables 17 - 19 in the

Appendix. The results mirror the previous results of the SVJ model. In Table 17

we can observe the same bias pattern as in the results of the SVJ generated option

prices. Linear extrapolation leads to a faster convergence with lower initial errors

than horizontal extrapolation. Moreover, model-free quantile moments have lower er-

rors than their central counterparts, especially if the domain of available option prices

is narrow. Table 18 shows that methods with flat extrapolation are less affected by

micro-structural noise. Errors from different strike price spacings (Table 19) are small
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compared to the bias induced by narrow domains. The observations are similar if the

simulation study is based on a mixture of two normal distributions (Table 20 - 22 in

the Appendix).
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2.7 Conclusion

We contribute to the literature by performing an in-depth study on the robust es-

timation of risk-neutral moments. In theory, the estimation of risk-neutral moments

is a straightforward task. Based on the theorem of Breeden & Litzenberger (1978) it

is possible to obtain risk-neutral moments from the option-price surface. The caveat

of this approach is that it assumes a continuum of option prices that spans a large

domain. Real-world option data, however, is discrete and often spans only narrow

domains with large gaps between strike prices. In addition, option-prices are not free

from micro-structural noise introduced through bid-ask spreads and asynchronous

trading of options. We test three different inter- and extrapolation techniques: cubic

smoothing splines with horizontal extrapolation, cubic smoothing splines with linear

extrapolation, and a local-linear kernel regression with linear extrapolation. These

methods are benchmarked against a plain-vanilla implementation of Bakshi et al.

(2003). Furthermore, we propose to use of quantile moments, which are more flexible

than their central counterparts and allow for a more robust estimation.

Based on a SVJ model we simulate option data to test how strongly estimates of

risk-neutral moments are affected by narrow domains, large strike price spacings, and

micro-structural noise. Our findings suggest that estimates of risk-neutral moments

are highly dependent on the estimation technique. Methods that rely on horizontal or

no extrapolation tend to carry a large bias under narrow domains leading to a severe

misestimation of risk-neutral moments. However, these methods are less affected by

micro-structural noise. In contrast, methods that rely on linear extrapolation de-

liver more accurate estimates of risk-neutral moments under narrow domains, but are

more affected by micro-structural noise. These results reveal a classic bias-variance

trade-off between different estimation-methods. Two methods offer especially favor-

able bias-variance trade-offs. First, model-free quantile moments estimated from a

local-linear kernel regression with linear extrapolation have only a small bias even

under narrow domains and are only moderately affected by micro-structural noise.
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Second, central risk-neutral moments based on a cubic smoothing spline with hori-

zontal extrapolation are not strongly affected by micro-structural noise and their bias

under narrow domains is acceptable. A viable alternative to cubic-smoothing splines

are local-constant kernel regressions that carry a similar level of bias and variance.

Moreover, if either a kernel regression or a smoothing spline is used, gaps between

strike prices have a neglectable effect on the estimates of risk-neutral moments. We

recommend to base the decision with respect to the estimator on the planned use

of the risk-neutral moment estimates and the properties of the dataset. Model-free

quantile moments obtained from a linearly extrapolated volatility surface should be

used if a low bias in the estimates is required. In contrast, if researchers prefer a

low variance of estimates, they should implement the central moments of Bakshi et

al. (2003) and base them on a volatility surface interpolated with a cubic smoothing

spline and extrapolated horizontally.

Moreover, we also analyze the sensitivity of the SVIX (Martin, 2017), the RIX

(Gao, Gao, & Song, 2018; Gao, Lu, & Song, 2018), and the VIX. The results of risk

neutral moments extend also to the SVIX, RIX, and VIX. Linear extrapolation leads

to a higher sensitivity to micro-structural noise but reduces the bias compared to a

flat extrapolation. However, it should be noted that SVIX and VIX are volatility

indices and are thus much less affected by the extrapolation as prices of far-out-of-

the-money options carry less weight compared to higher order moments. In contrast,

RIX captures all higher order cumulants of the risk-neutral distribution and is thus

a viable alternative for researcher that aim to obtain a left tail risk index.

The same results are also observable when comparing empirical risk-neutral mo-

ments of the S&P 500 index. Estimates based on a volatility surface obtained from

cubic splines with horizontal extrapolation have lower standard deviations than esti-

mates based on a volatility surface smoothed with a local-linear kernel regression and

extrapolated linearly. Moreover, estimates of central skewness and kurtosis are higher
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if they are based on the kernel-linear method, an effect likely due to a downward bias

induced by horizontal extrapolation.
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2.8 Appendix: Robustness tests

Table 17: Errors from truncated domain half-width - transformed
normal distribution

This table shows the approximation errors of option-implied moments for different strike
price domain half-widths in percent. The strike price spacing is held constant at 50 cents.
The return distribution is a sinh-arcsinh transformed normal distribution. Option-implied
moments are estimated under two different scenarios: Panel A shows the results of a
standard scenario with quantile (central) volatility of 0.12 (0.20), skewness of -0.46 (-1.44),
and kurtosis of 2.52 (8.34). Panel B displays the results of a crisis scenario with quantile
(central) volatility of 0.18 (0.40), skewness of -0.63 (-2.4), and kurtosis of 3.17 (13.98). For
each of the scenarios risk-neutral moments are estimated under different domain half-widths
(10%, 50%, & 80%). Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel).
Quantile moments are estimated either model-free (MFree) or from a näıve Black-Scholes
approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 10.61 0.02 0.02 56.21 0.10 0.06 66.38 0.28 0.09
BKM-spline-flat 2.80 0.03 0.03 21.49 0.25 0.25 29.30 0.13 0.13
BKM-spline-linear 1.27 0.03 0.03 11.07 0.26 0.26 22.93 0.09 0.09
BKM-kernel-linear 1.08 0.00 0.00 9.53 0.07 0.07 19.97 0.33 0.33
BKM-lckernel-linear 2.63 0.00 0.00 20.46 0.00 0.00 27.19 0.02 0.02

Quantile Moments
MFree-kernel-linear 0.25 0.24 0.24 1.88 0.58 0.58 0.81 0.18 0.18
MFree-spline-flat 0.22 0.20 0.20 15.74 2.33 2.33 3.25 0.60 0.60
MFree-lckernel-linear 2.14 1.47 1.47 17.07 3.93 3.93 0.72 1.47 1.47
BS-kernel-linear 7.29 7.29 7.29 24.72 25.49 25.49 1.40 3.30 3.30
BS-spline-flat 7.26 7.04 7.04 32.02 25.48 25.48 9.60 2.84 2.84
BS-lckernel-linear 7.87 7.88 7.88 30.88 24.32 24.32 9.93 3.41 3.41

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 32.83 2.46 0.02 84.88 14.84 0.42 91.34 33.03 1.35
BKM-spline-flat 14.91 1.22 0.02 55.07 8.17 0.18 67.92 20.15 0.57
BKM-spline-linear 4.06 0.17 0.01 11.43 1.37 0.05 18.22 3.88 0.07
BKM-Kernel-linear 3.25 0.11 0.01 9.29 1.01 0.13 14.59 2.90 0.30
BKM-lckernel-linear 15.13 1.35 0.07 55.89 9.63 1.02 69.79 24.58 3.86

Quantile Moments
MFree-kernel-linear 0.34 0.07 0.07 3.27 0.01 0.01 0.89 0.02 0.02
MFree-spline-flat 14.32 0.23 0.45 3.46 0.54 2.36 8.10 0.14 0.23
MFree-lckernel-linear 16.26 1.08 0.79 2.75 0.64 0.61 10.57 0.61 0.33
BS-kernel-linear 34.30 33.97 33.97 21.67 24.14 24.14 8.73 13.59 13.59
BS-spline-flat 26.63 33.57 33.61 57.42 24.27 24.59 26.86 13.17 13.17
BS-lckernel-linear 25.68 33.12 33.12 57.25 23.24 23.24 26.33 13.27 13.27
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Table 18: Errors from micro-structural noise - transformed normal
distribution

This table shows the standard deviation of estimates of option-implied moments for different
levels of micro-structural noise in percent. The strike price spacing set to 2.5 dollar and strikes
cover a range from 90% to 110% of the strike price. The return distribution is a sinh-arcsinh
transformed normal distribution. Option-implied moments are estimated under two different
scenarios: Panel A shows the results of a standard scenario with quantile (central) volatility of
0.12 (0.20), skewness of -0.46 (-1.44), and kurtosis of 2.52 (8.34). Panel B displays the results
of a crisis scenario with quantile (central) volatility of 0.18 (0.40), skewness of -0.63 (-2.4),
and kurtosis of 3.17 (13.98). Micro-structure noise is simulated by perturbing option-prices
by a percent of their value. Percentages are drawn randomly from a normal distribution with
a standard deviation of either 1%, 5%, or 10%. For each level of micro-structural noise risk-
neutral moments are estimated 1000 times. Moments are estimated from raw option data
(raw), or a smoothed volatility surface based on cubic splines with flat or linear extrapolation,
a non-parametric local-linear kernel regression (kernel), or a local-constant kernel regression
(lckernel). Quantile moments are estimated either model-free (MFree) or from a näıve Black-
Scholes approximation (BS). The central risk-neutral moments are based on Bakshi et al.
(2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.12 0.57 1.13 0.17 0.83 1.70 0.09 0.46 0.91
BKM-spline-flat 0.17 17.20 16.20 0.37 6.35 7.03 0.33 5.69 6.10
BKM-spline-linear 16.96 104.74 121.49 21.60 135.98 594.72 39.23 228.66 3.61e4
BKM-kernel-linear 2.60 7.28 14.95 9.17 19.99 27.10 16.38 35.05 45.82
BKM-lckernel-linear 0.15 0.98 1.60 0.47 2.64 4.74 0.60 3.42 5.75

Quantile Moments
MFree-kernel-linear 7.36 9.30 11.65 4.31 8.64 9.95 7.71 11.21 15.71
MFree-spline-flat 5.64 21.72 26.05 2.10 31.71 29.73 5.72 247.89 91.03
MFree-lckernel-linear 5.09 13.94 16.13 7.78 22.85 28.51 5.91 15.83 20.29
BS-kernel-linear 0.46 1.49 2.95 2.05 5.28 8.54 3.96 10.79 20.28
BS-spline-flat 0.47 9.62 10.12 0.29 2.08 4.90 0.32 19.49 13.97
BS-lckernel-linear 0.32 1.74 3.26 0.49 1.97 3.66 0.34 1.75 3.35

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.15 0.79 1.55 0.41 2.06 4.00 0.39 1.99 3.85
BKM-spline-flat 0.16 12.70 29.49 0.48 17.85 31.54 0.58 6.17 12.22
BKM-spline-linear 0.19 70.71 118.76 1.07 155.66 267.23 2.44 370.04 575.00
BKM-Kernel-linear 0.21 0.96 1.96 1.35 5.57 14.90 3.00 12.66 45.85
BKM-lckernel-linear 0.16 0.99 1.71 0.37 1.92 3.76 0.31 1.70 3.25

Quantile Moments
MFree-kernel-linear 3.58 8.19 10.49 4.83 12.06 16.81 3.74 9.57 12.77
MFree-spline-flat 1.05 16.08 23.94 1.41 26.73 41.71 1.21 1.55e3 1.14e3
MFree-lckernel-linear 7.59 13.99 18.27 5.49 10.86 14.75 8.79 16.45 22.73
BS-kernel-linear 0.30 1.30 2.44 0.32 1.17 2.10 0.30 1.43 2.76
BS-spline-flat 0.23 6.49 5.31 0.31 8.97 20.02 0.26 50.15 5.29
BS-lckernel-linear 0.44 2.38 3.74 0.32 1.43 2.55 0.31 1.71 2.66
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Table 19: Errors from different strike price spacing - transformed normal
distribution

This table shows the approximation error of option-implied moments for different strike
price spacings in percent. The domain-half width is set to 99% of the current stock price.
The return distribution is a sinh-arcsinh transformed normal distribution. Option-implied
moments are estimated under two different scenarios: Panel A shows the results of a
standard scenario with quantile (central) volatility of 0.12 (0.20), skewness of -0.46 (-1.44),
and kurtosis of 2.52 (8.34). Panel B displays the results of a crisis scenario with quantile
(central) volatility of 0.18 (0.40), skewness of -0.63 (-2.4), and kurtosis of 3.17 (13.98). For
each of the scenarios risk-neutral moments are estimated under different strike price spacings
(1%, 2%, & 5%). Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel).
Quantile moments are estimated either model-free (MFree) or from a näıve Black-Scholes
approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.09 0.18 0.27 0.21 0.43 8.46 0.36 0.71 2.88
BKM-spline-flat 0.03 0.04 0.06 0.21 0.27 0.46 0.13 0.09 0.18
BKM-spline-linear 0.03 0.04 0.05 0.22 0.28 0.49 0.09 0.06 0.09
BKM-kernel-linear 0.01 0.04 0.22 0.08 0.04 0.41 0.35 0.06 0.42
BKM-lckernel-linear 0.00 0.01 0.09 0.00 0.01 0.10 0.03 0.07 0.28

Quantile Moments
MFree-kernel-linear 0.52 0.23 4.07 1.25 0.08 1.58 0.55 0.23 3.59
MFree-spline-flat 0.03 1.43 1.59 1.83 1.15 3.92 0.33 2.10 2.15
MFree-lckernel-linear 3.53 2.31 20.19 3.67 9.34 15.68 2.20 4.17 12.77
BS-kernel-linear 7.28 7.23 7.08 25.49 25.49 25.23 3.29 3.25 3.16
BS-spline-flat 7.05 7.18 7.09 25.49 25.77 25.45 2.84 2.93 2.93
BS-lckernel-linear 8.76 7.30 11.22 26.10 26.77 18.93 5.15 4.03 7.41

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.02 0.05 0.10 0.14 0.06 0.88 0.14 0.13 0.38
BKM-spline-flat 0.02 0.02 0.02 0.15 0.15 0.21 0.47 0.47 0.73
BKM-spline-linear 0.01 0.01 0.01 0.06 0.06 0.05 0.10 0.10 0.10
BKM-kernel-linear 0.01 0.01 0.04 0.11 0.09 0.03 0.21 0.20 0.02
BKM-lckernel-linear 0.03 0.02 0.01 0.44 0.41 0.29 1.63 1.55 1.29

Quantile Moments
MFree-kernel-linear 0.08 0.22 0.14 0.18 1.17 0.20 0.20 0.06 0.73
MFree-spline-flat 0.32 0.27 1.02 2.24 2.38 0.90 0.16 0.14 0.81
MFree-lckernel-linear 2.1 6.70 6.02 4.52 4.01 19.92 1.11 3.32 15.52
BS-kernel-linear 33.96 33.95 33.81 24.15 24.18 24.40 13.58 13.56 13.42
BS-spline-flat 33.65 33.69 33.58 24.58 24.58 24.42 13.22 13.26 13.17
BS-lckernel-linear 32.3 33.93 30.77 23.69 24.60 24.13 12.83 12.82 13.33
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Table 20: Errors from truncated domain half-width - mixture of 2
normal distributions

This table shows the approximation errors of option-implied moments for different strike
price domain half-widths in percent. The strike price spacing is held constant at 50 cents.
The return distribution is a multimodal mixture of 2 normal distributions. Option-implied
moments are estimated under two different scenarios: Panel A shows the results of a
standard scenario with quantile (central) volatility of 0.04 (0.20), skewness of -0.62 (-2.44),
and kurtosis of 7.28 (13.25). Panel B displays the results of a crisis scenario with quantile
(central) volatility of 0.09 (0.40), skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). For
each of the scenarios risk-neutral moments are estimated under different domain half-widths
(10%, 50%, & 80%). Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel).
Quantile moments are estimated either model-free (MFree) or from a näıve Black-Scholes
approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Domain half-width 10% 50% 80% 10% 50% 80% 10% 50% 80%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 19.90 0.02 0.02 51.98 0.07 0.06 73.46 0.17 0.10
BKM-spline-flat 8.76 0.04 0.01 22.53 0.22 0.12 40.02 0.13 0.00
BKM-spline-linear 13.97 0.04 0.01 203.24 0.23 0.12 411.34 0.13 0.01
BKM-kernel-linear 12.82 0.00 0.00 48.70 0.03 0.03 182.52 0.03 0.04
BKM-lckernel-linear 8.33 0.00 0.00 21.47 0.01 0.01 38.69 0.00 0.00

Quantile Moments
MFree-kernel-linear 0.26 0.25 0.25 4.69 2.06 2.06 10.52 0.07 0.07
MFree-spline-flat 8.29 10.27 6.59 10.52 5.50 5.40 15.92 7.76 4.31
MFree-lckernel-linear 0.60 2.68 4.45 6.71 5.23 8.08 7.02 2.16 3.99
BS-kernel-linear 177.38 177.38 177.38 15.51 19.36 19.36 51.12 57.44 57.44
BS-spline-flat 179.32 175.96 178.42 28.93 18.77 20.68 64.85 57.61 57.93
BS-lckernel-linear 175.71 175.65 175.90 29.41 19.49 19.77 64.52 57.56 57.65

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 45.94 5.76 0.04 82.65 17.03 0.08 92.10 35.10 0.87
BKM-spline-flat 32.73 2.32 0.01 59.96 7.42 0.04 75.76 17.37 0.33
BKM-spline-linear 50.00 1.09 0.00 50.67 4.21 0.02 80.52 10.72 0.20
BKM-kernel-linear 31.86 0.70 0.01 48.47 2.79 0.05 83.54 7.52 0.23
BKM-lckernel-linear 33.06 2.37 0.01 60.64 7.09 0.25 76.20 17.23 0.43

Quantile Moments
MFree-kernel-linear 0.75 0.76 0.76 39.36 1.24 1.35 29.83 1.00 1.01
MFree-spline-flat 0.81 3.53 1.75 227.92 5.67 25.88 17.49 1.74 0.02
MFree-lckernel-linear 0.83 0.91 1.25 233.59 10.26 7.50 16.53 0.80 3.15
BS-kernel-linear 127.11 126.68 126.68 332.62 273.51 273.51 11.96 33.40 33.40
BS-spline-flat 114.13 125.71 124.79 113.57 273.72 272.33 61.78 33.34 32.88
BS-lckernel-linear 110.05 122.17 122.17 120.23 289.94 289.94 60.59 30.70 30.68
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Table 21: Errors from micro-structural noise - mixture of 2 normal
distributions

This table shows the standard deviation of estimates of option-implied moments for different
levels of micro-structural noise in percent. The strike price spacing set to 2.5 dollar and
strikes cover a range from 90% to 110% of the strike price. The return distribution is a
multimodal mixture of 2 normal distributions. Option-implied moments are estimated
under two different scenarios: Panel A shows the results of a standard scenario with quantile
(central) volatility of 0.04 (0.20), skewness of -0.62 (-2.44), and kurtosis of 7.28 (13.25).
Panel B displays the results of a crisis scenario with quantile (central) volatility of 0.09
(0.40), skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). Micro-structure noise is
simulated by perturbing option-prices by a percent of their value. Percentages are drawn
randomly from a normal distribution with a standard deviation of either 1%, 5%, or 10%.
For each level of micro-structural noise risk-neutral moments are estimated 1000 times.
Moments are estimated from raw option data (raw), or a smoothed volatility surface based
on cubic splines with flat or linear extrapolation, a non-parametric local-linear kernel
regression (kernel), or a local-constant kernel regression (lckernel). Quantile moments are
estimated either model-free (MFree) or from a näıve Black-Scholes approximation (BS). The
central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Noise 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.14 0.73 1.54 0.23 1.13 2.18 0.15 0.76 1.54
BKM-spline-flat 0.21 1.22 2.44 0.48 2.36 5.06 0.51 2.50 5.30
BKM-spline-linear 9.41 152.71 261.96 63.80 146.72 923.29 72.84 212.15 765.88
BKM-kernel-linear 4.51 26.14 58.22 16.80 61.81 79.48 49.04 163.85 188.92
BKM-lckernel-linear 0.15 0.76 1.55 0.37 1.91 3.70 0.54 2.84 5.36

Quantile Moments
MFree-kernel-linear 5.98 23.46 32.28 3.50 16.71 28.33 6.45 26.25 29.32
MFree-spline-flat 3.79 23.73 47.62 1.01 9.39 30.02 3.20 21.44 46.30
MFree-lckernel-linear 18.22 26.90 31.42 11.08 21.30 28.39 21.87 26.69 27.41
BS-kernel-linear 1.22 5.95 9.86 1.98 9.66 16.59 2.54 14.99 32.06
BS-spline-flat 1.41 8.22 13.91 0.46 1.83 4.17 0.21 1.11 2.08
BS-lckernel-linear 0.96 7.25 11.38 0.24 1.24 2.73 0.41 1.25 1.94

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.09 0.48 0.96 0.12 0.62 1.22 0.04 0.22 0.43
BKM-spline-flat 0.20 1.01 2.17 0.35 1.75 3.65 0.19 0.99 2.01
BKM-spline-linear 38.90 139.04 143.77 18.99 93.98 2.84e3 34.59 1.07e4 3.43e3
BKM-Kernel-linear 12.50 45.59 71.27 3.76 16.09 26.23 3.63 25.59 38.26
BKM-lckernel-linear 0.17 0.88 1.77 0.32 1.56 3.10 0.26 1.28 2.51

Quantile Moments
MFree-kernel-linear 8.39 13.99 19.05 52.30 104.75 140.93 10.90 18.74 21.51
MFree-spline-flat 2.73 24.14 32.20 5.10 53.05 107.38 2.24 69.86 238.43
MFree-lckernel-linear 9.49 18.08 21.96 89.22 136.16 186.31 9.30 18.88 30.65
BS-kernel-linear 3.20 28.90 179.64 23.04 64.50 89.00 7.81 20.67 24.29
BS-spline-flat 0.77 4.37 8.89 1.82 9.23 19.63 0.07 0.49 1.01
BS-lckernel-linear 5.62 7.05 9.68 3.50 8.27 13.53 1.29 1.76 2.52
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Table 22: Errors from different strike price spacing - mixture of 2 normal
distributions

This table shows the approximation error of option-implied moments for different strike
price spacings in percent. The domain-half width is set to 99% of the current stock price.
The return distribution is a multimodal mixture of 2 normal distributions. Option-implied
moments are estimated under two different scenarios: Panel A shows the results of a
standard scenario with quantile (central) volatility of 0.04 (0.20), skewness of -0.62 (-2.44),
and kurtosis of 7.28 (13.25). Panel B displays the results of a crisis scenario with quantile
(central) volatility of 0.09 (0.40), skewness of -0.15 (-3.57), and kurtosis of 6.16 (22.80). For
each of the scenarios risk-neutral moments are estimated under different strike price spacings
(1%, 2%, & 5%). Moments are estimated from raw option data (raw), or a smoothed
volatility surface based on cubic splines with flat or linear extrapolation, a non-parametric
local-linear kernel regression (kernel), or a local-constant kernel regression (lckernel).
Quantile moments are estimated either model-free (MFree) or from a näıve Black-Scholes
approximation (BS). The central risk-neutral moments are based on Bakshi et al. (2003).

Volatility Skewness Kurtosis
Spacing 1% 2% 5% 1% 2% 5% 1% 2% 5%

Panel A: Standard Scenario

Central Moments
BKM-raw-none 0.09 0.18 0.79 0.24 0.46 1.52 0.37 0.72 2.34
BKM-spline-flat 0.01 0.02 0.02 0.13 0.16 0.17 0.02 0.07 0.10
BKM-spline-linear 0.01 0.02 0.02 0.13 0.16 0.17 0.03 0.07 0.10
BKM-kernel-linear 0.00 0.02 0.12 0.08 0.28 1.74 0.07 0.20 1.17
BKM-lckernel-linear 0.00 0.02 0.12 0.04 0.17 1.03 0.02 0.11 0.69

Quantile Moments
MFree-kernel-linear 3.20 4.91 14.14 1.35 0.76 4.40 2.62 5.54 9.36
MFree-spline-flat 8.72 11.83 14.45 4.35 4.47 3.26 6.26 9.13 11.78
MFree-lckernel-linear 1.30 21.63 25.86 12.02 8.71 26.98 1.25 18.01 20.99
BS-kernel-linear 177.47 177.59 178.09 19.40 20.05 23.14 57.46 57.48 57.64
BS-spline-flat 177.98 178.59 179.58 20.34 19.89 19.58 57.85 58.06 58.35
BS-lckernel-linear 175.27 175.27 151.10 19.80 19.17 18.06 57.56 57.56 53.14

Panel B: Crisis Scenario

Central Moments
BKM-raw-none 0.01 0.05 0.12 0.02 0.19 0.21 0.36 0.09 0.79
BKM-spline-flat 0.02 0.02 0.03 0.06 0.06 0.08 0.33 0.32 0.40
BKM-spline-linear 0.02 0.02 0.04 0.05 0.04 0.04 0.28 0.27 0.26
BKM-kernel-linear 0.00 0.00 0.06 0.06 0.00 0.37 0.21 0.28 0.60
BKM-lckernel-linear 0.01 0.01 0.10 0.16 0.12 0.13 0.38 0.42 0.76

Quantile Moments
MFree-kernel-linear 0.79 0.85 3.32 5.92 20.11 51.10 1.27 1.83 3.17
MFree-spline-flat 4.63 3.96 0.66 21.55 19.66 31.10 3.60 3.12 2.89
MFree-lckernel-linear 1.78 2.52 8.18 27.01 144.56 22.29 1.37 5.79 31.86
BS-kernel-linear 126.69 126.64 126.81 273.38 273.01 270.26 33.40 33.38 33.46
BS-spline-flat 125.09 125.19 125.66 272.98 272.59 274.63 33.15 33.16 33.21
BS-lckernel-linear 122.50 122.28 117.09 288.55 292.60 296.12 30.47 29.65 27.38

91



3 Volatility Control of Option Strategies

Alexander Feser

Status: Accept for publication in the Journal of Portfolio Management

ABSTRACT

Option trading strategies can be managed by taking less risk if volatility is high and

more risk if volatility is low. These volatility managed option strategies generate

economically and statistically significant alphas over their unmanaged counterparts,

have reduced maximum drawdowns, lower downside risk, and more normal return

distributions. The findings hold for 9 out of 10 of the S&P500 Cboe option strategy

benchmarks and are especially strong for put- and buy-write strategies. Volatility

controlling the put-write benchmark generates a significant annualized alpha of 4.88%

per year over the unmanaged strategy. To understand the driver behind the success

of volatility control, option strategy returns are decomposed into a return driven by

changes in the S&P500 and a return which captures the exposure to the variance risk

premium (VRP). The results show that the success of volatility control is driven by

both timing the exposure to the VRP and the exposure to the S&P500.
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Michael Verhofen, Felix von Meyerinck, and an anonymous referee for helpful discussions and
comments. All errors are my own.

92



3.1 Introduction

Option trading strategies, such as put- and buy-write strategies, are popular in-

vestments. They offer returns comparable to an investment into the underlying at

a lower volatility thus generating high Sharpe ratios (Israelov & Nielsen, 2015a).

However, put- and buy-write strategies also carry high levels of downside risk which

materializes in occasional crashes. This study shows that option strategies can be

managed by reducing exposure when volatility is high and increasing exposure if

volatility is low. These volatility controlled option trading strategies generate signif-

icant alphas over their unmanaged counterparts, have increased Sharpe ratios, lower

absolute skewness, lower kurtosis, and less downside risk.

I argue that option strategies, especially put- and buy-write strategies, are natu-

ral candidates for volatility control which seems counterintuitive at first. Put-write

strategies generate profits by collecting option premia and thus it is commonly ex-

pected that they are more profitable during times of high (implied) volatility as option

premia are also higher. However, during these times they are also exposed to large

losses as the underlying market is more volatile. The return distributions of put- and

buy-write strategies consist of frequent small profits which are offset by occasional

large losses. Volatility control helps to reduce these large losses and leads to signifi-

cant increases in Sharpe ratios.

The results show that volatility controlled option trading strategies generate sig-

nificant and positive alphas for 9 of 10 of the analyzed strategies. The results are

particularly strong for put- and buy-write strategies, such as covered calls, where

annualized alphas range from 3.45% to 4.88% and Sharpe ratios increase between

0.22 and 0.37. Moreover, volatility control reduces absolute skewness, kurtosis, and

the drawdown of these strategies. This risk reduction makes the risk-return profile of

these strategies more appealing for downside risk averse investors and challenges the

findings of studies which explain the return of put-write strategies with their down-
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side risk (e.g. Lettau et al., 2014). The results also extend to other option strategies

such as collar, protective put, and condor strategies.

Furthermore, I also analyze the drivers of volatility control in option strategies.

Option trading strategies expose investors to the equity risk premium and the variance

risk premium (Coval & Shumway, 2001). Moreira & Muir (2017) show that volatility

control works well for equity market returns and therefore a natural hypothesis is to

assume that the success volatility control in option strategies is driven by controlling

the exposure to the S&P500. Using the decomposition of Israelov & Nielsen (2015a) I

investigate if the success of volatility control in option trading strategies is driven by

controlling the strategy’s exposure to the equity market or by controlling the exposure

to the variance risk premium. Israelov & Nielsen (2015a) show that option strategy

returns can be decomposed into (1) a return driven by changes in the underlying,

(2) a return from the exposure to the volatility risk premium, and (3) a dynamic

equity return originating from changes in the delta of options over time. The results

show that the gains from volatility control are the most statistically significant for

the variance risk premium return. However, alphas from controlling the equity risk

premium are larger in magnitude, i.e. economically more significant, but do not have

the same level of statistical significance. Therefore, the results are not driven by

simply controlling the S&P500 but instead by jointly controlling the exposure to the

variance and equity risk premium.

To the best of my knowledge, this study is the first to show that volatility control

and the low volatility anomaly extend to option strategies. In particular, the results

indicate that the increased risk-return trade-off is mainly driven by managing the ex-

posure to the volatility risk premium and thus the results are distinct from previous

studies which find that positions in the equity market can be managed with volatil-

ity control. The findings extend the low volatility anomaly to option and volatility

investments and are particularly interesting because they contradict the common in-
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tuition of practitioners (see the examples in Moreira & Muir, 2017) and academics

(e.g. Bakshi & Kapadia, 2003, find that the variance risk premium is higher in times

of high volatility) that investors should buy in times of high volatility.

This study is related to the literature on volatility control and option strategies.

The economic value of volatility control is first discussed in depth by Fleming, Kirby,

& Ostdiek (2001, 2003) who link it to a mean-variance framework. If investors expect

returns to be constant, a mean-variance approach will lead to volatility control in the

portfolio. Moreira & Muir (2017) follow this argument and show that volatility con-

trol generates large and significant alphas for risk-factors which lead to sizable utility

gains for investors. The mechanism behind volatility control is described by Perchet,

de Carvalho, Heckel, & Moulin (2016) who show that volatility control works because

of three phenomena frequently observed in financial markets. The first phenomenon

is volatility clustering. If the volatility in a period is high, it will likely remain high in

the next period. Therefore, if exposure is reduced during times of high volatility, the

overall volatility of the strategy is reduced leading to a higher Sharpe ratio. Volatil-

ity clustering can be measured as the autocorrelation of volatility. Second, periods of

high volatility also often coincide with low returns. This negative correlation between

returns and volatility is often referred to as leverage effect. If volatility correlates neg-

atively with returns, reducing exposure in times of high volatility also helps to avoid

downside returns in the strategy. Third, fat tails in the return distribution increase

the efficacy of volatility control, typically by increasing the leverage effect. Econom-

ically, these phenomena can be tied to the financial leverage in companies balance

sheets, business cycle risk, and self-exciting behavior of investors (Carr & Wu, 2017).

Perchet et al. (2016) point out that even if returns follow a white noise process and

volatility does not cluster, volatility control will not hurt the risk-return trade-off net

of transaction costs.

This study proceeds as follows. Section 3.2 reviews the option trading strategies
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in the sample and presents summary statistics. Section 3.3 presents the volatility

control methodology and its effect on the risk-return trade-off. Section 3.4 discusses

the effect of volatility control on risk. Section 3.5 investigates the drivers of the suc-

cess of volatility control in option strategies. Section 3.6 shows that volatility control

in option strategies is robust to transaction costs. Section 3.7 concludes.

3.2 Data

I obtain daily and monthly data of option strategy benchmarks from the Chicago

Board Options Exchange (Cboe). I use all 10 published option strategy benchmarks

covering the period from January 1990 to August 2017. Cboe also provides data for

the S&P500 and the S&P500 Total Return Index. In addition, S&P500 option price

data, are obtained from the OptionMetrics IvyDB through WRDS. S&P500 cash div-

idends are provided by Compustat. The yield on 3 month T-bills is sourced from the

Federal Reserve of St Louis. The remainder of this section briefly describes the Cboe

option strategy benchmarks and their summary statistics (Table 23). All results in

this study are computed from excess returns over the 3 month T-bill yield.

The data set includes 10 option strategies, all of which are based on the S&P

500. Cboe publishes these strategies as benchmarks for investors and their data is

widely used by other studies (e.g. Whaley, 2002; Ungar & Moran, 2009; Israelov &

Nielsen, 2015a). Option positions in all strategies are rolled at expiration, typically

on the third Friday of each month. The benchmark strategies typically choose the op-

tions with a targeted strike, e.g. the current level of the S&P 500 for an at-the-money

(ATM) option. If no such option is available, the Cboe strategy benchmarks typically

choose the next closest option which is further out-of-the-money (OTM) than the tar-

geted strike. The strategies generally buy (sell) options at the last ask (bid) quote

before 11 am. Therefore, the benchmark strategies include transaction costs arising

from the bid-ask spread but ignore any further transaction costs such as brokering
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fees. Furthermore, the strategy benchmarks are fully collaterized and hold cash to

cover losses from selling options. For example, the Cboe put-write benchmark holds

cash equal to the strike price of the options sold and thus has a relatively low lever-

age. This is important because collaterized option strategy returns have relatively

normal return distributions and can be evaluated with traditional statistical inference

techniques. In contrast, uncollaterized option strategies have excessive fat tails which

potentially imply that the moments of the return distribution do not exist anymore

(Eraker, 2013) and consequently traditional inferential statistics cannot be applied

anymore. The strategies can be roughly grouped into 3 categories: (1) put- and

buy-write strategies such as covered calls (2) defensive strategies such as protective

puts, and (3) volatility carry strategies that aim to pick up the variance risk premium.

The put- and buy-write category contains 3 covered call strategies, 1 put-write

strategy and 1 combo strategy. All of these strategies have a concave payoff profile

which is similar to a short put. Covered call strategies achieve this profile by combin-

ing a long position in the underlying with a short call. Thus, an investor collects the

premium of the call option which provides a steady flow of returns but also forfeits

all upside potential above the strike of the call while retaining the downside risk (see

Whaley, 2002; Israelov & Nielsen, 2014, 2015a, for an in-depth discussion). The three

covered call strategies in the sample sell at-the-money calls (BXM index), 2% out-of-

the-money calls (BXY index), and OTM calls with a delta of 0.3 (BXMD index). The

main difference between them is thus the strike price of the call option that is sold,

e.g. the BXMD index typically sells call options with the highest strike prices. Thus,

the option premia collected by the BXMD index are the lowest of the three covered

call strategies, but it also retains the most upside potential. The put-write strategy

(PUT index) sells ATM puts and fully collaterizes them. For example, if a put option

with a strike of 100 is sold, the strategy will invest 100 in a money market account

to cover all potential losses. Therefore, the PUT index generates the same payoff

profile as the BXM covered call strategy. Furthermore, the sample contains a combo

97



strategy (CMBO index) which combines writing ATM puts and a 2% OTM covered

call strategy. In comparison to the BXM index it adds extra downside exposure if

the price of the S&P500 declines.

The concave payoff profile of the put- and buy-write strategies is also reflected in

their summary statistics. Covered call, put-write and combo strategies have similar

return distributions. All five strategies have higher returns and lower volatilities and

therefore higher Sharpe ratios (Sharpe, 1994) than the S&P500 index. This outper-

formance over the S&P500 can also be seen in the significantly positive CAPM alphas

of the five strategies. The most common explanations for this outperformance are ei-

ther that selling options collects the variance risk premium (Coval & Shumway, 2001;

Israelov & Nielsen, 2015b) or a downside risk premium (Lettau et al., 2014). Indeed,

all five strategies have left skewed and fat tailed return distributions in comparison

with the S&P 500 indicating that the strategies have a high downside risk. This ob-

servation is also confirmed by comparing the CAPM beta (β) with the downside beta

(β−) of Lettau et al. (2014). The downside beta is a conditional beta calculated from

returns when the stock market is in distress.8 Therefore, the downside beta provides

a measure of systematic downside risk of an investment. The summary statistics

show that all five put- and buy-write strategies have a higher downside beta than

their regular CAPM beta. However, the downside beta is not higher than 1 as the

strategies just forfeit the upside during bull markets but retain the downside during

bear markets. Therefore, they have betas close to 1 if the market declines. Moreover,

put- and buy-write strategies have lower drawdowns than the S&P500 indicating that

these strategies have actually a lower downside risk than the S&P500. All put- and

buy-write strategies exhibit a strong negative correlation between returns and volatil-

ity as well as a high autocorrelation in volatility which makes them ideal candidates

for volatility control. Interestingly, the PUT index has a higher Sharpe ratio than

the BXM index. Both strategies use at-the-money options and put-call parity de-

8Lettau et al. (2014) define a downside event as a return that is smaller than the average return
minus one standard deviation.
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mands that they should have an identical payoff profile. Israelov (2017) analyzes this

discrepancy and attributes it to different exposures to the S&P500 during expiration

days.

The second category of defensive strategies includes three option strategies: a

collar, a zero-cost collar, and a protective put strategy. The protective put strategy

(PPUT index) limits the downside of an S&P 500 investment by buying 5% OTM

puts. This protective put strategy is a classic hedge against large losses. However,

the premia of the puts lower the return if no downside event takes place. The collar

strategy (CLL index) combines a protective put (5% OTM) with a short 10% OTM

call. Thus, downside and upside are both capped by the options. The zero-cost

put-spread collar (CLLZ index) buys a 2.5% OTM put, sells a 5% OTM put (this

combination of put options is referred to as a put-spread), and sells an OTM call to

cover the cost of the put-spread. In addition, CLLZ buys one unit of the S&P500 to

collateralize the short call. Therefore, it has a similar payoff profile as a collar, but

provides a limited amount of downside-risk protection by limiting losses only between

2.5% and 5%. All three strategies have Sharpe ratios which are close to the Sharpe

ratio of the S&P500 and thus do not enhance the risk-return trade-off. Moreover, they

have on average lower returns and do not generate any alpha over the S&P500 index.

However, the collar and protective put strategy have lower downside risk than the

S&P500, indicated by slightly skewed returns, low excess kurtosis, and low downside

betas. Protective put and collar strategies exhibit a high autocorrelation in realized

volatility which points to volatility clustering. However, the leverage effect of the

PPUT and CLL strategies is relatively low with correlations of -15.41% and -7.27%

respectively.

The third category of strategies contains two volatility strategies: a butterfly

(BFLY index) and a condor strategy (CNDR index). A butterfly strategy sells an

ATM call and an ATM put (referred to as a short straddle) and limits the downside
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risk by buying 5% OTM call and put options. Consequently, the profit of the butterfly

is highest if the price of the underlying remains unchanged. However, a butterfly

strategy is not a pure volatility investment. The profits of the strategy depend on

the combined premium that is generated from selling the ATM options and buying

the OTM options. If the volatility surface is exhibits a steep smile, i.e. OTM puts

are relatively expensive, the profits of this strategy are lower. A variation of the

butterfly is the condor strategy which sells an OTM call and an OTM put with

deltas of +/- 0.2 (also referred to as a short strangle) and limits the risk by buying

deep OTM calls and puts with deltas of +/- 0.05. Both strategies have low betas

of 0.10 and 0.15, low downside betas of 0.38 and 0.46, and similar alphas over the

S&P500 of 2.99% and 3.08% per year. However, the two strategies have different

distributional characteristics. The BFLY strategy has a relatively normal distribution

and a similar Sharpe ratio to the S&P500, while the condor strategy has a left skewed

leptokurtic payoff profile. Both strategies exhibit a relatively low autocorrelation in

their respective volatilities. In addition, the BFLY strategy has a low correlation of

-10.16% between returns and volatility. It is worthwhile to note that both strategies

have stopped performing after the financial crisis of 2008 and that most of the observed

high Sharpe ratios are driven by a strong performance in the 1990’s.

3.3 Volatility control

I construct volatility controlled versions of the option trading strategies similar to

Moreira & Muir (2017) by scaling the option strategy returns by the inverse of their

realized volatility. At the end of each month, the realized volatility determines the

exposure to the option trading strategy over the following month. Thus, the return

of the volatility controlled option strategy is:

c

σt
rt,t+1 (28)

where rt,t+1 is the excess return of a option strategy in the subsequent month. The

position in a option trading strategy is thus inversely determined by volatility (σt). If
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volatility is low, the volatility controlled portfolio increases the position in a strategy

and vice versa. The constant c allows to control the leverage used in the strategy

and can be interpreted as the desired ex-ante volatility. However, as c is constant

over time, it does not change the Sharpe ratio of the strategy. To make results be-

tween the volatility managed strategy and the unmanaged strategy comparable, I

follow Moreira & Muir (2017) and set c ex-post so that the unconditional volatility

of the managed strategy is the same as the unconditional volatility of the unmanaged

strategy. This an easy way to make statistics between the managed and unmanaged

option trading strategies comparable as they have the same amount of unconditional

risk.

Realized volatility is computed from squared daily returns as an exponentially

weighted moving average with the center of mass at 20 days, similarly to Moskowitz,

Ooi, & Pedersen (2012). I follow Moskowitz et al. (2012) and Moreira & Muir (2017)

and evaluate the success of volatility control by calculating the alpha of the volatility

controlled strategy over the unmanaged strategy. I run the following regression to

determine if volatility controlled strategies outperform an unmanaged strategy:

rmanaged
t = α+ βrunmanaged

t + ϵt (29)

Tables 24 and 25 present summary statistics of the volatility controlled strategies

and the residual returns from the regression in Equation 29. The main results are

presented in Table 26. In addition to the alpha, Table 26 also reports the regression

beta, the Sharpe ratio of the managed strategies, the change in Sharpe ratio, and

the information ratio. The information ratio, given by α
σ(ϵ)

, measures by how much

volatility control expands the risk-return trade-off. Therefore, it is often also referred

to as the excess Sharpe ratio (Moreira & Muir, 2017). In addition, to create a better

overview for the reader, Table 24 and 25 display summary statistics for the volatility

controlled strategies and the regression residuals.
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Table 26: Performance of volatility managed option strategies

This table shows the performance of volatility managed trading strategies. The table
reports the the alphas over the unmanaged strategy (α), the beta from the regression
(β), the information ratio (IR), the Sharpe ratio of the managed strategies (SR), and the
change in Sharpe ratio (∆SR). The volatility controlled strategies are scaled to have the
same unconditional volatility as the unmanaged strategies. The data covers 332 months
per strategy during the period from January 1990 to August 2017. Standard errors are
reported in parenthesis. Standard errors of alphas are Newey & West (1987) adjusted with
5 lags. Standard errors of ∆SR are obtained with a circular block bootstrap with 10’000
repetitions. All statistics are annualized. Alphas are reported in percent.

α β IR SR ∆SR

Cov. Call ATM (BXM) 3.64** (1.50) 0.86*** (0.10) 0.69 0.89 0.26* (0.15)

Cov. Call 2% OTM (BXY) 3.45** (1.50) 0.89*** (0.08) 0.63 0.85 0.22* (0.12)

Cov. Call 30∆ (BXMD) 3.88** (1.65) 0.88*** (0.09) 0.63 0.87 0.23* (0.13)

Put-Write (PUT) 4.88*** (1.78) 0.83*** (0.11) 0.90 1.13 0.37** (0.19)

Covered Combo (CMBO) 3.74** (1.53) 0.87*** (0.09) 0.71 0.91 0.27* (0.15)

Collar (CLL) 1.13* (0.58) 0.96*** (0.04) 0.38 0.47 0.09 (0.06)

Zero-Cost Collar (CLLZ) 2.59* (1.35) 0.88*** (0.10) 0.48 0.58 0.18 (0.13)

Protective Put (PPUT) 1.51* (0.78) 0.95*** (0.05) 0.38 0.48 0.11 (0.07)

Butterfly (BFLY) -0.19 (-0.48) 0.97*** (0.03) -0.07 0.31 -0.03 (-0.04)

Condor (CNDR) 1.37** (0.69) 0.90*** (0.06) 0.47 0.71 0.15 (0.10)

S&P500 Index 2.55* (1.43) 0.91*** (0.07) 0.41 0.54 0.14 (0.11)

Stars indicate statistical significance: * - p ≤ 0.1, ** - p ≤ 0.05, *** - p ≤ 0.01

The results in Table 26 show that volatility control delivers significantly positive

alphas for 9 out of the 10 option trading strategies. The covered call and put-write

strategies benefit especially from volatility control. A volatility managed BXM strat-

egy generates an annualized alpha of 3.64% over its unmanaged counterpart which

is statistically significant at the 5% level. The results are similar for the other put-

and buy-write strategies which have statistically significant alphas of 3.45%, 3.88%,

4.88%, and 3.74% for the BXY, BXMD, PUT, and CMBO index respectively. These

high alphas also translate into high information ratios and significant increases in

Sharpe ratios. This finding is not unexpected due to the high autocorrelation of

volatility and the strong leverage effect of put- and buy-write strategies. All these

strategies collect the variance risk premium during calm times which leads to a steady

stream of small returns with occasional large losses when the S&P500 decreases. The

volatility control strategy reduces exposure in times of high volatility which coincide

with down movements of the market.
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The results also extend to option strategies which offer downside protection, such

as collars and protective puts. However, the benefit of volatility control is smaller for

these strategies as they have an inherently lower exposure to negative returns of the

underlying and thus benefit to a lesser extent from the volatility reduction offered by

volatility control during volatile market regimes. For example, the CLL collar strat-

egy generates an annualized alpha of 1.13% which is statistically significant at the

10% level. However, the value of volatility control is small in comparison to volatility

control the put-write strategy (alpha of 4.88%) or even the S&P500 (alpha of 2.55%).

Moreover, volatility control delivers a 0.09 increase in Sharpe ratio. The effect of

volatility control is of similar magnitude for the PPUT strategy generating an alpha

of 1.51% and increasing the Sharpe ratio by 0.11. The findings are in line with the

conclusions of Perchet et al. (2016). PPUT and CLL strategies have relatively low

leverage effects and thus do not benefit from volatility control as much as put- and

buy-write indices. Notably, the effect is stronger for the zero-cost collar strategy. The

zero-cost collar strategy only protects against downside returns up to 5% and is fully

exposed to downside events exceeding 5%. This is reflected in the significant alpha

of 2.59% of the volatility controlled strategy over its unmanaged counterpart.

In contrast, volatility control is less effective for the butterfly strategy. Volatility

control has no effect on the butterfly strategy in the sample and leads to an in-

significant alpha of -0.19%. The relative ineffectiveness of volatility control for the

butterfly strategy could be driven by the relatively small autocorrelation of the but-

terfly volatility combined with a small leverage effect and a relatively normal return

distribution. Nevertheless, while volatility control does not increase the risk-return

trade-off of the butterfly strategy, it also does no harm it. A volatility timed condor

strategy on the other hand generates a significant alpha of 1.37% over its unmanaged

counterpart and its Sharpe ratio increases by 0.15.

Furthermore, the findings from Table 26 can also be observed in Table 24. Note,
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that volatility controlled and uncontrolled strategies have exactly the same volatility

by construction. However, except for the BFLY strategy, all volatility controlled

option strategies have higher returns than their unmanaged counterparts, resulting

in increased Sharpe ratios. Volatility control also leads to a reduction of risk which

is further discussed in Section 3.4. Summary statistics of the residuals in Table 25

show that the residuals have fat tails indicated by high values of excess kurtosis for

all 10 strategies.

3.4 The impact of volatility control on risk

The impact of volatility control on the systematic and idiosyncratic risk of op-

tion trading strategies is shown in Table 27 and 28 respectively. To begin with, the

results show that volatility control lowers the (absolute) skewness, kurtosis, and the

maximum drawdown of the strategies. The risk-reduction is greatest among the put-

and buy-write strategies. For example, the skewness of the BXM increases by 0.31

which reduces the negative skewness of the BXM returns to -0.97. Moreover, the

kurtosis of the strategy decreases by -3.21 and the maximum drawdown is reduced by

7.76 percentage points. In addition, volatility control also reduces the CAPM beta

of the BXM strategy by 0.06 and its downside beta by 0.62. Therefore, volatility

control especially helps to reduce downside risk. An interesting observation is that

the downside beta of the volatility controlled strategy is lower than the CAPM beta.

Lettau et al. (2014) show that the returns of put-write strategies are explained by the

downside risk that these strategies carry. However, the results of this study indicate

that the volatility managed strategies defy this explanation. The results for the other

four put- and buy-write strategies are similar. The absolute skewness, kurtosis, maxi-

mum drawdown, beta, and downside beta of put- and buy-write strategies is reduced.

Volatility control thus does not only generate alpha, but also reduces the downside

risk of the strategy.

Furthermore, the results extend to collar and protective put strategies although
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Table 27: Systematic risk of volatility managed option strategies

This table shows the impact of volatility control on the systematic risk of option trading
strategies. The table displays the CAPM beta and the downside beta of volatility managed
option trading strategies, as well as their differences to the unmanaged strategies (∆β and
∆β−). The data covers 332 months per strategy during the period from January 1990 to
August 2017. Standard errors of ∆β and ∆β− are obtained using a circular block bootstrap
with 10’000 repetitions.

β β− ∆β ∆β−

Covered Call ATM (BXM) 0.56 0.33 -0.06 (-0.07) -0.62*** (-0.22)

Covered Call 2% OTM (BXY) 0.71 0.31 -0.07 (-0.07) -0.63*** (-0.21)

Covered Call 30∆ (BXMD) 0.74 0.32 -0.08 (-0.08) -0.67*** (-0.22)

Put-Write (PUT) 0.50 0.41 -0.06 (-0.06) -0.60** (-0.29)

Covered Combo (CMBO) 0.61 0.36 -0.06 (-0.07) -0.61*** (-0.21)

Collar (CLL) 0.62 0.04 -0.04 (-0.03) -0.14** (-0.07)

Zero-Cost Collar (CLLZ) 0.67 0.31 -0.07 (-0.08) -0.60*** (-0.22)
Protective Put (PPUT) 0.69 -0.01 -0.05 (-0.04) -0.20 (-0.14)

Butterfly (BFLY) 0.07 0.31 -0.03** (-0.01) -0.08 (-0.05)

Condor (CNDR) 0.11 0.23 -0.04** (-0.02) -0.23** (-0.11)

S&P500 Index 0.91 0.30 -0.09 (-0.08) -0.70*** (-0.24)

Stars indicate statistical significance: * - p ≤ 0.1, ** - p ≤ 0.05, *** - p ≤ 0.01

Table 28: Idiosyncratic risk of realized volatility managed portfolios

This table shows the impact of volatility control on the risk of option trading strategies. The
table displays the skewness (skew), the excess kurtosis (kurt), and the drawdown (DD) of
volatility managed option trading strategies, as well as their differences to the unmanaged
strategies. The data covers 332 months per strategy during the period from January 1990
to August 2017. Standard errors of ∆skew, ∆kurt, and ∆DD are obtained using a circular
block bootstrap with 10’000 repetitions and are reported in parentheses.

skew kurt DD ∆skew ∆kurt ∆DD

Cov. Call ATM (BXM) -0.97 1.87 29.18 0.31 (0.47) -3.21* (1.65) -7.76 (7.17)

Cov. Call 2% OTM (BXY) -0.58 0.62 36.07 0.31 (0.31) -2.29** (0.98) -5.42 (4.52)

Cov. Call 30∆ (BXMD) -0.53 0.79 35.34 0.30 (0.31) -1.85** (0.88) -8.43 (6.98)
Put-Write (PUT) -1.50 4.78 29.24 0.41 (0.74) -4.59 (3.66) -3.82 (3.83)

Covered Combo (CMBO) -0.89 1.56 31.80 0.38 (0.42) -3.14** (1.56) -7.62 (6.92)
Collar (CLL) -0.02 -0.06 31.29 0.15 (0.11) 0.15 (0.29) -6.65 (6.87)

Zero-Cost Collar (CLLZ) -0.44 0.67 38.43 0.49 (0.37) -2.21* (1.30) -12.58 (12.2)
Protective Put (PPUT) -0.15 0.06 36.28 0.18 (0.14) -0.27 (0.29) -13.03 (15.8)

Butterfly (BFLY) -0.12 -0.16 35.03 -0.18* (0.09) 0.21 (0.21) 1.03 (19.47)
Condor (CNDR) -1.84 5.95 15.53 0.26 (0.24) 0.08 (0.59) -1.07 (1.96)
S&P500 Index -0.35 0.32 44.92 0.24 (0.24) -1.04 (0.66) -16.88 (15.73)

Stars indicate statistical significance: * - p ≤ 0.1, ** - p ≤ 0.05, *** - p ≤ 0.01
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they are weaker. For example, the PPUT strategy benefits from an increase in skew-

ness by 0.15, a reduction in kurtosis of 0.27, and a reduction in maximum drawdown

by 13.03 percentage points. Moreover, both beta and downside beta are decreased by

0.05 and 0.20 respectively. These findings are in line with the previous argumentation

that volatility control is less effective with strategies that have limited downside risk.

Finally, volatility control is less effective in reducing the risk of butterfly and

condor strategies. The risk of the butterfly strategy remains practically unchanged

and the absolute skewness and kurtosis even increase by 0.18 and 0.21 respectively.

Volatility control is more effective for the condor strategy, leading to a slight reduction

in absolute skewness and kurtosis. The drawdown and downside beta of the BFLY

strategy remains unchanged while the CNDR strategy benefits from a reduction of

downside beta of 0.23.

3.5 What drives the success of volatility control?

The results in section 3.3 show that volatility control generates alpha and increases

the risk-return trade-off of option trading strategies. In this section I analyze the

drivers of the success of volatility control. In particular, I first examine the impact of

return characteristics on the success of volatility control as described by Perchet et

al. (2016). Furthermore, I decompose option returns into a static equity, a dynamic

equity, and a volatility component as suggested by Israelov & Nielsen (2015a).

3.5.1 The impact of return characteristics

Perchet et al. (2016) links volatility control to three phenomena which are com-

monly observed in financial markets. First, the volatility of returns has to cluster,

i.e. it has to have a positive autocorrelation. Volatility control increases Sharpe

ratios because the exposure to a strategy is reduced during times of high volatility

thus reducing the overall volatility of the strategy. Therefore, volatility control in the
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presence of volatility clustering leads to a higher Sharpe ratio by reducing volatil-

ity. If volatility is not autocorrelated, last period’s volatility is a poor predictor of

the next period’s volatility and no effective volatility reduction takes place. How-

ever, investors might still be successful at volatility control by using a more elaborate

volatility forecasting model. Second, Perchet et al. (2016) link volatility control to

the negative autocorrelation between returns and volatility. This negative correlation

between returns and volatility is often referred to as leverage effect. If a financial

time series exhibits a leverage effect, volatility control helps to avoid negative returns

during times of high volatility. Therefore, volatility control in the presence of a lever-

age effect leads to a higher Sharpe ratio by reducing negative returns. Third, fat tails

in the return distribution increase the efficiency of volatility control. Perchet et al.

(2016) argue that when fat tails are present, reducing the exposure to a strategy in

times of high volatility especially help to reduce drawdowns.

Figure 4 shows the relationship between the alpha of the volatility controlled

option strategy benchmarks over their unmanageed counterparts in relation to the

previously described effects. Subfigure a) shows the the relation between the autocor-

relation of volatility in the unmanaged strategies9 The results show a clear dependency

between autocorrelation of volatility and alpha. Strategies with high autocorrelation

of volatility in their unmanaged time-series have significantly higher alphas than series

with low autocorrelation (BFLY and CNDR). However, among strategies with high

autocorrelation in their volatilities the relationship between volatility clustering and

alpha breaks down which could indicate that autocorrelation is a necessary but not a

sufficient condition. As soon as the necessary level of autocorrelation is reached, the

other two effects become more important. Figure b) shows a strong relation between

alpha and the leverage effect. Option series with lower (“more negative”) correlations

between returns and volatility have higher alphas. Figure c) and d) examine the re-

9Note that the displayed autocorrelations of volatility are relatively high by construction because
volatilities are computed as an exponentially weighted moving average with the center of mass at
20 days as in Moskowitz et al. (2012).
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lation between fat tails and the efficiency of volatility control in option strategies.

Perchet et al. (2016) simulate fat tails by drawing residuals in a GARCH model from

a t-distribution which induces both skewness and kurtosis. The results show that

strategies with lower skewness and higher kurtosis have higher alphas. In conclusion

the results are in line with the findings of Perchet et al. (2016).

3.5.2 Decomposing option returns

The results in section 3.3 show that volatility control generates alpha and increases

the risk-return trade-off of option trading strategies. However, it is not directly clear

if volatility control generates alpha by controlling the exposure to the equity risk

premium of the underlying S&P500 or by controlling the exposure to the variance

risk premium. The returns of the Cboe option strategy benchmarks are driven by

price changes in the S&P500 and by changes in volatility. Thus, the question arises

whether the success of volatility control is related to controlling volatility in the

S&P500 or by controlling volatility of volatility arises. To ensure that the previous

results are not driven by simply controlling the S&P500, I use the decomposition of

Israelov & Nielsen (2015a) who provide an elegant way to decompose option returns.

Their main insight is that option trading strategies are composed of three different

return processes. The first two are the return generated by changes in the underlying

and the return generated by collecting or paying the variance risk premium of the

underlying. The third component is the dynamic exposure to the equity risk premium.

Israelov & Nielsen (2015a) argue that the exposure to the underlying is not constant

for option trading strategies. As options move into- or out-of-the money, their delta,

and thus their exposure to the underlying, changes. For example, the equity exposure

of a covered call strategy is dependent on the price change of the underlying after the

call options were written. If the value of the underlying increases, the call moves into-

the-money and the delta of the call option increases towards 1. Thus, the covered call

strategy delta approaches 0, because it consists of an investment in the underlying
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Figure 4: Return characteristics and volatility control

This figure shows the alphas of the volatility controlled option strategies over their
uncontrolled benchmarks in relation to return characteristics of the underlying return series
for all 10 Cboe option strategy benchmarks and the S&P500. In particular, Figure a) shows
the the relation between volatility clustering and alpha, b) between the leverage effect and
alpha, c) between skewness and alpha, and d) between excess kurtosis and alpha. Alphas
are annualized and reported in percent.
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(delta 1) and a short call (approaching delta 1) which cancel each other out as the call

is a short position. In contrast, if the value of the underlying decreases, the delta of

the options approaches 0 and thus the portfolio delta approaches 1. Israelov & Nielsen

(2015a) show that this dynamic equity component carries most of the risk and little

return in covered call strategies. I generalize their approach as the sample contains

also other strategies than covered calls. Note that the following equations show the

decomposition on a total return basis instead of an excess return basis for clarity.

The full methodology for the decomposition of any option strategy is presented in

the Appendix. The returns of the Cboe option strategies are decomposed as follows:

rettot,t =
portt − portt−1

portt−1
(30)

reteq,t = ∆̄adj

(
spxt + divt − spxt−1

spxt−1

)
(31)

retdyn,t = (∆adj,t−1 − ∆̄adj)

(
spxt + divt − spxt−1

spxt−1

)
(32)

retopt,t = rettot,t −∆adj,t−1

(
spxt + divt − spxt−1

spxt−1

)
(33)

(34)

where ∆ refers to the portfolio’s properly levered delta defined as:

∆adj,t = ∆t
spxt

portt
(35)

and ∆t is the unlevered delta of the strategy computed as the sum of all portfolio com-

ponent deltas multiplied by +/- 1 depending on whether the position is long or short.

For example, a covered call strategy has an unlevered delta of 1−∆Call as it consists

of long position in the S&P500 (delta 1) and a short position of an ATM call (delta

−∆Call). The total return (rettot) of an option strategy is defined as the percentage

change in the strategy’s portfolio (port) containing the position(s) in the option(s)

and potential collaterals, e.g. a position in the S&P500 in case of covered call indices

or the money market position in case of a put-write strategy. The equity component
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of the return (reteq) is defined as the average delevered portfolio delta of the strategy

(∆̄adj) multiplied by the return of the S&P500 plus any dividend payments. spxt is

the current value of the S&P500 and divt are the dividends paid expressed in index

points. Therefore, the equity return component of an option strategy is the part of

the return that is attributable to the static exposure to the market equity risk pre-

mium. In contrast, retdyn is the dynamic exposure to the equity risk premium caused

by the time-varying delta of the option strategies. The third component of the return

is the delta hedged option strategy return (retopt,t). This return is constructed to

resemble the return a trader would generate by statically delta hedging a portfolio

of options at the end of each trading day. Delta hedged options are often considered

to be investments into volatility as they are relatively unaffected by changes in the

underlying and mostly capture changes in volatility (e.g. Goyal & Saretto, 2009).

Cboe does not deliver the delta of the option trading benchmarks. Therefore, I

replicate the trading strategies according to the methodologies published on the Cboe

website (see Appendix for details). They are decomposed into their equity, dynamic

equity and volatility component on a daily basis, and are then aggregated to obtain

monthly returns. Therefore, I obtain four return series for each option strategy on a

monthly frequency: the returns of the three components and the total return of the

option strategy. I then apply the volatility control methodology from Section 3.3 to

each individual component of the strategy. Specifically, I use the realized volatility of

the total (undecomposed) returns to control the exposure to all three components of

each option trading strategy. As in section 3.3, the constant c is set for each option

strategy so that the volatility controlled total return series has the same volatility as

its uncontrolled counterpart. The individual components of each strategy are then

scaled with the same value of c to make the alphas comparable in magnitude. After-

wards, the success of volatility control of the individual components is evaluated by

computing the alpha of the volatility controlled strategy components over the uncon-

trolled components.
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The results are shown in Table 29. Panel A shows the alphas of the volatil-

ity controlled individual components over their uncontrolled counterparts10. Panel

B shows the betas of the volatility controlled strategies with respect to their un-

controlled counterparts. Evidence of volatility control is present for the replicated

strategies during the sample period from January 1996 to August 2017. The alphas

for the total return of put- and buy-write strategies range between 3.04 for the BXY

strategy to 3.98 for the PUT strategy. The decomposition reveals that the alpha

of volatility control is driven by both controlling the exposure to the variance risk

premium and the exposure to the equity risk premium. For example, controlling the

volatility component of the PUT strategy delivers a significant alpha of 1.08% per

year, and controlling the equity component delivers a significant alpha of 1.61% per

year. The alpha generated by controlling the equity component is less statistically

significant, but larger in magnitude and thus economically more significant. This

finding holds for all put- and buy-write strategies. Volatility control in put- and buy-

write strategies appears to control exposures to both equity and volatility risk premia.

The results of other replicated strategies matches the previous results. All other

replicated strategies generate positive but insignificant alphas. Alphas for defensive

strategies, such as the PPUT strategy, are smaller and they generate a negative albeit

insignificant negative alpha from controlling the option component. A potential ex-

planation for the poor efficacy of volatility control of the PPUT AND CLL strategies

is that these strategies have a negative exposure to the variance risk premium by

construction. Therefore, the alpha generated by volatility control is negative which

partially offsets the positive alpha generated by controlling the exposure to the equity

risk premium. In conclusion, the results show that volatility control in option trading

is statistically more successful in controlling the exposure to the the volatility risk

premium but economically more successful by controlling the exposure to the equity

10Note that the alphas of the equity components are different for each strategy because each of
them is timed with the volatility of the undecomposed strategy returns.
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Table 29: The drivers of volatility control

This table shows the alpha of volatility controlled components of option trading strategies.
rettot is the total return of the strategy consisting of the sum of all three sub-parts, reteq
is the return attributable to the equity risk premium, retdyn is the return attributable to
the dynamic exposure of the equity risk premium, and retvol is the return attributable to
the variance risk premium. All components are managed with the realized volatility of the
undecomposed total return. Standard errors are Newey & West (1987) adjusted with 5 lags
and are reported in parentheses. Alphas are annualized and reported in percent. The data
covers the period from January 1996 to August 2017.

Panel A: Alphas Panel B: Betas

rettot reteq retdyn retopt rettot reteq retdyn retopt

Cov. Call ATM (BXM) 3.22** 1.91* 0.20 0.64** 0.86*** 0.97*** 0.93*** 1.09***

(1.61) (1.0) (0.66) (0.32) (0.0) (0.0) (0.11) (0.0)

Cov. Call 2% OTM (BXY) 3.04* 2.27* −0.25 0.81*** 0.89*** 0.93*** 0.92*** 0.95***

(1.65) (1.16) (−0.46) (0.23) (0.0) (0.0) (0.0) (0.0)

Cov. Call 30∆ (BXMD) 3.42* 2.55** −0.24 0.62** 0.88*** 0.94*** 0.88*** 1.08***

(1.75) (1.29) (−0.51) (0.25) (0.0) (0.0) (0.14) (0.0)

Put-Write (PUT) 3.98** 1.61* 0.37 1.08** 0.85*** 0.99*** 0.94*** 1.00***

(1.89) (0.95) (0.69) (0.53) (0.12) (0.0) (0.12) (0.12)

Cov. Combo (CMBO) 3.16** 1.61* 0.05 1.00*** 0.87*** 0.95*** 0.91*** 0.94***

(1.59) (0.97) (0.54) (0.24) (0.00) (0.00) (0.00) (0.00)

Collar (CLL) 0.81 1.09 −0.06 −0.09 0.86*** 0.81*** 0.75*** 0.76***

(0.56) (0.79) (−0.24) (−0.13) (0.00) (0.00) (0.00) (0.00)

ZC Collar (CLLZ) 2.32 1.85 −0.24 0.46*** 0.86*** 0.89*** 0.80*** 0.95***

(1.45) (1.16) (−0.31) (0.13) (0.00) (0.00) (0.15) (0.00)

Prot. Put (PPUT) 1.31 1.49 −0.07 −0.17 0.99*** 0.93*** 0.86*** 0.86***

(0.83) (1.09) (−0.36) (−0.16) (0.00) (0.00) (0.11) (0.00)

Butterfly (BFLY) 0.04 −0.12 0.12 −0.04 0.97*** 0.89*** 0.94*** 0.97***

(0.54) (−0.2) (0.6) (−0.39) (0.0) (0.0) (0.0) (0.0)

Condor (CNDR) 1.43 −0.04 0.39 1.01* 0.91*** 0.91*** 0.89*** 0.96***

(0.88) (−0.05) (0.6) (0.59) (0.0) (0.0) (0.0) (0.0)

S&P500 Index 2.17 2.17 − − 0.91*** 0.91*** − −
(1.57) (1.57) − − (0.00) (0.00) − −

Stars indicate statistical significance: * - p ≤ 0.1, ** - p ≤ 0.05, *** - p ≤ 0.01

risk premium. Therefore, volatility control of option strategies seems to generate

alpha by adjusting the exposure to the variance risk premium and the equity risk

premium.

3.6 The impact of transaction costs

Volatility control requires that portfolio positions are rebalanced once per month

and thus induces additional transaction costs to a trading strategy. Transaction costs
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may reduce the alpha of any strategy significantly. In Table 30, the effect of trans-

action costs on the profitability of volatility control is shown. Transaction costs are

applied as a percent of the change in the position size. Therefore, the results are

independent of the invested amount or the choice of the constant c. In addition to

the alphas of volatility controlled option trading strategies over the unmanaged coun-

terparts, Table 30 also shows the transaction costs at which the alpha of the volatility

controlled option strategies is zero.

The findings show that strategies with higher alphas can also sustain higher trans-

action costs. For example, put- and buy-write strategies can still generate significant

alphas at transaction costs of 0.25% per transaction, and can sustain maximum trans-

action costs between 0.84% (BXM) and 1.15% (BXMD). Protective put (PPUT) and

collar (CLL) strategies can sustain transaction costs of 0.81% and 0.61% respectively.

Moreover, a condor strategy can sustain maximum transaction costs of 0.30%.

The results are conservative estimates as the transaction costs can be significantly

reduced by rebalancing the portfolios on option expiration days. Option trading

strategies have to be rolled at the expiration date of options, typically on the third

Friday of each month. If investors choose to rebalance on expiration days, a majority

of the additional rebalancing costs induced by volatility control can be saved as a new

set of options has to be bought in any case.

3.7 Conclusion

In this study, I show that option trading strategies can be managed by reducing

exposure when volatility is high and increasing exposure if volatility is low. This

volatility control generates sizable alphas for 9 out of 10 Cboe option strategy bench-

marks. Volatility control is particularly successful for put- and buy-write strategies

which usually carry high levels of downside risk. Volatility controlled versions of these

strategies generate significant alphas over the uncontrolled series and have increased
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Table 30: Impact of transaction costs

This table shows the impact of transaction costs on volatility managed option trading
strategies. The columns show the alphas of the volatility managed strategies over their
unmanaged counterparts for different levels of transaction costs. The last column shows
the transaction costs in percent at which the managed strategies have an alpha of
0. The data covers 332 months per strategy during the period from January 1990 to
August 2017. Standard errors of alphas are Newey & West (1987) adjusted with 5 lags
and are not reported to keep the table concise. Alphas are annualized and reported in percent.

α at transaction costs of
0.0% 0.1% 0.25% 0.5% maxTC

Covered Call ATM (BXM) 3.64** 3.20** 2.55* 1.47 0.84

Covered Call 2% OTM (BXY) 3.45** 3.14** 2.67* 1.90 1.12

Covered Call 30∆ (BXMD) 3.88** 3.54** 3.03* 2.18 1.15

Put-Write (PUT) 4.88*** 4.34** 3.53** 2.18 0.91

Covered Combo (CMBO) 3.74** 3.36** 2.78* 1.83 0.98

Collar (CLL) 1.13* 0.95 0.67 0.21 0.61

Zero-Cost Collar (CLLZ) 2.59* 2.32* 1.91 1.23 0.95

Protective Put (PPUT) 1.51* 1.32* 1.04 0.58 0.81

Butterfly (BFLY) -0.19 -0.45 -0.83* -1.47*** 0.00

Condor (CNDR) 1.37** 0.93 0.26 -0.84 0.30

S&P500 Index 2.55* 2.30 1.94 1.33 1.04

Stars indicate statistical significance: * - p ≤ 0.1, ** - p ≤ 0.05, *** - p ≤ 0.01

Sharpe ratios. Moreover, they have significantly lower downside risk, lower draw-

downs and more normal returns.

Option trading strategies are profitable because they collect the equity- and the

variance risk premium. I decompose the returns of the option strategies in the sam-

ple and find that volatility control generates alpha by controlling the exposure to

the variance risk premium. Therefore, the effect is distinct from simply controlling

exposure to the S&P500. These results are robust to transaction costs and show that

option investors can significantly improve their performance by applying volatility

control to option strategies.
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3.8 Appendix: Replication and Decomposition of Cboe Strategies

This study aims to decompose the Cboe strategy returns. Cboe provides returns

of different option-strategies, but does not provide data on the delta of the port-

folio which is necessary for the decomposition. Therefore, I replicate the 10 Cboe

option strategy benchmarks as closely as possible. Cboe publishes methodological

whitepapers on their website which describe the methodology Cboe uses to compute

the strategy returns.

The replication strategy is as follows: On each roll day, I select a subsample of

options which a) expire on the next expiration day, b) have positive open interest

and volume, and c) have data available on at least 90% of all trading days until the

next expiration. If no option matches the targeted portfolio position exactly the first

option which is further out-of-the-money, i.e. above (below) the targeted price for

calls (puts), is selected. For example, the BXM put write strategy requires to sell an

at-the-money call and thus the call option with the first available strike above the

current S&P500 price is selected. This selection procedure applies to the BXM, BXY,

PUT, CMBO, CLL, CLLZ, PPUT, and BFLY indices as outlined by Cboe. The only

exceptions are the BXMD and CNDR indices which select the closest option to the

targeted strike from options that can be further in- or out-of-the-money. The option

is then bought (sold) at the ask (bid) price and is held in the portfolio at the mid

price. The option is then held until the last day before expiration, typically the third

Thursday every month, and the position is closed by selling (buying) the option at the

last bid (ask) price. Simultaneously, new option positions are entered and the pro-

cedure is repeated. This creates a minor difference to the Cboe methodology which

rolls options at at 11am on the expiration date. Therefore, options are always rolled

on the last day before expiration, except for the first day in the sample, January 04,

1996, where portfolio positions are entered for the first time and are held until the

next expiration day. Moreover, missing values of delta and prices are forward filled,

i.e. if the delta on a certain day is missing, it is assumed that it still equals the last
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valid observation. However, S&P500 options are generally liquid and forward filling

does not change any of the results.

In addition, on each roll day the collateral of the strategy is updated. Cboe option

benchmarks are fully collaterized. Strategies selling calls, e.g. buy-write strategies,

invest into the S&P500 to cover the liability from the call option and strategies selling

puts invest an amount equal to the strike price of the option into a money-market

portfolio, earning the 3 month T-bill rate. An exception are the BFLY and CNDR

strategy which invest 10 times their maximum liability into a money-market account.

The maximum liability of BFLY and CNDR options is calculated as the maximum of

the difference between the strikes of the puts and the difference between the strikes

of the calls.

The above replication methodology yields a collection of time-series, each spanning

the period from buying the option to the last trading day of the option. On the day

before expiration, the entire portfolio is liquidated and positions in a the new portfolio

are entered. Liquidating the entire portfolio on the day before the expiration day is

necessary due to data limitations and also avoids a special treatment of returns on

the expiration day. The total value of the portfolio is calculated at the end of each

trading day as:

portt = optt + eqt + casht (36)

(37)

where optt is the value of the current option position. optt is negative for short

positions, i.e. if a put with a price of 5 dollar is sold optt would take a value of -5.

Thus if the price of the option declines, the position increases in value. eqt is the

value of the current equity holdings. For example in the replicated BXM strategy eqt

would equal the closing price of the S&P500. In contrast, for the PUT strategy eqt is

always 0 as the PUT strategy does not hold a position in the S&P500. casht is the
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value of the current cash position, i.e. the value of the collateral and any proceeds

from selling options. The cash position earns interest at the 3 month t-bill rate. For

the protective put PPUT strategy this position is 0 as it does not sell options and

also does not require a collateral. The total excess return of the strategy is thus:

rtot,t =
optt + eqt + divport,t + (1 + rcash,t)casht

optt−1 + eqt−1 + casht−1
− 1− rcash,t (38)

where divt are all dividends earned during day t. If the portfolio does not contain

an equity position, e.g. in case of the PUT index, divport,t is 0. Once time-series

of portfolio values, returns and deltas are obtained, the decomposition of returns is

relatively straight-forward.

reteq,t = ∆̄adj

(
spxt + divspx,t

spxt−1
− rcash,t

)
(39)

= ∆̄
spxt + divspx,t − spxt−1

portt−1
− ∆̄adjrcash,t (40)

retdyn,t = (∆adj,t−1 − ∆̄adj)

(
spxt + divspx,t − spxt−1

spxt−1
− rcash,t

)
(41)

= (∆t−1 − ∆̄)
spxt + divspx,t − spxt−1

portt−1
− (∆adj,t−1 − ∆̄adj)rcash,t (42)

where reteq,t and retdyn,t are the dynamic and static equity part of the return re-

spectively. The adjusted ∆ is the properly levered delta:

∆adj,t =
spxt

portt
∆t (43)

where ∆t is the aggregated portfolio delta, i.e. the sum of all portfolio components.

∆̄ is the sample mean of deltas. The return attributable to the option portion of

the portfolio can then simply be defined as the residual of subtracting the equity

components from the total return:

retopt,t = rettot,t − reteq,t − retdyn,t (44)

=
(optt − optt−1) + (eqt + divport,t − eqt−1) + (1 + rcash,t)casht

optt−1 + eqt−1 + casht−1
(45)

−
∆t−1(spxt + divspx,t − spxt−1)

optt−1 + eqt−1 + casht−1
− (1−∆adj,t−1)rcash,t
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