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Summary

This thesis contains three papers. Each paper addresses a distinct research question and

is implemented on a separate dataset.

The first paper concludes that daytime auctions, together with market opening and clos-

ing intervals, contribute to the periodicity of the cross-section of stock returns. By ap-

plying the model of infrequent rebalancing, I show that model parameters fit the data for

the after-auction intervals. I thus conclude that after-auction periods take over a large

share of infrequent rebalancing and show that this effect is driven by the concentration of

liquidity traders. Small, low-fragmented stocks heavily traded on the home market show

the strongest evidence for infrequent rebalancing after the daytime auctions.

The second paper sheds light on how traders allocate risk of stock portfolios in a trading

day. Traders decrease risk before the market close. They do so by selling stocks with

the highest marginal risk and buying stocks that decrease the risk of their portfolio the

most. As our measure of portfolio risk relates to the one that clearing houses use for the

margin requirements, we conclude that the risk-reduction behavior is driven by traders’

reluctance to provide end-of-day margin contributions to the CCP. These trading flows

in the direction of risk contraction distort closing stock prices.

The third paper replicates and combines eight prominent predictors of mutual fund re-

turns to obtain a composite, aggregate fund predictor. While only three of the eight in-

dividual variables are significant predictors of future fund performance in a multivariate

setting, the composite predictor has strong forecasting power. A hypothetical quintile-

based long-short strategy based on the composite predictor realizes a four-factor alpha

of 6% per year. The performance spread is robust to different regression specifications, is

similar for different size classes and investment styles, and persists over time. Our results

point towards inefficiency in the market for actively managed equity funds.
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Zusammenfassung

Vorliegende Doktorarbeit umfasst drei wissenschaftliche Studien. Jede Studie befasst sich

mit einer spezifischen Forschungsfrage und wird auf separaten Datensatz angewendet.

Die erste Studie zeigt, dass Tagesauktionen zusammen mit Marktöffnungs- und -

schließungs-intervallen zur Regelmässigkeit des Aktienrenditeprofils beitraten. Durch die

Anwendung des Modells des infrequent Rebalancing zeige ich, dass die Modellparameter

mit den Nachauktionsintervallen übereinstimmen. Ich schließe daher, dass die Nachauk-

tionsphasen einen großen Teil des infrequent Rebalancing ausmachen. Dieser Effekt wird

durch die Konzentration von Liquiditätshändlern verursacht. Kleine, niedrig fragmen-

tierte Aktien zeigen die stärksten Anzeichen für Rebalancing nach Tagesauktionen.

Die zweite Studie zeigt, wie Händler das Risiko von Aktienportfolios während eines Han-

delstages verteilen. Händler verringern das Risiko vor Marktschluss. Sie tun dies, indem

sie die Aktien mit dem höchsten Grenzrisiko verkaufen während sie die Aktien kaufen,

die das Risiko ihrer Portfolios am stärksten verringern. Da unsere Methode für das

Portfoliorisiko derjenigen entspricht, welche Clearing-Häuser zur Margenanforderungen

verwenden, kommen wir zum Schluss, dass das Verhalten der Risikominimierung von der

Zurückhaltung der Trader bei der Bereitstellung von End-of-Day-Margenbeiträgen bes-

timmt ist. Diese Handelsströme in Richtung Risikokontraktion verzerren die Schlusskurse.

Die dritte Studie repliziert und kombiniert acht bekannte Prädiktoren für die Erträge von

Investmentfonds, um einen zusammengesetzten Fondsprädiktor zu erhalten. Während

nur drei der acht Einzelvariablen signifikante Prädiktoren für die zukünftige Fondsper-

formance in einem multivariaten Umfeld sind, hat der Composite Prädiktor eine starke

Prognosefähigkeit. Eine hypothetische, quintilbasierte Long-Short-Strategie, die auf dem

Composite Prädiktor basiert, realisiert einen Vier-Faktor Alpha von 6% pro Jahr. Der

Performance-Spread ist robust gegenüber verschiedenen Regressionsspezifikationen, ist

für verschiedene Größenklassen und Anlagestile ähnlich und hält sich über die Zeit. Un-

sere Ergebnisse deuten auf eine Ineffizienz im Markt für aktiv verwaltete Aktienfonds

hin.
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The Role of Daytime Stock Auctions in Intraday
Return Seasonality
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ABSTRACT

The paper provides a fresh look at the role of daytime auctions in intraday periodicity of stock

returns. First, I show that daytime auctions, together with market opening and market closing

intervals, drive the periodicity of stock returns. Second, by applying the model of infrequent

rebalancing, I find that price impact is the highest during the fifteen-minute interval after daytime

auctions. Combining this evidence with high realized returns, high volume changes and high

return volatility, I conclude that after-auction periods take over a large share of infrequent

rebalancing, being attractive for a concentration of liquidity traders. Small, low-fragmented

stocks heavily traded on the home market show the strongest evidence for infrequent rebalancing

after the daytime auctions. Finally, I show that post-auction returns predict returns before the

US market opening and before the domestic market closing, which might be further evidence on

clustered liquidity trading.
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1 Introduction

Stock auctions are a pre-scheduled session, during which traders’ supply and demand determine

the price of an asset. The auctions on stock exchanges usually take place twice a day: at the

market open (opening auction) and the market close (closing auction). This paper focuses on

daytime auctions: they occur at daytime, in addition to the closing and opening auctions.

The goal of this paper is to analyze the volume dynamics of daytime auctions and to shed

light on the impact of auctions on market behavior. Do the same market factors influence trading

during the continuous market and the auctions? Do daytime auctions create any patterns in stock

returns? How do auctions influence stock price dynamics? Are there any models that can explain

trading around the auctions? The paper demonstrates an essential role of the daytime auctions in

forming predictable patterns in cross-section of stock returns. Understanding daytime auctions

thoroughly is important because of current changes in market regulations and because auctions

serve as one of the widely discussed options for the optimal stock market design.

A market regulatory framework is currently under the change, which calls for more analysis

of daytime auctions. This is especially important in Europe, where the new Markets in Financial

Instruments Directive II Regulation (MiFID II) came into force in 2018. The main goal of this

new EU-wide law is to increase the transparency of European stock markets and to bring back

the trading from dark pools to public exchanges. In particular, during the last six years, the

share of European stocks traded on dark pools rose up to 10% from less than 2% in 2010.1

The regulation, among other standardization procedures, imposed a cap on dark pool trading to

reverse this trend. Dark pools are generally attractive because they allow investors to buy and

sell stocks without revealing in advance the size and the price they are willing to accept. These

features are especially advantageous for investors who wish to trade in blocks, but reduce the

flow of public information and avoid fast traders, who can detect these trades and trade against

1”Dark pools in European equity markets: emergence, competition, and implications”, European Central Bank,
No.193 / July 2017
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them.

With the new regulation, a natural alternative to dark pools is the auctions. The auctions

technically take place ”in the light” on lit markets, but orders are still hidden until they can

be matched. This mechanism provides similar advantages to dark pools, allowing investors

(1) to place a large block of trades in a way that reduces market impact, (2) to avoid fast

traders, who can spot block trades and exploit them. Consequently, the MiFID II Regulation

motivated European stock markets to initiate daytime auctions: in 2013, the NASDAQ Nordic

announced introduction of daytime auctions for some market segments; in 2017, the German

market Xetra closed its dark pool for stocks, claiming that it will mostly rely on auctions2; in

2016, the London Stock Exchange established its first midday auction. Even American stock

markets seem to follow the pattern, although having a different motivation: the NYSE recently

considered implementing daytime auctions” to boost liquidity in thinly traded stocks”.3

Even though the role of daytime auctions grows, empirical literature seems not to cover

the research questions related to the potential impact of the auctions on price dynamics and

traders’ behavior. Existing auction research is largely concentrated on the opening and/or closing

auctions (Pagano and Schwartz 2005, Kandel et al. 2012, Pagano et al. 2013, Comerton–Forde

et al 2007, etc.). The other large research segment is focused on advocating auctions as an

optimal market model (Budish et al. 2015 and Farmer and Skouras 2012). I contribute to this

literature by showing that daytime auctions generate periodicity in cross-section of stock returns,

which can be partially explained by traders’ rebalancing after the auctions.

For the analysis, I use data from the only large stock market that has a long history of

daytime auctions - the German electronic platform Xetra. It is a perfect representative market

that one can use as a proxy for major stock exchanges. First, it is one of the largest European and

world markets: the third-largest in Europe and the tenth-largest in the world based on market

2Deutsche Boerse confirms dark pool closure, The Trade, February 2017
3NYSE liquidity drive pushes midday auctions, Financial Times, May 2016

3



capitalization.4 Second, apart from the daytime auctions, the Xetra handles trading through

”continuous trading in connection with auctions” model - a standard setting of most other stock

exchanges (besides additional third daytime auction in a day). Eventually, the German market

itself fell within the purview of the MiFID II Regulation. Being conducted on the dataset of a

representative market, the results of this analysis are transferable and can be thus generalized for

other stock markets.

The main findings are the following. First, I identify that different market factors influence

auction volumes compared to the continuous-trading volumes. Second, I find that fifteen minutes

after daytime auctions contribute to the daily periodicity of a cross-section of stock returns.

In particular, the return spread on the daily momentum strategy around the auctions earns on

average 1.89 basis points per day.5 This effect is more pronounced for large, small, and domestic6

stocks. Second, in order to understand whether theoretical findings can explain this empirical,

I apply the model of infrequent rebalancing (Bogousslavsky 2016) to the data. This model

belongs to the group of theoretical models on non-synchronous trading. Bogousslavsky 2016

explains the mechanism of his theoretical model and show that it might explain the periodicity

in the cross-section of stock returns around the close on the NYSE. He studies stock portfolios

built on different market anomalies and observes how their returns vary during a day.

My approach is different - I study mechanics of the model and define four features that

should hold on the market if the model is valid (e.g., if infrequent rebalancing is present):

high price impact, high realized returns, high volatility of returns, and high trading volume.

Also, applying this model to the market with three intraday auctions might reveal interesting

conclusions. Infrequent investors can behave differently than on the market without the daytime

auctions. For example, they can rebalance more often than once a day or adjust their rebalancing

time to the daytime auctions. Alternatively, they can ignore these auctions and still rebalance at

the close. I show that infrequent rebalancing is present during the fifteen minutes after daytime
4World Federation of Exchanges, as of April 2016, excluding open market
5The value is not adjusted for trading costs.
6In the paper, domestic stocks are German stocks.
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auctions and is more pronounced for small low-fragmented stocks. Also, post-auction returns

for these stocks predict the returns before the US market opening and at the Xetra close. This

evidence on intraday momentum is consistent with the model and is driven by the concentration

of liquidity traders at these intervals of a trading day.

The paper is structured as follows. First, I provide institutional insights about the daytime

auctions, together with an aggregate analysis of factors that affect auction trading volumes. Then

in Section 4, I provide empirical evidence on stock return periodicity and report its main drivers.

In section 5, I analyze and compare theoretical models that can help to explain the pattern. After

selecting the model of infrequent rebalancing as the main candidate for the explanation of my

findings, I apply the model to the data. Section 6.1 contains an additional empirical finding

of intraday momentum, consistent with the model. Discussion and conclusions in Section 7

complete. The next section provides a literature overview and helps position this paper within

the existing research.

2 Related literature

This paper is mainly related to two strands of literature. The first line of research studies

predictive patterns in stock returns at different frequencies and tackles to explain them; the other

direction of relevant research investigates auctions directly. I contribute by merging these two

areas and report evidence on the role of daytime auctions in generating return seasonality.

2.1 Evidence on intraday return patterns

A critical paper that provides the basis for seasonality part of the analysis is Heston et al. 2010.

The authors examine intraday dynamics in the cross-section of NYSE stock returns and show

that those are positively related to the one-day subsequent returns. This relationship is found to
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be especially pronounced at the market open and market close. Investors flows are suggested as a

potential explanation for the pattern because the revealed periodicity is of the same magnitude as

institutional commission rates and a quoted half-spread. The authors thus claim that institutional

traders can reduce trading costs by timing their trades in the same manner as the daily recurrence

of intraday prices.

The role of investor flows in generating return seasonality was also reported to cause return

periodicity at lower frequencies. In particular, Lou 2012 demonstrates that when retail investors

transfer their flows to mutual funds, it creates predictable price pressure to individual stocks.

This trading of mutual funds positively forecasts future stock and fund returns in the short run,

and negatively - in the long run. In a similar vein, Coval and Stafford 2007 study fire sales and

show that when mutual fund managers wish to increase their cash holdings by liquidating assets

via fire sales, they drive stock prices away from their fundamental values. Alternatively, Sun et

al. 2016 find strong evidence that high-frequency changes in investor sentiment have predictive

power for the S&P 500. Another driver of stock return predictability is offered by Cont et al.

2013. They suggest that order flow imbalance determines stock price changes and is robust

to intraday seasonality effects. The relation between price changes and the trading volume is,

however, found to be noisier and less robust.

Seasonality in stock trading is not only a US phenomenon. Ohta 2006 studies the Tokyo

market and connects price clustering to the dynamics of a bid-ask spread. In particular, as the

market opening is characterized by greater uncertainty, price clustering is usually high in this

period. This uncertainty at the open also relates to more substantial information asymmetry and,

together with a higher degree of price clustering, generates wider spreads. Similarly, Abhyankar

et al. 1997 investigate the London Stock Exchange and show that intraday bid-ask spreads are

the highest at the market open, stay relatively constant during a day and become larger again at

the close. Trading volume peaks around the opening then falls to the lowest level and increases

before the closing. The authors associate such a pattern with the dynamics of price discovery,

6



which depends on how efficiently the market absorbs new information through trade flows at the

close/open.

Opening and closing auctions can also generate return seasonality. Pagano et al. 2013

find that the introduction of opening and closing auctions on the NASDAQ created a positive

spillover effect of auctions at the open on the price formation during continuous trading. Brooks

and Moulton 2004 discover that bid-ask spread in the continuous market can be attributed to the

price change during the opening auction. They also observe that there are no price reversals right

after the opening auction, suggesting that market opening may be more efficient at handling

information than the continuous market.

Despite the extensive literature on intraday return patterns, related empirical evidence for

the German market is limited. Hussain 2011 finds a J-shaped intraday volatility and L-shaped

patterns of intraday volumes for DAX stocks. Gomber et al. 2004 find a pronounced U-shaped

liquidity intraday pattern for the largest stocks, showing that transaction costs on the Xetra

increase around the start of trading on the NYSE. This finding is at odds with Goodfellow at al

2010, who report the decreased costs and improved liquidity corresponding to the NYSE opening.

The time of four years between these two studies could change the market characteristics and

explain the different findings. For example, the dynamics of trading cost can change due to

technological innovations.

The existing studies explain the evidence on intraday seasonality mainly through the channel

of trading flows and supply-demand imbalances. In terms of auctions, existing research mainly

focuses either on opening or closing auctions. To the best of my knowledge, this is the first paper

that investigates the cross-section of the whole German stock market by using intraday data for

more than four years. Also, a thorough search of the relevant literature yielded no studies that

combine the analysis of daytime stocks auctions and their impact on asset price dynamics.
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2.2 Auctions as a trading model

The other area of related research analyzes stock auctions from the point of view of an optimal

stock market design. In particular, it was shown that auctions have essential benefits that make

them more advantageous to the most conventional setting, continuous markets with limit order

books. Earlier literature advocates auctions in favor of limit order book markets primarily

because auctions contribute to better price discovery. Cohen and Schwartz 1989, Madhavan

1992, and Economides and Schwartz 1995 claim that auctions enhance price efficiency. In

particular, Madhavan 1992 finds that during the auctions, the aggregation of the otherwise

dispersed information is achieved by waiting for investors with both private- and common-value

information to arrive at the market. Thus, periodic auctions efficiently aggregate information and

are more robust to the problems of informational asymmetry - it can operate when continuous

markets fail. Related to that, Economides and Schwartz 1995 propose a similar aggregation of

information through conducting periodic auctions three times a day: at the open, midday, and

the close. Having several call auctions during a trading day would allow investors to have a

choice between waiting for the next call or using a continuous trading mechanism for immediate

execution. In a similar vein, Grauer and Odean 1995 advise to minimize execution costs by

using systems like the Arizona Stock Exchange that offers call sessions several times per day.

With time, markets have become much faster and a new type of investors, high-frequency

traders, appeared. Given evidence on the negative impact of these traders on market quality

(Foucault, Kozhan and Tham 2015, Baldauf and Mollner 2015), the more recent literature has

favored auctions precisely because they prevent a high-frequency speed race. In particular,

Budish et al. 2015 and Farmer and Skouras 2012 argue that continuous trading leads to the

competition for speed and that batch auctions are fairer because they stop this race. Budish

et al. 2015 demonstrates that the presence of such race does not affect the size of arbitrage

present in continuous trading. He shows that instead of eliminating arbitrage opportunities,

high-frequency traders continually raise the bar for how fast one has to be in order to capture
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a ”prize”. Switching from continuous trading to the auction market design would eliminate

the speed race and change the nature of competition into the price competition, rather than the

competition on quickness. In particular, the authors propose a market design when a trading

day is divided into highly frequent but discrete time intervals so that all requests are treated

as having arrived simultaneously. At the end of each interval, orders are proceeded in batch

through an auction, as opposed to the serial processing in continuous markets.

Few studies analyze auctions on the German market. Clapham and Zimmermann 2016

investigate price convergence around the auctions. In particular, they study the price discovery

of the cross-listed DAX stocks on a home German and on other EU markets. The authors show

that the domestic price informativeness of indicative prices during the auctions is higher and

more relevant for price discovery than on the other markets. This finding suggests that market

participants assess the Xetra auction price as more relevant for future stock prices. However,

this conclusion depends on the level of stock fragmentation: for the less fragmented trading,

the contribution of the home market to price discovery is more substantial. The other study

investigates the role of designated market makers (DMM) during the Xetra daytime auctions

(Theissen and Westheide 2017). DMMs are particular market participants (market makers)

who supply additional liquidity for small and mid-cap stocks during the auctions. The study

shows that intraday auctions have the highest share of DMM participation among other intraday

auctions. Overall, it was found that DMMs contribute substantially to price continuity, providing

thus a valuable service to the market.

This section represented an overview of the literature with extensive evidence on return

predictability, its potential drivers, and the advantages of auction market design. However,

there seems to be a gap in investigating the role of daytime auctions in connection to the return

periodicity. The next section will provide the institutional details of the market and trading in

the daytime auctions. I will also describe the dataset and represent factors that influence trading

volumes during the auctions.
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3 Daytime auctions through the lens: market setting and vol-

ume dynamics

3.1 Mechanics of daytime auctions

An electronic trading system Xetra was first introduced in 1997 and has been operated by the

Deutsche Boerse. This market is one of the few7, who had a standard procedure of daytime

auctions for many years – since 1998. Xetra accounts for more than 90% of the total German

stock market.8 It is a fully electronic platform, organized as an anonymous open limit order book

with a central counterparty clearing that offsets orders. The market carries a trading model that

combines continuous trading with three pre-scheduled intraday auctions: an opening auction at

8:50, a daytime auction at 13:009, and a closing auction at 17:30. The market is open daily from

9:00 (after the opening auction) until 17:30 (followed by the closing auction).

Each day at 13:00, continuous trading is interrupted by a regular daytime auction. A primary

purpose of these auctions is to determine a ”fixing” price for stocks at the time of the day when

liquidity is low.10 The determination of such price is possible because auctions concentrate the

buying and selling interest at the same time. This is especially important for less liquid stocks:

if a trading interest in a stock is low, traders might not have enough incentive to participate in

a continuous market (Hasbrouck 2017), and trade these stocks during the intervals of pooled

liquidity, e.g., during auctions. Two arrangements on the Xetra support such a concentration of

7Vienna stock exchange and Zagreb stock exchange also had daytime stock auctions before the introduction of
the MiFID II.

8Xetra Cash market statistics, Monthly report April 2016
9The intraday call auction is held between 13:00 and 13:02 for DAX and TecDAX stocks, between 13:05 and

13:07 – for MDAX and SDAX stocks, and between 13:15 and 13:17 for other stocks. The MDAX, SDAX, and
TecDAX consist of the stocks that are traded in the prime standard segment and whose are free float trading volume
is smaller than the DAX stocks. The TecDAX comprises the 30 largest technology stocks outside of the DAX. The
MDAX and SDAX contain 50 stocks from non-technology sectors. The 50 stocks of the MDAX are the next 50
stocks after the DAX stocks, the 50 stocks of the SDAX are those that follow after.

10This is similar to commodity fixing - the process of setting the price of a commodity based on supply and
demand needs.
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liquidity during auctions. First, there is no distinction between the transaction fees for continuous

trading and auctions. Thus, auction trading costs are far less than half a basis point.11 Second,

increased liquidity during auctions is enhanced by the presence of designated market makers

(DMMs).12 This special type of traders is required to submit buy and sell limit orders to the

auctions and to quote bid and ask prices during the continuous trading session. They have to

meet a minimum participation rate in the call auctions and a minimum quotation time during

the continuous trading. Designated market makers do not have any informational advantage

(e.g., exclusive access to the limit order book, as the NYSE specialists had), and their quotes

are subject to the same rules of price and time priority as orders submitted by the agency and

principal traders.

Similar to opening and closing auctions, daytime auctions consist of two phases: a call

phase and a price determination phase (Figure 1). During the call phase, all received orders are

automatically collected in one order book. The order book is partially closed: only information

on the indicative price (if available) or the bid/ask limit is displayed to the market participants. If

a current order book is not yet crossed, the accumulated volumes are displayed in addition to the

best bid/ask limits. In case of the crossed order book, the volume for a corresponding indicative

price is shown. In order to discourage any probable tactics of price manipulation, the end of the

call phase is randomized. This approach is consistent with Hasbrouck 2017, who demonstrates

that even a small amount of uncertainty may be enough in order to discourage manipulations

based on last instant moves.

11 Budimir M. 2015 The Xetra intraday auction. Growing potential for strong price discovery
12Designated market makers on the Xetra are officially called ”designated sponsors”. I use a modified term of

designated market maker, which is more common in research.
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Figure 1: The process of daytime auctions on the Xetra

The settlement (fixing) price is determined according to the principle of the maximum

executable trading volume with the lowest surplus. As soon as this price is defined, the matching

orders are immediately executable without a possibility to retrieve the submitted orders. At the

end of the auction, those orders that were not or were only partially executed are redirected to

the next possible trading form, according to their respective order sizes and trading restrictions.

Continuous trading restarts at the end of the auction; executed auction price, time of price

determination, and executable volumes are displayed for each stock.

The described auction mechanism is different from the continuous trading in several aspects.

The first distinction is the market information available to traders – the order book is fully open

during continuous trading: the first ten bid/ask limits, the number of orders per limit and the

order volumes accumulated for each limit are displayed. During the auctions, only indicative

price, imbalance and the side on which the imbalance exists are shown. Second, the execution

of quotes in continuous trading follows the price-time priority, thus rewarding higher speed. In

particular, each incoming order is immediately checked whether it can be executed against orders

on the other side of the order book. Consequently, in continuous trading, traders are encouraged

to be the first to act on new information. Priority principles of auctions rather focus on matching

the interests of supply and demand at a single point in time and minimize the rewards for being

the fastest. This leads to another difference – trading speed. Trading in auctions is naturally

slower than in continuous trading. As mentioned, the liquidity during auctions is not provided
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by speedy players, who prefer the low-latency environment of continuous trading. Thus, the

latency of the market dealer does not matter for auctions.

3.2 Data

The trading data during auctions is not a part of Level I and Level II market data. For the analysis,

I combine two different datasets. The first dataset includes the following fields at a one-minute

frequency: date/time stamp, stock ticker, low price, high price, trade price, number of stocks

traded. The second part of the dataset contains all trades on a tick basis with information on

stock ISIN, trade price, price flag13, the number of assets traded. Both datasets cover a period

between August 2010 – May 2015. The initial datasets contain all instruments traded on the

German stock exchanges. Based on Bloomberg Database with an additional verification from

Thomson Reuters Datastream, I select only common stocks traded on the Xetra and adjust

the sample for delisted stocks and stocks that changed their tickers during the sample period.

Following market microstructure literature (e.g., Heston et al. 2010), I further exclude stocks

with prices lower than e5 and stocks that had less than thirty trading days during the sample

period. The final sample includes 875 common stocks, from which 539 are domestic German

stocks and 336 are foreign (defined as stocks with an ISIN country code different from ”DE”).

Most foreign stocks are European (190 stocks) or North-American (144 stocks). To enable the

analysis on a stock level, I retrieve stock information on firms’ size, country, aggregate trading

volume (including markets besides Xetra) from the Thomson Reuters Datastream.

The limitation of the combined dataset is that it does not allow to observe the trading flows

inside auctions. Consequently, I cannot observe the dynamics of supply and demand sides, the

number of participants, and unexecuted volumes during the auction process. Instead, only a

stock settlement price and settled volume are reported in the second part of my dataset.

13The following price flags are available: end-of-day auction, opening auction, opening price, intraday auction,
mid-day auction price, liquidity circuit breaker, mini auction, closing auction, closing price, single auction, special
auction, volatility auction, closing price from the day before, issuing period.

13



Nearly all stocks of the sample are traded during both continuous trading and via daytime

auctions: only 0.12% of trading volume is traded only in the continuous market, but not during

daytime auctions on a given day. In 2014-2015, an average trade size during daytime auctions

was eight times higher than in continuous trading – e91,580 and e11,270 respectively.

Once a month, a settlement day for the options traded on the Eurex takes place. On these

days, the duration of Xetra daytime auctions extends from two up to five minutes. My sample

confirms a special role of these days: the share of volume traded via daytime auctions reaches

20% on average (six times higher than on the rest of the days), with the maximum value of

43% on October 18, 2013. For further analysis, I exclude these option settlement days from the

sample.14

Table 1 provides summary statistics in terms of traded volumes. On aggregate, opening,

daytime, and closing auctions account for 16.1% of the total daily volume, 80.9% of which

belong to closing auctions, 16.2% – to opening auctions, and 2.9% – to daytime auctions. In

terms of time, it is worth mentioning that all three auctions amount to just seventeen minutes of

a trading day, with the shortest daytime auctions lasting for only two minutes. A high volume

share of the closing auction is supported by the stylized fact that institutional traders mainly

trade at or near the close (Cushing and Madhavan 2000). The trading volume of domestic

stocks is more disseminated: 77.4% is traded during the continuous period with the rest 22.6% –

via auctions, while the corresponding values for foreign stocks are 90.4% and 9.6%. Trading

volumes of foreign stocks via daytime auctions are twice lower than those of domestic stocks.

There is a positive relationship between stocks’ size and trading volume during daytime

auctions: the more actively a given stock is traded during a continuous trading phase, the larger

trading volume during the daytime auction it has (see Figure 8 in Appendix). In terms of stock

size, closing auctions take over the trading volumes of large stocks, while middle-size and

small stocks are mostly traded in opening auctions (Figure 2). The volume share of the daytime

14Settlement days take place on the third Friday of each month. The exact dates were retrieved from the Eurex
website. Totally, 62 settlement days are excluded from the analysis.
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auction for small stocks is almost twice higher than that of large stocks (7% as opposed to 3.7%).

Even with the excluded settlement days, the volume traded via daytime auctions is rather

heterogeneous, with a standard deviation of 177.5% based on daily observations, compared to

the less volatile opening (40%) and closing (33%) auctions.

Opening
auction

Daytime
auction

Closing
auction

Continuous
trading

Auction
trading

(1) (2) (3) (4) (5) (6)
German domestic stocks 6.4% 3.7% 89.8% 77.4% 22.6%
Foreign stocks 26.0% 2.0% 72.0% 90.4% 9.6%
Total 16.2% 2.9% 80.9% 83.9% 16.1%
Large stocks 6.6% 3.7% 89.6% 77.8% 22.2%
Middle-size stocks 58.5% 5.0% 36.5% 91.0% 9.0%
Small stocks 61.7% 7.0% 31.3% 88.6% 11.4%
Standard deviation (daily) 40.4% 177.5% 33.0% 25.7% 33.7%
Standard deviation (monthly) 22.7% 49.4% 12.5% 18.1% 12.9%

Table 1: Summary statistics of auction trading on the Xetra. The table demonstrates the
breakdown of the daily Euro trading volume. Domestic stocks are those whose ISIN starts with ”DE”,
foreign stocks are those with any other country code. Large, middle-size, and small stocks are defined
based on the free-float market capitalization on 31/01/2013 from Thomson Reuters Datastream. Opening
auctions take place every day at 8:50, daytime auctions start at 13:00, closing auctions – at 17:30. Column
(6) denotes the total Euro volume traded during the opening, daytime, and closing auctions.
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Figure 2: Split of auction trading volume on the Xetra. The figure demonstrates the breakdown
of the auction volume. Small stocks are those whose free-float market capitalization on 31/01/2013 from
Thomson Reuters Datastream. is at the lowest 33% of the sample. Large stocks are 33% with the highest
free-float market capitalization.

3.3 Market liquidity and daytime auction volumes

Before going deeper into auctions, it is worth to understand which market factors influence the

aggregate volume traded via the daytime auctions. How much does auction trading activity

vary on a day-to-day basis? Are there any systematical regularities during the exact days of

the week? What generates the movements in daytime auction volumes? Understanding the

drivers of auction volumes is necessary from the perspectives of policy regulation, exchange

organization, and market design.

Chordia, Roll, and Subrahmanyam 2002 study factors that influence the dynamics of the

US market activity proxied, among others, by trading volume (in continuous trading sessions).

They find that market index return, changes in the Federal Funds Rate, the difference between

the yield on 10-year Treasury bonds and the Federal Funds rate, and the dummy corresponding

to the two trading days before GDP announcements, as well as some days of the week are
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significant determinants of the stock traded volume. I take these measures as a set of candidates

for explanatory factors of auction volume. In order to determine whether the same or different

drivers move the volume dynamics of daytime auctions and continuous trading, I reproduce

the time-series regression of two types. In the first set of regressions, a dependent variable of

interest is the changes in daytime auctions, in the other setting – continuous trading volume.

There is a negative dependence of -0.36 in the first lag in a daily change of auction volumes;

a corresponding value for the continuous volume is -0.30. I thus apply the Cochrane/Orcutt

iterative correction procedure (first-order only) in the regression.15 Explanatory variables have

a moderate correlation, so a potential issue of multicollinearity is avoided. The following

regression is estimated on a daily frequency:

∆volt = α + β1∆MKT (+) + β2∆MKT (−) + β3∆short rate+

+β4∆term spread+ β5GDP + β6−9Wday + εt,
(1)

where ∆volt is the daily changes in Euro volume during daytime auctions or during continu-

ous trading, ∆MKT + (∆MKT−) is the daily HDAX16 return if it is positive (negative) and

zero otherwise, ∆Shortrate is the daily first difference in the Euribor, ∆Term spread is the

daily change in the difference between the yield curve rates based on ten-year government bonds

and the short rate, GDP equals 1 on the two trading days prior to the GDP announcement and

0 otherwise,17 Wday are dummies corresponding to the four days of week: Monday, Tuesday,

Thursday or Friday.

Judging by the results of the estimation (Table 2), different factors influence auction trading

volumes compared to those of continuous sessions. When the market index goes up, there

is a significant decrease in daytime auction trading, while this relationship is reverse for the

15The results using a simple OLS regression is not qualitatively different from the one received by applying the
Cochrane/Orcutt method.

16The HDAX is a German stock market index that contains all composites of the DAX, MDAX, and TecDAX.
17GDP is announced every month, announcement dates are retrieved from the Eurostat website.
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continuous trading period. This result supports the findings for the US continuous market,

where this relationship between volumes and the index is positive/negative when the index goes

up/down. Combining these conclusions, traders seem to prefer auctions when the market is on

the decline and continuous sessions – when the market rises.

Auction trading activity increases before the GDP announcements, while this effect does not

occur for continuous trading volumes. This finding might indicate the differences in anticipation

of to-be-announced GDP measure causing the disturbance of earlier uninformed trading. As

an announcement day approaches, the number of informed traders might increase, and their

competition could bring additional liquidity to the auctions (Admati and Pfleiderer 1988).

There is a strongly pronounced day-of-week effect for both trading periods. Auction trading

volume remarkably increases on Fridays, although all Eurex settlement Fridays were removed.18

This might indicate that investors use auctions more actively before a rather long time without

trading (weekends). The dummies for Tuesday and Thursday are also positive and significant,

while auction volume slows down on Mondays and Wednesdays. Conversely, continuous trading

is lower on Friday and higher on Tuesdays and Thursdays.

Alternative regressions exclude day-of-week dummies and include two additional measures

of market uncertainty: a European proxy for the VIX, VSTOXX and an interaction term of the

falling market index returns when volatility is high (MKT(-)*VSTOXX in Table 2). By adding

them, I aim to address the proposition that auctions are a fairer trading design for investors. In

other words, if there is uncertainty on the market, more traders would opt for auctions, if they

do not require immediacy. The results show that uncertainty measured by the interaction term

increases trading for both auctions and continuous trading. Changes in V STOXX do not affect

continuous trading but negatively impact auction volumes. So, they rise only when the market is

much in stress and uncertainty, i.e., when returns drop and uncertainty increases.

18A joint test that coefficient on Friday is the same as on each of the other days of the week is rejected with a
p-value less than 0.0001.
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Dependent variable: ∆Auc vol ∆Cont vol

(1) (2) (3) (4) (5)

∆MKT (+)
-14.09*
(-1.81)

-36.40***
(-2.85)

8.02***
(6.42)

7.44***
(4.61)

∆MKT (−)
7.46

(0.91)
-0.41

(-0.11)
-11.64***

(-9.49)
-9.97***
(-5.66)

∆Short rate
3.25

(0.80)
-3.37

(-0.67)
0.30

(0.47)
-0.13

(-0.19)

∆Term spread
0.21

(0.41)
-0.44

(-0.69)
-0.15**
(1.97)

-0.21***
(-2.45)

GDP
0.24*
(1.87)

0.21
(1.17)

-0.005
(-0.27)

-0.008
(-0.39)

Monday
-1.07***
(-14.10)

-0.05***
(-4.99)

Tuesday
0.36***
(4.82)

0.07***
(6.73)

Thursday
0.37***
(4.94)

0.04***
(4.06)

Friday
0.42***
(4.79)

-0.02**
(-2.25)

∆V STOXX
-7.64***
(-3.18)

-0.37
(-1.55)

MKT (−) ∗∆V STOXX
75.49*
(1.84)

12.25***
(2.76)

Intercept
0.02

(0.39)
0.02

(0.61)
-0.04***
(-5.44)

-0.04***
(-6.22)

Adjusted R2 0.016 0.016 0.23 0.09

Table 2: Time-series regressions. This table contains the result from time-series regressions. The
dependent variable is the daily logarithmic changes in Euro volumes of daytime auction (columns 2-3)
or continuous trading (columns 4-5). ∆MKT + (∆MKT−) is the daily HDAX return if it is positive
(negative) and zero otherwise, ∆short rate is the daily first difference in the Euribor, ∆term spread is
the daily change in the difference between the yield curve rates based on ten-year government bonds and
the short rate, GDP equals 1 on the two trading days prior to the GDP announcement and 0 otherwise.
Wday are dummies corresponding to the four days of week: Monday, Tuesday, Thursday or Friday.
t-statistics are in the brackets. Cochrane/Orcutt iterative correction procedure (first-order lag) was applied.
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4 The role of daytime auctions in return periodicity

This section demonstrates that daytime auctions, along with opening and closing intervals and

alone, contribute to the seasonality of the cross-section of stock returns. I show that market

factors such as volume, bid-ask spread, and volatility do not explain the revealed pattern. By

analyzing different cross-sectional subsamples, I find that predictability is more pronounced for

small, large, and for domestic stocks.

4.1 Aggregate evidence on return periodicity

To study intraday patterns of returns, I start with breaking down a trading day into smaller

intervals. Existing studies (Heston et al. 2010, Bogousslavsky 2016) suggest taking half-hour

intervals in order to limit the influence of microstructure effects but to still capture a rich set of

dynamics. However, given that auction duration is only two minutes, taking half-hour intervals

might be misleading. In particular, if the effect is short-lived, it might be underrated for the

thirty-minute intervals. Thus, I decide upon a more frequent sampling frequency of fifteen

minutes.19 With regular trading hours between 9:00 and 17:30, I end up with 34 intervals per

day. This excludes after-trading and overnight open-close price movements. I then compute

logarithmic returns based on the first and the last trading prices available inside each interval.

I follow the methodology of Jegadeesh 1990 used in Heston et al. 2010 for analyzing

cross-section of return periodicity. For each lag k, I run regression of stock returns at interval t

on the returns lagged by k intervals:

ri,t = αk,t + γk,tri,t−k + ui,t, (2)

where ri,t is return on stock i in the fifteen-minute interval t, based on trade prices. The slope

19The results stay the same upon using half-hour sampling frequency, please see Robustness section.
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coefficients γk,t indicate the return responses at time t to their returns at time t-k. Using Fama-

MacBeth 1973 methodology, return responses are defined as time-series averages of estimates

γk,t.

Figure 3 demonstrates the average return responses across stocks at different lags up to one

week (170 fifteen-minute lags) and the corresponding t-statistics. Consistent with the previous

literature, the first several return responses are negative. Bid-ask bounce, time variation in the

frequency of trades occurring at bid versus ask prices, or temporary liquidity imbalance can be

the potential drivers of such a reversal (as in Keim 1989). Compared to evidence reported for

the US market, the first order return response on the Xetra is more negative: -7% compared to

-2% for the NYSE market.20 This difference indicates that the German market takes a longer

time for reversal, implying lower liquidity than in the US.

After the reversal period, return responses peak on exact multiples of one trading day, as

well as corresponding t-statistics (the highest bars in Figure 3). The discovered return pattern

provides a clear piece of evidence on return continuation at the daily frequency. This finding

can also be interpreted as return momentum: if a stock has higher returns at a particular time

today, it will also have high returns at the same time tomorrow. This pattern is long-lived – it

lasts up to two weeks, after which the t-statistics become insignificant.

It is important to note that the estimates from cross-sectional regressions (2) are different

from being simple autocorrelation of stock returns. In particular, the cross-sectional regressions

remove an overall market effect, which lowers variance and focuses on returns relative to other

stocks. The return responses γk,t can thus be interpreted as excess returns. According to Lo and

MacKinlay 1990, the average γk,t coefficient in equation 2 reflects three components: (1) return

autocorrelation, (2) return cross-autocorrelation, and (3) cross-sectional variation in average

returns. The average cross-section regression coefficient γk,t can be decomposed as follows. If

20A number for the US market is taken from Heston et al. 2010.
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Figure 3: Time-series averages of return responses. The figure demonstrates results from (2):
average return responses and corresponding t-statistics. A trading day is divided into 34 disjoint intervals,
each containing fifteen minutes. For interval t and lag k, I run a simple univariate cross-sectional
regression of the form ri,t = αk,t + γk,tri,t−k + ui,t, where ri,t is the return of stock i during interval t
and ri,t−k is the return of stock i during interval t-k. The cross-sectional regressions are estimated for
all combinations of interval t (49,130 intervals) and lag t, with values 1 through 170 (corresponding to
the previous five days). The left y-axis shows the time-series averages γk,t (in percents), the right y-axis
corresponds to the respective Fama-MacBeth 1973 t-statistics. An upper x-axis corresponds to the left
y-axis, a lower – to the right y-axis. Tick 34 relates to one trading day, tick 68 – to two trading days, etc.
The analysis uses Xetra-listed stocks for a period of August 2010-May 2015.

r̄t = 1
N

∑N
i=1 ri,t, the estimate of slope is:

γ̂k,t =
1

1
N

∑N
i=1(ri,t−k − r̄t−k)2

N∑
i=1

ri,t
1

N
(ri,t−k − r̄t−k)︸ ︷︷ ︸
≡πt(l)

.

In this equation, πt(l) is related to a trading strategy of going long past winners and going

short past losers, based on their return in period t-k. Defining the calendar function c(t), which
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provides the calendar period for each date t, the expected return on the strategy in c(t) is:

E[πt(k)|c(t)] =
1

N

N∑
i=1

Cov[ri,t, ri,t−k|c(t)]− Cov[r̄t, r̄t−k|c(t)]+

+
1

N

N∑
i=1

(µi,c(t) − µc(t))(µi,c(t−k) − µc(t−k)),

(3)

where µi,c(t) ≡ E[ri,t|c(t)] and µc(t) ≡ E[r̄t|c(t)]. Consequently, the average coefficient

γk,t reflects three components: return autocorrelation, return cross-autocorrelation, and cross-

sectional variation in average returns.

Robustness. Two tests help to check whether the results are (1) robust to a different intraday

sampling frequency, (2) economically sizable.

First, I change a sampling frequency from fifteen-minute intervals to thirty/minute periods.

The daily return periodicity holds, demonstrating higher average return responses than in the

benchmark case of fifteen minutes (Figure 9 in the Appendix).

Second, the magnitude of the average return responses does not express much in terms of

economic size. In order to measure the effect, I pursue a trading strategy that aims to exploit

periodicity. In particular, I estimate the returns of an equally-weighted long-short portfolio

constructed according to stocks’ historical returns. Two different rebalancing frequencies are

applied. In the first setting, one goes long those stocks whose return was among 10% highest k

intervals ago and goes short the 10% worst-performing stocks k intervals ago. Figure 12 in the

Appendix shows that return spread of such strategy peaks precisely at the multiples of a trading

day earning 1.58 basis points on the first daily lag.21 The profitability stays significant until the

sixth day. Given that an investor needs to simply shift his trade instead of taking a one-day risk

to earn equity premium, the effect in terms of the incremental Sharpe ratio might be even higher.

Thus, when a stock goes up one day, buyers earn a return premium by buying the stock prior to

21The value does not account for trading costs.
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the same time interval on coming days. This means that the trading strategy that ranks stocks

according to their returns during the historical lags of multiples of seventeen earns the highest

returns among other k intervals.

An alternative strategy is to sort stocks according to their historical returns during several

past intervals, i.e., during the previous day. Table 12 in the Appendix reports the return spreads

of both strategies for lags up to a week. The strategy marked ”daily” is based on the stock

performance a day ago, while a ”nondaily” strategy uses average performance of stocks during

the previous day. An average return spread of the daily strategy is positive and significant, unlike

the nondaily strategy that loses.

4.2 Daytime auctions and return periodicity

The reported daily seasonality does not indicate which intraday clock intervals drive the revealed

periodicity pattern. I thus re-estimate (2) for each fifteen-minute interval separately, using a

lag of one day: returns are regressed on the returns at the same interval exactly one day ago,

two days ago, etc. (k=34, 68, and so forth). Average daily return responses up to the tenth

trading day are reported in Table 3. Return periodicity is the most pronounced at market close

(column 17:15), market open (column 9:00), and after a daytime auction (columns 13:03 and

13:17).22 Comparing the intervals between 13:03–13:17 (after-auction interval for most of large

stocks) and 13:17–13:30 (after-auction interval for most of the small, less liquid stocks), the

latter demonstrates a three times higher economic magnitude (0.88 basis points compared to 2.78

basis points). In particular, the estimate of after-auction interval for smaller stocks is comparable

with that of the market close and open.

I further use daily lags for measuring a trading strategy based on precisely past-day lags.

Stocks are sorted based on their historical return at each fifteen-minute interval on the previous

22The time of daytime auctions is different depending on the stock. Most stocks in the large size portfolio start
auction trading at 13:00, while small-size stocks – at 13:17. The analysis takes care for this different timing.
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days, with a rebalancing frequency from one up to five days. For example, I buy those stocks

today at 12:00 that performed best yesterday at the same time and short the worst-performing

ones. I decrease a rebalancing frequency up to five days: I trade the portfolio based on stock

returns at the same time five days ago. For an aggregate picture, I average the returns for a period

of five days. Results are displayed in Figure 4 and show that the largest weekly average return

spread of 7.53 basis points happens at the market open, with the highest value corresponding to

the first-day lag (12 basis points). The second-largest interval is the last trading interval before

the market close, earning 2.89 basis points on average during a week. The interval corresponding

to the post-auction brings a positive return of 1.89 basis points.23

The returns from the momentum strategy support evidence on the role of the return con-

tinuation for three intraday intervals. The dynamics of stock returns on the Xetra is W-shaped

(Figure 4). This finding contributes to the existing literature on intraday return pattern that

mostly concentrates on the markets with two, opening and closing, auctions. In particular, Wood,

McInish and Ord 1985, McInish and Wood 1990, and Lockwood and Linn 1990 find a U-shaped

pattern of intraday returns and trading volumes on the New York and Toronto stock exchanges.

For later periods, however, intraday volume profiles have become more back-loaded, resembling

more a J-shaped pattern (Kissel 2014). My results innovatively show that the market with a

daytime auction has an additional spike that arises right after the daytime auctions.

23This value does not account for trading costs.
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Figure 4: Average return spread of the daily momentum strategy. This figure shows the
average return spread of the daily momentum strategy for each fifteen-minute interval during a day. The
stocks are sorted based on their historical returns at the same interval one, two, three, four, and five days
ago. The strategy goes long 10% top-performing stocks and goes short 10% least-performing stocks, with
a rebalancing frequency depending on the chosen lag. Values on the y-axis are the weekly average returns
of the long-short portfolio, in basis points. The strategy is applied for the whole sample period and does
not account for trading costs. The shaded area shows 5% confidence level, based on weekly deviations in
the strategy spread. The analysis uses Xetra-listed stocks for a period of August 2010-May 2015.

Robustness. If after-auction periods add substantially to the return periodicity, this period-

icity would also be generated by daytime auctions alone, e.g., excluding market opening and

closing intervals. I thus re-estimate (2) with 32 fifteen-minute intervals left in a trading day, after

eliminating opening and closing intervals. Results support a benchmark case: the coefficients of

return responses still peak on a daily frequency, as well as their corresponding t-statistics (Table

8 in the Appendix). It means that midday auctions alone contribute to the intraday predictability

of stock returns.

Motivated by the literature that finds a day-of-week effect for the US market (e.g., Cross

1973, Jaffe and Westerfield 1985)24, I analyze whether the periodicity is driven by individual day

24There is also literature on a special role of Januaries (a ”January effect”). However, the length of my sample is
only five years, which is not enough to properly check whether this effect is present.
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of the week. I run daily momentum strategies for each day of the week separately. On Mondays,

the return spread at the open is the highest among other days of the week. Unlike, there is no

weekday effect after the daytime auctions (Figure 14 in Appendix).

4.3 Return periodicity and market factors

To understand the origin of return periodicity further, I analyze whether there is an identical

pattern in trading volumes. As shown in Section 2, institutional volumes can naturally influence

stock prices and generate patterns in returns. As the volume is known to be a persistent process,

it makes sense to use changes in volumes in estimating (2). Figure 13 in the Appendix displays

a volume pattern that largely resembles the pattern seen for stock returns, with a stronger

magnitude of time-series averaged coefficients. Similar to return periodicity, volume responses

decay with longer lags. However, the pattern remains positive and statistically significant up to

three months, thus being more persistent than price changes. This finding signals that investor

flows can generate the shown periodicity.

To analyze whether other market factors can help to explain the pattern, I apply multivariate

regressions of returns on volume, volatility, and liquidity proxied as the bid-ask spread. As my

dataset does not contain bid and ask prices, I estimate the bid-ask spread using the methodology

of Corwin and Schultz 2012. If these market-wide factors explain the return periodicity, the

inclusion of these factors in (2) will decrease the magnitude of return responses γk,t. The

resulting regression is:

ri,t = αk,t + γk,tri,t−k + δ′k,tVi,t−k + εi,t, (4)
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where vector Vi,t−k includes three variables: percentage changes in volume (measured as

the total number of shares traded during the interval k lags ago), in volatility (measured as the

absolute value of returns), and in liquidity (measured as the Corwin and Schultz 2012 measure).

Adding these variables does not decrease the magnitude of return response estimates on the

daily multiples. They all, including those related to the multiples of one-day lags, become bigger

(Table 8 in the Appendix). Moreover, none of these market variables is significant, except for

past returns. The results also hold for the subsample of liquid stocks, defined as stocks whose

high price equal low price on more than 120 days during the sample period.

Finally, I run (4), but instead of taking all market factors as explanatory variables, each of

them is separately included in a univariate setting:

ri,t = αk,t + γk,tri,t−k + βk,tvi,t−k + ei,t, (5)

where vi,t−k includes percentage changes in one of the variables (volume, volatility, or bid-ask

spread). Including the variables separately cannot as well explain the pattern: none of the

coefficients are significant on the daily multiples (Table 9 in the Appendix). The largest R2 of

3.8% belongs to the estimation of returns on their lagged returns and the bid-ask spread.

Thus far, the results reveal a predictable pattern in the cross-section of stock returns on a

daily basis. Daytime auctions play a significant role in creating these dynamics. The trading

volume demonstrates similar patterns to returns, but cannot, together with market factors, explain

the daily return responses. After identifying timing drivers of periodicity, I analyze whether the

pattern is more pronounced for a specific group of stocks. The next section focuses on this.

4.4 Cross-sectional drivers of return periodicity

As the sample size of 875 stocks allows me to break stocks into different portfolios, I study

whether the predictability is more pronounced for some stocks than for the others.
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Keeping the most straightforward sample split based on firm size and country, I divide my

universe into three respective portfolios. First, the sample is split into three parts according to

the stock size, proxied by stock’s free-float market capitalization. The portfolio of large firms

contains the top 33% stocks sorted by market capitalization in each quarter. Similarly, I define

middle- and small-cap stock portfolios. Re-estimating the average return responses in (2) for

three size portfolios reveals that the return periodicity is stronger for the smallest stocks – these

portfolios have the highest average return responses of 0.37% on a daily periodicity and are the

most persistent up to the lag of five days in terms of significance (Table 10 in Appendix). This

might indicate a regularly high concentration of trading volumes in small stocks.

Also, the pattern is distinct for a portfolio of large stocks, with a comparable magnitude of

coefficients. The timed rebalancing of institutional trades st the market close might potentially

create seasonality for these stocks. The periodicity does not hold for middle stocks: daily return

responses are the lowest and significance is lost already on the first daily lags.

Second, I repeat a similar split for domestic versus foreign stocks. Intraday return seasonality

is mostly present for domestic stocks (Table 11 in Appendix). The return responses are close to

that of small stocks (0.33%) and stay significant up to a trading week.

This section provided evidence on intraday return predictability in cross-section of Xetra

stock returns at a daily frequency. Daytime auctions substantially contribute to this pattern:

(1) they alone generate such a periodicity, (2) the magnitude of average return responses drops

by 18% if after-auction intervals are removed. The pattern is mostly driven by small, large,

and domestic stocks. Volume, volatility, and the estimated bid-ask spread cannot explain the

revealed return dynamics. As volume demonstrates similar return periodicity, investor flows and

timed trades are the primary candidates causing it.
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5 Understanding periodicity after daytime auctions

5.1 Models of slow-moving capital

As shown in Section 4, intraday periodicity of a cross-section of stock returns is also reflected in

the dynamics of volumes (Figure 13 in Appendix). Thus, the models that build on investor flows

in relation to return dynamics are the natural candidates for the interpretation of the revealed

return periodicity. In this section, I analyze several theoretical models that link trading flows

and stock return periodicity. The model of infrequent rebalancing illustrates the mechanism

of how clustering of trading flows generate return periodicity. Bringing the model to the data,

I show that it works decently for a part of the sample (small stocks), suggesting evidence on

rebalancing for after-auction periods.

A voluminous literature centers on the models of non-synchronous trading coming from

inattentive investors. Limited market participation of some investors is critical to these models.

The idea of this research area is opposite to neoclassical models of dynamic asset pricing with

the fundamental assumption that investors monitor the market regularly and adjust their trading

decisions at each point in time. According to Duffie 2010, in reality, most investors do not focus

on trading plenty of time and infrequently come to the market to adjust their portfolios. He

shows that, at each point in time, asset prices mostly reflect the marginal trade-offs of a rather

small investor group. His model shows that only when these traders return to the market, the

price movement is reversed.

This literature is further expanded by the model of Hendershott et al. 2018. The authors

build on the above-mentioned model and suggest the mechanism of how the limited market

participation generates price deviations from the semi-strong market efficiency. This model has

three types of agents: market makers, attentive investors, and multiple groups of inattentive

investors who arrive at the market stochastically. A gap process, which is the difference between

the target and actual portfolios of inattentive investors, generates the dynamics in the model.
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The authors use impulse response functions to measure the deviation between the prices present

on the market and efficient prices. Calibrating the model using several data sets for the NYSE

stocks, the authors show that return autocorrelations are significantly negative during the first

twenty days, which indicates that at least a part of the original pricing error is still persistent.

Fitting the GMM estimation to the data and testing for various inattention frequency, it is shown

that the persistence of a pricing error reaches twenty days, being mostly dominated by monthly

inattentive investors. The model has several important advantages, such as being invariant to the

sampling frequency and having analytic estimations for any state-space dimensionality. However,

although the model provides both evidence and mechanism on how returns are ”polluted” by

pricing errors, there is no direct link between investor inattention and cross-sectional stock return

seasonality.

Return periodicity may also be created by liquidity traders who enter the market at specific

points of time and thus generates seasonality. For example, institutional investors can trade

exceptionally at the market open or the market close and thus create seasonality in mean liquidity

trading. This would create periodic cross-sectional fluctuations in asset returns. Bogousslavsky

2016 simulates the economy with persistent liquidity shocks and two types of assets. For the

first group of assets, the mean supply of traders is constant, while for the second group, there is

one period with a different mean supply of liquidity traders. The results of simulations show

that such periodicity in mean supply truly generates periodicity in average return responses,

like from (2). The reason is that the price of risk in such a setting is not the same across time.

However, in simulation results, the average return responses (bars corresponding to the daily

multiples in Figure 3) do not decay with time.

5.2 A model of infrequent rebalancing

A dynamic model of infrequent rebalancing is another candidate to explain why cross-sectional

variation in returns is more substantial in some periods than in others. The model is built on

32



investor flows that generate the asset return periodicity. Building on the model of Duffie 2010,

Bogousslavsky 2016 theoretically shows that cross-sectional variation in average returns in-

creases in periods when more traders rebalance. According to the model, infrequent rebalancing

has a large impact on return and volume periodicity patterns at different frequencies.

The model assumes two types of investors: frequent and infrequent. Frequent traders are

always on the market. The second group of agents, infrequent traders, trade to maximize the

value of their terminal wealth and then they leave the market for some time. According to the

model, infrequent rebalancing is analogous to serially correlated liquidity shocks. For example,

a large negative liquidity shock happens at t: stock price drops. The agents, who are present on

the market at the moment, absorb this shock. They do so by buying more assets than suggested

otherwise by a steady-state level. Later, at time t+k+1, these infrequent traders arrive at the

market in order to rebalance their holdings again. Since liquidity trading is transient, these

infrequent traders now hold an abnormal position in the asset relative to the current asset supply

and therefore liquidate part of their excess holdings. The resulting order flow is thus another

liquidity shock per se. This process increases the return covariance between the two periods

because a liquidity shock today transmits to the future when agents rebalance their holdings

again. Consequently, although such systematic trading is entirely expected, it causes predictable

return patterns.

As shown in Section 4, average γk,t in (2) reflects three components: return autocorrelation,

return cross-autocorrelation, and cross-sectional variation in average returns (Lo and MacKinlay

1990). The model of infrequent rebalancing relies only on the autocorrelation component of this

decomposition, so the estimates from (2) are almost identical to autocorrelations in the model.

The model suggests that infrequent rebalancing creates periodicity in the factor risk premium,

rather than creates an additional risk factor.

Calibration of the model shows that infrequent trading switches the sign of return autocor-

relations precisely around the rebalancing horizon, making it positive. As infrequent traders
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trade in the same direction as the liquidity shock that they absorbed during their previous

rebalancing interval, this effect does not depend on the persistence of liquidity trading on the

market. According to the model, without infrequent rebalancing, all return autocorrelations have

the same sign and decay exponentially. The evidence demonstrated in Figure 3 is supported by

the model, assuming that a rebalancing horizon is one day.

In order to bring the model to the market with three intraday auctions, I first define four

features that (1) according to the model, should be present on the market at the intervals of

rebalancing, (2) can be empirically tested using my dataset.

The model states that when a large proportion of trading by investors with heterogeneous

rebalancing occurs, the market can be characterized by several features.

• When traders hit by endowment shocks rebalance their portfolios, the price impact of

these transitory shocks is high;

• Traders who are always present on the market (frequent traders in the model) require a

larger return to hold an asset when they expect liquidity to decline in the next period. As a

result, market makers require a high return for trading the assets during the rebalancing

interval;

• Trading volume is high when more traders rebalance;

• Volatility is particularly high.

Next, I bring the model to the data and show that the model can explain the return dynamics

after daytime auctions, especially for small stocks.

34



5.3 Bringing the model of infrequent rebalancing to the data

5.3.1 Empirical proxies

The goal of this section is to define whether the model characteristics emerge around daytime

auction on the Xetra. Empirical estimation of the model features is the first step.

Price impact. A standard high-frequency proxy of price impact used in the literature is the

measure suggested by Hasbrouk 2009. He defines it as a slope coefficient from regressing five-

minute stock return on the signed square-root of trading volume. Due to the limitations of my

dataset (direction of trade is not available), the estimation of this measure is not possible. I use

an alternative benchmark, the Amihud (Amihud 2002) illiquidity measure (hereafter Amihud). It

captures a price response associated with the given trading volume. There are two reasons why

I consider this measure to be a relevant proxy for price impact. First, following the definition

of price impact used in the model of infrequent rebalancing, there is a onetoone relationship

between the Amihud measure and the price impact defined in the model, after controlling for the

price level.25 Second, existing research provides evidence on the ability of the Amihud measure

to capture price impact. In particular, Lou and Shu 2014 show that the Amihud measure highly

correlates with five-minute price impact, with a correlation coefficient of 0.803. Some previous

studies (Hasbrouk 2009, Goyenko, Holden, and Trzinka 2009) also document that the Amihud

measure does well capturing the price impact. This measure is thus used as a proxy for the price

impact.

I calculate the Amihud measure for each fifteen-minute interval per stock:

Ai,t =
t∑

j=1

|ri,j|
dvoli,j

, (6)

where |ri,j| is the absolute value of one-minute returns inside the corresponding fifteen-minute

25Please refer to the Appendix 7 for the derivation of this proposition.
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interval for stock i, dvoli,j is Euro trading volume for a corresponding stock. The thinner

the market is, the stronger the trading volume changes prices available on the market. After

estimating the price impact for each stock, it is aggregated across the market as the value-

weighted average of all stocks with the available measure.

Returns. The average realized returns during each interval are calculated as follows. As return

volatility is not constant during a day, it is critical to control for heteroskedasticity by dividing

the returns of each interval to the corresponding standard deviation of the same interval. By

doing so, I compute average excess returns on top of the standard deviation, which does not

change the coefficients themselves, but instead adjusts standard errors. Following Smirlock and

Starks 1986, µk is estimated via the following regressions:

rt
σ̂t

=
K∑
k=1

1t,k
σ̂k

µk + εt, (7)

where σ̂k denotes the standard deviation of returns in period k, 1t,k equals one if interval t belongs

to period k and zero otherwise, σ̂t =
∑K

k=1 1t,kσ̂k. Estimating (7) is identical to computing

average returns in excess of return volatility separately for each interval.

Volatility. Volatility is measured as the standard deviation of one-minute returns during each

15-minute interval.

Volumes. The average volume for each fifteen-minute interval is estimated by applying the

same regression as (7) for volume changes.

As the model of infrequent rebalancing belongs to the theoretical research, it does not state any

numerical criteria for how high should be the parameters. I define each estimate of the model

features as high when the value is (1) among top 10% compared to all other intraday intervals,

(2) statistically significant, and (3) its mean is statistically different from the mean at the market

open and close intervals. Given 34 intervals in a day, a corresponding value should be among
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three highest values to satisfy the criteria (1).26

5.3.2 Model fit for size portfolios

The periodicity pattern is more pronounced for small, large, and domestic stocks (shown in

Section 4). I thus estimate the features of the model of infrequent rebalancing for three size

portfolios: small, middle, and large.27 Table 4 clearly shows that most estimates peak at the

market open for all portfolios. At this time, the market might react to overnight news, because

the US market opens when the Xetra is closed.

All features of the model, except for return volatility, hold for the portfolio of small stocks.

Price impact and average return peak right after daytime auctions (13:17–13:30). The tests for

differences in means between post-auction and closing/opening intervals for both measures

reject the null hypothesis of equal means at 1% level. The volume of the portfolio of small

stocks is the highest after the daytime auctions. The volatility of returns is the same as at the

open, around the US market open, and around the close.

Portfolio of large stocks does not show a full fit for the model like small stocks, supporting

only some model features. For large stocks, after-auction price impact is almost as high as at

the market open and as at 16:45-17:00. Average return peaks at the highest level after daytime

auctions. Return volatility and average volumes are high at both after the daytime auction and

at the market close. There is no particular pattern for middle-size stocks. According to these

results, the model better fits for the portfolio of small stocks, providing the mixed evidence for

the large stocks.

26If the highest value includes the market open and another value is the fourth-largest, I still consider it as
”high”.

27Each group contains 33% of the total sample and is formed based on the quarterly free-float market capitaliza-
tion (retrieved from Thomson Reuters Datastream).
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5.3.3 A role of trading fragmentation

The existing research provides a significant number of studies that analyze the asset price

dynamics when a stock is traded across multiple markets. In these studies, the role of the home

market or the market on which stocks are traded most is found to play a leading role in price

formation (Froot and Dabora 1999, Pascual et al. 2006, Frijns et al. 2010 and others). Regarding

the German market, Clapham and Zimmermann 2015 discover a leading price formation role

of Xetra during the daytime auction for the DAX stocks. They show that the trading on the

largest multilateral trading facility ChiX Europe evaporates at the time when Xetra switches to

the daytime auction. As soon as the auction prices are defined, the ChiX market accepts the

prices from the Xetra.

Combining these research conclusions with evidence on stronger return periodicity pattern

reported for domestic stocks, I further divide the size portfolios in smaller portfolios based on

stocks’ trade fragmentation. In particular, evidence on rebalancing should be stronger for the

stocks with a higher trading share on Xetra. I define such stocks as low-fragmented stocks and

create a proxy of stocks’ fragmentation – market share, on a stock level. This is the proportion

of the daily trading volume of each stock on the Xetra relative to the stocks’ total trading value,

including all foreign markets:

MSi,t =
TrV olXetra i,t

TrV oltotal i,t
, (8)

where TrV olXetra i,t is a Euro trading volume on the Xetra of stock i on day t. TrV oltotal i,t is

a Euro trading volume of stock i on day t on all markets. The trading volumes on other markets

are retrieved from Bloomberg.28

The average MS for a portfolio of large stocks with the biggest market share is 52.4%, with the

medium market share 22.5%, with small market share –7.17%. Correspondingly, for the small

stocks the average MS values are 61.08% – 33.6% – 7.20% respectively. Small stocks have

28For each stock, I retrieve the trading value from all existing markets on each day, adjusting currency to Euro.
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higher average market share because the sample also contains foreign stocks that are cross-listed

in Germany: most of them are large companies based on their free-float market capitalization.

For each of the resulting six portfolios, I re-estimate four indicators of the model of infrequent

rebalancing: realized returns, volatility, volume, and price impact.

The results for small low-fragmented stocks are tabulated in Figure 5. This portfolio supports

the rebalancing argument from the model of infrequent rebalancing. In particular, the returns

and volume are the highest right after daytime auctions compared to all other fifteen-minute

intervals. Similarly, price impact and volatility also satisfy the criteria of being high according

to the model. Moreover, this result is driven by the domestic stocks.29

2980% stocks in this portfolio are domestic German stocks. If I exclude foreign stocks the results stay robust.
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Small stocks. Degree of fragmentation Returns Price impact Volume Volatility

Low 4 4 4 4

Middle 4 4 6 6

High 6 6 6 6

Large stocks. Degree of fragmentation Returns Price impact Volume Volatility

low 4 6 4 4

mid 6 4 6 6

high 6 6 6 6

Table 5: Features of the model of infrequent rebalancing for small and large stocks This
table demonstrates whether the estimated indicators for three different portfolios of small/large stocks are
in line with the model of infrequent rebalancing for after-daytime-auction period. The first line shows
returns, volatility, price impact, and average volume respectively for small/large stocks with the highest
share of trading value happening on the Xetra. Orange tick for volume of large stocks means that its
value is high but insignificant. The line in the middle related to the model indicators for a portfolio of
small/large, but with a lower trading share on the Xetra, higher trading on other markets(s). Similarly, the
lower line shows measures for small/large stocks with the highest trading activity outside the Xetra market.
Green ticks mean that the corresponding after-auction estimates (1) are significant at the confidence
interval at least 10%, (2) are among the 10% highest intervals during a day, and (3) have the mean that is
statistically different from the value that corresponds to the market close interval. The red cross means
that at least one of these criteria is not satisfied for a corresponding portfolio.

According to the results, the rebalancing of small domestic stocks occur after the daytime

auctions. This conclusion is in line with the purpose of daytime auctions – they provide a fixing

price for relatively small and less liquid stocks. Unlike the evidence on the return spike at the

market close reported for the US market (Bogousslavsky 2017), small stocks on Xetra have

low returns before the market close and negative returns at the market close (both adjusted for

the standard deviation). Combining the findings, small stocks are mostly rebalanced after the

daytime stock auctions on the market with auctions, and at the market close – if the market does

not have intraday auctions.

Switching from the lowfragmented stocks to the stocks with a higher trading share outside

the Xetra weakens the evidence on afterauction rebalancing. In particular, return volatility is not

high and not statistically significant anymore; the volume is low, although afterauction realized

returns are still the highest (Table 5).
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Figure 5: Features of the model of infrequent rebalancing for small low-fragmented
stocks. Average returns and average volumes are defined as µk from (7). Coefficients are average
returns adjusted for the standard deviation; the price impact is based on the Amihud measure from (6);
return volatility is the standard deviation of returns during corresponding period. Average number of
stocks in this subsample is 83 firms. Each interval indicates a starting time for the fifteen-minute interval
(e.g., 9:00 implies an interval between 9:00-9:15).



The estimation of the model for a portfolio of large firms with the lowest trade fragmentation

provides mixed evidence. In particular, average returns are high after the auction, but the time

intervals preceding the US market opening demonstrate higher returns. Price impact has almost

the same magnitude as the market closing and preUS market opening intervals. Trading volume

performs similarly – it is high after the daytime auctions, but not statistically significant. At the

same time, post-auction volatility is still high (Figure 6).

Consequently, the results for large stocks with high market share weakly support the model.

Given that these stocks are liquid (e.g., constitutes of the DAX-indices) and can be easily traded

during the continuous trading, these results are not surprising. In a setting when price impact is

low after daytime auctions, frequent traders are aware that the price is likely to be reversed in

the following period. This might suggest that frequent traders are subject to some endowment

shocks that are more volatile after at the periods after the daytime auctions. Moreover, results

show that the US market opening might cause the variation pattern for large stocks. A potential

reason is that large German stocks might be more exposed to foreign investor influence. Traders

on the German market require thus higher return right before the US market opening. Not

surprisingly, large stocks with higher trading fragmentation provide even weaker support for the

model of infrequent rebalancing (Table 5), because factors present on foreign markets might be

crucial for these stocks.
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Figure 6: Features of the model of infrequent rebalancing for large low-fragmented stocks.
Average returns and average volumes are defined as µk from (7). Coefficients are average returns adjusted
for the standard deviation; the price impact is based on the Amihud measure from (6); return volatility
is the standard deviation of returns during corresponding period. Average number of stocks in this
subsample is 97 firms. Each interval indicates a starting time for the fifteen-minute interval (e.g., 9:00
implies an interval between 9:00-9:15).



Robustness. According to the Xetra trading model, the orders that are not executed or partially

executed in the daytime auctions are either taken into continuous trading or the next auction,

depending on the instructions. Therefore, the estimations of the model might be mechanically

driven by the execution of remaining orders after auctions. Addressing this issue directly is not

possible with the available, because it does not contain information on non-executable auction

orders. However, when contacting Xetra, I was informed that most of the orders received in

daytime auctions are restricted to ”only-auctions” type, meaning that they are either carried to the

next auction or removed if not being executed during the daytime auctions. Also, reestimating

the model features skipping first one minute after the end of auctions does not change the results

for the six portfolios (not reported).

This section applied the model of infrequent rebalancing to the Xetra market. In order to analyze

the potential of infrequent rebalancing to explain return periodicity, I estimated four model

characteristics for each fifteenminute interval: high average return, high average volume, high

return volatility, and high price impact. Aggregate portfolios of small and large stocks provide

partial evidence on infrequent rebalancing at the period after daytime auctions. Small stocks

traded mostly on the Xetra support the model entirely. Increasing the degree of fragmentation

weakens the rebalancing argument for both size portfolios. Based on results, investors with

different rebalancing horizons drive periodicity in returns, especially for small stocks.

6 Rationales behind after-auction rebalancing

6.1 Evidence on intraday predictability

Motivated by the results for afterauction period for a portfolio of small stocks, I look later in a

trading day and analyze whether these returns predict other returns, for example, at market close.

There are several reasons behind a potential intraday momentum. If liquidity traders drive return
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and volume periodicity, they can arrive at the market several times a day. If daytime auctions

truly play an important role in price discovery, there might be lateinformed investors, who may

learn about prices after auctions and thus react slower. Also, some investors might wait for the

US market opening before making decisions about adjusting their portfolios.

Following the methodology of Goh et al. 2013, I create a time series of valueweighted average

returns and run the following predictive regressions:

rτ,t = ατ + βr19,t + ut t = 1, ..., T, (9)

where rτ,t are the returns during each interval following daytime auction, r19,t is the afterauction

fifteen-minute returns on day t, T is the total number of trading days.

I find that postauction returns positively predict the closing returns (17:15-17:30), with a coeffi-

cient of 4.25% and returns before the US market opening (15:15-15:30) (Table 6). Combining

these results with evidence on infrequent rebalancing, it might be the case that some investors

adjust their portfolios later, but still considering the fixing afterauction price. This conclusion is

consistent with the informational channel: the price discovery after the auction motivates traders

to rebalance. Alternatively, liquidity traders can cluster around auction time and later in a day.

Their choice of trading time is defined endogenously and is not driven by price discovery.

13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 ...

ατ -0.001 0.000 -0.000 -0.000 -0.000 -0.001 -0.000 -0.000
βr19 1.30 0.29 1.35 6.77 -0.32 2.58 -2.80 6.32

(0.42) (0.12) (0.54) (1.57) (-0.14) (1.04) (-0.85) (2.08)
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... 15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15

-0.001 -0.001 -0.001 -0.000 -0.000 -0.001 0.000 0.000
-1.45 0.32 5.81 5.36 0.45 2.57 -2.84 4.25
(0.63) (0.15) (1.29) (2.32) (0.24) (0.97) (-1.18) (2.01)

Table 6: Predictability of the subsequent intraday returns by after-auction returns. The
table reports the results from (9). The after-auction return r18 is calculated from the trade price after the
auction between 13:18-13:30 CET. The estimations show in-sample results. Newey and West (1987)
robust t-statistics are in parentheses. The sample is composed of 289 small Xetra stocks. Each interval
indicates a starting time for the fifteen-minute interval (e.g., 9:00 implies interval 9:00-9:15).

Next, I will go deeper into these two alternative stories that can help to understand the rationale

behind after-auction trade dynamics.

6.2 Liquidity trading versus trading on new information

Various potential rationales can be implied by the revealed timeseries predictability. For example,

it might suggest that these are different types of investors, who rebalance after the daytime

auctions and later during a trading day, based on the new information that became public after

the auction. Late-reacting investors can be out of the market and adjust their portfolio later.

Such behavior could be driven by the new information that became public right after the intraday

auction. Alternatively, traders can choose the timing of their trading endogenously as a result of

their strategic behavior. Below I provide a short description of both concepts from the market

microstructure literature and show that concentration of liquidity traders is supported with the

data.

The main motivation behind auction trading is that institutional investors can avoid speed race

of the continuous trading and execute large blocks of trades without large price impact because

of the concentration of liquidity that makes the market thicker. Thus, trading in auctions may be

dominated by flows of institutional traders. When the auction ends, auction information (fixing

price and traded volume per stock) becomes public. This is comparable to public announcements
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when information becomes public at a single moment. Several studies of such events show that

after the news that contain new information prices shift and stay on the new level after revealing

the information. This is consistent with the efficient market hypothesis that postulates that if

the new information is incorporated into the stock in one single price jump upon public release,

the market is efficient. Among empirical studies in support of this evidence are Ball and Brown

1968, MacKinlay 1997, Fama et al. 1969, and others.

The other group of models shows mechanisms of how investors choose to concentrate their

trading at a single point in time in order to benefit from the liquidity externalities generated by

other traders. For example, Admati and Pfleiderer 1988 develop a rational expectation model

with common private signal.30 In this model, traders choose when to trade and whether to

get privately informed regarding future returns of assets or not. Two types of traders make

strategic decisions in the model: informed traders and liquidity traders, while market makers

are assumed to be passive.31 Informed traders define the volume of their orders in every single

period. Liquidity traders instead choose the time, when they trade so that to minimize the cost

of transactions and satisfy their demands. The strategies of other traders and trading terms are

considered to be given to both types of traders. The authors show that the only robust equilibria

in the model are when all liquidity trading is concentrated in the same period. Such increased

trading induces more active informed trading. As a result, such concentration of trading results

in a higher volume because of (1) an increase in volumes by liquidity traders and (2) pronounced

volume by informed trading. This result is even more pronounced when the model is extended

to the setting when a number of informed traders fluctuates (i.e., when traders can buy private

information at a cost). This happens because a larger number of informed traders lowers cost of

trading for liquidity traders, thus inducing the aggregation of trading at a specific point in time.

In regards to the concentration around the after-auction trading, liquidity trading is concentrated,

because it is harder to trade small stocks in continuous trading either before or after the daytime
30Among other models are Pagano 1989, Foster and Viswanathan 1990
31Market makers set prices in a way that satisfies their expected profit of zero. They only observe the total order

flow. Informed traders become informed as a cost.
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auctions. Analyzing the application of the model with the relaxed assumption that liquidity

traders trade only once, intraday momentum could be explained as follows. According to the

model setting, when traders can allocate their trades between several periods, they would choose

to trade in an earlier period. For example, consistent with the model, some liquidity traders can

realize their demands after the daytime auction and then closer to the end of a trading day.

In order to determine whether the data provide evidence on either information or liquidity

argumentation for small stocks, I run Fama-MacBeth 1973 regressions of the form:

r18i,t = αt + βtr19i,t + ui,t

β̂ =
1

T

T∑
t=1

β̂t,
(10)

where r18 corresponds to the returns of the interval lasting from right before the start of the

auction until the end of the auction, and r19 are the returns during the first after-auction period.

The main difference of this method compared to a time-series approach in (9) is that in (10) I

focus on the average cross-sectional effect rather than time-series dependency. In particular,

I check whether the stocks with high over-auction price change (t = 18) have high after-

auction (t = 19) price change. This approach helps to define how an auction price ”surprise”

behaves after the auction, as soon as the auction price becomes public. The estimation produces

β̂ = −0.061 with corresponding t-statistics of -31.12. Such after-auction price bounce advocates

for a liquidity channel as a driver for the infrequent rebalancing after the daytime auctions (the

bottom part of Figure 7).
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Figure 7: Price behaviour consistent with informational and liquidity models. The figure
represents the dynamics of stock prices after intraday auctions implied by two different market microstruc-
ture models. The upper graph corresponds to the price dynamics according to Kander and Pearson 1995.
The bottom graph corresponds to the price dynamics according to Admati and Pfleiderer 1988.

7 Conclusion

The paper sheds light on daytime auction trading and provides fresh evidence on its role in the

periodicity of cross-section of stock returns.

First, market liquidity factors influence trading volumes in daytime auctions differently than

volumes in continuous trading. The returns of the market index and changes in volatility have a

negative relationship with the auction volumes and positive – with continuous volumes. Term
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spread has a negative impact on continuous trading and has no effect on auction volume. Both

trading sessions demonstrate a strong day-of-week effect.

Second, I show that after-auction, market open, and market close intervals drive the return

periodicity on a daily frequency. Moreover, after-auction periods alone are able to generate

such a seasonality. A long-short portfolio based on after-auction returns from the previous day

earns 1.89 basis points. The revealed return pattern is most pronounced for portfolios of small,

large, and domestic (German) stocks. Return volatility, and the estimated bid-ask spread cannot

explain the revealed return dynamics. In addition, volume changes do not provide statistical

coefficients, although demonstrate a similar periodicity as returns.

Third, as volumes also represent seasonality, investor flows is a main candidate to explain return

periodicity. The model of infrequent rebalancing suggests that when a large share of infrequent

traders is present on the market to rebalance their portfolios, liquidity deteriorates and the

realized returns, return volatility, volume, and price impact are high. I apply these features to

the dataset and show that the portfolio of small low-fragmented stocks possesses these features

during fifteen–minute after the daytime auctions. This evidence means that infrequent traders

are likely to rebalance these stocks during this interval. Large stocks with low fragmentation

provides mixed evidence on relation to the model. A different type of investors and different

market factors are likely to drive the variation of returns for small and large stocks. Alternatively,

the model of infrequent rebalancing might be extended to account for the market fragmentation

of stocks, given different empirical results depending on the degree of fragmentation.

Eventually, I find an after-auction return bounce for those stocks, whose price changed much

during the auction. Supposedly, this finding means that the infrequent rebalancing is mainly

driven by the concentrated liquidity traders rather than by informational channel.

The conclusions of the paper can be of use for policy regulators. Currently, the trading volume
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during daytime auctions is truly increasing at the sake of dark pool outflows.32 Given a tendency

for European markets on initiation of daytime auctions to their markets, one should consider

consequences of changing the price dynamics and trading concentration as found in the paper.

The study has several limitations. First, with the available dataset, there is no opportunity for

more flexibility in applying other empirical proxies of the model indicators. Second, it is hard to

make conclusions regarding the profitability of trading strategies based on the revealed results

because the dataset cannot account for trading costs. Further, it would be potentially interesting

to focus future research on analyzing (1) possible informed trading before the start of the daytime

auctions, (2) whether and how stocks price surprise, a difference between the before–auction

price and the price determined in the auction, matters for the degree of its after-auction features,

e.g., infrequent rebalancing.

32Hadfield W. and V. Vaghela. ”Goldman leads banks with stock auctions as a MiFID II workaround”,
Bloomberg, April 9, 2018
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Figure 8: Relationship between volume in daytime stock auctions and in continuous trad-
ing. The figure plots the stock size, measured as the total daily total volume versus its daytime auction
volume, both in Euro. Volume is defined as price of a given stock multiplied by the number of stocks
traded. The sample consists of 875 stocks traded on the Xetra. Volume is aggregated throughout the
whole sample period of August 2010 - May 2015. The line represents a linear fit.
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Figure 9: Time-series averages of return responses. Half-hour sampling frequency. The
figure demonstrates results from (2): average return responses and corresponding t-statistics. A trading
day is divided into 17 disjoint intervals, each containing thirty minutes. For interval t and lag k, I run
univariate cross-sectional regressions ri,t = αk,t + γk,tri,t−k + ui,t, where ri,t is the return of stock i
during interval t and ri,t−k is the return of stock i during interval t-k. The cross-sectional regressions
are estimated for all combinations of interval t and lag t, with values 1 through 85 (corresponding to the
previous five trading days). The resulting coefficients are averaged across time. The y-axis shows the
time-series average return responses γk,t, in percents. The analysis uses 875 Xetra-listed stocks for a
period of August 2010-May 2015.
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Figure 10: t-statistics of averages return responses without market open and close inter-
vals. The figure demonstrates results from (2): average return responses and corresponding t-statistics. A
trading day is divided into 32 disjoint intervals, each containing fifteen minutes. For interval t and lag
k, I run a simple univariate cross-sectional regression of the form ri,t = αk,t + γk,tri,t−k + ui,t, where
ri,t is the return of stock i during interval t and ri,t−k is the return of stock i during interval t-k. The
cross-sectional regressions are estimated for all combinations of interval t and lag t, with values 1 through
160 (corresponding to the previous five days). The red bars represent average return responses from
the regressions that contain 32 intervals, excluding intervals of the market open and market close. The
analysis uses Xetra-listed stocks for a period of August 2010-May 2015.
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Figure 11: Time-series averages of return responses with and without daytime auctions.
The figure demonstrates results from (2): average return responses and corresponding t-statistics. A
trading day is divided into 34 disjoint intervals, each containing fifteen minutes. For interval t and lag
k, I run a simple univariate cross-sectional regression of the form ri,t = αk,t + γk,tri,t−k + ui,t, where
ri,t is the return of stock i during interval t and ri,t−k is the return of stock i during interval t-k. The
cross-sectional regressions are estimated for all combinations of interval t (49,130 intervals) and lag t,
with values 1 through 170 (corresponding to the previous five days). The red bars represent average return
responses from the regressions that contain 33 intervals, excluding intervals post-daytime auctions. The
analysis uses Xetra-listed stocks for a period of August 2010-May 2015.
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Strategy Long-short return
Day 1

Daily (lag 17)
1.58

(7.32)

Non-daily (lags1-16)
-2.30

(-15.51)
Day 2

Daily (lag 17)
1.04

(4.69)

Non-daily (lags 1-16)
-1.09

(-7.69)
Day 3

Daily (lag 17)
1.32

(6.01)

Non-daily (lags 1-16)
-0.89

(-6.28)
Day 4

Daily (lag 17)
0.76

(3.64)

Non-daily (lags 1-16)
-0.89

(-6.28)
Day 5

Daily (lag 17)
0.66

(3.16)

Non-daily (lags 1-16)
-0.49

(-3.49)

Table 7: Return spread of two momentum strategies. This table shows the return difference
between the top and bottom portfolio of two momentum strategies. The strategy denoted as ”daily”
goes long top 10% performing stocks and shorts 10% worst performing stocks 17-multiple periods ago.
”Non-daily” strategy sorts stocks according to their average return during the previous 16 lags. The first
column indicates the strategy. The portfolios are equally-weighted. The values of return spread do not
account for trading costs. The analysis is done for the whole sample period between August 2010-May
2015. Values in brackets are t-statistics.
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Figure 13: Average time–series volume change responses coefficients from cross–sectional
regressions. The figure demonstrates results from (2): average volume changes and corresponding
t-statistics. A trading day is divided into 34 disjoint intervals, each containing fifteen minutes. For interval
t and lag k, I run univariate cross-sectional regressions of the form ri,t = αk,t + γk,tri,t−k + ui,t, where
ri,t is the volume change of stock i during interval t and ri,t−k is the volume change of stock i during
interval t-k. The cross-sectional regressions are estimated for all combinations of interval t and lag t, with
values 1 through 170 (corresponding to the previous five days). The red bars represent average return
responses from the regressions that contain 33 intervals, excluding intervals post-daytime auctions. The
analysis uses Xetra-listed stocks for a period of August 2010-May 2015.
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Lag 34 Lag 68 Lag 102 Lag 136 Lag 170

Lagged returns 1.27 0.57 0.63 0.19 0.64
[6.87] [3.21] [3.48] [1.11] [3.66]

Lagged returns* 1.61 0.79 0.48 0.35 0.58
[3.76] [3.34] [2.29] [1.99] [2.68]

Lagged volatility 0.0001 0.0001 -0.0005 0.004 -0.0004
[0.22] [0.23] [1.36] [0.95] [-0.49]

Lagged volatility* 0.005 -0.004 0.002 0.004 -0.0001
[0.19] [-1.61] [1.62] [0.15] [-0.94]

Lagged volume 0.0008 0.0007 0.0002 0.0003 0.00006
[1.82] [0.18] [0.62] [0.54] [0.01]

Lagged volume* -0.0005 0.001 -0.001 -0.003 -0.0004
[-0.04] [0.97] [-1.20] [-1.69] [0.39]

Lagged spread -0.0001 0.0006 -0.0001 0.0009 0.0004
[-0.18] [1.36] [-0.02] [1.83] [0.70]

Lagged spread* -0.02 0.005 0.01 0.06 0.03
[-2.02] [0.24] [0.58] [1.12] [0.49]

Table 8: Estimations from regressing returns on market factors. This table shows results of
the following regression: ri,t = αk,t + γk,tri,t−k + δ′k,tVi,t−k + εi,t, where vector Vi,t−k includes the
percentage changes in volume, volatility, and bid-ask spread. Regressions are based on fifteen-minute
intervals of the trading day. The variables marked * relates to the subsample of the most liquid stocks – I
exclude stocks whose high price equals low price on more than 120 days during the sample period. The
numbers in brackets are t-statistics. Corresponding R2 are presented for each estimation and for each lag.
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Lag 34 Lag 68 Lag 102 Lag 136 Lag 170

Lagged returns 0.26 0.27 0.41 0.16 0.26
[3.44] [3.84] [6.06] [2.39] [4.01]

Lagged volatility 0.0001 0.0001 0.0008 0.004 0.0001
[0.65] [0.98] [0.12] [0.49] [0.61]

R2 0.022 0.021 0.020 0.020 0.019

Lagged returns 0.34 0.32 0.42 0.19 0.34
[3.52] [3.34] [6.19] [2.29] [3.89]

Lagged volume 0.005 -0.004 0.002 0.004 -0.002
[0.19] [-1.61] [1.62] [0.15] [-0.94]

R2 0.011 0.011 0.010 0.010 0.009

Lagged returns 0.51 0.41 0.40 0.22 0.34
[4.45] [3.72] [3.65] [1.92] [3.27]

Lagged spread 0.007 0.0004 0.014 -0.004 0.003
[0.96] [0.31] [1.01] [-0.83] [1.11]

R2 0.038 0.036 0.033 0.033 0.032

Table 9: Estimations from regressing returns on lagged returns and each market factor.
This table shows results of the following regression: ri,t = αk,t + γk,tri,t−k + βk,tvi,t−k + ei,t, where
vi,t−k includes percentage changes in one of the variables (volume or volatility or bid-ask spread)
regressing returns on lagged returns and volatility (upper block), lagged returns and volume (middle
block), lagged returns and spread (lower block). Regressions are based on fifteen-minute intervals of the
trading day. Corresponding R2 are presented for each estimation and for each lag.
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Large stocks Medium stocks Small stocks

Lag 34
Estimate 0.32 0.23 0.37
t–statistics [3.29] [0.49] [2.85]

Lag 68
Estimate 0.16 0.45 0.17
t–statistics [3.02] [1.57] [1.91]

Lag 102
Estimate 0.37 0.15 0.43
t–statistics [4.05] [0.58] [4.27]

Lag 136
Estimate 0.23 0.32 0.33
t–statistics [1.34] [2.03] [2.57]

Lag 170
Estimate 0.13 0.32 0.58
t–statistics [1.67] [1.32] [3.14]

Table 10: Average daily return responses of size portfolios. This table shows time-series of
average γk,t and their corresponding t-statistics in brackets. Large, medium, and small stocks represent
33% of the sample ranked according to the free-float market capitalization retrieved from Thomson
Reuters Datastream as of 31/03/2013. Values at each lag are reported as percentages.
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German stocks Foreign stocks
Lag 34

Estimate 0.33 0.22
t–statistics [3.42] [1.86]

Lag 68
Estimate 0.32 0.21
t–statistics [3.62] [1.83]

Lag 102
Estimate 0.47 0.48
t–statistics [4.82] [4.53]

Lag 136
Estimate 0.23 -0.03
t–statistics [2.59] [-0.30]

Lag 170
Estimate 0.37 0.03
t–statistics [4.74] [0.27]

Table 11: Average return responses of domestic and foreign stocks. This table shows time–
series of average γk,t and their corresponding t-statistics in brackets below the values. Domestic or
foreign stocks are defined based on the stock ISIN. Domestic stocks are German, foreign stocks are all
other than German, based on the ISIN information retrieved from Thomson Reuters Datastream. Values
at each lag are reported as percentages.

Figure 14: The intraday distribution of return spreads of the daily strategy for each day
of the week
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Strategy (lag) Return t-statistic Strategy (lag) Return t-statistic

17 1.58 7.32 170 0.44 2.09

34 1.04 4.59 187 0.53 2.43

51 1.31 6.01 204 0.55 2.60

68 0.76 3.64 221 0.59 2.73

85 0.66 3.16 238 0.52 2.34

102 0.61 2.84 255 0.27 1.23

119 0.45 2.05 272 0.49 2.24

136 0.54 2.39 289 0.39 1.77

153 0.90 4.20 306 0.24 1.21

Table 12: Two-week performance of a daily momentum strategy based on thirty-minute
returns on daily lags. This table shows the return spread of the long-short portfolios that are formed
according to the stock returns one, two, etc. days ago (34, 68, etc, lags ago) I sort stocks every day
based on their returns one, two, etc. days ago. Returns are scaled so that each return value is reported as
percentage. Each lag value corresponds to the multiples of one day. The reported values do not account
for trading costs.
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Appendix B

Price impact in the model of infrequent rebalancing is based on Campbell at al. 1993. This part

shows that the price impact in the model of infrequent rebalancing has a one-to-one relationship

with the Amihud measure after controlling for a price level.

The following economy is considered:

• risk-free asset in elastic supply with a guaranteed rate of return R = 1 + r

• fixed supply of stock shares per capita

• each share pays a dividend Dt = D̄t + D̃t (stochastic component of the dividend)

• two types of investors (investor A and investor B) with constant absolute risk aversion

parameters α and bt respectively. ω is the fraction of type A investors.

Each period investors solve the following problem:

maxEt[−exp(−ΨWt+1)], Ψ = α, bt (11)

subject to

Wt+1 = WtR +Xt(Pt+1 +Dt+1 −RPt), (12)

where Wt is wealth, Xt is the holding of the risky asset, and Pt is the ex dividend share price of

the stock, all measured at time t.

For such an economy, there exists an equilibrium price of the stock that has the following

form:

Pt = Ft −Dt + (p0 + pzZt), (13)

where Ft is defined as cum–dividend fundamental value of the stock, Zt is the risk aversion

of the marginal investor in the market and pz = −((R − αz)/2σ2
z)[1 −

√
1− (σ2

z/σ
∗2
z )] and
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p0 = (1− αz)pzZ̄/r < 0.

Defining the excess return per share on the stock realized at time t+1 is Qt+1 ≡ Pt+1 +

Dt+1 − EPt and expressing it via expected excess return with the serial correlation of returns,

the solution of the optimization problem (11) is:

Xa
t =

E[Qt+1|Pt, Dt, St]

a var[Qt+1|Pt, Dt, St]
=

1

a
Zt,

Xb
t =

E[Qt+1|Pt, Dt, St]

bt var[Qt+1|Pt, Dt, St]
=

1

bt
Zt,

(14)

where Xa
t and Xa

b are, respectively, the optimal stock holdings of type A and type B investors.

Changes in investors’ preferences relative to one another generate trading. Xa
t and Xa

b

thus change as Zt changes: Xa
t − Xa

t−1 = (1/α)(Zt − Zt−1). Trading volume is then Vt =

ω|Xa
t −Xa

t−1| = (ω/α)|Zt − Zt−1|.

Define ∆t = ω
α

(Zt − Zt−1), thus Vt = |∆t|. Also, define εF,t = Ft − Et−1[Ft], which gives

the innovation process to Ft. Then,

Qt+1 = pz(Zt+1 − Zt) + εF,t+1 (15)

From the definition of Qt+1 from above, we have: Qt+1 = Pt+1 +Dt+1 −RPt. Assuming that

Dt+1 = 0 and that R=1, we have Qt+1 ≈ Pt+1 − Pt. Given that ∆t = ω
α

(Zt + Zt+1), we can

rewrite: Pt+1−Pt = pz∗ ωα ∗∆t+1 Dividing both sides by Pt, we have Pt+1−Pt

Pt
= pz∗ αω ∗

1
Pt
∗∆t+1

Rett+1

∆t+1
= pz ∗ 1

Pt
∗ α
ω
⇒ |Rett+1

Vt+1
|= | pz

Pt
∗ α
ω
|, because positive volume means positive shock,

which generates the volume to trade. Right side is also positive, because α is a parameter of

the exponential utility (positive) and ω is the fraction of type A traders defined above (positive).

Pt is a positive price of a stock. Appendix of the paper shows that the solution for pz is with

positive sign as well. The left side is Amihud illiquidity measure.
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1 Introduction

Since the implementation of the Dodd-Frank Act in 2010, the systemic importance of central

clearinghouses (CCP) was widely recognized and acknowledged. The Act, among other reg-

ulatory provisions, contained supervisory arrangements aimed at improving transparency and

resilience of clearinghouses. Admitting the systemic importance of clearinghouses, the Act

challenged authorities to improve and better coordinate the oversight of these institutions. To

put the macroprudential approach into effect, regulators were called upon identifying and an-

alyzing the complex risk linkages among clearinghouses and between clearinghouses and the

financial firms that rely on and support them.

Where do these risks come from? Clearinghouses are there to lower the costs associated

with clearing and settlement by centralization and standardization of trades. CCPs act as a

counterparty of each trade, being a buyer to every seller and seller to every buyer – such inter-

mediation helps to reduce the credit and liquidity risks of a counterparty. There is, however, the

other side of such centralization - it generates the accumulation of sizable financial and oper-

ational risks in just a few institutions. For example, there are only nine equity clearing houses

in Europe as of June 2018.1A failure of one of them might create a loss of trust and uncertainty

across all clearinghouse participants and customers, or even trigger a further failure of other

clearinghouses. Such risk can concentrate either in a set of closely connected entities, as well

as within a particular CCP. For example, if a large trading partner defaults or fails to meet its

contractual obligations, this could create considerable financial losses for a clearinghouse, es-

pecially if stock markets are highly volatile. Moreover, the default of a trading partner might

even intensify stock market volatility.

These risks need to be addressed. The paper provides important insights for CCP risk

management by studying how clearinghouse members allocate the risk of their equity portfolios

during a trading day. We use the dataset from one of the largest European equity CCP that

1Wyman, O. The future of clearing. 2019. World Federation of Exchanges.
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allows us to track the changes in individual stock portfolios. Firstly, we find a pervasive pattern

that traders shrink risk by the end of a trading day, right before the CCP revises a margin on

a per-trader basis. Understanding the risk behavior and the risk profile of each clearinghouse

participant can help identify and forecast potential sources of the CCP risk and contribute to

its operational efficiency and resiliency. We then define how aggregate market factors relate

to the direction of trader’s risk change during the upcoming intraday interval. These insights

provide a CCP with a better intraday risk supervision and might potentially help to form policy

decisions on intraday margining.

Shifting from the CCP perspective of the analysis to a larger question of price formation, we

show that the end-of-day risk-contracting trading influences closing stock prices. The impact

of (sizable) trading flows on stock prices is a crucial question of asset pricing and market effi-

ciency. Moreover, traders, financial institutions, and regulators extensively use closing prices

as a reference point for investing and regulatory decisions. In particular, stock closing prices

are used to compute mutual fund net asset value or the performance of a large number of in-

vestment strategies. Also, prices at the close often determine the expiration value of derivative

instruments and directors’ options (Comerton-Forte and Putnins 2009). Therefore, evidence

on price manipulation reported in research is not surprising. For example, Carhart et al. 2002

report that fund managers in the U.S. manipulate prices, so that price inflation is localized in

the last half hour before the close and is more intense on quarter-end days. Stoll and Whaley

1991 show that large positions in derivatives on the underlying stock were extensively used as

a way to manipulate closing stock prices.

To conclude, the motivation of the study is hence two-fold: the results bear policy and

regulatory implications, as well as provide a fresh piece of evidence on the relationship between

margins and stock price distortions. The paper contributes to the considerable body of literature

on the topic, which we introduce below.

Related literature. This paper is related to three main directions of the existing research.
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Recent policy-oriented studies have also become worrisome about the systemic nature of the

potential clearinghouse risk. However, data on CCPs, especially, on a trader level, are rare.

Several studies assess the impact of the CCPs introduction on trading quality of the market

(Menkveld, Pagnotta, and Zoican 2015, Duffie et al. 2015, etc.). Further research analyzes the

optimal design of the CCPs and the settlement process. Biais, Heider, and Hoerova 2012 show

that the main advantage of centralized clearing is the mutualization of idiosyncratic risk and

that making centralized clearing a mandatory procedure is Pareto improving. Correspondingly,

Khapko and Zoican 2019 develop the model that shows that faster settlements benefit impatient

traders but increase borrowing needs. Another direction of CCP-related research questions

includes the assessment of margin sufficiency, collected by a CCP compared to the CCP risk

exposure (Jones and Perignon 2013, Menkveld 2017). This paper adds to that literature by

zooming on the risk behavior of CCP members on a trader portfolio level. This approach

is appropriate from the perspective of CCP margin management because margins apply on a

per-trader basis. It provides CCPs with a profound overview of intraday risk behavior and its

consequences.

Intraday risk dynamics, aggregated from individual traders’ portfolios, is per se rare ev-

idence. Current literature has demonstrated the intraday dynamics of different market-wide

risk measures such as volatility (starting from Chan, Chin, and Karolyi 1991, Foster and

Viswanathan 1993, and later), trading volume (Hillion and Suominen 2004 and others), and dif-

ferent liquidity and illiquidity measures (Lee, Mucklow, and Ready 1993, McInish and Wood

1992, etc.). To the extent of our knowledge, no empirical findings have reported the aggregate

risk dynamics of the market using individual trader portfolios. This study aggregates the mar-

ket risk from the risk of individual portfolios of clearing members. Under such a setting, the

analysis of commonality or heterogeneity in risk behavior across market participants becomes

possible. This granularity is necessary from the perspective of CCP risk management.

The second line of related literature investigates the effect of trading flows on asset prices.
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In particular, it was found that a large selling or buying pressure can influence prices: it cre-

ates temporary pricing errors and diverts prices from their fundamental values. For example,

several studies (Lou 2012, Khan, Kogan, and Serafeim 2012, etc.) reveal the effect of mutual

fund flows on the formation of distortions in stock prices. As a specific case, fire sales create

temporary trade imbalances that convert further into stock price distortions (Coval and Stafford

2007). We bring in further evidence of stress-trading impact on stock prices on the intraday

basis. Evidence on distorted closing prices rises further questions on using them for regulatory

and investment decision purposes.

As all CCP members are subject to margin requirements, the literature about financially

constrained investors is the third part of relevant research. It has been acknowledged that the

behavior of investors, who are bound by financial constraints, can have an impact on the aggre-

gate market dynamics and, eventually, on asset prices. In particular, fear of liquidity shocks, as

well as liquidity shocks themselves, can motivate investors to sell more intensively (Chowdhry

and Nanda 1998, Bernardo and Welch 2004). Alternatively, it has been shown that myopic

decisions drive the behavior of investors who are close to default (Jensen and Meckling 1976).

Related to that, Allen and Gale 2000 conclude that when agents borrow in order to invest,

they largely shift their risk allocations. We contribute by proposing fresh evidence on the link

between margin requirements and price distortions.

Main results. The most remarkable result is the phenomenon of the ”natural hedge” that

evolves on the market by the end of a day. In particular, CCP participants shrink the risk of

their portfolios by the time when a CCP reassesses the margin for each member (every day, af-

ter the market close). As our measure of risk portfolio corresponds with the one, which the CCP

uses for its internal margin estimations, the risk-contracting behavior can help traders evading

end-of-day margin contributions to the CCP. This finding is favorable from the CCP perspec-

tive because it works like a shield against the immense risk accumulation in the portfolios of

clearing members. The natural hedge is driven by (1) trading in the direction of risk contrac-
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tion, especially by large traders, and (2) by changes in the covariance matrix of stock returns

around the close. Secondly, focusing on the risk-contracting trades, we find that CCP members

sell those stocks that have the highest marginal impact on the risk of their portfolios and buy

stocks that decrease the risk of their portfolios the most per dollar. Further, we demonstrate

how traders, being constrained by daily margining from the CCP, affect stock prices. Their

risk-contracting end-of-day trading flows distort closing stock prices: for the top 10% most

traded stocks, the pricing error at the close reaches 58 basis points.

The paper is structured as follows. Our methodology and the results on the natural hedge

are presented in Section 2. Section 3 deepens into traders’ behavior to a stock level. Each

section concludes with the robustness tests. Pricing impact implications are shown in Section

4. Section 5 concludes.

2 Intraday risk dynamics and the natural hedge

2.1 Data

We use a dataset from one of the largest European equity clearing house, European Multilat-

eral Clearing Facility (hereafter EMCF).2 It clears transactions for almost all exchanges that

trade Danish, Finnish, and Swedish stocks. The dataset contains information on spot transac-

tions filed by clearing members (trader id,3 stock id, quantity, price, trade direction, market

id, timestamp, account type: house/client). As a trader id is stable across the period covered

by the dataset, we can reconstruct open positions inside each trader’s portfolio at any point in

time. The dataset includes 242 stocks traded over 228 days from October 19, 2009 through

September 10, 2010.

2In 2013, EuroCCP and EMCF merged to create Europe’s largest cash equities clearing operation entity under
the name of ”European Central Counterparty N.V.”

3Members are anonymized in the data and assigned a two-digit code (random numbers between 0 and 100).
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Traders. The sample consists of 55 active clearing members, who are financial firms, e.g.,

international brokerage firms, local firms, and high-frequency traders. These clearing members

are termed as traders in the paper. Each trader conducts trades either from its own (”house”)

account or by acting as an intermediary for clients’ trades (”client” account). There are totally

226 accounts in the sample: 87 house and 139 client accounts. For the analysis, we use all

trades submitted via both house and client accounts by each trader, because clearing members

are charged for the margin based on the risk of their total portfolio. Therefore, we end up with

the cross-section of 55 clearing members. In the sample, 28 out of 55 traders have 1-2 client

accounts, 16 operate only from their own (house) accounts, 8 traders clear trades for 3-4 clients

and only 3 traders have 15, 27, and 32 client accounts respectively.

During the sample period, house accounts trade more actively than client accounts: the

average daily volume is 1.6 million shares versus 819 000 shares accordingly. Trading volumes

vary substantially across traders: the average daily volume (hereafter ADV) is 1.2 million

shares with the standard deviation of 2.3 million shares. In terms of traded value, e25 million

is on average traded from the house accounts and e11 million - from the client accounts. For a

more detailed statistics of the dataset, please refer to Menkveld 2017.

Markets. The dataset covers equity trading on 8 Nordic markets: BATS Europe, Bur-

gundy, Chi–X, Nasdaq Europe, NOMX Copenhagen, NOMX Helsinki, NOMX Stockholm,

and Quote MTF. The largest market in terms of the ADV is the NOMX Stockholm, followed

by the NOMX Helsinki, but with more than two times lower ADV (Table 14). NOMX Copen-

hagen is the third-largest market, with an ADV close to the one of Chi-X. For the three largest

markets, the trading volume of house accounts considerably exceeds that of client accounts.

For smaller platforms, except the Burgundy, the ADV of house accounts is close to the ADV

of the client accounts. In terms of traders’ diversity, NOMX Copenhagen, Stockholm, and

Helsinki attract the largest daily number of traders (34 out of 55). The least popular market in

terms of traders’ coverage is the Quote MTF, with only 2.3 traders per day.

81



Market
ADV

(e1 000)
House

accounts
Client

accounts
Number

of traders
Volume share
before 17:00

Volume share
after 17:00

(1) (2) (3) (4) (5) (6) (7)
BATS Europe 166 303 50% 50% 20.8 4.2% 2.9%
Burgundy 106 070 86% 14% 10.7 2.7% 1.3%
Chi-X 532 344 59% 41% 26.4 13.6% 8.2%
Nasdaq Europe 28 789 41% 59% 18.4 0.7% 0.4%
NOMX Copenhagen 525 307 80% 20% 37.8 14.5% 0%
NOMX Helsinki 718 598 62% 38% 31.8 16.4% 24.3%
NOMX Stockholm 2 057 518 70% 30% 33.5 47.9% 62.7%
Quote MTF 895 49% 51% 2.3 0.1% 0.1%
Total 4 135 827 68% 32% 87.1% 12.9%

Table 14: Descriptive statistics per market. The table represents summary statistics per day: av-
erage daily trading volume (ADV), split between house and client accounts, the average daily number
of unique traders, and average trading volume before and after 17:00 (the close of the NOMX Copen-
hagen). Average values are equal-weighted. Percentages in columns (6-7) are calculated based on the
total euro trading volume before and after 17:00: the total values for these columns represent 100% for
both.

All markets operate from 9:00 until 17:30 (after accounting for different time zones), except

for the NOMX Copenhagen that closes at 17:00. As shown in the last two columns of Table

14, a share of trading volume of NOMX Helsinki and NOMX Stockholm increases by 50%

and 30% correspondingly after the close of the Danish market, which might indicate a shift of

volumes from an earlier close of the Copenhagen market.

Margin. Each CCP has its own risk model for margin calculations. Initial margin is usually

calculated for all open positions in the portfolio and takes into account a range of stress and

historically observed scenarios. Variation margin (usually for derivative CCPs) or initial margin

adjustment (usually for equity CCPs) are generally based on the marked-to-market positions

on a daily basis and is collected at the end of a trading day. For example, members may

be required to provide an additional margin in form of cash to cover concentration risk of

positions, especially in illiquid stocks.

The EMCF calculates margins according to their in-house Correlation Haircut Model. The

methodology is proprietary and not available in the public domain. However, the EMCF reports
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that the model (1) takes into account the correlation between various products that are part of a

trader’s portfolio, (2) determines the risk factors that have the greatest impact on the portfolio,

(3) shifts these components to find the worst-case scenario. The mechanics of margin estima-

tion is as follows. Suppose a clearing member j acquired a position in stock i yesterday. Since

settlement, the legal transfer of the asset, will only occur three days later (due to T+3 settlement

cycle), the clearinghouse ensures all members against the default of j in the next three days. In

case of default, the CCP automatically takes over j’s trading positions and therefore also the

potential trading loss (or gain) in its unsettled portfolio. It is, consequently, a standard practice

to make the clearing member pay a margin that is proportional to the maximum loss on the

existing portfolio.

2.2 Methodology

Intraday intervals. It is well known from the early market microstructure literature that trad-

ing volumes are exceptionally high at the market open and the market close. For example,

Wood, McInish and Ord 1985, McInish and Wood 1990, and Lockwood and Linn 1990 find

a U-shaped pattern of intraday returns and trading volumes on the New York and Toronto

stock exchanges. For later periods, however, intraday volume profiles have become more back-

loaded, resembling rather a J-shaped pattern (Kissel 2014). Consistent with this literature, the

ADV in our sample is high at the market open and the highest around the market close. It

first hikes before the Copenhagen market close around 17:00 and then spikes further before the

close of other markets around 17:30 (Figure 15). As we wish to concentrate on the risk analysis

independently of its seasonal components, the data should be transformed in such a way that

results are not contaminated by this intraday seasonality.
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Figure 15: Intraday trading volume. The figure shows the average trading volumes at a five-
minute frequency aggregated among all traders. Intervals are formed on time-clock intraday time inter-
vals. Average values are equal-weighted. Boundaries represent the 1% confidence level. The sample
consists of 55 traders and covers the period between September 2009 – October 2010.

Motivated by these intraday trends, the recently established market microstructure litera-

ture suggests to retract from splitting a trading day based on the usual clock time intervals. The

same duration of five minutes contains trading volumes close to zero (e.g., around the mid-

day) or spikes enormously (e.g., around the market close). To be able to analyze such data

and keep some necessary statistical properties, a division of a trading day into activity-based

intervals was suggested. In particular, Easley, de Prado, and O’Hara 2012 demonstrate that

working with volume-based time has significant statistical advantages. Firstly, such transfor-

mation eliminates most intra-session seasonal effects. Secondly, it allows partial recovery of

normality and the assumption of identically distributed returns. Finally, sampling in a volume-

clock metric addresses the problem of random and asynchronous transactions, which is a major

concern when computing correlations on high-frequency data. In support, Kyle and Obizhaeva

2019 develop a model of market microstructure invariance that is based on a similar idea that

business time passes ”faster” for more actively traded stocks. Specifically, the authors suggest

bet size, bet volume, and bet volatility as alternatives of time-clock intervals for volatility and
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volume.

We compare three options for the activity-based intraday split: (1) according to the number

of trades, (2) according to the number of stocks or (3) according to the euro volume traded.

Taking a five-minute frequency as a benchmark,4 with a regular trading day lasting between

9:00 and 17:30 and excluding overnight hours, we eventually have 102 intervals a day. Under

this setting, every day is sliced so that each interval contains the same fixed number of trades,

stocks, or euro volume traded. For example, if we choose a number of trades as a basis for

a split, each interval contains the same number of transactions. This number is calculated as

the total number of transactions across the whole sample period divided by 102 intervals and

further divided by 228 days. Thus, the maximum number of intraday intervals is 102, with a

lower number on the days with low number of trades. In order not to lose observations at the

market close even for the days with low trading volume, we start slicing each trading day from

the end (e.g., from 17:30). Therefore, interval 1 corresponds to the end of the day, while the

interval 102 relates to the market open. we repeat the same procedure and create intervals that

contain the same number of stocks and the same euro volumes traded.

Figure 16 provides a comparison of these three different approaches to the intraday split.

When we divide according to the number of trades, we end up with the highest number of

intervals per day on average. However, this approach (1) may catch an overall trend of of

the increased intensity of trading activity, which might be influenced by higher activity of high-

frequency traders on the market, (2) may reflect the fact that trade size has become smaller with

time (Easley, de Prado, O’Hara 2012). The other two options that represent the split according

to the number of stocks and euro volume traded, produce almost identical results. The number

of stock-based intraday intervals is somewhat higher at the beginning of the sample; however,

the number of volume-based intervals surpasses the latter during latest months. We chose to

stick to the euro volume intervals as a baseline case for intraday intervals in the rest of the

4Swiss clearinghouse considers a five-minute interval an appropriate period to collect collateral to ensure
counterparty risk (SIX, 2014)
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analysis. Each interval thus contains the average traded euro volume of e2.5 million traded

(total ADV divided by 102 intervals and by 228 days).

Figure 16: Average number of intraday intervals per split option. The figure shows the
average daily number of intraday intervals according to three activity-based approaches: based on fixed
euro volume per interval, based on the fixed number of stocks per interval, or based on the fixed number
of transactions per interval. Each option takes the aggregate measure for the whole sample period that
is divided by 102 and further divided by 228. The resulting number represents threshold inside each
interval. The sample consists of 55 traders and the period between September 2009 – October 2010.

Measure of risk. Consider I securities with normally distributed returns

R ∼ N (0,Ω) (1)

Let X be a vector of trader’s j P&L portfolio. If n is a vector of yet-to-settle trade portfolio of

that member, then:

X ∼ N (0,Σ) (2)
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where X is normal with mean zero and Σ is a variance-covariance matrix of stock returns:

Σ = N ′ΩN (3)

The risk of the portfolio held by member j at time t is measured as the standard deviation at

each volume-clock time cutoff t:

σj,t =
√
N ′j,tP

′
tΩtNj,tPt, (4)

where Nj,tPt is a set of the open (unsettled) marked-to-market dollar positions held by

trader j at t and Ωt is a covariance matrix of returns. The covariance matrix is estimated for

each upcoming interval as an exponentially weighted moving average (hereafter EWMA) of

the outer product of historical returns. Thus, risk of a given portfolio at t incorporates positions

accumulated in a trader’s j portfolio by time t and the best estimation of return volatility is

taken from from the EWMA, based on historical information until t. The risk estimation from

(4) serves as a decent proxy for the internal CCP methodology of daily margin calculations.

The methodology used to estimate the inputs, portfolio positions and the covariance matrix of

stock returns, is explained below.

One can claim that our definition of a trader’s portfolio is mostly relevant for CCPs and not

so relevant from the investors’ point of view. However, the settlement cycle has to be carefully

taken into account by investors because the discrepancy in settlement cycles among assets in

a portfolio may bear costs for them. In particular, stocks, bonds, mutual funds, and equity

traded funds currently use a T+3 settlement period. However, some other investment classes

in investor’s portfolio can have a T+1 cycle, with the settlement right on the next business day.

These include T-bills, high-interest saving accounts, and money market funds. It means that if

a trader sells one asset and buys another one with a different settlement cycle, his trades could

settle out of order.
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Estimate of covariance matrix. A dynamic covariance matrix of stock returns is esti-

mated according to the MSCI RiskMetrics approach. For an upcoming interval, we calculate

an exponentially-weighted moving average of the outer product of past returns, allowing for

time-varying volatility. Following the standard practice (e.g., RiskMetrics and EMCF), we

estimate the decay parameter as follows. RiskMetrics applies a coefficient of 0.94 for daily

returns; in our case, a trading day comprises 102 five-minute intraday intervals. If we choose

the parameter so that the half-life of a shock corresponds to the half-life of a daily shock in

RiskMetrics, then it should satisfy λ1025min = 0.94. We exclude overnight intervals, as we ap-

ply volume-based intervals for an intraday split: including intervals with no trade would me-

chanically lower the covariance matrix during the first (morning) intervals. This implies the

five-minute decay parameter of 0.9994. Consequently, the corresponding covariance matrix is:

Ωt = (1− 0.94)×
∞∑
τ=0

(0.94)τrt−1−τr
′
t−1−τ

=> Ωt = 0.0006(rtr
′
t) + 0.9994Ωt−1,

(5)

where rt are volume-clock logarithmic returns.

Before estimating the aggregate risk for the whole market, we first look at how heteroge-

neous it is across traders. As mentioned in Section 2, average trading volumes vary substantially

among 55 traders. In order to verify whether this heterogeneity is also present for risk, we look

at the average trader’s portfolio risk versus the size of a trader. Average risk is the average of

the trader’s portfolio standard deviation calculated as in (4); the average size of a trader is his

average daily trading volume. Figure 17 clearly shows that larger traders accommodate more

substantial risk. The pattern does not differ for all intraday intervals versus only end-of-day
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period.

Figure 17: Average risk versus trader size. The figure shows the relationship between trader’s
size and the average risk of his portfolio. Average risk is estimated per trader as in (4), trader size is the
ADV for each trader. Average values are equal-weighted, lines represent the for of a linear regression,
boundaries show the 5% confidence level. The sample consists of 55 traders and the period between
September 2009 – October 2010.

Looking at the aggregate risk measures, it is worth to notice that its dynamics pertains mo-

mentum. In particular, its autocorrelation at the first lag is positive and statistically significant

across traders. A predictive panel regression ∆σj,t = αj + γ∆σj,t−1 + εj,t produces γ = 0.42

with t-statistics of 20.075. It means that if portfolio risk was increasing during the previous

volume-based interval, it is expected to increase further during the upcoming interval.

2.3 Intraday risk dynamics

The risk measure used for margin calculation and defined in (4) can change because of a change

in its inputs: positions and/or a covariance matrix. We start from an aggregate view of risk

dynamics and then focus on its ”active” part - when portfolio risk changes due to the changes
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in portfolio positions.

To capture the risk dynamics, we select the intervals, in which portfolio risk has changed.

Next, we define a risk-contraction dummy as follows:

dcontr|∆σj,t 6= 0 :=


1, if ∆σj,t < 0

0, otherwise
(6)

For a complete representation, risk expansion intervals are the opposite of risk contraction:

risk of portfolio shrinks during these periods. The intraday dynamics of risk varies during a

trading day, as shown in Figure 18. It is at the lowest level right after the first interval, follows

relatively the same level during the day with small variations, but starts to drop sharply starting

from interval 20. The decrease lasts until the end of the trading day, and the average risk

contraction reaches 65% compared to 46% before the start of risk shrinkage. We refer to that

period as a natural hedge. This finding is favorable from the CCP perspective because it works
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like a shield against the immense risk accumulation in the portfolios of clearing members.

Figure 18: Dynamics of total risk contraction and risk expansion. The figure shows average
values of risk contraction dummy defined in (6). Risk expansion is defined as the opposite of the risk
contraction dummy. Average values are equal-weighted, boundaries show the 99% confidence level.
Volume-based intervals are calculated according to the number of Euro trading volume, interval 0 corre-
sponds to 17:30 (market close) and interval 102 corresponds to 9:00 (market open). The sample consists
of 55 traders and the period between September 2009 – October 2010.

The Danish market closes earlier than other, at 17:00. To net out its possible mechanical

effect on risk contraction, we add another condition to the risk contraction dummy - a change

in weights, meaning that at least one portfolio constituent has to be changed. As the changes in

portfolio positions captures the trader’s decision to trade, this dummy captures an active part of

risk dynamics. Otherwise, the risk contraction can reflect the changes in the covariance matrix

instead of risk behavior. It is worth to clarify that even when the Danish market is closed, a

Danish part of traders’ portfolio is not blocked and can still be traded. In particular, Danish

stocks are transacted on other markets – there is no stock that is traded exclusively on the

Danish market and cannot be bought or sold because of the closed Danish market.

The dynamics of intraday dummy is shown in Figure 19. The risk contraction is high at
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morning intervals demonstrates the development of the natural hedge by the end of a trading

day: the average values of risk-contraction dummy spike by about 8%, starting from volume-

based interval 7. In terms of clock time, the natural hedge is present at the market for 20

minutes before the close, starting from about 17:07.5

Figure 19: Intraday dynamics of risk contraction. The figure shows average values of risk
contraction dummy conditional on a trade. Average values are equal-weighted, boundaries show the
1% confidence level. Volume-based intervals are calculated according to the number of Euro trading
volume, interval 0 corresponds to 17:30 (market close) and interval 102 corresponds to 9:00 (market
open). The sample consists of 55 traders and the period between September 2009 – October 2010.

Next, we deepen further into the separation of the risk dynamics of the natural hedge into

trade-related and price-related effects. Daniel 1973 introduces a one-factor-at-a-time (OFAT)

approach, which helps decomposing several-factor interactions by varying only one factor at a

time. Portfolio risk, as defined in (4), has a price-related (Nj,tPt) and trade-related (Σt) factors.

The OFAT method changes these two factors sequentially from their values at t − 1 to t. We

first update the price effect because it identifies a pure price effect and shows what the change

of portfolio risk would have happened had traders’ portfolios stay the same as in the previous

5On 85% days interval 7 corresponds to the clock time of 17:07
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period. Thus, the steps are:

∆std var onlyj,t =
√
N ′j,t−1P

′
tΩtNj,t−1Pt −

√
N ′j,t−1P

′
t−1Ωt−1Nj,t−1Pt−1

∆std posi onlyj,t = stdj,t −∆std var onlyj,t,

(7)

where ∆std var onlyj,t is a change in portfolio risk of member j at interval t driven only by

price changes. Nj denotes stock positions of trader j at time t, Pt is the price of a corresponding

stock at time t, Σt is a covariance matrix at time t, stdj,t is the portfolio total standard deviation

(risk) as in (4), ∆std var onlyj,t is a change in portfolio risk of member j at interval t driven

only by change in portfolio positions (trades).

In order to define which of these factors contribute to the end-of-day risk contraction, the

following regression is estimated for the volume-clock intervals starting from interval 16:

∆σj,t = αj + γ1log std var onlyj,t + γ2log std posi onlyj,t + εj,t, (8)

where regressors correspond to the variables defined in (7).

Results in Table 15 uncover several insights. First, changes in both a covariance matrix

and in positions contribute to the end-of-day risk reductions: an increase of the portfolio risk is

associated with a positive change of the covariance matrix and risk due to portfolio positions.

Second, risk change contributed by positions rebalancing is more robust than that contributed

by a covariance matrix. In particular, the latter is robust in all three specifications and significant

at 99% level, while changes in covariance matrix are only significant at 10% level when time

fixed effects are added (column (2) in Table 15).
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Dependent: risk change ∆σj,t (1) (2) (3)

log d std var onlyj,t
0.49**
(2.1)

0.46*
(1.8)

0.48**
(2.0)

log d std posi onlyj,t
1.07***
(17.6)

1.06***
(17.7)

1.06***
(17.1)

Constant
-0.87***
(-17.3)

-0.87***
(-17.1)

-0.88***
(-17.3)

Trader fixed effects yes no yes
Time fixed effects no yes yes
Number of observations 53 504 53 504 53 504
R2 0.47 0.46 0.48

***p < 0.01, **p < 0.05, *p < 0.1

Table 15: Results of panel regressions. The table demonstrates results from regression (8), with
risk change as the dependent variable, according to which risk contraction dummy in (6) is defined.
Both independent variables are defined in (8). The coefficients show the effect of an increase in risk on
xi − min(x) + 1, due to the transformation of negative values for using log. The standard errors are
Newey-West standard errors. Values in brackets are t-statistics.

This section introduced the notion of the natural hedge and concluded that traders’ actions

significantly contribute to it. Further in the paper, we will focus on further analysis of the risk

contraction, starting from the robustness of the first results.

2.4 Robustness

Several robustness tests show that evidence for the natural hedge holds under various settings.

Weighting. First, we address a potential concern of averaging the risk contraction dummies

using equal weights across traders.6 Given heterogeneity between the traders’ size, such an

approach tends to overweight the impact of small traders and make the results biased towards

them. Figure 20 demonstrates the findings for a case when dummies are weighted according to

the trading volume of each trader. A natural hedge is a market-wide pattern that is still clearly

6Hou et al. 2017 replicate 447 published stock anomalies from the existing literature and show that many
studies overweight microcaps with equal-weighted returns. After the authors control for microcaps and use value-
weighted instead of equal-weighted returns, 286 anomalies (64%) become insignificant at the 5% level.
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present: end-of-day risk contraction has the same magnitude as the benchmark case with equal

weights. Moreover, there is no more risk contraction of the dummy conditional on no trade,

while the decrease still holds for an active part of the natural hedge period.

Figure 20: Value-weighted risk contraction. This figure shows the average values of risk con-
traction dummies. Aggregate contraction is the aggregate average across all intervals when risk changed
(incl. no trading intervals), active part denotes to the average risk contraction dummy conditional on a
trade. Averages are value-weighted, based on the trading volume of each trader. Confidence intervals
represent the 1% confidence interval, standard errors account for cross-trader correlation. The sample
consists of 55 traders and the period between September 2009 – October 2010.

Taken into consideration traders’ heterogeneity, we select twenty traders whose trading vol-

ume comprises 90% of the total trading volume. The natural hedge is much more pronounced

for them than for the whole market (Figure 21).
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Figure 21: Risk contraction for largest traders. This figure shows average values of an active
part of the risk contraction dummy, calculated according to (6), conditional on a trade. The average is
equal-weighted. Confidence intervals represent the 1% confidence interval, standard errors account for
cross-trader correlation. The sample is 20 traders whose trading volume covers 90% of the total trading
volume. Volume-based intervals are calculated according to the number of Euro trading volume, interval
0 corresponds to 17:30 (market close) and interval 102 corresponds to 9:00 (market open). The sample
period is between September 2009 – October 2010.

Mechanical effects. The earlier close of the Copenhagen market provides us with an ad-

vantage to conduct further robustness tests. Firstly, as the natural hedge and the earlier close of

the Danish market are close to each other in terms of clock time, the pattern of risk contraction

might be contaminated by potential effects connected to this earlier close. In particular, the

risk might be dropping, because some traders simply cannot trade parts of their portfolios on

this closed market. We select traders who do have none of Danish stocks during the whole

sample and are thus not affected by an earlier close of the Copenhagen stock exchange. There

are fifteen such traders, for whom this earlier close should not matter because no stock in their

portfolios is dependant on it. They are mostly middle-size traders, with average daily trading

volumes of e97, which comprises about 7% of the total ADV. As further in the paper we mostly

concentrate on an active part of the natural hedge, Figure 27 in the Appendix shows that the
7The total ADV across all traders is e37 million.
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magnitude of the active risk contraction is comparable with the benchmark case. Starting from

the highest risk contraction at the start of the trading day, this subset of traders accumulate

risk slower in the morning but have the same risk contraction by the market close as the whole

market.

Argumentation. Clearing members are aware that they are eligible for potential margin

charging at the end of each day. Risk reduction around the market close is a rational strategy

because it helps them avoiding to contribute additional collateral. One of the alternative ex-

planations comes from evidence reported in previous research and related to a different trader

behavior when he trades from his own or client’s account. In particular, Fecht et al. 2018

study the conflict of interest that arises when banks conduct proprietary trading together with

its retail services. This setting is close to our dataset - clearing members are also institutional

entities, who can trade either from their own accounts or on behalf of their clients. The authors

provide strong evidence showing that banks tend to push some of the stocks that they sell from

their proprietary trading portfolio onto their retail customers. This finding is further supported

by a causal relationship between equity sells of the banks and the buys of the same equities

by banks’ retail clients, especially for illiquid stocks. EMCF members might also shrink risk

only of their own portfolios, shifting less liquid stocks to client’s accounts. Repeating the anal-

ysis for house accounts only, we do not see the difference in risk contraction between house

and client accounts. Splitting a sample into house and client types of accounts, the natural

hedge exists for both house and client accounts, with almost the same magnitude and statistical

significance as for the case of using both types of accounts.

There is also a particular type of traders who tend to reduce end-of-day risk to a greater ex-

tent than others. In particular, high-frequency traders (HFTs) are a type of market participants

who tend to unload their portfolios by the end of the day and not to hold any overnight risk.8

Menkveld and Zoican 2013 identify such traders in the EMCF dataset based on three criteria,
8The US Securities and Exchange Commission (2014) presented a list of five characteristics that often are

attributed to HFT. One of these characteristics is ”ending the trading day in as close to a flat position as possible
(that is, not carrying significant, unhedged positions overnight)”
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following Kirilenko, Kyle, Samadi, and Tuzun 2017. The authors identified only seven CCP

members, who have a pronounced HFT profile compared to the rest of the traders. The identi-

fied HFTs account for 5.43% of the total NASDAQ OMX volume (denominated in Euro), with

one particular account being strongly dominating (4.91% of the total NASDAQ OMX volume

and the third trader in the market by volume, as well 90% of the total HFT volume). So, the

observed effect is not driven by HFTs, it is instead a pattern generated by large clearinghouse

members (Figure 21).

Danish stocks. As the Danish market closes earlier than the other seven markets of the

sample, it is worth to have a look at this market traders and stocks separately and study whether

they demonstrate similar patterns. There are nine traders, whose portfolios consist only from

Danish stocks. The data do not demonstrate evidence on risk contraction by these traders: there

is no risk contraction before the Danish market close (Figure 22). Two reasons can provide

further insights on why this does not happen. First, end-of-day margins are charged ”marked-to-

market”, meaning that the portfolio risk is estimated using the prices at the time of calculation,

which is 17.30 for the EMCF. As all Danish stocks are cross-listed on the other seven markets,

their covariance matrix continues to update even after the market is closed. Given that their

ADV between 17:00 (Danish market close) and 17.30 (all markets close) reaches 13% of the

total ADV per stock, this might lead to a significant change of the covariance matrix by the

time of margin reassessment. Second, these traders comprise only 1% on aggregate of the total

ADV across the sample, while we are mostly interested in broad market patterns.
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Figure 22: Risk contraction for traders with only Danish stocks. This figure shows average
values of the risk contraction dummy, calculated according to (6), conditional on a trade. Volume-
based intervals are calculated according to the number of Euro trading volume, interval 0 corresponds to
17:30 (market close) and interval 102 corresponds to 9:00 (market open). Confidence intervals represent
the 1% confidence interval. The sample is 9 traders who have only Danish stocks in their portfolios
throughout the whole sample period between September 2009 – October 2010.

This section provides empirical evidence on the existence of the natural hedge by the end

of a day. The hedge is driven by traders, who adjust their portfolios in the direction of risk

contraction, and by changes in the covariance matrix of returns. In the rest of the analysis, we

concentrate on the active part of the natural hedge, deepening into the risk contraction behavior

of CCP members.
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3 Risk contraction under the lens

3.1 Natural hedge and stock riskiness

Existing research has found various patterns on how financially constrained investors behave

under different external shocks. For example, they might demonstrate myopic behavior and

sell randomly large amounts of stocks under panic. Alternatively, they can mostly trade those

stocks that have the highest per euro effect on their portfolio risk. We believe that the daily

margin assessment by a CCP after the market close can trigger similar incentives for traders as

other shocks. The reason is that additional cash collateral can be costly for them (Biais, Heider,

and Hoerova 2016). Reluctance to provide it tends to motivate CCP members to reduce the risk

of their portfolios.

To determine which stocks are the most traded during natural hedge interval, we define a

measure that represents a per-euro effect on margin for each stock, a marginal risk contribution

of a stock. “Marginal” refers to the incremental risk change of a portfolio for a given change in

stock positions. In other words, this measure shows how the total portfolio risk would change

if the weight of given stock changes. Therefore, a stock with a high MRi has high per euro

effect on the margin.

The marginal risk contribution is a derivative of the portfolio’s standard deviation, with

respect to the position in a given stock:

MRi :=
dstdp
dwi

=

[
n∑
i=1

w2
i σii +

n∑
i=1

n∑
k=1,k 6=i

wiwkσik

]1/2

dwi
=
wiσii +

∑n
k=1,k 6=iwiσik

stdp
, (9)

where wi is the dollar position of stock i in portfolio p, σii is the variance of stock i, σik is

the covariance between stock i and stock k.
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This derivative shows (1) a sign of individual stock effect to the overall portfolio risk, e.g.,

a negative/positive sign of MRi indicates that a change in stock position decreases or increases

the risk of the currently held portfolio; (2) magnitude of a margin effect, by which the risk

potentially increases/decreases if an additional piece of stock is bought/sold. For example, if

the value of MRi = −0.034 for a portfolio of trader j at interval 8 of a given day, it means

that if a trader buys stock i, this trade decreases the total standard deviation of his portfolio by

0.034.

As the natural hedge is observed starting from volume-clock interval 8,9 MRi is estimated

at the very last interval before the traders start to contract risk. We analyze whether stocks

with different marginal risk are traded in a different manner during the risk-shrinking intervals

between the start of the contraction and a market close. These periods are defined conditionally

on whether a particular interval was risk-contracting or risk-expanding for a particular trader

(based on risk dummy from (4)). We hypothesize that during the risk-contracting intervals,

stocks with the highest marginal risk contribution are traded the most. This is in line with the

literature saying that, under a pressure of financial constraints in the form of margins, one fire-

sells the riskiest assets, so that it would be possible to make the required compensating cash

payment or avoid posting additional collateral. The hypothesis is supported by Biais, Heider,

and Hoerova 2016, who call upon policy attention by showing that variation margins lead to

a pecuniary externality in the forms of fire sales. Related to that, Brunnermeier and Pedersen

2009 detect ”flight to quality” behavior, which refers to the episodes when risky securities

become especially illiquid. In their model, capital deterioration induces them to mostly provide

liquidity to those securities that do not use much capital (e.g., low-volatility stocks with lower

margins). This capital effect means that illiquid securities are predicted to have more liquidity

risk. In the setting of our analysis, traders can treat liquid and illiquid stocks differently and

switch from the former to the latter when contracting the risk.

We allocate each stock in a given portfolio into one of eight bins, based on its MRi at the

9On 85% days interval 8 corresponds to the clock time intervals starting from 17.07
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last interval before the start of risk contraction. The bins are assigned based on MRi defined in

(9), and there are four bins for positive values of marginal risk and four - for the negative ones.

In particular, each ”positive” bin includes 25% of positive MRi in ascending order. Stocks

from each risk bin are matched to their corresponding trading volumes during natural hedge

risk-contracting intervals. An aggregate change in trading volumes during the risk contraction

per bin is shown in Figure 23.

Figure 23: Trading volumes for different stock risk bins. The figure shows Euro position
changes between the start of end-of-day risk contraction until the market close for eight different portfo-
lios. The stocks were divided into eight bins based on MRi defined in (9) so that negative and positive
bins contain the same number of stocks. Positive volume values on the y-axis denote purchases, negative
values represent sells. Error bars are indicated on the top of each bar. The sample consists of 55 traders,
242 stocks, and the period between September 2009 – October 2010.

First, we found a striking pattern of the relationship between marginal risk and stressed trad-

ing volume. When shrinking risk, traders largely buy stocks that reduce the overall risk of their

portfolio the most. An aggregate stressed purchasing volume of these stocks is $87,032,900

(the left bar mr(-4)). For stocks with weaker per dollar risk effect, the trading volume is much
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lower, but still positive (bins from mr(-3) to mr(-1)). The pattern is mirrored for the four pos-

itive bins (mr(+1) – mr(+4)). Starting from low negative trading volumes, a selling power of

stocks with the highest marginal risk reaches $87,877,500. Therefore, the most trading activ-

ity arises in stocks that have the lowest and the highest per dollar marginal risk. This trading

activity demonstrates a gradual pattern: risk-contracting trading volumes for the stocks with

the smallest risk effect are ten times lower than those of the extreme bins. The purchasing vol-

umes decrease with a marginal risk for negative MRi, and their selling volumes increase with

a higher positive marginal risk.

Second, the pattern is symmetrical: $ 87,032,900 of bin mr(-4) is bought on aggregate, and

almost the same volume at the other extreme risk side mr(+4) is sold. Taking into account the

fact that all positions belong to the same clearinghouse and add up to zero, similar values of

buys and sells for the extreme risk portfolios implies the heterogeneity across traders’ portfolios

before they start to reduce risk. Such diverse composition of initial portfolios allows traders

having a counterparty for risk-contracting trades, e.g., for selling stocks with the highest risk

and for buying stocks with the most negative marginal effect. Traders find a counterparty due

to their portfolio diversity before the risk contraction, and therefore a symmetry of trading

volumes arises during the natural hedge.

Third, the regression results support the findings of the negative relationship between higher

risk and stressed trading. The following regression is estimated on a stock level:

∆voli = −81.8− 10.2mri + εi

∆V oli = (−5.3)i(−6.5)mri + εi
(10)

The results demonstrate that a unit increase in the logarithm of the marginal risk is asso-

ciated with additional selling pressure of 10.2 in the logarithm of volume, significant at 1%

confidence level.

Moreover, regressions on a per-trader basis reveal that this pattern is supported by most
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traders and is not driven by some exceptional cases (Table 17 in the Appendix).

Robustness. If traders shrink their portfolios by trading stocks with the highest marginal

risk due to their reluctance to provide a clearinghouse with additional cash, then the effect

should be stronger for periods when it is more expensive to borrow cash. As clearinghouse

members are mostly institutional investors, a spread between three-month USD LIBOR and

Federal Funds rate is used as a proxy for the cost of cash collateral. In particular, we define days

when the spread exceeds 90th percentile of the sample period as collateral-costly. Rerunning

regression (10) only including these days, we get the coefficient of -0.89 comparing it to -0.07

when including all days of the sample and -0.05 when including ”cheap” the rest of the days.10

3.2 Natural hedge and stock liquidity

According to the prior research, stock liquidity can, under some circumstances, have an impact

on investor behavior. Brunnermeier and Pedersen 2009 suggest that the impact of funding

liquidity to market liquidity ought to be strongest for relatively less liquid assets. This finding

is later supported by another study that focuses on hedge funds that used bank Lehman Brothers

Inc. as a prime broker before the crisis in 2008. Aragon et al. 2012 confirms the downward

spiral phenomenon and concludes that shocks to agents’ funding liquidity caused a decline in

market liquidity of the assets traded. The effect is particularly large and significantly strong for

stocks with lower initial liquidity. In the setting of the stressed trading at the market close, we

expect agents to trade more actively those stocks, which are more liquid prior to a natural hedge

period. Such stocks can be favorable due to their execution immediacy, as might be wished by

traders at the market close.

The measurement of market liquidity has shown to be complex in market microstructure

research. In particular, Ranaldo 2011 demonstrates the multidimensional nature of market liq-

uidity and its close relationship with market efficiency. We proceed with looking at liquidity

10For the full regressions’ specification, see Table 16 in Appendix.
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from the market depth perspective, using trading volume as liquidity estimator. We apply inde-

pendent double sorting and sort stocks based on their liquidity, which is proxied by the average

daily trading volume across the whole sample. Therefore, aggregate ADV of each liquidity

portfolio comprises one-fifth of the total ADV. The stocks are substantially heterogeneous,

with a minimum ADV of $4.6 and a maximum of $346,146,892 for Nokia Corporation. With

a total average ADV of $2,047,082, 79% stocks (191 firms) comprise the first bin, followed by

9%, 5%, 4%, and 3% correspondingly in each bin.

After allocating stocks in five liquidity bins, keep the split based on the marginal stock

contribution to a portfolio (mri). The average stressed trading volumes during risk-contraction

intervals of the natural hedge mainly concentrates in the most extreme risk bins across all

liquidity portfolios (Figure 24). Trading volumes for extreme risk bins are higher, and standard

errors are lower for portfolios of more liquid stocks. Reasonably, the trading volume of the

most liquid stocks is several times higher than of the other bins. Therefore, trading based on a

marginal risk is not driven by liquidity. Robustness section will deepen further into it.

These findings are in line with the banking literature that evolved following the financial

crisis in 2008. Being under financial constraints and having limited access to funding liquidity,

market participants at that time could be a relevant proxy for the behavior of clearinghouse

participants before margin assessment. The earlier mentioned study by Aragon et al. 2012

finds that stocks held by the funds connected to the Lehman Brothers Inc. experienced more

severe declines in market liquidity after the bankruptcy than other stocks. The effect was larger

for ex-ante illiquid stocks and persisted into the beginning of 2009. Related to this literature, a

few studies (e.g., Goldberg and Hudgins 2002, Karas et al. 2013) document that experiencing

events such as bank failures can lead to a wake-up call among depositors. They examine the

balance sheets of banks and provide evidence that distressed banks experienced stronger deposit

outflows during financial crises at different times. Our results say that being under pressure of

the potential margin contributions, traders get rid of the riskiest stocks and are interested in
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buying those that would decrease the portfolio risk the most, especially liquid stocks. This is

in line with existing findings and adds up further evidence on the stock liquidity and its effect

on the margin.

In this section, we showed that the phenomenon of natural hedge evolves by trading the

stocks that affect the portfolio risk the most. Traders sell stocks that decrease their total risk

portfolio most and buy stocks, whose marginal risk would decrease the risk of their portfolios.

This pattern is driven by the largest traders present on the market and not driven by stock

liquidity, which is shown next.
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Figure 24: Trading volumes for different stock risk bins. The figure shows Euro position
changes between the start of end-of-day risk contraction until the market close for 25 portfolios. Stocks
are allocated based on the ADV so that the ADV of each bin equals 1/5 of the total ADV. Each subplot
represents a liquidity category. Numbers above show the minimum and maximum values of the bin.
Stocks are further divided into portfolios based on MRi from (9), so that negative and positive bins
contain the same number of stocks. Red lines are the standard errors. The sample consists of 55 traders,
242 stocks, and the period between September 2009 – October 2010.
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3.3 Robustness

Sorting. The pattern is even stronger for the case when stocks are divided into bins with the

same number of stocks according to their liquidity. For this alternative case, we further take

the most liquid portfolio and divide it further into five risk bins. If the results are driven by

liquidity, stocks inside this bin would be traded just randomly, not depending on their marginal

risk bin, rather than keeping a pattern. Figures 28 and 29 in Appendix demonstrate that the

results hold both across all liquidity portfolios and inside the most liquid portfolio as well.

In order to observe how general is the trading pattern across agents, we run the following

fixed-effect regressions, one for each risky bin, for a period of risk contraction during the natural

hedge period:

∆V olj =
K∑
k=1

1t,j + εj, (11)

where 1t,j is a dummy variable that takes the value one if interval t belongs to risk-contracting

natural hedge period k and zero otherwise. Estimating this regression is equivalent to finding

averages trading volumes per bin for each trader. The results show that about 90% volume of the

extreme bins are traded in an expected direction and magnitude and are statistically significant.

These volumes are driven by 24 traders who buy the stocks with the most negative marginal

risk and by 20 traders who sell the stocks with the highest marginal risk. Stocks with the lowest

marginal risk per dollar are the least actively traded across the market: only 20% of the traded

volumes of these bins are statistically significant. The largest 15% of traders represent high

volumes and support the pattern (marked bold in column 1). A market-wide nature of trading

stocks with highest per dollar risk impact supports the argument of diverse portfolios across

traders before the risk contraction period around the close.11

The pattern of trading the most risk-expensive stocks is not only covered by the largest

11Please see the details in Appendix Table 17.
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traders but is also almost identically distributed across volume-clock intervals inside a natural

hedge period. For the extreme risk bins, about one-eighth of the total volume is traded inside

each volume-clock interval. The largest volume of $16,444,410 bought and $15,086,550 sold

is traded during volume interval 512, which is the very last interval before the market close.

4 Negative externalities of the natural hedge

The question of how traders’ access to funding liquidity affects asset prices is one of the funda-

mental questions in financial economics. Furthermore, if asset liquidity is a priced risk factor,

shocks to the market liquidity might raise expected returns by lowering prices (e.g., Amihud

and Mendelson 1986, Pastor and Stambaugh 2003). These shocks can initiate a temporary price

impact and distort closing stock prices. Kraus and Stoll 1972 investigate price effects accom-

panying block trades at the close. In a less than perfectly efficient market, short-run liquidity

effects produce such price impact, under which the expected rate of return is shifted only tem-

porarily since the price is expected to go back to equilibrium reasonably quickly. Their findings

imply that the pressure of institutional trading is a significant factor of temporary price effects

of block trades. Conceptually, such price impact described is different from that produced by

differences in investor preferences. The latter involves a change in equilibrium price associ-

ated with a change in the expected rate of return and is not implicitly a temporary effect. By

contrast, under the price impact produced by stressed risk-shrinking trading, expected returns

are shifted only temporarily, and prices are expected to go back to equilibrium fairly fast. The

stressed trading before potential margin calls is likely to generate the same effects, especially

for the most traded stocks (equivalent for block trades). We show that the created price impact

is transitory, as the price rebounds once the market opens the following day.

The ideal conditions assume that the value of stock follows a random walk, meaning that

12On 85% days interval 5 corresponds to the clock time interval 17.19–17.29

109



buy and sell orders are equally probable and serially independent (Roll 1984). We estimate the

first-order serial covariance in price changes for three intervals: between a start of the natural

hedge to the market close, between the close to the next day’s open, and between the close to

the next day’s after-open interval. We show that such covariance between returns at the close

and the next day open is negative and statistically significant. Similarly, Roll 1984 shows that

such first-order serial covariance is inversely related to the effective bid-ask spread. He infers

a bid-ask spread from the transformed serial covariance by 2
√
−cov.

Transitory price error of the natural hedge is then calculated as the scaled autocovariance:

ρi =
√
−cov(Rh,c, Rc,o), (12)

where Rh,c is a vector of each stock return between its last price before a natural hedge period

and its closing price, and Rc,o is a vector of each stock return between its closing price and the

opening price on the next day.

Keeping the liquidity split, we further divide stocks into three portfolios: stressed sold

(stocks that are sold during risk-contraction at the close), stressed bought (stocks that are bought

during risk-contraction at the close), and zero-volume (stocks that are not traded during risk-

contraction at the close). The third portfolio serves as a control reference because it allows

comparing the price effect associated with trading (stressed bought/sold portfolios) to the price

effect without trading (zero-volume portfolio). Figure 25 shows the pricing errors for 15 stock

portfolios formed according to liquidity and trading volumes during risk contraction interval at

the close. The largest pricing error of 33-34 basis points is generated among less liquid stocks

(bins 1-2). Given that these bins contain the largest number of stocks (because it is formed so

that one-fifth ADV is in each bin), the effect is largely present. It disappears for the most liquid

stocks. In terms of asymmetry, stressed sells distort stock prices stronger than stressed buys.

The price effect measure for the top 10% most-traded stocks across all bins (during risk-
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shrinking intervals) is 58 basis points and 86 basis points for top 5% most traded stocks, and

both are significant at 5% level.

Figure 25: The price effect of the natural hedge period. The figure shows the price effects
for 15 different portfolios. The values on top of bars are in percentage points and are calculated as the
scaled autocovariance of the series of returns as in (12). Values are in percents. The sample consists of
55 traders, 242 stocks, and the period between September 2009 – October 2010.

To test the relation between size of risk-trading and size of price effect on a more general

level, we run a panel regression with time fixed effects: the absolute value of the dollar trans-
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action volume in the risk contraction intervals of the natural hedge until the end-of-day on the

previous date is regressed on the product between the stock’s return at the end of the day and

return on the next day. The absolute value of volume allows to capture both risk-shrinking sells

and buys during risk-contracting intervals. In the results shown below, |∆V oli,co| is a change

in trading volumes between the start of natural hedge period and the market close, measured

in dollars;
√
−(Ri,hc ∗Ri,co) is in 1/100 of basis points, and the numbers in parentheses are

values of t-statistics.

√
−(Ri,hc ∗Ri,co) = γt + 0.018|∆V oli,h−c|

V oli,17.00−17.400000(10.82)V ol00000

The estimation shows that e1 of stressed trading during the end-of-day risk-shrinking in-

tervals increase the reverse price ”bounce” in the opening by 1.8 basis points.

Price effect conclusions show that trading pricing error plays against traders - they buy

stocks more expensive and sell cheaper than they would do at usual time periods. Traders

would do so if the costs of borrowing cash exceed the ”cost” of trading at the price bounce

during the natural hedge. The literature provides evidence that the collateral might be indeed

costly (Biais, Heider, and Hoerova 2016). The reluctance to provide it tends to motivate CCP

members to reduce the risk of their portfolios.

These results are consistent with Meier and Servaes 2018, who find that firms buying dis-

tressed assets in fire sales earn excess returns. Coming back to Aragon and Strahan 2010, they

similarly show that the overall price impact of the stocks held by Lehman’s hedge fund clients

prior to the bankruptcy rose more than other stocks following the bankruptcy, as well as their

bid-ask spreads.
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4.1 Alternative explanations for risk contraction

Risk hedge on the other markets. Clearing members is our sample are mostly institutional

entities who have an access to numerous other markets and assets. They thus have various

opportunities to hedge the risk of their stock portfolios that we study on some other markets.

One of the natural way to protect themselves from possible portfolio price fluctuations is to

pursue a perfect hedge via the options to a market index. In order to analyze whether the CCP

members exploit such opportunities, we tackle the following problem.

Take trader j at time t, whose weights in the various stocks is captured by vector wj,t with

the corresponding returns ri,t for each stock i inside the portfolio. Suppose, we add securities to

this portfolio: for example, the market futures λj,t with returns rm,t. To be effectively hedged,

a trader solves the following optimization problem:

σ postj,t = minimize
λ

var(wj,trt + λj,trm,t), (13)

where σ postj,t denotes the variance of the trader’s j portfolio that includes his current stock

portfolio and the market futures.13 The variance of ”non-hedged” (current) portfolio is defined

as:

σ prej,t = var(wj,trt) (14)

The hedging ratio is then defined as:

σ prej,t − σ postj,t
σ prej,t

(15)

If traders use the market index for hedging their portfolios, we would detect that the weights

are tilt toward the index weights by the end of the day. As intraday data on indices are not

available from the open data sources for our sample period, we construct the value-weighted

13For the details regarding the optimization problem, please see Appendix B 5
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market index from all existing stocks available in the sample. The weight of each stock in

the index is calculated as number of outstanding stocks multiplied by the average price during

the sample. The correlation of returns of the constructed index with the STOXX Nordic Total

Market Index is 91.9%, with MSCI Nordic Index – 92.9%, with the OMX – 92.1%, which

indicates that the combined index is a decent proxy for the Nordic indices actually available on

the market.

The optimization problem was approached through two methods: analytically (via matrix

derivations) and numerically and converged to the same results.14 Both methods do not detect

any special patterns neither for alpha nor for the hedging ratio, represented in Figure 26.

Figure 26: Portfolio hedging using the market index futures. The figure shows the value-
weighted average hedging ratio calculated as in (15) at each volume-based interval. The average is
value-weighted, depending on the trader’s average daily trading volume across the sample. Volume-
based intervals are calculated according to the number of Euro trading volume, interval 0 corresponds to
17:30 (market close) and interval 102 corresponds to 9:00 (market open). Confidence intervals represent
the 1% confidence interval. The sample consists of 55 traders, 242 stocks, and the period between
September 2009 – October 2010.

14The details of each method are in the Appendix B.
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Cross-listed stocks. In Section 3, we show that CCP members tend to sell those stocks

that has the highest marginal risk per dollar of their holding portfolio. Such behavior allows

them decrease the overall risk of their portfolios and avoid contributing the daily margin to the

CCP. Another potential reason to sell such stocks could be switching to another market. For

example, traders can sell cross-listed stocks by the end of a trading day because another market

(e.g., the US exchanges) opens around this time and traders may wish to switch to the market

where the trading is open, closing all positions in the stock on the soon-to-be closed market.

To approach this issue, we sort stocks based on their aggregate selling volume during the

risk-contraction period at the end of the day. We then match the stock’s tickers from our dataset

to its corresponding ISINs in the Thomson Reuters, and define the company’s home country of

domicile based on the ISIN code.

It occurs that among 90% of the total selling pressure none of the stocks is US (Table 18

in the Appendix). The actively sold stocks are mostly Swedish companies. Eight stocks are

Finnish, and one is British.

5 Conclusion

The paper analyses the risk behavior of traders subject to financial constraints. We use the

dataset from one of the largest European equity CCP that reassesses margins on a per-participant

basis at the end of each trading day. By using a relevant proxy for margin estimations, we show

that traders contract risk of their portfolios at the market close, providing a CCP with a natural

hedge. This behavior is common across the market and is more pronounced for large traders.

Agents trade in the direction of risk contraction by selling stocks with the highest marginal risk

and buying stocks that decrease the overall portfolio risk the most. The pattern is stronger on

days when the borrowing costs of cash are at the highest level. Such risk-contracting end-of-

day trading distorts closing stock prices: for the top 10% most traded stocks, a pricing error
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at the close reaches 58 basis points. This result might be of interest for policy regulators, in-

vestors, and asset managers, who use the closing prices as a benchmark for investment and

performance decisions.

The results are shown to be robust across various robustness checks. As the market close is

a special intraday period in terms of market behavior, we also check other potential channels of

the risk contraction. The findings are neither driven by high-frequency traders, nor by a specific

small subsample of traders. Being common across the market, the pattern of selling the riskiest

stocks do not relate to cross-listed firms. Moreover, no increased hedging is detected by the

end of a trading day.

The study suggests a fresh perspective on the channel between stressed trading volumes and

their impact on closing stock prices. For the direct detection of this link, the dataset that would

contain the already collected margin would be of use. More data on borrowing costs per trader

would also help to better define whether obtaining cash externally is more expensive than the

negative externalities of the natural hedge.

116



References

Allen, F. and D.Gale. 2000. Financial contagion. Journal of Political Economy 108, pages

1-33.

Amihud, Y. and H. Mendelson. 1986. Asset pricing and the bid-ask spread. Journal of Finan-

cial Economics 17, pages 223-249.

Aragon, G. and P.E. Strahan. 2012. Hedge funds as liquidity providers: evidence from the

Lehman bankruptcy. Journal of Financial Economics 103, pages 570-587.

Bernardo, A. E. and I. Welch. 2004. Liquidity and financial market runs. The Quarterly

Journal of Economics 119, pages 135-158.

Biais, B., Heider F., and M. Hoerova. 2012. Clearing, counterparty risk and aggregate risk.

European Central Bank Working paper No. 1481

Biais, B., Heider F., and M. Hoerova. 2016. Risk-sharing or risk-taking? Counterparty risk,

incentives, and margins. The Journal of Finance 71, pages 1669-1698.

Brunnermeier, M. K. and L. H. Pedersen. 2009. Market liquidity and funding liquidity. The

Review of Financial Studies 22, pages 2201-2238.

Carhart, M., Kaniel, R., Musto, D., and A. Reed. 2002. Leaning for the tape: evidence of

gaming behavior in equity mutual funds. Journal of Finance 57, pages 661-693.

Chan, K.C., Karolyi A.G., and Stulz R. 1992. Global financial markets and the risk premium

on U.S. equity. Journal of Financial Economics 32, pages 137-167.

Chowdhry, B and V. Nanda. 1998. Leverage and market stability: the role of margin rules and

price limits. The Journal of Business 71, pages 179-210.

Comerton–Forde, C. and T. J. Putnins. 2009. ”The prevalence and underpinnings of closing

price manipulation”. Unpublished manuscript.

117



Coval, J. and E. Stafford. 2007. Asset fire sales (and purchases) in equity markets. Journal of

Financial Economics 86, pages 479-512.

Daniel, C. 1973. One-at-time plans. Journal of the American statistical association 68, pages

353-360.

Duffie, D., Schleicher M., and G. Vuillemey. 2015. Central clearing and collateral demand.

Journal of Financial Economics 116, pages 237-256.

Easley, D., de Prado M.M.L., and M. O’Hara. 2012. The volume clock: insights into the

high-frequency paradigm. The Journal of Portfolio Management 39(1), pages 19-29.

Fecht, F., Hackethal A., and Y. Karabulut. 2018. Is proprietary trading detrimental to retail

investors? Journal of Finance 73, pages 1323-1361.

Foster, F.G. and S. Viswanathan. 1993. Variations in trading volume, return volatility, and

trading costs: evidence on recent price formation models. Journal of Finance 48, pages 187-

211.

Goldberg L.G. and S.C. Hudgins. 2002. Depositor discipline and changing strategies for regu-

lating thrift institutions. Journal of Financial Economics, 63, pages 263-274.

Hillion, P. and M. Suominen. 2004. The manipulation of closing prices. Journal of Financial

Markets 7, pages 351-375.

Hou, K., Xue C. and L. Zhang. 2018. Replicating anomalies. Review of Financial Studies,

forthcoming.

Jensen, M.C. and W.H. Meckling. 2004. Theory of the firm: managerial behavior, agency costs

and ownership structure. Journal of Financial Economics 4, pages 305-360.

Jones, R.A. and C. Perignon. 2013. Derivatives clearing, default risk and insurance. Journal of

Risk and Insurance 80, pages 373-400.

Karas, A., W. Pyle, and K. Schoors. 2013. Deposit insurance, banking crises, and market

118



discipline: evidence from a natural experiment on deposit flows and rates. Journal of Money,

Credit and Banking 45, pages 179-200.

Khan, M., Kogan L., and G. Serafeim. 2012. Mutual fund trading pressure: firm-level stock

price impact and timing of SEOs. The Journal of Finance 67, pages 1371-1395.

Khapko, M. and M. Zoican. 2019. How fast should trades settle?. Management Science,

forthcoming

Kirilenko, A.A., Kyle A.S., Samadi M., and T. Tuzun. 2017. The flash crash: high-frequency

trading in an electronic market. The Journal of Finance 72, pages 967-998.

Kissel R. 2014. The science of algorithmic and trading and portfolio management. Academic

Press.

Kraus, A. and H.R. Stoll. 1972. Price impacts of block trading on the New York Stock Ex-

change. The Journal of Finance 27, pages 569-588.

Kyle, A.S. and A.A. Obizhaeva. 2019. Market microstructure invariance: a dynamic equilib-

rium model. Working paper.

Lee, M.C.C., Mucklow B., and M. J. Ready. 1993. Spreads, depths, and the impact of earnings

information: an intraday analysis. The Review of Financial Studies 6, pages 345-374.

Lockwood, L.J. and S.C. Linn. 1990. An examination of stock market return volatility during

overnight and intraday periods 1964-1989. Journal of Finance 45, pages 591-601.

McInish, T.H. and R.A. Wood. 1990. An analysis of transactions data for Toronto Stock

Exchange return patterns and end-of-the-day effect. Journal of Banking and Finance 14, pages

441-458.

McInish, T. and R.A. Wood. 1992. An analysis of intraday patterns in bid/ask spreads for

NYSE stocks. Journal of Finance 47, pages 753-764.

McInish, T. and R.A. Wood. 1992. A flow-based explanation for return predictability. The

119



Review of Financial Studies 25, pages 3457-3489.

Meier, J-M.A. and H. Servaes. 2018. The bright side of fire sales. European Corporate Gover-

nance Institute (ECGI) - Finance Working Paper No. 435/2014

Menkveld, A.J. 2017. Crowded positions: an overlooked systemic risk for central clearing

counterparties. Review of Asset Pricing Studies 7, pages 209-242.

Menkveld, A.J. and M. Zoican. 2013. ”Need for speed? Low latency trading and adverse

selection.” Unpublished manuscript.

Menkveld, A.J., Pagnotta E., and M. Zoican. 2015. ”Does central clearing affect price stability?

Evidence from Nordic equity markets.” Manuscript, Imperial College.

Pastor, L. and R. Stambaugh. 2003. Liquidity risk and expected stock returns. Journal of

Political Economy 111, pages 642-685.

Ranaldo, A. 2001. Intraday market liquidity on the Swiss Stock Exchange. Swiss Society for

Financial Market Research 15(3), pages 309-327.

Roll, R. 1984. A simple implicit measure of the effective bid-ask spread in an efficient market.

Journal of Finance 39, pages 1127-1139.

Wood, R.A., McInish T.H., and J.K. Ord. 1985. An investigation of transactions data for NYSE

stocks. Journal of Finance 40, pages 723-739.

120



Appendix A

Figure 27: Risk contraction for traders without Danish stocks. This figure shows average
values of an active part of the risk contraction dummy, calculated according to (6), conditional on a
trade. The average is equal-weighted. Confidence intervals represent 99%, standard errors account for
cross-trader correlation. The sample is 15 traders who do not have any Danish stock in their portfolios
throughout the whole sample period. Confidence intervals represent the 1% confidence interval. The
sample consists of 55 traders and the period between September 2009 – October 2010.
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Dependent: volume changes ∆voli all days ”costly” days ”cheap” days
(1) (2) (3)

mri
-0.07***

(-5.1)
-0.89***

(-7.9)
-0.05***

(-4.3)

Constant
16.17***

(13.8)
8.17***

(7.6)
16.24***

(13.4)
Number of observations 197 808 27 220 170 588
R2 0.009 0.029 0.008

***p < 0.01, **p < 0.05, *p < 0.1

Table 16: Results of cross-section regressions. The table demonstrates results from regression
(10), with a change in volumes during risk-contraction end-of-day intervals as a dependent variable.
Independent variable is a stock’s marginal risk contribution defined in (9) for the last interval preceding
the risk contraction. The coefficients show the effect of a unit change in the logarithm of volume change
to change in the logarithm of marginal risk, because values were transformed by adding a constant
and taking logarithm. ”Costly” days are the days when a spread between 3-month LIBOR and Federal
Fund rate was above 90th percentile, ”cheap” days are all the rest observations. Values in brackets are
t-statistics. The sample consists of 55 traders, 242 stocks and the period between September 2009 –
October 2010.
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Most negative 
mr mr(-3) mr(-2) mr(-1) mr(+1) mr(+2) mr(+3) Most positive 

mr
10000 25,940*** 13,620*** 1,958 -1,079 -2,391*** -3,418*** -9,349*** -23,660***
20000 16,550*** 8,642*** 1,895 1,554 -766 -1,149 -2,084 -11,370***
30000 11,270*** 4,172* 91 -370 -801 -2,792** -12,040*** -13,920***
40000 1 0.4331 -           - - -14 143 -659
50000 113 -40 4'.8 - - -1,234 624 -1,418
60000 38,570*** 15,090*** 565 3,322*** -1,413*** -2,125 -15,010*** -25,320***
70000 311 -285 201 705 17 -7 -20 -14
80000 2,823 1,108 453 -249 -11 -919 -1,948 -5,042
90000 22,600*** 7,690*** -4053*** 467 -980 2,466 -8,273*** -30,090***
100000 1,097 -520 349 -16 -893 -1,345 -249 -1,282
110000 9,520*** 985** 289 - - - 157 -2,897***
120000 22,520*** 13,840*** 3,165*** 1,458 -878 -5,483*** -7,993*** -26,760***
130000 4,378 2,277 459 -43 -261 -1,262 -2,828 -9,418***
140000 10,310*** 5,502*** 2,677*** 235 -52 -4,188*** -7,406*** -15,170***
150000 24,630*** 10,400*** 5,240*** 627 979 41 -21,390*** -36,910***
160000 20,530*** 6,878*** 4,994*** -5,310*** -13 -3,465*** -7,054*** -17,620***
170000 154 -30 319 - - - - -62
180000 825 117 48 8 -40 -99 -63 -1,834
190000 614 275 82 -13 -0.3 -112 -1,043 -515
200000 4,999 1,351 1,944 1,712 57 -4,626 -3,880 -2,519
210000 809 2,007 157 149 -181 -265 -129 -1,975
220000 232 -3.87 38 - -103 -22 -192 -341
230000 3,446 5,033*** 253 364 64 -833 -2,575 -5,686
240000 2,191** 222 17 113 -259 -721 -1,334 -4,601
250000 29,300*** 12,700*** 2,759*** 346 -325 -5,264*** -13,320*** -24,060***
260000 1,283 39 65 5 -74 -1,527 -411 -544
270000 3,005 25 -           1,211 353 - 108 -4,868
280000 1,316 127 29 -57 -129 -163 -232 -2,936
290000 377 293 48 74 99 140 8 -244
300000 14,620*** 2,886 484 446 -183 -377 -1,645 -9,971***
320000 1,677 940 376 93 -67 -497 -1,186 -2,793
330000 6,683*** 963 384 -321 -795 -214 -1,506 -7,329***
340000 801 481 243 -18 -21 -270 -308 -2,010
350000 5,683*** 594* 54 - - - -90 -3,786***
360000 188 6.6 43 89 0 -6 4 442
370000 1,690 758 385 935 -203 -201 -1,526 -1,762
380000 1,895*** 674 290 - 10 - -66 -657
390000 25,110*** 10,510*** 2,180 1,048 1,051 -837 -13,870*** -25,140***
400000 4,601 4,241*** 466 479 90 190 -4,523*** -6,206
410000 31,540*** 11,270*** 7,730*** 1,254 1,339 -1,143 -8,162*** -22,300***
420000 -36 -60 107 7 14 -184 -144 -262
430000 10,740*** 2,274 890 177 -583 -2,829* -5,824*** -15,900***
440000 12,860 -587 -1,320 5,551 -196 -10,050 1,039 -2,247
450000 20,840*** 5,749*** 4,160*** -310 -46 -2,656* -4,461*** -21,940***
460000 34,410*** 6,803*** 2,594** -27 -609 -3,504*** -7,276*** -28,400***
470000 909 371 206 -19 10 -125 -309 -276
480000 4,349 3,984* 47 -37 -90 -562 -1,857 -9,297***
490000 138 15 17 -8 -1 -5 -8 -90
500000 2,533 -274 202 151 - - 499 -742
510000 606 25 22 - -97 - -213 -187
520000 84 -335 374 20 -11 -251 -361 -1,173
530000 12,180*** 7,756*** 2,286* 277 -160 -2,527* -4,914*** -5,534*
540000 6,587*** 6,513*** 1,134 539 660 -1,343 -2,965 -4,032
550000 54 36 - - - - - 29
560000 4,349** 2,789* - 276 - -1,356 -879 -2,789**

number of traders 
significant at 1% 24 18 9 2 2 6 16 20

% of volume, 
significant at 1% 92% 87% 62% 27% 21% 34% 82% 88%

negative marginal risk positive marginal risk
Trader ID

Table 17: Average trading volumes for different risk bins per trader. Trading volumes for
different risk bins per trader. The figure shows results of regressions ∆V olj =

∑K
k=1 1t,j + εj . Risk

bins are defined based on the marginal risk contribution per stock, MR. Three stars indicate statistical
significance of corresponding values at 1% confidence interval and are indicated in green color for
extreme bins. Bold trader id indicates that a trader belongs to the largest 15% of traders. The sample
consists of 55 traders, 242 stocks, and the period between September 2009 – October 2010.
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Figure 28: Trading volumes for different stock risk bins. The figure shows Euro position
changes between the start of end-of-day risk contraction until the market close. Stocks are allocated into
five portfolios based on the ADV, so that the number of stocks is the same across bins. Each subplot
represents a liquidity category. Stocks are further divided into bins based on MRi from (9), so that
negative and positive bins contain the same number of stocks. Red lines are the standard errors. The
sample consists of 55 traders, 242 stocks, and the period between September 2009 – October 2010.
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Figure 29: Trading volumes for the most liquid stock portfolios. The figure shows the total
Euro position changes between the start of end-of-day risk contraction until the market close. Stocks
with the largest ADV are allocated into five portfolios based on the ADV. Stocks are further divided
into bins based on MRi from (9), so that negative and positive bins contain the same number of stocks.
Red lines are the standard errors. The sample consists of 55 traders, 242 stocks and the period between
September 2009 – October 2010.
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Stock ticker Selling volumes ISIN Country of domicile
HMB -61,057,050 SE0000106270 Sweden
SEBA -36,431,882 SE0000148884 Sweden
SKFB -34,010,736 SE0000108227 Sweden
SEN -30,565,274 FI0009003305 Finland
ER -25,008,516 SE0000108656 Sweden
SAND -24,977,747 SE0000667891 Sweden
VOLB -23,725,049 SE0000115446 Sweden
TIEN -17,454,346 FI0009000277 Finland
ALFA -16,154,554 SE0000695876 Sweden
NBH -15,350,872 SE0000427361 Sweden
UPM1V -14,969,286 FI0009005987 Finland
SKAB -14,691,692 SE0000113250 Sweden
ATCOA -14,280,038 SE0000101032 Sweden
ASSAB -13,425,801 SE0000255648 Sweden
TLS1V -11,457,999 SE0000667925 Sweden
ZEN -10,282,005 GB0009895292 Great Britain
SCVB -9,876,241 SE0000308280 Sweden
NOR1V -9,813,581 FI0009005318 Finland
SHBA -8,069,650 SE0000193120 Sweden
MEO1V -7,567,467 FI0009007835 Finland
KC4 -7,563,958 FI0009013403 Finland
SCAB -5,955,127 SE0000112724 Sweden
STERV -5,497,356 FI0009005961 Finland
ORION -5,181,814 FI0009014377 Finland
HUSQB -4,888,255 SE0001662230 Sweden
ORI -4,320,886 SE0001174889 Sweden
FSPAA -4,050,097 SE0000242455 Sweden
INVEB -3,583,502 SE0000107419 Sweden
SSABA -3,579,867 SE0000171100 Sweden

Table 18: The most sold stocks. The figure shows 90% of selling volumes during the risk-
contraction interval at the end of a trading day. Stock ticker is a ticker for a corresponding stock in
the dataset. Selling volumes are the aggregate selling volumes across all traders and all days (only risk
contraction intervals are taken). ISIN is a corresponding ISIN retrieved from the Thomson Reuters.
Country of domicile is the country of stock based on the stock’s ISIN. The sample consists of 55 traders,
242 stocks and the period between September 2009 – October 2010.
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Appendix B

Take trader j at time t, whose weights in the various stocks is captured by vector wj,t with the
corresponding returns ri,t for each stock i inside the portfolio. Suppose, we add securities to
this portfolio: for example, the market futures λj,t with returns rm,t. To be effectively hedged,
a trader solves the following optimization problem:

σ postj,t = minimize
λ

var(wj,trt + λj,trm,t) =>

var(wj,trt + λj,trm,t) = (wj,t + λj,tw′j,t)Σ(wj,t + λj,tw′j,t)
′ = 2wj,tΣw′j,t + λ2j,twj,tΣw′j,t,

where Σ is an exponentially weighted moving average covariance matrix.

FOC:wj,tΣ + λj,twj,tΣw′j,t = 0

λj,t = −
wj,tΣ

wj,tΣw′j,t

The optimization problem was solved via two approaches. The first approach applied corre-
sponding wj,t and Σ matrices from the sample. The second approach is numerical: the op-
timization method of Broyden-Fletcher-Goldfarb-Shanno was used to find the λj,t for each
trader’s portfolio at each interval t. Both methods yield very similar results, consistent with
Figure 26. The resulting weights of the market futures from the optimization (λt), averaged
across time periods, is represented in Figure 30.
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Figure 30: Weights in the potential market futures. The figure shows the average λj,t at each
volume-based interval during a trading day, from optimization problem defined in (13).
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”For me, the most direct and most

convincing tests of market efficiency are

direct tests of the ability of professional

fund managers to outperform the

market”.

Burton G. Malkiel

1 Introduction

What is the value of active fund management? Arguably, few questions have received more

attention in academic capital market research. Given the practical importance of the asset

management industry, and the implications for the efficient market hypothesis, an extensive

amount of research devoted to this question is not surprising. Researchers and investors, who

rely more and more on index funds and ETFs, seem to have a consensus that active management

is a zero-sum game before fees (Malkiel (2003)). However, conflicting views still exist on

whether successful active funds can be differentiated from underperforming funds ex-ante.

Several studies point to the inherent problem to separate skill from luck with a limited

history of performance data (see e.g., Barras et al. (2010); Busse et al. (2010); Fama and

French (2010); Hunter et al. (2014)). Moreover, even if skill can be identified a-priori, it is

not clear if skilled managers eventually outperform unskilled managers in the future.1 On the

other hand, many researchers have proposed sophisticated measures that seem to be able to

predict future fund returns. Examples include measures on fund activity (see, e.g., Amihud and

Goyenko (2013); Cremers and Petajisto (2009); Kacperczyk et al. (2005)), measures on trading

activity (see, e.g., Kacperczyk et al. (2008); Pastor et al. (2017); Wermers (2000)), or measures

on managers’ preferences for certain stocks (see, e.g., Cohen et al. (2005); Kacperczyk and

1For instance, in the model of Berk and Green (2004) active fund managers possess different capacities to
generate alpha. Investors compete with each other by providing ceteris paribus more money to skilled managers
up to the point at which differences in expected alpha between skilled and unskilled managers disappear.
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Seru (2007); Fang et al. (2014)).

The goal of our paper is to suggest a new and distinct approach to assess managers’ skill,

by aggregating individual fund return predictors into a composite score. Despite extensive

existing research on mutual funds, we are not aware of any systematic attempts to collect,

compare, and synthesize different available predictors of fund returns. However, without this

work, we are unable to conclude which of the predictors provide independent information about

future returns, how easy or hard it is to separate winners from losers based on the collective

academic wisdom, and how efficient is the market overall for actively managed funds. Our

work is inspired by the recent meta-studies on return predictors in the stock market (see, e.g.,

Hou et al. (2015); Harvey et al. (2016); Green et al. (2017); Jacobs and Müller (2017)) and

on the influential calls to address the ”zoo of factors” that has been discovered by researchers

over time (see, e.g., Cochrane (2011); Harvey (2017)). While this zoo is considerably larger

for individual stocks, we believe it is now the time to perform a similar exercise for mutual

funds. In addition to its connection to meta-studies on stock return predictors (in particular

Green et al. (2017)), our paper is related to a recent working paper of Jones and Mo (2017).

They show that the degree of predictability, as measured by alpha spreads from quintile sorts

or by cross-sectional regression slopes, falls by around 75% after academic publication of the

effect. In contrast to this paper, we have a different approach of combining the predictors and

the performance of our new multi-signal predictor is relatively stable over time.

In line with most prior work, our analysis focuses on actively managed, broadly diversified

US equity funds with a sample period covering January 1985 to December 2010. We select

eight prominent predictors that are shown to significantly predict fund future returns, requiring

that each measure can be entirely calculable from the CRSP Mutual Fund Dataset (hereafter:

CRSP) and Thomson Reuters Mutual Fund Holdings (hereafter: Thomson Reuters) databases.

The predictors are introduced in Table 19 and are the following: Active Share (Cremers and

Petaijisto (2009), low values deliver high performance), Carhart Alpha (Carhart (1997), high
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values deliver high performance), Characteristic Selectivity (Wermers (2000), high values de-

liver high performance), Characteristic Timing (Wermers (2000), high values deliver high per-

formance), Expense Ratio (low values deliver high performance), Fund Turnover (Pastor et

al. (2017), low values deliver high performance), R-Squared (Amihud and Goyenko (2013),

low values deliver high performance), and Return Gap (Kacperczyk et al. (2008), high values

deliver high performance).

[TABLE 19 IS ABOUT HERE]

By choosing these predictors, we address the key aspects of predictability available in the

existing research. In particular, a stock-picking ability of a fund manager is targeted in the

Carhart Alpha, Active Share, and Characteristic Selectivity predictors; an ability to time the

market is captured in the Fund Turnover and Characteristic Timing. R-Squared and Return

Gap aim to catch the combination of both, while the Expense Ratio corresponds to a group of

predictors based on internal fund features.

We start our analysis by investigating the impact of each of the respective predictors on

future performance in univariate portfolio sorts and regressions. In line with the previous lit-

erature, we find that four-factor alphas of a hypothetical strategy of going long the quintile

portfolio of funds with predictor values promising high performance and going short the quin-

tile portfolio of funds with predictor values promising low performance yields positive future

monthly returns and alphas for seven individual predictors. However, we also find that the

long-short spread for the Carhart (1997) four-factor alpha (as our baseline performance mea-

sure) is statistically significant only for six out of the eight predictors with economic magni-

tudes ranging from 0.10% (for the R-Squared forecasting measure) to 0.20% (for the Carhart

Alpha forecasting measure) per month. These values translate into marginal spreads between

1.2% and 2.4% per annum, and it is questionable whether investors should use the individual

predictors to select successful active equity funds from an ex-ante point of view.

We then dig deeper and investigate the incremental information of a predictor variable for
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future fund performance. We first observe that the correlations among the different predictors

are moderate: they range from -0.255 for the relation between Active Share and R-Squared

to +0.168 for the relation between Active Share and Expense Ratio. Hence, we conclude that

multicollinearity is not an issue in the multivariate analysis and that combining predictors could

be potentially beneficial in forecasting performance based on diversification gains. We conduct

Fama-MacBeth (1973) regressions on the fund level of returns and alphas in month t+1 on

the eight fund predictors measured in month t. Our results indicate that three out of eight

predictors remain statistically significant at least at the 10% level (Carhart Alpha, Expense

Ratio, and Turnover), while the remaining predictors do not display statistical significance in

the multivariate setting.

The main contribution of the paper is the formation of the new joint predictor. To obtain

a composite predictor for the future fund performance based on the individual variables, we

follow the econometric method suggested by Green et al. (2017) and Lewellen (2015). First,

we examine the historical relations between fund returns and the eight individual predictor

variables in multivariate regressions using a rolling estimation window of 36 months. Second,

we map the estimation coefficients to the current values of the individual fund predictors in

order to obtain a composite forecast for the funds one-month-ahead returns. We show that

this multidimensional composite predictor has strong predicting power for future fund perfor-

mance. Specifically, a hypothetical strategy of investing in the top quintile of funds based on

the composite predictor outperforms the bottom quintile of funds by 0.45% per month or an-

nualized 5.4% using the Carhart (1997) four-factor alpha as a performance metric. This spread

is statistically significant at the 1% level with a t-statistic of 6.34. Moreover, the spread re-

mains substantial and statistically significant at least at the 5% level when we evaluate fund

performance over the future 2-month, 3-month, and 6-month ahead periods.

We carefully examine whether this outperformance can be explained by different risk fac-

tors developed in the recent academic literature. For this purpose, we regress the long-short
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portfolio that is based on our composite predictor on the risk factors of the Fama and French

(2015) five-factor model, the Hou et al. (2015) four-factor model, the Fama and French (1993)

three-factor model extended by short-term and long-term reversal factors, as well as the risk

factors of the Carhart (1997) four-factor model extended by the Pastor and Stambaugh (2003)

liquidity risk factor, the Frazzini and Pedersen (2014) betting-against-beta factor, the Baker and

Wurgler (2006) sentiment index, the Bali et al. (2017) lottery factor, and the Chabi-Yo et al.

(2018) tail risk factor. Our results indicate that the return spread of the long-short portfolio

remains strong and statistically significant when adjusting for all these different risk factors.

We conduct several robustness checks to show that our results are not sensitive to several

choices that we make in our empirical analysis. First, our composite predictor strongly forecasts

future fund performance when we apply alternative rolling horizons to estimate fund alphas

and to compute historical relations between fund returns and the eight individual predictor

variables. Second, our results are stable and robust when we divide our full sample period

into two equivalent sub-periods: from January 1985 to December 1997 and from January 1998

to December 2010. Third, we show that our composite predictor strongly forecasts future

performance for funds of different size (small/medium/large) and funds of distinct investment

strategies (value/growth/other).

Finally, we check which individual predictors provide the largest additional benefit in the

forecasting power of the composite predictor. To do so, we perform regressions of the long-

short return spread of the composite predictor on the respective long-short spread of the indi-

vidual predictors. As expected, we observe that the long-short return spread of the composite

predictor is significantly related to the return spreads of Carhart Alpha, Expense Ratio, and

Fund Turnover (which came up as statistically significant fund predictors in the univariate re-

gressions). However, we surprisingly find that the long-short return spreads of Carhart Alpha,

Expense Ratio, and Fund Turnover are not able to explain the outperformance of the composite

predictor. Controlling for Carhart Alpha, Expense Ratio, and Fund Turnover, the long-short
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return spread of the composite predictor amounts to 0.30% per month (3.6% per annum) and

is significant at the 1% level when evaluated according to the Carhart (1997) four-factor alpha

as performance metric. Hence, our results suggest that combining mutual fund predictors adds

value in the selection process for active equity funds. Broadly spoken, our paper finds that

the ”collective” wisdom of academic research is helpful to separate winners from losers in the

market for actively managed funds.

The remainder of this paper is as follows. Section 2 describes the data and introduces the

individual fund predictors. In Section 3, we present empirical results for individual predictors

as well as the composite predictor and future fund performance. Section 4 concludes.

2 Data and Fund Predictors

2.1 Data

For the empirical analysis, we merge the CRSP and the Thomson Reuters databases. The CRSP

contains fund performance information on a monthly basis: fund total and net returns, total net

assets as well as fund characteristics, such as investment style, fee structure, and asset allocation

information. Thomson Reuters includes quarterly fund portfolio holdings. We merge these two

datasets using Mutual Fund Links. For constructing holding-based predictors, we also use the

CRSP US Stock database. Our sample spans between 1985 and 2010, covering 25 years.

The meta-analysis nature of our study involves the replication of several measures from

existing research. In order to pursue a synthesized approach, several decisions on consolidating

the data were made. To enable others to replicate and expand our work, we start by explaining

our filtering procedure, which is unified for all predictors. We do recognize that for several

predictors, this choice may divert from the initially identified and tested predictors from the

original papers.
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Initially, we start with the universe of all mutual funds from the CRSP for a period between

1980 and 2010. We follow Kacperczyk, Sialm, and Zheng (2008) and select domestic equity

funds that invest primarily in stocks. Thus, we eliminate balanced, bond, money market, inter-

national, and sector funds, as well as funds not invested primarily (less than 80%) in equities.

We select the funds according to the objective codes and on the disclosed asset compositions.2

As a double-check and because the objective code does not always clearly show if a portfolio

of the fund is balanced, we also check the type of assets the fund invests in and exclude those

that hold less than 80% or more than 105% in stocks on average.

The CRSP database includes information on all mutual funds, including those who termi-

nated their existence. Thus, our sample is free from the potential survivorship bias. However,

Evans (2004) addresses a survival bias in the CRSP database, which results from a strategy used

by fund families to increase their return histories. In particular, these funds would report pub-

licly only the history of the surviving incubated funds. To address this issue, we exclude funds

that do not have fund names in the CRSP and funds that have observations before the reported

fund-starting year. In the last step, after the merge of the two databases, we exclude funds

that have fewer than ten disclosed stocks in a given year and funds that did not disclose their

holdings during the last year. As a result of such sample selection, the number of distinct funds

in our analysis is 2,815, with 420,175 monthly observations on average. Our original dataset

spans from 1980 until 2010, but as some predictors require a history of up to three years, we

end up with a sample that covers a period between January 1985 and December 2010.

Our analysis takes place on the portfolio level; hence, we aggregate observations for dif-

ferent share classes into one portfolio fund. For the total net assets (hereafter: TNA) under

2First, we leave those funds that have the following objectives based on the ICDI classification: AG, GI,
LG, or IN. In case a given fund lacks any of the mentioned ICDI objectives, we apply the following Strategic
Insight objectives: AGG, GMC, GRI, GRO, ING, or SCG. If a fund has neither of the two described strategies,
we proceed with the Wiesenberger Fund Type Code, selecting the following objectives: G, G-I, AGG, GCI, GRI,
GRO, LTG, MCG, and SCG. If still none of the objectives exists for a fund and it has a Common-stock policy, we
leave that fund. We also recheck and eliminate funds having the following Investment Objective Codes: municipal
bonds/international/bond/preferred/balanced.
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management, we sum up the TNAs of the different share classes.

The dynamics of our sample is represented in Table 20. The number of funds has increased

from almost 400 in the year 1985 to the peak of 2,185 funds in the year 2005 and then dropped

to 1,674. There are 2,815 distinct funds in our sample universe, with an average of 1,431 funds

per year.

[TABLE 20 IS ABOUT HERE]

Summary statistics shown in Table 21 report that our mutual funds invest 94.2% in stocks

and fewer proportions in cash (4.6%) and bonds (0.6%). The percentage of holdings in other

assets is also relatively small (only 0.6%). Average monthly excess (after-fee) returns are 0.7%.

Funds are 12 years old on average, with a turnover ratio of 88.1%. The sample includes funds

of different size, with an average TNA of $941 million and a standard deviation of 4,326$

million. Table 29 in the Appendix contains a more detailed summary statistics for each size

portfolio. When splitting the sample into three groups with the same number of fund-month

observations, the number of distinct funds inside each varies from 1,136 for a subsample of

large funds (average TNA of $2,825 million) up to 2,478 of small funds (average TNA of $12

million).3

[TABLE 21 IS ABOUT HERE]

2.2 Construction of Predictors

In this section, we explain the construction of each of the eight predictors in detail.

Active share (hereafter: AS). This measure aims to represent the share of fund portfolio

holdings that differ from the holdings of the benchmark index. Cremers and Petajisto (2009)

show that funds with the highest AS significantly outperform their benchmarks, both before

3The number of distinct funds for each size group does not add to the total number of funds from Table 20,
because fund’s TNA is not a fixed number and it changes, sometimes often.
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and after expenses and exhibit strong performance persistence. Thus, the measure provides

information about a fund’s potential for beating its benchmark index. The logic is the following.

When a fund overweights a stock relative to its weight in the index, it has a long position in

this stock. To the contrary, when a fund underweights a stock compared to the index or does

not buy it at all, it has an active short position in it. One may decompose each portfolio of fund

holdings into two parts: a static portfolio that holds securities in the weights close to the fund’s

benchmark index and a zero-net-investment long-short portfolio that holds securities in weights

different from the benchmark, in its attempt to outperform it. The size of this active long-short

part is the idea behind the AS predictor. The larger the discrepancy between the constitutes of

the fund and the benchmark, the greater the AS. The benchmark index is defined to be the index

with the lowest active share to a given fund. As mutual funds almost never take actual short

positions, their AS will always be between 0 and 100%.

Our construction of the measure until 2009 is based on the publicly available data from

Antti Petajisto’s website. After 2009, we replicate the measure using data on indices (index

returns and ETF holdings) from Morningstar direct. Quarterly ETF holdings are merged with

the CRSP for additional information about stocks. When holdings are reported only semi-

annually, the missing quarters are filled up by using the information of the latest previous

quarter. We do not calculate AS if less than 95% of positions for the benchmark could be

identified. AS is calculated as the sum of the absolute value of the differences between the

weights of the stocks in a portfolio and their weights in the fund’s benchmark:

Active Share :=
1

2

N∑
i=1

|wfund,i − windex,i| , (1)

where wfund,i and windex,i are the portfolio weights of asset i in the fund and the index, and the

sum is taken across all assets.

Three-year Carhart Alpha (hereafter: CA). This predictor relates to the past mutual fund

performance. Carhart (1997) shows that funds with high past three-year alphas from the four-
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factor model demonstrate relatively higher alphas and expected returns in subsequent periods.

CA is estimated as the one-month abnormal return from the four-factor model, where factor

loadings are estimated over the previous three years:

αit := Rit −RFt − b̂1it−1RMRFt − b̂2it−1SMBt − b̂3it−1HMLt − b̂4it−1PR1Y Rt, (2)

where RMRFt, SMBt, HMLt, PR1Y Rt are Fama-French risk factors (market, size, value,

and momentum) at month t, Ri,t is a return of fund i in month t. Following the original paper,

we estimate alphas on a monthly rolling-window basis for every fund that has a minimum of

thirty observations. Specifically, for each fund at each date, we use the previous 36 months to

estimate the betas on the Fama and French (1993) and Carhart factors. We then use those betas

in (2) to calculate αit. Mutual funds with high alphas demonstrate above-average alphas in the

next period and large expected returns in subsequent periods. This can also be seen as a shred

of supportive evidence on funds’ performance momentum.

Characteristic selectivity (hereafter: CS). Wermers (2002) decomposes mutual fund returns

into several components. One of them is the stock-picking ability of the fund manager, af-

ter controlling for a particular style used by that manager (initially developed by Daniel et al.

(1997)). This measure helps to detect whether portfolio managers can successfully select stocks

that outperform a peer stock with the same characteristics. The characteristic-based benchmark

portfolios are constructed according to three dimensions – size, book value of equity to market

value of equity ratio, and a prior-year return of a stock. To construct benchmark portfolios, we

conduct the following three-step procedure. First, all stocks are ranked by their market capital-

ization at the end of June each year. The resulting quintile portfolios are divided further into

book-to-market quintile portfolios, based on their book-to-market values at the end of Decem-

ber preceding the ranking year. Finally, the resulting 25 portfolios are divided further based on

the past twelve-month stock returns through the end of May of the ranking year. Eventually,

each of these portfolios represents a unique combination of different size, book-to-market, and
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momentum features. They are re-balanced in June each year. Thus, a characteristic-adjusted

return for a given stock is computed as the buy-and-hold stock return minus the buy-and-hold

value-weighted benchmark return during the same quarter.

The CS predictor is thus calculated as:

CSt :=
N∑
j=1

w̃j,t−1(R̃j,t − R̃
bj,t−1

t ), (3)

where w̃j,t−1 is the portfolio weight on stock j at the end of quarter t−1, R̃j,t is the quarter t buy-

and-hold return of stock j at the end of quarter t− 1, R̃bj,t−1

t is the return on the characteristics-

based benchmark portfolio matched at the end of quarter t − 1. The CS is shown to predict

future mutual funds’ returns positively.

Characteristic timing (hereafter: CT). In the same paper, Wermers (2000) investigates

whether portfolio managers successfully time their portfolio weightings on the same three char-

acteristics as in the CS – size, book-to-market, momentum. Indeed, if these three characteristic-

based strategies have time-varying expected returns, a manager can exploit this time variability

and potentially generate additional returns to a fund. CT thus measures the manager’s ability

to time different stock characteristics. It is constructed as:

CTt :=
N∑
j=1

(w̃j,t−1R̃
bj,t−1

t − w̃j,t−5R̃
bj,t−5

t ), (4)

where w̃j,t−1 is the portfolio weight on stock j at the end of quarter t − 1, R̃bj,t−1

t is the return

on the characteristics-based benchmark portfolio matched at the end of quarter t− 1 or t− 5.

In the estimation, we deduct returns at t based on matching characteristic portfolio of quar-

ter t − 5 (weights are also belong to quarter t − 5) from the return at t based on matching

portfolio of quarter t− 1 (weighted at the end of quarter t− 1). Intuitively, CT will be high for

those fund managers who increase the fund’s weight on stock j before the payoff to the stock
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characteristics is the highest. The CT is found to positively predict future mutual funds’ returns

in the paper of Wermers (2000).

Expense ratio (hereafter: Exp). Gil-Bazo and Ruiz-Verdu (2009) introduce another pre-

dictor by uncovering the puzzle of a negative relationship between fund performance and fees

charged by a fund. Although expense ratios were already tested in Carhart (1997), the above-

mentioned authors rather concentrate on a before-fee performance and show that funds with

worse before-fee performance charge higher fees. In general, mutual funds charge fees for

the services they provide to investors. Because the main service supplied by a mutual fund is

portfolio management, the fees should reflect funds’ risk-adjusted performance. These manage-

ment fees are typically computed as a fixed percentage of the value of assets under management.

They are also a part of other operating expenses such as custodian, administration, accounting,

registration, which all comprise the fund’s expenses and are deducted on a daily basis from the

fund’s net assets by the managing company. Expenses are expressed as a percentage of assets

under management known as the expense ratio and are taken from the CRSP.

Fund turnover (hereafter: Turn). The study by Pastor et al. (2017) finds that high fund

turnover is associated with high future fund returns. To show this, they use the following

regression with fund fixed effects:

Ri,t := αi + bXi,t−1 + εi,t, (5)

where Ri,t is the funds benchmark-adjusted return in month t, and Xi,t−1 is the funds turnover

in period t-1. This is a lagged fund-adjusted predictor that explores the hypothesis that a

fund trades more when it perceives greater profit opportunities and can exploit such ”alpha-

producing” opportunities. The authors also note that it is important to control for the general

level of trading activity by a fund, suggesting that funds with above long-term average volumes

are skilled. As this approach uses the whole period for in-sample regressions, the findings from
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the original paper cannot be implemented as a trading strategy.

To capture the idea from the paper and to build a strategy based on the results, we calculate

an ”excess turnover”. This is the fund’s turnover in month t minus the fund’s average turnover

over five recent years. Such a measure can be used in a trading strategy because all information

is known. We thus standardize turnover at the fund level using its previous history and require

a fund to have at least five years of historical data.

R–squared. Amihud and Goyenko (2013) propose the measure of active fund management.

It stems from the R2 obtained from a regression of fund returns on the four-factor model. The

measure is estimated on a rolling basis over 24 months preceding the test month. The low R2

indicates that a fund manager deviates from standard factor models and significantly predicts

better fund performance in the next month.

Return gap (hereafter: RG). This measure is claimed to be evolved from the unobserved

actions of mutual fund managers. Such actions might potentially appear from the difference

between returns on the fund’s portfolio holdings and the returns reported by a fund. For exam-

ple, there can be the specific timing of trades due to informational advantage and, correspond-

ingly, their transaction costs. Kacperczyk et al. (2008) report that this deviation of the reported

fund return and the return on a portfolio that invests in the previously disclosed fund holdings

can predict future fund performance. Although a monthly measure of RG is on average close

to zero, the authors find significant cross-sectional heterogeneity across funds. It suggests that

hidden costs are more important for some funds, while hidden benefits are more pronounced

for others.

The measure consists of two parts. First, the net investor return of fund f at time t (RF f
t )

is calculated as:

RF f
t :=

NAV f
t +Df

t + CGf
t −NAV

f
t−1

NAV f
t−1

, (6)

where NAV f
t is the net asset value of the fund f shares in month t, including dividends (D)
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and the capital gain (CG) in the corresponding month. The other constitute is the return on a

hypothetical buy-and-hold portfolio that invests in the most recently disclosed fund’s holdings,

after subtracting expenses:

RHf
t :=

n∑
i=1

w̃f
i,t−1Ri,t. (7)

After adjusting weights w̃i,t−1 for stock splits, RG aggregates the two parts (6) and (7):

RGf
t := RF f

t − (RHf
t − EXP

f
t ), (8)

where EXP f
t are the fund’s expenses in month t.

After constructing all eight predictors, we winsorize each of them at 1% level for the whole

sample period. Missing values are filled with cross-sectional means.

2.3 Summary statistics of constructed predictors

Table 21 (Panel A) contains summary statistics of eight mutual fund predictors. The total

number of unique funds and the corresponding number of month-fund observations slightly

varies, depending on the inputs required for replication of each predictor. On average there

are 2,627 funds per predictor, with a maximum of 2,815 funds for the Exp measure and a

minimum of 2,399 funds for the AS and CT predictors. For example, the measures that do

not require mutual funds’ holdings and long history of consecutive observations (CA, Exp,

Turn, R−squared) have a higher number of observations than those that do. In particular, the

CT predictor has fewer observations than the CT and other predictors, because of a so-called

”active” part of its construction, for which we need to have the reported fund holdings, stock

returns and corresponding benchmark returns available for a current month as well as for the

previous 12 months. For those papers that report the average values of predictors, the means

of each constructed predictor are consistent with the original sources. Turn has the largest

standard deviation of 0.917, indicating heterogeneity across funds’ trading volume and trading
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activity. RG has only 158,674 fund-month observations due to its extensive dependency on

both holdings, expenses, and return history.

As we intend to use all predictors in the multivariate setting, it is crucial to inspect cross-

correlations among them. If the correlation is high, we face potential multicollinearity con-

cerns. Even though multicollinearity does not lead to bias in estimated slope coefficients, it

increases standard errors of the coefficients and might lead to inaccurate conclusions. Abso-

lute pairwise Pearson correlations among predictors occur to be rather low, with the lowest

value of -0.0002, between CA and AS, and the highest absolute value reaching 0.255 between

R − squared and AS. (Table 21 Panel B). This allows us to avoid a potential problem of

multicollinearity and to use all predictors together in further analysis.

3 Empirical Analysis

In this section, we test the predictive power of the constructed predictors. We start with univari-

ate analysis and check whether each measure demonstrates predictive power in portfolio sorts,

OLS, and Fama-MacBeth regressions. Next, we shift to a multivariate setting and combine all

predictors in order to reveal which of them demonstrate independent information in terms of

future fund return predictability.

3.1 Univariate analysis

The univariate setting delivers two main goals: (1) it provides a sanity check on whether the

predictors were correctly constructed, (2) we use the results from univariate estimations as the

baseline to be compared with the performance of the combined predictor.

The differences between the results of the constructed measures and the ones from the original

papers can arise from several caveats. First, each paper applies its filtering procedure on a fund
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universe, including different threshold requirements (e.g., on the size of a share of stocks for

equity mutual fund), various objective codes, etc. We apply identical filtering steps for each

of eight predictors, relying on a cleaning procedure from Kacperczyk et al. (2008). Second,

there is a large number of methods on how to test the performance of a predictor. Currently, the

methods used in the original papers are diverse, and it is upon the decision of authors to choose

types of regressions, prediction horizons, etc. on data transformation and estimations. We

mainly use two approaches to identify the ability of the measure to predict next month’s fund

excess returns: portfolio sorting and Fama-MacBeth regressions with a different combination

of factors.

Because of these reasons, predictors may divert and have missing values. We avoid discarding

some measures only because their values are missing in one or few fund-months. Instead, we

follow Green et al. (2017) and replace empty values with the corresponding cross-sectional

averages. We also winsorize predictors at the 1st and 99th percentiles for the entire sample

period.

We start testing the predictors by applying one of the most common approaches used in the

mutual fund literature on predictability – portfolio sorts. Every month the funds are sorted

based on the value of the corresponding predictor up to month t-1. A given mutual fund is

allocated into one of the five quintile portfolios: portfolio 5 includes funds with the predictor

values that claim to predict higher future fund returns. We map these predictors to the next

month excess returns on a fund-month basis. Then, we calculate equal-weighted excess returns

of each resulting quintile portfolio in month t, adjusting for different risk factors, and compare

results between the top and the bottom portfolios. If there is a pronounced difference, a trading

strategy exploiting this difference should make a profit. So, we go long (buy) the portfolio with

the highest predictor value (quintile 5 in our case) in the previous month and go short (sell) the

portfolio with the lowest predictor value (quintile 1 in our case). The return spread between

these two portfolios points at the ability of such strategy in generating positive future excess
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returns, and the predictive power of a given fund measure.

Table 22 (Panels A-D) shows return spreads of the strategy in the next month based on the

predictor value in the previous month for each quintile portfolio. In general, results are con-

sistent with the original papers, and predictors generate excess future returns that are robust

to controlling for risk factors. Although raw excess returns do not everywhere present gradual

changes in returns from bottom to top portfolios, the returns of the long-short strategy have

expected signs and are significant for most measures. Returns for CS appear to be statistically

insignificant for a trading strategy, which might be explained by the fact that the original paper

constructs the across-fund CS, weighted by the total net assets of each fund. The long-short

portfolio, based on CA earns the highest returns of 0.16% per month. Turn shows the highest

statistical significance with an average monthly return of 0.14%. We also test whether each

long-short portfolio generates a positive alpha on top of common risk factors: the market, the

Fama-French, and the Carhart factors (Table 22 Panels B-D, correspondingly). Most predictors

continue to perform in the same manner as without the factors, with slightly changed coeffi-

cient magnitude. CA, CT , Exp, Turn, and R−square stay significant independent on the set

of risk factors included, keeping the expected sign and with a relatively small variation in the

return values. CS becomes significant on the 5% level only when Carhart factors are included.

Panel E of Table 22 demonstrates results of a different approach of testing predictability: Fama-

MacBeth regressions (FMB henceforth). There are mainly two reasons of why the FMB regres-

sions are a robust and relevant approach from an econometric point of view for our purpose to

identify independent predictors of funds’ future returns. First, the FMB easily deals with the

models in which the slope coefficients change over time. As this refers to the varying nature

of our predictors, it is easier to apply FMB than time-series or cross-sectional regressions sep-

arately. The other advantage is that FMB properly handles big cross-sectional data, allowing

entities to be correlated with each other. Fund trading is found to be correlated: Koch et al.,

2016 find that trading of mutual funds are correlated because of the common ownership across
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funds and because the liquidity shocks are also correlated. As the correlation among fund in

the cross0section would generate the correlation in the errors, the FMB regressions are the way

to correct the standard errors.

[TABLE 22 IS ABOUT HERE]

Results of the FMB regressions are not always in line with the portfolio sorts. Turn is the

most statistically significant predictor in this setting, although with a rather low coefficient of

0.0006. This means that a portfolio weighted toward funds with high turnover tend to earn

higher future excess returns than a portfolio of funds with low turnover. A trading strategy built

on the expense ratio (Exp) is associated with the largest returns of 0.108 among all predictors.

CA, Exp and Turn remain significant with the expected signs of coefficients. This is not the

case for AS4, CT , R− squared, and RG that have no significance of their FMB coefficients.

3.2 Multivariate analysis

In this section, we combine the predictors into multivariate analysis. The main goal is to deter-

mine how many and which of eight predictors contain independent information on predicting

future fund returns. Because of the properties mentioned in the previous section, we argue that

the FMB approach enables us to most powerfully identify the independent determinants, those

that would stay significant when the estimation is controlled for all other predictors.

Estimation results in Table 24 (Panel A) show that for the period from 1985 to 2010, only three

predictors occur to be significant: CA, Exp, and Turn, all at 1% confidence level. These pre-

dictors are also robust to the inclusion of different risk factors: the coefficients vary narrowly,

and significance does not drop.

The predictive power may be driven by a subsample of specific funds or a particular time pe-

4In the original paper, the performance of the AS is analyzed using the benchmark-adjusted returns. Having
replicated the measure using benchmark-adjusted returns, we still do not observe the FMB regression to reveal the
statistical significance of the AS predictor.
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riod. To investigate this issue, we split the sample based on (1) fund characteristics such as size

and investment strategy, and (2) time periods. Panel B of Table 24 shows the results of different

subsample tests. The results are mostly stable over two equal time periods from 1985-1997

and 1998-2010 (columns 1-2); however, time variability of some predictors reveals interest-

ing insights. CA is a better predictor for an earlier period of 1985-1997, while it becomes

insignificant during 1998-2010.

The magnitude and statistical significance of Exp decreases from the earlier to the later sample

period from -0.0956 to -0.1167, while Turn performs well for both time periods. These pre-

dictors that yield to be insignificant in the FMB regressions (AS, CS, CT , R − squared) of

the whole sample period do not become significant in either of the time subperiods. The only

predictor that turns out to change its statistical significance across the two sub-periods is the

RG: it significant at 10% level in an earlier subsample.

[TABLE 24 IS ABOUT HERE]

A cross-sectional fund split reveals some further insights. We first explore the portfolios based

on the fund investment styles. There are three groups: value, growth, or other defined accord-

ing to the fund objective code reported in the CRSP database. Growth funds are the funds

that mostly hold growth stocks that are expected to grow faster than the overall market. Value

mutual funds invest primarily in value stocks, which are stocks that, as investors believe, are

selling at a lower price in relation to their earnings or other fundamental value measures. There

are three characteristics in the CRSP database that help us to allocate a given fund into either

growth, value, or other type of investment strategy. These are fields called Lipper Objective

codes, Wiesenberger Objective codes, and Strategic Insight Objective codes. As the Lipper

classification has the largest number of non-empty strategy flags, we first allocate funds based

on these codes. Then we look at the Wiesenberger classification code and finally use the Strate-

gic Insight Objective codes.5 Funds with different strategy codes and those that do not have a

5A given fund is assigned into ”value fund” portfolio when it has the following strategy codes: LCVE, MLVE,
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strategy flag are assigned into a portfolio of ”other” investment strategies.

Finally, we have 1,822 growth, 704 value, and 1,378 funds with other investment strategies.6

Interestingly, two measures that aim to tackle fund’s stock selectivity (AS andRG) work better

for value funds. This might indicate that value fund managers are skilled in identifying market

inefficiencies, meaning that they identify the stocks that are traded at cheaper prices than they

are actually worth. CA significantly predicts excess returns of growth and other-strategy funds,

suggesting that returns of these funds are more persistent on a three-year horizon. Relatedly,

the predictability of Exp is driven by value and other-strategy funds. Turn performs well for

growth and other funds at almost the same magnitude and loses power for value funds.

The power of predictors also varies across different fund sizes. CA, Exp, and Turn perform

well across funds of all sizes. AS works only for small funds, probably because small funds

are the ones that can run active strategies by diverting from the index benchmarks more easily.

This is also a case for RG that loses power for middle and large funds. This predictor also

relates to the deviation of fund holdings from the benchmark, and the argument of small funds

being more ready to deviate from the benchmarks is also relevant for RG. Other measures do

not show up to be significant for any size portfolio.

3.3 Joint Predictor

As the statistical significance of individual predictors in multivariate FMB regressions does

not necessarily imply substantial forecasting power for future performance, in this section, we

conduct different tests focusing on measuring the magnitude of economic benefits by exploiting

the full set of our eight predictors.

We follow the method suggested by Lewellen (2015) and Green et al. (2017) and create the joint

SCVE, MCVE. The ”growth fund” strategy codes are: ING, GRO, GRI, AGG, G, GI, LCGE, MCGE, MLGE,
SCGE, MLGE, MCGE, SCGE, AGG, GRI, GCI, SCG, MCG, LTG, GRO.

6The total number of funds is larger than 2 815 from Table 20, because the strategy flag is not stable over
time; i.e., it can change throughout the sample period.
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fund return predictor as follows. We run FMB regressions of the excess returns in month t+1 on

the joint predictor in month t. This is done on a rolling basis with the fixed estimation window

of 36 months: we use the estimation period from month t-36 up to month t and excess fund

returns in month t+1. The fitted values from these regressions are saved and used as a basis

for creation of five quintile portfolios, on a monthly frequency of hypothetical rebalancing.

The newly combined predictor is tested by portfolio sorting and FMB regressions, both also

controlled for different risk factors models.

Table 25 shows the performance of our newly created variable under several specifications.

Quintile portfolios with the lowest value of the combined predictor persistently show the lowest

average returns ranging from -0.3% (on top of the CAPM risk factor) to 0.38% (raw returns

without adjusting for risk factors). At the same time, portfolios with the highest combined

predictor values generate positive and statistically significant returns ranging from 0.16% (on

top of the Carhart risk factors) to 0.86% (raw returns without adjusting for risk factors). The

long-short portfolio formed on a new prediction variable earns average raw monthly excess

returns of 0.48% per month and statistically significant at the 10% level. Adjusting for the risk

factors does not affect the results: the trading strategy still performs well and earns an average

alpha of 0.48% per month when Carhart risk factors are included. Again the spread shows

statistical significance at the 1% level.

[TABLE 25 IS ABOUT HERE]

In order to see further how stable and persistent the return-generating process of the trading

strategy based on the combined predictor is, we calculate excess future returns with a horizon

of two months. Panel A Table 25 present cumulative return for two months. The values are

calculated as the natural log of one plus the cumulative mean portfolio returns starting after

the month when sorting is made (columns 5). Returns of the portfolio built from the funds

with the highest combined predictor are 1.71% for the following two months. The long-short

trading strategy generates significant returns of 2.91% for an out-of-sample period lasting for
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six months.

Figure 31 represents the dynamics of cumulative returns for an extended duration of the whole

sample period. Visual inspection of the figure indicates that: (1) cumulative returns increase

on average throughout the time, (2) the mean returns for the portfolio slightly fell in early 2002

and sharply decreased in 2008. These declines both correspond to the stock market downturn

in 2002 and the financial crisis of 2008. Such return decline during these periods can suggest

that the new predictor is exposed to a market crash risk.

[FIGURE 31 IS ABOUT HERE]

Finally, we use our new combined predictor using the FMB specification. The predictor gener-

ates positive and significant coefficients on top of different combinations of risk factors and is

statistically significant at the 10% level at all specifications of risk factors (Panel B Table 25).

To summarize, this section shows the results of identifying independent measures that predict

funds’ future returns in a multivariate setting. Combining the replicated predictors, we create

the joint combined predictor. We show that this new predictor performs better compared to

the baseline model of univariate predictor estimations in both portfolio sorting and FMB ap-

proaches. For example, the highest monthly return of the long-short portfolio spread on top

of Carhart factors of 0.14% is found for CA, while the comparable value of the combined

predictor is 0.45%. For FMB regressions, the predictor with the highest coefficient (also CA)

amounts to 0.057 (with corresponding t-statistics of 3.51), while the same estimate of the new

predictor is 0.940 (with corresponding t-statistics of 7.00).

3.4 Robustness

As our new variable performs better than benchmark specifications under all settings, this part

focuses on different robustness tests. First, we check whether the inclusion of various risk

factors weakens the predictability. Second, the predictability of the joint predictor is analyzed
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across different cross-sectional and time-series splits. Eventually, we disentangle the predictor

and look closely on its potential drivers.

In the first robustness check, we check whether the predictive power of the new joint predictor

depends on the inclusion of different risk factors found in the existing research. We apply

the following additional risk factors: the market (MKT), small-minus-big (SMB), high-minus-

low (HML) from Fama and French (1993), monthly premium on winners minus losers (UMD)

based on Carhart (1997), market-wide liquidity (LIQUI) introduced by Pastor and Stambaugh

(2003), long-run reversal effect (LTREV) found by De Bondt and Thaler (1985), factor that

exploits the return reversal at horizon of one month (STREV by Jegadeesh (1990)), betting-

against-beta (BAB) found by Frazzini and Pedersen (2014), and the quality-minus-junk (long

high-quality stocks and shorts low-quality stocks) factor by Asness et al. (2013).

We regress the return spread, which is the return difference between the top and the bottom

quintile portfolios based on the new combined predictor on these different risk factors. Table

26 shows that in all specifications, the long-short portfolio generates a significant alpha rang-

ing from 0.39% (in the model that includes Carhart and LIQUI factors) up to 0.51% (in the

model that includes only Carhart factors) on a monthly basis. In each specification, the alpha

is statistically significant at the 10% level.

We also check whether the predictive potential of the new variable is driven either by a specific

period or by a particular group of funds. For this purpose, we investigate the cross-sectional

split on the fund size (small, middle, large), fund investment strategy (value, growth, other),

and for the time period (1985-1997, 1998-2010). Table 27 (Panel B) shows that there is a slight

decrease in alphas and FMB coefficients in the later period of 1998-2010, but the predictive

power is still strong and statistically significant. The predictor is also stable across the sub-

samples of different fund size (Panel C) and investment styles (Panel D). In each subsample,

estimations demonstrate positive significant alphas and FMB coefficients of the new combined

variable.
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[TABLE 27 IS ABOUT HERE]

We proceed with further analysis of the combined predictor variable. As its performance

can be driven exclusively by those predictors that happen to be significant in a multivariate

FMB regression, we disentangle further analysis in two parts. First, we estimate multivari-

ate FMB by regressing the spread of the trading strategy based on each significant predictor

(CA,Exp, Turn) on the return spread based on the new predictor. and then insignificant ones

(R − squared, CT , CS, RG). Panel A of Table 28 indicates that no matter which risk factors

are included and which time period is taken, the strategy still generates positive and statisti-

cally significant alphas. Interestingly, positive and significant alpha exists when the strategy

is regressed on the set of insignificant predictors as well. We thus conclude that this is truly

a combination of the eight distinct predictors that contribute to the performance of the joint

predictor.

[TABLE 28 IS ABOUT HERE]

3.5 Limitations

While our study is the first to estimate the simultaneous predictive power of predictors of differ-

ent nature on funds’ excess returns, we admit several limitations of this study. First, we replicate

and examine only about 40% of all predictors currently available in the literature. This might

be a caveat in identifying truly independent predictors of funds’ performance. Thus, it is also

not correct to generalize our results to the whole universe of 25+ predictors, because we have

not chosen predictors randomly from the population of all predictors. In particular, we con-

centrate on those measures that can be replicated with CRSP and Thomson Reuters databases

that are available to us. Second, our treatment of missed values (replacing them with the cross-

sectional average) might cause estimation inaccuracies. Third, the performance of a trading

strategy created from the new combined predictor does not account for trading costs/fees of
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monthly rebalancing that might be relatively high.

4 Conclusion

The goal of our paper is to suggest a new and distinct approach for assessing a manager’s

skill by aggregating individual fund return predictors into a composite score. In line with most

prior work, our analysis focuses on actively managed broadly diversified US equity funds us-

ing a sample period from 1985 to 2010. We select eight prominent predictors that are shown

to significantly predict future fund returns, requiring that each measure can be entirely cal-

culable from the CRSP and Thomson Reuters databases. We map the estimation coefficients

to the individual fund predictors’ current values to obtain a composite forecast for the funds’

one-month-ahead returns. We show that this multidimensional composite predictor has strong

predicting power for future fund performance. Specifically, a hypothetical strategy of investing

in the top quintile of funds based on the composite predictor outperforms the bottom quintile

of funds by 0.45% per month or annualized 5.4% using the Carhart (1997) four-factor alpha as

a performance metric. This spread is statistically significant at the 1% level with a t-statistic

of 6.34. Moreover, the spread remains strong and statistically significant at least at 1% level

when we evaluate fund performance over the future 2-month, 3-month, and 6-month ahead pe-

riods. We conduct several robustness checks to show that our results are not sensitive to several

choices that we make in our empirical analysis. Broadly spoken, our paper finds that the ”col-

lective” wisdom of academic research might be helpful to separate winners from losers in the

market for actively managed funds.
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Figure 31: Cumulative return of the joint predictor. This figure plots ln(1+cumulative mean)
of monthly long-short portfolio returns based on the joint predictor. The predictor was formed using the
method suggested by Lewellen (2015) and Green et al. (2017). We run FMB regressions of the excess
returns in month t+1 on eight existing predictors in month t, on a rolling basis of 36 months. The fitted
values from these regressions are saved and used as for five portfolios sorted, on a monthly frequency of
hypothetical rebalancing. The sample covers US mutual funds over a period between 1985 and 2010.
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Predictor Abbreviation Original Expected

in the paper source sign

(1) (2) (3) (4)

Active share AS Cremers and Petaijisto (2009) +

3-year Carhart alpha CA Carhart (1997) +

Characteristic selectivity CS Wermers (2002) +

Characteristic timing CT Wermers (2002) +

Expense ratio Exp Gil-Bazo and Ruiz-Verdu (2009) −

Fund turnover Turn Pastor, Stambaugh, and Taylor (2017) +

R-squared R-squared / R2 Amihud and Goyenko (2013) −

Return gap RG Kacperczyk, Sialm, and Zheng (2008) +

Table 19: Mutual fund predictors used in the study. This table summarizes mutual fund
predictors chosen to be replicated and used in this study. Column (2) shows a short abbreviation
for a corresponding predictor that is used throughout this paper. Column (3) indicates the
original paper, from which each predictor is taken. Column (4) contains the expected sign of
the relationship between a given predictor and higher fund returns in the next month, based on
the results from the original papers.
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Panel A: Number of funds and observations

Year Number of distinct funds Number of fund-month observations

1985 411 4,515
1986 474 5,160
1987 551 6,021
1988 593 6,793
1989 625 7,166
1990 674 7,645
1991 733 8,312
1992 879 9,275
1993 1,020 11,041
1994 1,150 12,583
1995 1,266 13,904
1996 1,421 15,348
1997 1,562 17,340
1998 1,667 18,513
1999 1,794 20,116
2000 1,981 21,772
2001 2,053 23,194
2002 2,118 24,239
2003 2,157 24,786
2004 2,190 25,046
2005 2,204 25,027
2006 2,160 24,942
2007 2,074 24,043
2008 1,957 22,835
2009 1,833 21,066
2010 1,678 19,493

Total 2,815 420,175
Average per year 1,431 16,160

Panel B: Summary statistics
Mean Median Standard deviation 25% 75%

Return (per month) 0.007 0.039 -0.02 0.011 0.055
TNA (total net assets, in millions $) 941.1 94.2 4 326 18.3 441.4
Age (in years) 12.2 7.8 13.5 3.6 15.2
Expense ratio (in %) 1.3 1.2 1.4 0.9 1.5
Turnover ratio (in %) 88.1 61 123 30 110
Proportion invested in stocks (in %) 94.2 95.4 4.4 92.2 97.4
Proportion invested in cash (in %) 4.6 3.6 4.3 1.6 6.3
Proportion invested in bonds (in %) 0.6 0 0 0 0.3
Proportion invested in other securities (in %) 0.5 0 2.5 0 0.4

Table 20: Summary statistics of the fund universe. This table provides summary statistics of
mutual funds over a period between January 1985 - December 2010. The funds were selected according
to the filtering procedure by Kacperczyk et al. (2008).
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Panel A: Summary statistics of distinct predictor

Number of funds Number of fund-month Mean Standard 25% 75%
observations deviation

AS 2,399 227,677 0.751 0.221 0.663 0.909
CA 2,697 318,690 -0.001 0.019 -0.01 0.008
CS 2,750 322,863 0.000 0.069 -0.035 0.028
CT 2,399 170,656 0.003 0.123 -0.003 0.073
Exp 2,815 229,129 0.013 0.006 0.0091 0.015
Turn 2,417 206,238 0.004 0.917 -0.707 0.691
R2 2,781 355,254 0.902 0.088 0.875 0.961
RG 2,759 158,674 -0.001 0.003 -0.002 0.0003

Panel B: Correlation of predictors
AS CA CS CT Exp Turn R2 RG

AS 1.000
CA -0.002 1.000
CS 0.003 0.041 1.000
CT -0.008 -0.019 -0.055 1.000
Exp 0.168 -0.027 -0.009 0.016 1.000
Turn 0.003 0.008 0.025 0.023 0.022 1.000
R2 -0.255 -0.005 -0.035 0.088 -0.196 -0.031 1.000
RG -0.016 -0.021 0.040 -0.066 -0.048 0.014 -0.018 1.000

Table 21: Statistics across distinct predictors. Panel A presents the summary statistics for eight
mutual fund predictors used in the analysis. Predictors are constructed as follows: AS is active share
is from Cremers & Petaijisto (2009), CA is three-year Carhart alpha from Carhart (1997), CS and CT
are characteristic selectivity and characteristic timing from Wermers (2000), Exp is expense ratio from
Gil-Bazo & Ruiz-Verdo (2009), Turn is fund turnover from Pastor, Stambaugh, and Taylor (2014), R2 is
the R-squared from a regression on a multi-factor benchmark model from Amihud & Goyenko (2013),
RG is the return gap from Kacperczyk, Sialm, and Zheng (2008). Panel B shows the pairwise Pearson
product-moment correlation across pairs of fund predictors. The predictors are winsorized at 1% level
for the whole sample period, and missing values are filled with cross-sectional means. The sample
period is from January 1985 to December 2010, with a monthly frequency of observations.
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Panel A: Raw Excess Returns
Portfolio AS CA CS CT Exp Turn R2 RG

1 0.0051 0.0044 0.0054 0.0049 0.0059 0.0046 0.0061 0.0060
2 0.0048 0.0051 0.0057 0.0063 0.0053 0.0048 0.0058 0.0064
3 0.0112 0.0049 0.0052 0.0114 0.0078 0.0050 0.0055 0.0065
4 0.0056 0.0052 0.0056 0.0093 0.0062 0.0070 0.0048 0.0099
5 0.0064 0.0061 0.0061 0.0049 0.0053 0.0057 0.0046 0.0067

5–1 0.0015*** 0.0016*** 0.0006 0.00064** -0.0009*** 0.0011*** -0.0015** 0.00072**
(3.12) (4.36) (1.25) (1.99) (-4.06) (4.88) (-2.08) (2.32)

Panel B: CAPM alphas
Portfolio AS CA CS CT Exp Turn R2 RG

1 0.0045* 0.0037 0.0046* 0.0046* 0.0053** 0.0039 0.0053** 0.0051*
(1.82) (1.30) (1.74) (1.76) (2.14) (1.63) (2.11) (1.96)

2 0.0043 0.0045* 0.0049** 0.0059* 0.0046* 0.0042* 0.0051* 0.0057*
(1.47) (1.71) (1.98) (1.88) (1.79) (1.69) (1.87) (1.72)

3 0.0079 0.0045 0.0046 0.0095 0.0073* 0.0049 0.0048* 0.0057*
(0.89) (1.59) (1.64) (1.62) (1.94) (1.15) (1.77) (1.72)

4 0.0049* 0.0046** 0.0049* 0.0085** 0.0057** 0.0063** 0.0041 0.0089***
(1.94) (1.80) (1.93) (2.41) (2.03) (2.30) (1.50) (2.91)

5 0.0055** 0.0054** 0.0053** 0.0054** 0.0042 0.0051** 0.0039 0.0055**
(1.99) (2.01) (2.01) (2.13) (1.60) (2.09) (1.50) (1.98)

5–1 0.0011* 0.0017*** 0.0007 0.0007** –0.0011*** 0.0012*** –0.0013*** 0.0006**
(1.74) (4.47) (1.35) (2.22) (-2.37) (4.84) (-2.87) (2.01)

Panel C: Fama–French alphas
Portfolio AS CA CS CT Exp Turn R2 RG

1 0.0048* 0.004 0.0048* 0.0049* 0.0056** 0.0042* 0.0055** 0.0053**
(1.92) (1.40) (1.80) (1.84) (2.21) (1.72) (2.14) (2.01)

2 0.0049* 0.0047* 0.0052** 0.0062* 0.0049* 0.0045* 0.0053* 0.0056
(1.66) (1.78) (2.03) (1.94) (1.86) (1.81) (1.95) (1.65)

3 0.0048 0.005* 0.0048* 0.0093 0.0076* 0.0050 0.0051* 0.0056
(0.60) (1.77) (1.69) (1.50) (1.98) (0.98) (1.85) (1.65)

4 0.0051** 0.0049* 0.0051** 0.0081** 0.0061** 0.0062** 0.0043 0.0085***
(2.00) (1.89) (1.99) (2.28) (2.09) (2.18) (1.58) (2.76)

5 0.0057** 0.0057** 0.0057** 0.0056** 0.0045* 0.0053** 0.0042 0.0057**
(2.03) (2.12) (2.11) (2.19) (1.69) (2.14) (1.58) (2.05)

5-1 0.0009 0.0017*** 0.0007 0.0007** -0.0011*** 0.0013*** -0.0012*** 0.00063*
(1.41) (4.53) (1.57) (2.28) (-2.28) (4.46) (-2.07) (1.72)
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Panel D: Carhart alphas
Portfolio AS CA CS CT Exp Turn R2 RG

1 0.005** 0.005* 0.0052* 0.0052* 0.0059** 0.0045 0.0061** 0.0061**
(1.98) (1.72) (1.89) (1.94) (2.32) (1.80) (2.34) (2.27)

2 0.0051* 0.0054** 0.0054** 0.0068** 0.0054** 0.0048* 0.0059** 0.0057*
(1.71) (2.00) (2.12) (2.09) (2.01) (1.87) (2.13) (1.68)

3 0.0039 0.0055* 0.0054* 0.0098 0.0079** 0.0041 0.0056** 0.0057*
(0.53) (1.89) (1.87) (1.59) (1.98) (0.79) (2.01) (1.68)

4 0.0056** 0.0053** 0.0055** 0.0084** 0.0065** 0.0063** 0.0048* 0.0085***
(2.14) (2.02) (2.11) (2.34) (2.19) (2.19) (1.70) (2.75)

5 0.0064** 0.0061** 0.0063** 0.0062** 0.0049* 0.0057** 0.0045 *0.0068**
(2.27) (2.22) (2.32) (2.39) (1.86) (2.25) (1.66) (2.41)

5–1 0.0014* 0.0011*** 0.00104** 0.0009*** –0.00096** 0.0012*** –0.0016** 0.00077
(1.67) (2.96) (2.12) (2.76) (-1.94) (4.75) (-2.09) (1.12)

Panel E: Fama–MacBeth regressions
Portfolio AS CA CS CT Exp Turn R2 RG

Estimate 0.011 0.057*** 0.02 0.004 –0.108*** 0.0006*** –0.0021 0.009
(0.63) (3.51) (0.28) (0.92) (–3.07) (6.59) (–0.71) (0.12)

Intercept 0.005* 0.0052** 0.0057** 0.0055** 0.007*** 0.0051** 0.007** 0.0059**
(1.94) (2.00) (2.29) (2.22) (2.84) (2.13) (2.65) (2.30)

R2 0.030 0.035 0.032 0.009 0.011 0.003 0.023 0.005

Table 22: Univariate test of each predictor. Panel A of this table presents average excess returns of
portfolios sorted on each predictor. Panels B–D show alphas from the univariate regressions of monthly
portfolios’ returns or of a return spread on factors. Every month we sort funds into five equal-size
quintiles based on a predictor in the previous month. The return spread is the difference in returns
between the top and the bottom quintiles (5-1 in the table). We regress next month’s portfolios’ return
or return spread on factors. Alphas and their corresponding t-statistics are in brackets. Variables are
winsorized at 1% level for the whole sample period and missing values are filled with the cross-sectional
means. Panel E demonstrates the results from Fama–MacBeth regressions: each predictor is regressed
on the next month’s excess fund returns. AS is active share is from Cremers & Petaijisto (2009), CA is
three-year Carhart alpha from Carhart (1997), CS and CT are characteristic selectivity and characteristic
timing from Wermers (2000), Exp is expense ratio from Gil–Bazo & Ruiz-Verdo (2009), Turn is fund
turnover from Pastor, Stambaugh, and Taylor (2014), R2 is the R–squared from a regression on a multi-
factor benchmark model from Amihud & Goyenko (2013), RG is return gap from Kacperczyk, Sialm, and
Zheng (2008). The sample period is from January 1985 to December 2010, with a monthly frequency of
observations.
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Return CAPM Fama-French Carhart

(1) (2) (3) (4)

AS 0.0018 0.0011 0.0007 0.0004

(1.18) (0.78) (1.11) (0.59)

CA 0.0531*** 0.0475*** 0.0426*** 0.0401***

(3.49) (3.73) (3.83) (3.64)

CS –0.0019 –0.0003 0.0051* 0.0021

(–0.36) (–0.08) (1.86) (0.77)

CT 0.0032 0.0027 0.0033 –0.0003

(0.75) (0.77) (1.33) (–0.12)

Exp –0.1085*** –0.1692*** –0.1568*** –0.1111***

(–4.47) (–10.60) (–10.03) (–8.15)

Turn 0.0005*** 0.0004*** 0.0003*** 0.0003***

(5.97) (5.00) (4.48) (5.52)

R2 0.0025 –0.00009 0.0003 0.00141

(0.91) (–0.04) (0.16) (0.78)

RG 0.0541 –0.0027 –0.0260 0.0534

(0.76) (–0.03) (–0.29) (1.04)

constant 0.003 0.003 0.0028 0.003*

(0.90) (1.25) (1.40) (1.68)

R2 0.12 0.26 0.39 0.35

Table 23: Fama–MacBeth multivariate regressions. The table shows the resulting estimates
from the Fama-MacBeth regressions. Explanatory variables include all eight replicated predictors. The
next month’s excess return is the dependent variable. Each column indicates whether additional risk
factors are included in the regressions. Column (1) specification does not include any risk factors and
represents coefficients and the constant without controlling for any risk model.
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Time split Investment style split Size split

1985-1997 1998-2000 Growth Value Other Small Medium Large

(1) (2) (3) (4) (5) (6) (7) (8)

AS 0.0026 0.0014 0.0014 0.0066** 0.0018* 0.007** 0.0018 0.0003

(0.92) (0.82) (0.70) (2.48) (1.84) (2.38) (1.15) (0.22)

CA 0.0864*** 0.027 0.0537*** –0.011 0.0508*** 0.044*** 0.058*** 0.051***

(3.96) (1.33) (3.45) (-0.69) (2.87) (3.01) (3.75) (2.81)

CS 0.0046 -0.0074 -0.0107 0.0022 -0.0033 -0.003 -0.0026 -0.0012

(0.70) (-0.95) (-0.89) (0.27) (-0.48) (-0.49) (-1.14) (-0.14)

CT 0.0073 0.000 0.0168 0.0017 0.0045 0.0017 -0.0016 0.014

(1.29) (0.02) (1.51) (1.56) (0.68) (0.25) (-0.29) (1.61)

Exp -0.095** -0.117*** -0.001 -0.116*** -0.152*** -0.12*** -0.071** -0.096***

(-2.27) (-4.21) (-0.05) (-2.99) (-4.79) (-4.60) (-2.08) (-3.12)

Turn 0.0004*** 0.0006*** 0.0006*** 0.0001 0.0004*** 0.0006*** 0.0005*** 0.0004***

(3.37) (4.90) (5.36) (0.63) (3.24) (3.32) (4.11) (4.12)

R2 0.0049 0.0002 0.0013 0.0001 0.0052 0.0045 -0.0014 0.0017

(1.49) (0.07) (0.45) (0.24) (1.45) (1.49) (-0.49) (0.47)

RG 0.099* 0.0166 -0.0276 0.1898 0.0149 0.18** 0.0105 -0.021

(1.85) (0.13) (-0.28) (1.61) (0.26) (2.55) (0.15) (-0.32)

Constant 0.002 0.003 0.0057* 0.0007 0.0011 -0.003 0.0058** 0.0064**

(0.90) (0.92) (1.86) (0.17) (0.39) (-0.96) (1.97) (2.07)

R2 0.11 0.12 0.006 0.006 0.16 0.13 0.14 0.16

Table 24: Time and cross-sectional subsamples. The table shows slope estimates from Fama-
MacBeth regressions that include all predictors as independent variables and the next month’s excess
return as a dependent variable. Values are coefficients for subsamples of size and style portfolios. Style
portfolios are based on Lipper classification objective/Wiesenberger type/ Strategic insight objective
from CRSP Survivor-Bias-Free US Mutual Fund Database. Values of t-statistic are in brackets.
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Panel A: Portfolio sorting

Portfolio Raw Return CAPM Fama-French Carhart 2 months
(1) (2) (3) (4) (5)

1 0.0038* -0.0030*** -0.0029*** -0.0028*** 0.0074
(1.64) (-4.72) (-6.21) (-5.86) (1.61)

2 0.0047 -0.0019*** -0.0019*** -0.0018*** 0.0093***
(1.61) (-4.12) (-5.68) (-5.58) (2.08)

3 0.0058** -0.00084* -0.00081** -0.00095*** 0.0114***
(1.98) (-1.86) (-2.76) (-3.20) (2.57)

4 0.0069*** 0.00025 0.00028 0.00008 0.0136***
(2.34) (0.49) (0.81) (0.23) (3.05)

5 0.0086*** 0.00198*** 0.002*** 0.0016*** 0.0171***
(2.89) (2.82) (4.01) (3.18) (3.81)

5–1 0.0048*** 0.0051*** 0.005*** 0.0045*** 0.0097***
(6.68) (7.07) (7.01) (6.34) (9.27)

Panel B: Fama-MacBeth regressions

Raw Return CAPM Fama-French Carhart
(1) (2) (3) (4)

Coefficient 0.940*** 0.789*** 0.543*** 0.515***
(7.00) (7.12) (7.19) (7.32)

Intercept 0.0011 -0.0027 -0.0017 -0.0014
(0.36) (-1.16) (-1.09) (-0.93)

R2 0.039 0.190 0.350 0.382

Table 25: Combined predictor. The table shows the performance of the newly created ”pre-
diction” variable. We run Fama-MacBeth rolling estimation procedure with a fixed estimation
window of 36 months, regressing next month’s excess returns on eight predictors, and save the
fitted values. We then sort funds monthly into five equal portfolios based on these predicted
returns and regress the return spread between the top and the bottom quintiles on factors. Panel
A shows average raw returns, alphas from regressing each portfolio on different factors. Col-
umn (5) shows average cumulative returns in the next two months after sorting. In Panel B we
also test Fama-MacBeth regressions: next month’s excess returns are a left-hand variable and
predicted values are on the right–hand variable. Corresponding t-statistics of the estimations
are in brackets. The sample period is between January 1986 and December 2010. All variables
are winsorized at 1% level and missing values were filled by cross-sectional means.
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Risk factors Fama-MacBeth coefficients

MKT –0.0091 –0.0047 –0.0077 –0.012 -0.0097
(–0.54) (–0.28) (–0.45) (–0.72) (–0.46)

SMB 0.0444* 0.0459* 0.0246 0.0515* 0.0437
(1.70) (1.76) (0.87) (1.97) (1.50)

HML 0.0553** 0.0578** 0.0023 0.0722** 0.0548*
(2.05) (2.13) (0.07) (2.57) (1.87)

UMD 0.073*** 0.0750*** 0.0889*** 0.0736***
(4.52) (4.62) (4.99) (4.15)

LIQUI –0.0141 –0.0104
(–1.30) (–0.95)

LTREV 0.0770**
(2.06)

STREV –0.0993***
(–3.94)

BAB –0.0481**
–2.03

QMJ –0.0020
(–0.05)

constant 0.005*** 0.004*** 0.005*** 0.004*** 0.004***
(7.07) (5.19) (6.15) (6.52) (5.87)

R2 0.048 0.097 0.086 0.107 0.090

Table 26: Additional risk factors. Every month we sort funds into five equal-size quintiles based
on the newly created ”prediction” variable. The return spread is the difference in returns between the
top and the bottom quintiles (5-1). We regress return spread on combinations of different factors. Corre-
sponding t-statistics of slope and alpha estimations are in brackets. Variables are winsorized at 1% level
for the whole sample period and missing values are filled with the cross-sectional means. The sample
period is from Jan 1985 to Dec 2010, with the monthly frequency of observations. The factors are: mar-
ket (MKT), small-minus-big (SMB), high-minus-low (HML) from Fama and French (1993), monthly
premium on winners minus losers (UMD) based on Carhart (1997), marketwide liquidity (LIQUI) in-
troduced as a factor by Pastor and Stambaugh (2003), long-run reversal effect (LTREV) studied by De
Bondt and Thaler (1985), factor that exploits the fact that stock returns exhibit reversal at short horizons
of one month (STREV by Jegadeesh, 1990), betting-against-beta (BAB) found by Frazzini and Peder-
sen (2014), and quality-minus-junk (long high-quality stocks and shorts low-quality stocks) factor from
Asness et al. (2013).
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Panel A: Robustness across time subsamples
Portfolio sorts Fama–MacBeth

1985-1997 1998-2010 1985-1997 1998-2010
CAPM alpha 0.0054*** 0.0048*** 0.8797*** 0.7228***

(5.66) (4.63) (5.64) (4.66)
FF alpha 0.0055*** 0.0047*** 0.7852*** 0.3649***

(5.58) (4.54) (6.32) (4.00)
Carhart alpha 0.0052*** 0.0044*** 0.7565*** 0.3366***

(4.95) (4.47) (6.52) (3.98)
Panel B: Robustness across fund investment styles

Value Growth Value Growth

CAPM alpha 0.0034*** 0.0050*** 0.3799*** 0.8096***
(4.27) (6.31) (2.77) (6.20)

FF alpha 0.0033*** 0.0050*** 0.1376 0.5478***
(4.20) (6.30) (1.18) (6.48)

Carhart alpha 0.0031*** 0.0044*** 0.1909* 0.5125***
(4.06) (5.63) (1.67) (6.47)

Panel C: Robustness across estimation windows
Portfolio sorts Fama–MacBeth

36-month 48-month 60-month expanding 36-month 48-month 60-month
CAPM alpha 0.0051*** 0.0044*** 0.0035*** 0.0030*** 0.7895*** 0.7638*** 0.6973***

(7.07) (5.93) (4.72) (4.74) (7.12) (6.18) (5.49)
FF alpha 0.0050*** 0.0044*** 0.0034*** 0.0030*** 0.5437*** 0.4896*** 0.4663***

(7.01) (5.88) (4.73) (4.68) (7.19) (6.37) (5.71)
Carhart alpha 0.0045*** 0.0040*** 0.0030*** 0.0028*** 0.5153*** 0.4731*** 0.4516***

(6.34) (5.37) (4.18) (4.36) (7.32) (6.39) (5.61)
Panel D: Robustness across fund size

Small Medium Large Small Medium Large

CAPM alpha 0.0052*** 0.0051*** 0.0050*** 0.9139*** 0.6603*** 0.6828***
(7.72) (6.54) (6.31) (6.53) (5.00) (5.59)

FF alpha 0.0051*** 0.0051*** 0.0050*** 0.7189*** 0.3954*** 0.3763***
(7.63) (6.47) (6.23) (5.67) (4.13) (4.44)

Carhart alpha 0.0047*** 0.0044*** 0.0044*** 0.6706*** 0.3754*** 0.3301***
(7.02) (5.79) (5.64) (5.51) (4.35) (4.27)

Table 27: Robustness tests of the combined predictor. The table shows alphas from portfolio
sorts and slope coefficients from FMB regressions. Fama–MacBeth regressions include all predictors as
independent variables and the next month’s excess return as dependent variable. Panel A contains results
for the whole period for all funds, but for different estimation windows for constructing the combined
predictor. Panel B shows coefficients for time subsamples. Panels C-D include results for different size
and style portfolios splits. Style portfolios are based on Lipper classification objective/Wiesenberger
type/ Strategic insight objective from CRSP Survivor-Bias-Free US Mutual Fund Database. t-statistics
are in brackets.
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Panel A: How significant predictors explain alpha
CAPM Fama-French Carhart

All 85-97 98-10 whole 85-97 98-10 All 85-97 98-10

long-short (1) (2) (3) (4) (5) (6) (7) (8) (9)

CA
0.438***

(9.61)
0.571***
(13.41)

0.342***
(4.07)

0.436***
(9.63)

0.569***
(13.59)

0.343***
(5.02)

0.437***
(9.61)

0.567***
(13.48)

0.341***
(3.92)

Exp
0.095
(1.46)

0.067
(1.35)

0.158
(1.20)

0.094
(1.49)

0.069
(1.38)

0.156
(1.15)

0.093
(1.46)

0.064
(1.26)

0.160
(1.18)

Turn
0.495***

(3.06)
0.043
(0.26)

0.575**
(2.18)

0.492***
(3.04)

0.057
(0.34)

0.804***
(3.38)

0.491***
(3.02)

0.059
(0.35)

0.803***
(3.32)

constant
0.003***

(4.71)
0.002***

(3.78)
0.003***

(3.19)
0.003***

(4.67)
0.002***

(3.40)
0.003***

(3.17)
0.003***

(4.62)
0.002***

(3.75)
0.003***

(3.07)

Panel B: How insignificant predictors explain alpha
CAPM Fama-French Carhart

All 85-97 98-10 All 85-97 98-10 All 85-97 98-10

long-short (1) (2) (3) (4) (5) (6) (7) (8) (9)

R2 -0.126
(-1.54)

0.169
(1.45)

-0.224**
(-2.16)

-0.127
(-1.63)

0.181
(1.51)

-0.219**
(-2.13)

-0.126
(-1.63)

0.167
(1.33)

-0.224**
(-2.16)

CT
–0.104
(–1.48)

0.076
(0.76)

–0.241**
(–2.49)

–0.111
(–1.37)

0.073
(0.71)

–0.249**
(–2.35)

–0.112
(–1.37)

0.071
(0.69)

–0.241**
(–2.54)

CS
0.031
(0.53)

0.070
(0.82)

0.083
(1.01)

0.029
(0.51)

0.076
(0.88)

0.091
(1.12)

0.029
(0.51)

0.071
(0.81)

0.091
(1.10)

AS
0.004
(0.08)

–0.016
(–0.22)

0.056
(0.68)

–0.050
(–0.94)

–0.013
(–0.18)

0.058
(0.72)

–0.051
(–0.95)

–0.022
(–0.29)

0.067
(0.82)

RG
0.167**
(2.15)

0.010
(1.08)

0.270**
(2.28)

0.175**
(2.31)

0.106
(1.12)

0.270**
(2.31)

0.175**
(2.31)

0.109
(1.14)

0.271**
(2.32)

constant
0.005***

(6.64)
0.005***

(4.26)
0.004***

(4.11)
0.005***

(6.62)
0.004***

(3.97)
0.004***

(4.21)
0.005***

(6.69)
0.004***

(3.81)
0.004***

(4.14)

Table 28: Performance of the trading strategy controlled for two combinations of predic-
tors. This table contains results from multivariate regressions: the long-short portfolio is regressed on
set of predictors. Regressions reported in Panel A contain only predictors that appeared to be significant
in multivariate regressions of future month’s returns. Panel B, respectively, contain all other predictors.
All variables are contemporaneous. The sample period is from January 1985 to December 2010.
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Appendix

Mean Median
Standard
deviation

Small funds
Number of distinct mutual funds 2,478
Number of fund–month observations 138,069
TNA (total net assets) (in millions $) 12.2 8.6 19.1
Expense ratio (in %) 1.7 1.5 1.9
Turnover ratio (in %) 101.7 69 158
Proportion invested in stocks (in %) 94.2 95.7 5.3
Proportion invested in cash (in %) 4.2 3.2 4.2
Proportion invested in bonds (in %) 0.44 0 1.5
Proportion invested in other securities (in %) 0.48 0 2.3

Middle-size funds
Number of distinct mutual funds 1,937
Number of fund–month observations 137,834
TNA (total net assets) (in millions $) 115.9 97.1 71.3
Expense ratio (in %) 1.3 1.2 0.5
Turnover ratio (in %) 87.6 59 109
Proportion invested in stocks (in %) 93.5 95.1 5.6
Proportion invested in cash (in %) 4.7 3.6 4.3
Proportion invested in bonds (in %) 0.4 0 1.4
Proportion invested in other securities (in %) 0.4 0 2.0

Large funds
Number of distinct mutual funds 1,136
Number of fund–month observations 137,795
TNA (total net assets) (in millions $) 2,825.5 2,131.5 7,384.1
Expense ratio (in %) 0.98 0.95 0.47
Turnover ratio (in %) 71.4 52 69.9
Proportion invested in stocks (in %) 92.3 93.7 6.1
Proportion invested in cash (in %) 5.5 4.5 4.4
Proportion invested in bonds (in %) 0.6 0.05 1.4
Proportion invested in other securities (in %) 0.5 0 3.3

Table 29: Summary statistics of fund sample to size. This table summarizes the characteristics
of the mutual funds’ sample over the period January 1985 to December 2010. Every month the sample
was divided into three equal parts, based on the funds’ total net assets (TNA). TNA represents the total
of all investor dollars invested in all share classes of the fund.
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Portfolio sorts

Small funds Whole sample Earlier sample Later sample
(Jan 1985-Dec 2010) (Jan 1985-Dec 1997) (Jan 1998-Dec 2010)

CAPM alpha
0.0052***

(7.72)
0.0056***

(5.42)
0.0048***

(5.43)

Fama-French alpha
0.0051***

(7.63)
0.0057***

(5.35)
0.0047***

(5.37)

Carhart alpha
0.0047***

(7.02)
0.0055***

(4.82)
0.0045***

(5.32)
Fama-MacBeth regressions

”prediction” variable
1.01***
(7.67)

1.10***
(4.95)

0.94***
(5.90)

intercept
0.0003
(0.10)

0.0011
(0.30)

-0.0003
(-0.07)

Portfolio sorts
Middle–size funds Whole sample Earlier sample Later sample

CAPM alpha
0.0051***

(6.54)
0.0055***

(5.49)
0.0048***

(4.21)

Fama-French alpha
0.0051***

(6.47)
0.0056***

(5.42)
0.0047***

(4.12)

Carhart alpha
0.0044***

(5.79)
0.0053***

(4.81)
0.0043***

(4.04)
Fama–MacBeth regressions

”prediction” variable
0.9142***

(6.09)
1.037***

(5.63)
0.824***

(3.69)

intercept
0.0014
(0.46)

0.0022
(0.57)

0.0008
(0.18)

Portfolio sorts
Large funds Whole sample Earlier sample Later sample

CAPM alpha
0.0050***

(6.31)
0.0054***

(4.81)
0.0048***

(4.21)

Fama–French alpha
0.0050***

(6.28)
0.0055***

(4.76)
0.0045**

(4.10)

Carhart alpha
0.0044***

(5.64)
0.0053***

(4.24)
0.0043**

(3.99)
Fama-MacBeth regressions

”prediction” variable
0.926***Fama

(5.77)Fama
0.997***Fama

(4.70)Fama
0.871***Fama

(3.77)Fama

intercept
0.0012Fama
(0.39)Fama

0.0018Fama
(0.44)Fama

0.0008Fama
(0.18)Fama

Fama–MacBeth regressions
Table 30: Detailed split of size portfolios. The table demonstrates the performance of the joint
predictor for a split of three size portfolios into time subsamples: the whole sample period, as well as
earlier and later periods (13 years each). Fund size is based on the average fund TNA.
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